向量的概念-PPT课件
平面向量的概念PPT课件
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b |a|=|b|
(4)两个向量a、b相等的充要条件是 a ∥b
(5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中真命题的个数是( )
A.0 B. 1
D
C
C. 2
D. 3
C
D
变:若 a ∥ b, b ∥ c, 则a ∥c
1.若非零向量AB//CD ,那么AB//CD吗? 2.若a//b ,则a与b的方向一定相同或相反吗?
(2)相D等向量:C长度相等且方向相同的向量叫做相等向量。
A
B
A
B
D
C
记作:a = b 规定:0 = 0
a b
.
o
相等向量一定是平行向量吗?
向量相等
平行向量一定是相等向量吗?
向量平行
例1.如图设O是正六边形ABCDEF的中心,写出图中
向量相等向量平行平行向量一定是相等向量吗若非零向量abcd那么abcd是正六边形abcdef的中心写出图中与向量oa相等的向量
2.1向量的基本概念
吴川市第一中学 李 君
A B
嘻嘻!大笨 猫!
唉, 哪儿去了?
一、向量的定义
既有大小,又有方向的量叫做向量。
二 、向量的表示方法
B(终点)
A(起点)
1 几何表示法: 有向线段( 起点、方向、长度 )
与向量OA相等的向量。 OA = DO = CB
变式一:与向量OA长度相等的向量 有多少个? 11个
变式二:是否存在与向量OA长度相等,方向 相反的向量? 存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些? CB、DO、FE
6.1 平面向量的概念 课件(共21张PPT)
(2)相等向量—长度相等且方向相同的向量,记作 a=b .
(3)共线向量—就是平行向量.
二、探究本质 得出新知
问题12:平行向量所在直线是否一定平行?共线向量所在直线 是否一定共线?
提示:不一定
总结:向量可以自由平移.
三、举例应用 掌握定义
例1.一辆汽车从点出发向西行驶了100千米到达B点,然后又 改变方向向西偏北 50 走了200千米到达C点,最后又改变方向, 向东行驶了100千米到达点D. (1)作出向量 AB, BC,CD ; (2)求 AD .
其中正确的有( A )
A.2个
B.3个
C.4个
D.5个
解:①正确;
②由 a = b 得 a 与 b的模相等,但不确定方向,故②错误;
③错误; ④所有单位向量的模都相等,都为1,但方向不确定,故④不 正确;⑤正确.故选A.
四、学生练习 加深理解
3.如图,D, E, F 分别是 ABC 的边 AB, BC,CA的中点,在以 A, B,C, D, E, F 为起点和终点的向量中.
(1)找出与向量 EF 相等的向量; (2)找出与向量 DF 共线的向量.
四、学生练习 加深理解
解:(1)因为 E, F分别为 BC,CA 的中点,所以 EF//BA ,
且
EF
1 2
BA
.又因为
D
是BA
的中点,所以
EF
BD
DA,所以
与 EF 向量相等的向量为BD, DA .
(2)因为 D, F 分别为 BA, AC 的中点,
第六章 平面向量及其应用
6.1 平面向量的概念
一、创设情境 引入新课
问题1:道路标识牌上的箭头和数字指的是什么? 问题2:老鼠由点A向东北方向逃窜,猫快速由点B向正东
高等数学向量及其运算PPT课件.ppt
2
• 自由向量 与起点无关的向量, 称为自由向量, 简称向量.
• 向量的相等 如果向量a和b的大小相
等, 且方向相同, 则说向量a 和b是相等的, 记为a=b.
相等的向量经过平移后可以完全重合.
3
•向量的模 向量的大小叫做向量的模.
向量 a、a 、AB 的模分别记为|a|、|a| 、|AB| .
23
例3 已知两点A(x1, y1, z1)和B(x2, y2, z2)以及实数-1,
在直线 AB 上求一点 M, 使 AM =MB .
解 由于
解 由于 AM =OM-OA , MB=OB-OM ,
=OM-OA , MB=OB-OM ,
因此 OM-OA=(OB-OM) ,
从而
OM =
1
(OA+ OB)
当两个平行向量的起点放在同一点时, 它 们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.
设有k(k3)个向量, 当把它们的起点放在同 一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面.
6
二、向量的线性运算
1.向量的加法
设有两个向量a与b, 平移向量, 使b的起点与a
当=0时, |a|=0, 即a为零向量. 当=1时, 有1a=a; 当=-1时, 有(-1)a =-a.
10
•向量与数的乘积的运算规律
(1)结合律 (a)=(a)=()a; (2)分配律 (+)a=a+a;
(a+b)=a+b.
•向量的单位化
设a0, 则向量 a 是与a同方向的单位向量,
记为ea.
|a|
6.1平面向量的概念课件共34张PPT
探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
2024版中职数学平面向量的概念ppt课件
01向量的定义向量是既有大小又有方向的量,通常用有向线段表示。
02向量的表示方法向量可以用小写字母或大写字母加箭头表示,如$vec{a}$或$overset{longrightarrow}{AB}$。
03向量的模向量的大小称为向量的模,记作$|vec{a}|$,模长是一个非负实数。
向量定义及表示方法03向量的模长等于有向线段的长度,可以通过勾股定理或三角函数计算。
向量的模长向量与正方向(通常是x 轴正方向)的夹角称为向量的方向角,记作$theta$,取值范围是$[0, pi]$或$[0, 180^circ]$。
方向角向量与坐标轴正方向的夹角的余弦值称为向量的方向余弦,可以通过方向角计算得到。
方向余弦向量模长与方向角模长为0的向量称为零向量,记作$vec{0}$,零向量没有方向。
零向量单位向量相反向量模长为1的向量称为单位向量,单位向量具有确定的方向。
与给定向量大小相等、方向相反的向量称为相反向量,记作$-vec{a}$。
030201零向量、单位向量和相反向量向量共线与平行关系向量共线如果两个向量在同一直线上或者平行于同一直线,则称这两个向量共线。
共线向量满足$vec{a} = kvec{b}$($k$为实数)。
向量平行如果两个向量的方向相同或相反,则称这两个向量平行。
平行向量满足$vec{a} parallel vec{b}$。
共线与平行的关系在平面内,共线的向量一定平行,但平行的向量不一定共线。
加法定义两个向量相加,即将它们的对应分量相加得到新的向量。
几何意义向量的加法满足平行四边形法则或三角形法则,即两个向量相加的结果可以表示为以这两个向量为邻边的平行四边形的对角线,或者可以表示为将其中一个向量的终点连接到另一个向量的起点的向量。
01减法定义02几何意义两个向量相减,即将被减数的各分量减去减数的对应分量得到新的向量。
向量的减法可以表示为将减数向量的终点连接到被减数向量的起点的向量,这个向量与减数向量方向相反,大小相等。
平面向量的概念PPT课件
04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法
6.1平面向量的概念课件共45张PPT
即时训练1-1:判断下列命题是否正确,若不正确,请简述理由.
(2)单位向量都相等;
解:(2)不正确,单位向量的模均相等且为1,但方向并不确定.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(3)四边形 ABCD 是平行四边形当且仅当=;
(4)一个向量方向不确定当且仅当模为 0;
有紧紧抓住概念的核心才能顺利解决与向量概念有关的问题.
即时训练 1-1:判断下列命题是否正确,若不正确,请简述理由.
→
→
(1)向量与是共线向量,则 A,B,C,D 四点必在同一直线上;
解:(1)不正确,共线向量即平行向量,只要求方向相同或相反即可,并不
→
→
要求两个向量,在同一直线上.
(3)两个特殊向量:
①零向量与非零向量:
长度为0的向量叫做零向量.印刷时用加粗的阿拉伯数字零表示,即0;书写
→
时,可写为.长度不为 0 的向量称为非零向量.
②单位向量:长度等于1个单位长度的向量,叫做单位向量.
2.向量间的关系
(1)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,向量
图所示的向量中,
→
→
(1)分别找出与, 相等的向量;
→
→
→
→
解:(1)=,=.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
图所示的向量中,
→
(2)找出与共线的向量;
→
→
→
→
解:(2)与共线的向量有,,.
[例 2] O 是正方形 ABCD 对角线的交点,四边形 OAED,OCFB 都是正方形,在如
高一数学平面向量的概念及线性运算PPT优秀课件
a+b=λLeabharlann a-b),即(λ-1)a=(1+λ)b,
∴ λ-1=0 1+λ=0
,λ 无解,故假设不成立,即 a+b 与 a-b 不平行,故选 D.
错源二:向量有关概念理解不当
【例2】 如图,由一个正方体的12条棱构成的向量组成了一个集合M,则集合M的元 素个数为________.
错解:正方体共有12条棱,每条棱可以表示两个向量,一共有24个向量.答案是24. 错解分析:方向相同长度相等的向量是相等向量,故AA1―→=BB1―→=CC1―→ = DD1―→ , AB―→ = DC―→ = D1C1―→ = A1B1―→ , AD―→ = BC―→ = B1C1―→=A1D1―→.错解的原因是把相等的向量都当成不同的向量了. 正解:12条棱可以分为三组,共可组成6个不同的向量,答案是6. 答案:6
错解分析:错解一,忽视了 a≠0 这一条件.错解二,忽视了 0 与 0 的区别,AB―→+
BC―→+CA―→=0;错解三,忽视了零向量的特殊性,当 a=0 或 b=0 时,两个等号同时
成立.
正解:∵向量 a 与 b 不共线,
∴a,b,a+b 与 a-b 均不为零向量.
若 a+b 与 a-b 平行,则存在实数 λ,使
∴|AM―→|=12|AD―→|=12|BC―→|=2.故选 C.
【例2】 (2010年安徽师大附中二模)设O在△ABC的内部,且OA―→+OB―→+ 2OC―→=0,则△ABC的面积与△AOC的面积之比为( ) (A)3 (B)4 (C)5 (D)6
解析:由 OC―→=-12(OA―→+OB―→),设 D 为 AB 的中点, 则 OD―→=12(OA―→+OB―→), ∴OD―→=-OC―→,∴O 为 CD 的中点, ∴S△AOC=12S△ADC=14S△ABC,∴SS△△AAOBCC=4.故选 B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ABCD为平行四边
形( √ )
教学过程(四)辨析概念,例题互动
例2 如图,设 O 是正六边形ABCDEF 的中心.
(1)向量
与 uuuuuur
OA
uFuuuEuur相等吗?
(2)与向量
uuuuuur
OA
长度相等的向量有多少个?
(3)与向量
uuuuuur
OA
共线的向量有哪几个?
教学过程(五)归纳小结,延伸课堂
请学生回答下列问题: (1)这节课你学到了哪些知识? (2)通过本节课的学习,对于研究数学新对象,你有什么体会? (3)你觉得后续我们还将学习什么内容?
向量
向量概念 大方 小向 (( 数形 ))
向量表示 几字 何母 表表 示示
特殊向量 零单 向位 量向
量
特殊关系 相相 共 等反 线 向向 向 量量 量
教学过程(六)引例再究,前后呼应
孔雀东南飞
厦门
本节课的主题 大小与方向
我的向量
给你一个方向, 给你一个坐标系, 给你一个基底, 繁复的几何关系, 优美的动态结构, 不管起点在哪里, 哪怕山高路远, 啊,我的向量, 溶进了我的身体, 静静地流淌!
你就成为我的向量。 你就在我心空飞翔。
带着我,征途启航, 变成纯代数的情殇, 没有人情冷暖世态炎凉。 你始终在水一方,
江西省新余市第四中学 特级教师 朱伙昌
Email: 2448300012@
2、两个向量可以比较大小吗?(例如是否可以说
uur
a
uur
b
?)
类比数的绝对值几何意义,得出向量模的定义。
教学过程(二)问题引领,逐步探究
4、特殊的向量
零向量:长度为 0 的向量,记作 0.
单位向量:长度等于 1 个单位长度的向量,叫做单位向量 . 这两个量仅从大小上刻画了向量.
思考: • 单位向量唯一吗? • 平面直角坐标系内,所有起点在原点的
rr rr
(3)若a// b,则 a与 b 的方向相同。 ( × )
(4)若 ,则 。 uuuuuur
AB 0
uuuuuuur uuuuuuur
AB BA
( ×)
(5)若 , a b uuuur uuuur 则
. 2uauuur
uuur
b
( ×)
(6) A、B、C、D四点不共线,若
,则四边形 uuuuuuur uuuuuuuur
课外阅读
不管多少个向量相加,只要从一个起点出发,依次首尾相连,最后一个向量的终点回到了起点,其结果均为零 向量!
是啊,回到起点,向量之和均关乎零,这不禁令我们想到了人生的归零智慧。 大而言之,我们每天上主管工作,家是你的起点,一天的工作不管再累,心情再烦,最后你还是要回到一天的 起点—温馨的家,从而抚慰心灵,归零芜杂,迎接明天的太阳! 做人,适时把自己“归零”,就会心胸开阔。人生,难免全有成功与失败、顺境与逆境。顺境时,把自己适时 “归零”,可以戒骄戒躁,消除“骄娇”二气,不把成功和顺境当“包袱”背起来;逆境时,固然会失去很多,但 能够在失去时勇于“归零”,才能重新面对自己,从头开始,积极奋斗。就像春节前的大扫除,把那些没用处的东 西清除掉,把有用的珍品拂拭干净,就可以窗明几净、心情舒畅地迎接新春。 其实,人生也像时钟一样,到了子夜就要“从零开始”,只有归零,才会有新的周期与辉煌。著名作家刘震云 也说过:“归零心态就是把自己心灵里的一切清空,把已经拥有的一切剥除,一切归于零的心态。”实际上,无论 何种境况,能适时把自己“归零”,总是海阔天空,心胸豁达。
哪怕风雨苍茫。 你是一股力量, 在我的血管里,
课外业
1.(必做作业)教材P75 习题2-1 2.(选做作业)平面向量既有大小,又有方向,集数与形于一身。 我们也知道,平面直角坐标系中,坐标与点是一一对应的,实质上 也是沟通了数与形之间的关系,那么,平面向量有没有坐标表示呢 ?如果有,你觉得应该怎么定义?请课后进行研究。 3.目标检测设计: 判断下列结论是否正确 (1)若a,b都是单位向量,则a=b; (2)若a=b,则a,b是共线向量; (3)平行向量方向一定相同。
2、向量的表示
10N
教学过程(二)问题引领,逐步探究
2、向量的表示
几何表示
向量常用一条有向线段来表示. (1) : 有向线段的长度表示向量的大小 (2)箭头所指的方向表示向量的方向.
类比矢量的表示方法,获得向量的几何表示
符号表示
向量可以用有向线段的起点和终点字母表示,
如: uuuuuur
AB
在印刷时,常用粗黑体小r写字r 母r a , b , c 来表示; 手写时则可
单位向量,它们终点的轨迹是什么图形?
类比数的集合,认识向量的集合。
教学过程(三)击鼓传花,自主探究
5、向量的关系 (1)模相等的向量有: (2)模相等,方向相同的向量有: (3)模相等,方向相反的向量有: (4)方向相同或相反的向量有: (5)uAuuBur,uBuuCur 是共线向量吗?(6)uAuCur,uDuuGr 是平行向量吗? (7)uAuCur 与 uDuuGr 是共线向量吗?(8)uAuBur 与 uAuCur是平行向量吗?
用带箭头的小写字母 a, b, c 来表示.
类比直线、线段的符号表示,获得向量的符号表示
教学过程(二)问题引领,逐步探究
3、向量的大小(模)
向量
uuur AB
的大小,也就是向量
uuur AB
的长度(或称
模).
记作 . uuuuuuur AB
uur ur
uur ur
思考:1、AB与BA相同吗?AB 与 BA 相同吗?
北师大版高中数学必修4
教学过程(一)创设情境,引入课题
教学过程(二)问题引领,逐步探究
1、向量的相关概念
只有大小没有方向 标量 数量 既有大小又有方向 矢量 向量 向量的定义:既有大小又有方向的量。
1、向量的相关概念
力
数量 1
类比数的定义获得向量的概念。
位移
速度 …
向量
教学过程(二)问题引领,逐步探究
教学过程(三)击鼓传花,自主探究
5、向量的关系
向量与物理的矢量有什么区别和联系? 向量平行、共线与线段的平行、共线有什么区别和联系?
类比直线的基本关系,获得向量的基本关系。
教学过程(四)辨析概念,例题互动
例1 判断下面的说法是否正确
(1)向量的模的取值范围 (0 ,+)。 ( × )
rr
rr
(2)若a 与 b都是单位向量,则 a b。 ( √)