人教A版高中数学必修3第三章 概率3.3 几何概型教案

合集下载

高中数学人教A版必修3教案-3.3_几何概型_教学设计_教案

高中数学人教A版必修3教案-3.3_几何概型_教学设计_教案

教学准备1. 教学目标教学目标:知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

2. 教学重点/难点教学重点:①理解几何概型的概念、特点;②用其求解随机事件的概率。

教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域和与事件A对应的区域,并求出它们的几何度量。

3. 教学用具4. 标签教学过程教学过程:课题引入:试验1、①、在集合{0,1,2,3,4,5,6,7,8.,9}中任取一个元素a,则a ≥3的概率为_________②、如图在线段OA上任取一点B(a,0),则a≥3的概率为_________试验2、2011年我班元旦活动中将设置两种游戏:第一种:靶子如图所示,假设靶子机随机的射击一次,射在大小相同的气球上。

规定击中红球则中奖。

第二种:靶子如图所示,假设靶子机随机的掷一个飞镖扎在靶子上,飞镖不会落脱靶。

规定飞镖落在红色区域则中奖。

每人限报一种且执行一次。

假设你在参加游戏,你更愿意选择哪种呢?【设计目的】激发学生的求知欲望,复习旧知发现新知,通过类比分散难点,培养学生的发现问题,分析问题和解决问题能力。

思考交流、概念形成:问题:(1)两组试验涉及到问题的共同特征是什么?(2)对于“无限性”类问题,其概率的计算方法的共同特点是什么?(课前准备表格,待学生讨论结束,概念、公式形成后补充完整)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.观察类比、公式形成:2、几何概型的概率公式:一般地,在几何区域中随机地取一点,记事件"该点落在其内部一个区域内"为事件,则事件发生的概率练习:有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.解题注意事项:(1)要判断该概率模型是不是几何概型,注意与古典概型的区别;(2)要找出构成随机事件A的区域和试验的全部结果所构成的区域;(3)确定好几何度量。

几何概型(教学设计)

几何概型(教学设计)

3.3 几何概型一、教材分析本节课是人教A版教材数学必修3第三章第三节的内容。

“几何概型”这一节内容是在学习了“古典概型”之后的第二类概率模型,是对古典概型的内容进一步拓展,是等可能事件的概念从有限向无限的延伸。

通过本节内容的学习,学生将会更深的体会到数学与实际生活的紧密关系,以及数形结合的思想无处不在。

因此在教学中要做到难度适中,同时要接近生活,基本应以贴近生活的例题与习题为主。

二、教学目标1.了解几何概型与古典概型的区别与联系,知道均匀分布的含义。

2.理解几何概型的定义、特点,掌握几何概型的概率公式。

3.会求简单的几何概型的事件的概率。

三、教学重点几何概型的特点,会用公式计算几何概型的概率。

四、教学难点在具体问题中找到几何测度并正确计算。

五、教学过程(一)创设情境,引入新课。

问题一:北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,则顾客能得到一套福娃玩具的概率是________.问题二:厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图1)转盘被分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是________.(教师通过白板演示)设计意图:通过这两个实际问题,学生都能很快的进入问题中思考,尤其是问题二,使学生意识到这个问题的基本事件有无数个。

(二)师生互动,探求新知思考1:以上两个问题都是古典概型吗?为什么?经过分析,问题一是古典概型,问题二不是古典概型,因为基本事件有无限个,虽然类甲 乙 【预习自测】1、在轴的坐标为[0,3]上的线段上任取一点, 其坐标小于1的概率是_____________。

2、在2升水中有一个草履虫,现从中随机抽取0.1升水样放到显微镜下观察,则发现草履虫的概率是_____.似于古典概型的等可能,但由于基本事件和所研究的事件包含的基本事件都有无数个,显然不能用古典概型的概率公式来解决,由此引出几何概型的概念。

人教A版高中数学必修3《几何概型》教案

人教A版高中数学必修3《几何概型》教案

参赛课题:几何概型使用教材:普通高中课程标准实验教科书数学必修3(人教A版)《几何概型》教案说明一、《几何概型》在教材中的地位本节课是高中数学(必修3)第三章概率的第三节几何概型的第一课时,是在学习了古典概型情况下教学的。

它是对古典概型内容的进一步拓展,主要是要把概率问题与几何问题完美的结合,用数形结合的思想,通过建立基本事件与相应点的对应,实现从有限到无限形式上的转化,使等可能事件的概念从有限向无限延伸,进而建立合理的几何模型解决相关概率问题。

此节内容也是新课标中增加的,反映了《新课标》对数学知识在实际应用方面的重视.同时也暗示了它在概率论中的重要作用,以及在高考中的题型的转变。

二、《几何概型》教学目标定位1、教学目标1)知识目标通过解决具体问题让学生感知用图形解决概率问题的思路,体会几何概型计算公式及几何意义。

2)能力目标通过多个问题的分析及试验让学生理解几何概型的特征,归纳总结出几何概型的概率计算公式,渗透有限到无限,转化与化归及数形结合的思想。

3)情感目标教会学生用数学方法去研究不确定现象的规律,帮助学生获取认识世界的初步知识和科学方法。

2、教学目标的设置意图几何概型概念中的核心是它的两个特征,(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等(等可能性),所以教学的重点不是“如何计算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的几何概型的实例与数学模型使学生概括、理解、深化几何概型的两个特征及概率计算公式。

同时使学生初步能够把一些实际问题转化为几何概型,并能够合理利用随机、统计、化归、数形结合等数学思想方法有效解决有关的概率问题。

三、《几何概型》的重难点分析1、教学重点:几何概型概念及计算公式的形成过程.2、教学难点:将实际问题转化为数学问题,建立几何概率模型,并求解。

3、诊断分析:本节课让学生动手操作,亲身体验感受基本事件的个数不可数的情形下,从而引起思维的困惑,进而引导学生利用数形结合的思想,通过建立等量替代的关系,实现有限和无限之间的对应转化,从而解决了无限性难以计算的问题,让学生理解这样的对应是内在的,逻辑的,因此建立的度量公式是合理,这是本节课的难点所在,也是学生难以理解的地方。

人教A版高中数学必修3《第三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》_6

人教A版高中数学必修3《第三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》_6

均匀随机数的产生教学设计教学目标:1.能够利用随机模拟试验估计事件的概率.2.了解把未知量的估计问题转化为随机模拟问题.3.会根据题目条件合理设计简单的随机模拟试验. 教学重点:会根据题目条件合理设计简单的随机模拟试验. 教学方法:讲练结合、启发式. 教学过程: 知识梳理知识点1: 均匀随机数定义:如果试验的结果是在区间[a ,b]上的__________,并且出现每一个实数都是________的,则称这些实数为均匀随机数. 知识点2:均匀随机数的产生1.计算器上产生[0,1]的均匀随机数的函数是________函数.2.Excel 软件产生[0,1]区间上均匀随机数的函数为“________”. 知识点3:用模拟方法近似计算某事件概率的方法[化解疑难](1)均匀随机数的理解①均匀随机数是随机产生的,在一定的区域长度上出现的概率是均等的.②均匀随机数是小数或整数,相邻两个均匀随机数的步长是人为设定的.(2)应用模拟试验近似计算概率的方法要点分析用均匀随机数模拟试验时,首先把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型只用一组,面积型需要两组.②由所有基本事件总体对应的区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式求事件A的概率.基础自测1.用均匀随机数进行随机模拟,可以解决( )A.只能求几何概型的概率,不能解决其他问题B.不仅能求几何概型的概率,还能计算图形的面积C.不但能估计几何概型的概率,还能估计图形的面积D.最适合估计古典概型的概率解析:很明显用均匀随机数进行随机模拟,不但能估计几何概型的概率,还能估计图形的面积,得到的是近似值,不是精确值,用均匀随机数进行随机模拟,不适合估计古典概型的概率.2.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )A.a=a1*8B.a=a1*8+2C.a=a1*8-2D.a=a1*6解析:将[0,1]内的随机数转化为[a,b]内的随机数需进行的变化为a=a1*(b-a)+a=a1*8-2.答案:C3.下列关于随机数的说法中:①计算器只能产生(0,1)之间的随机数;②计算器能产生指定两个整数值之间的均匀随机数;用随机模拟法估计长度型几何概型自主练透型例1、 取一根长度为5 m 的绳子,拉直后在任意位置剪断,用均匀随机模拟方法估计剪得两段的长都不小于2 m 的概率有多大? 解析: 设剪得两段的长都不小于2 m 为事件A.法一:(1)利用计算器或计算机产生n 个0~1之间的均匀随机数,x =RAND ; (2)作伸缩变换:y =x*(5-0),转化为[0,5]上的均匀随机数; (3)统计出[2,3]内均匀随机数的个数m ; (4)则概率P(A)的近似值为m/n.法二:(1)做一个带有指针的转盘,把圆周五等分,标上刻度[0,5](这里5和0重合); (2)固定指针转动转盘或固定转盘旋转指针,记下指针在[2,3]内(表示剪断绳子位置在[2,3]范围内)的次数m 及试验总次数n ; (3)则概率P(A)的近似值为m/n. [归纳升华]利用随机模拟计算概率的步骤 (1)确定概率模型;(2)进行随机模拟试验,即利用计算器等以及伸缩和平移变换得到[a,b]上的均匀随机数;(3)统计计算;(4)得出结论,近似求得概率.1.已知米粒等可能地落入如图所示的四边形ABCD 内,如果通过大量的实验发现米粒落入△BCD 内的频率稳定在49附近,那么点A 和点C 到直线BD 的距离之比约为 .解析: 设米粒落入△BCD 内的频率为P 1,米粒落入△BAD 内的频率为P 2,点C 和点A 到直线BD的距离分别为d 1,d 2,根据题意:P 2=1-P 1=1-49=59, 又∵P 1=S △BCDS 四边形ABCD=12×BD ×d 1S 四边形ABCD , P 2=S △BAD S 四边形ABCD =12×BD ×d 2S 四边形ABCD∴P 2P1=d 2d 1=54. 用随机模拟估计面积型的几何概型多维探究型如图所示,在墙上挂着一块边长为32 cm 的正方形木板,上面画了小、中、大三个同心圆,半径分别为3 cm ,6 cm ,9 cm ,某人站在3 m 之外向此板投镖,假设投镖击在线上或没有投中木板不算,可重投,用随机模拟的方法估计:(1)“投中小圆内”的概率是多少?(2)“投中小圆与中圆形成的圆环”的概率是多少?解析:记事件A ={投中小圆内},事件B={投中小圆与中圆形成的圆环}.按如下步骤进行:(1)用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND;(2)经过伸缩和平移变换,a=a1·32-16,b=b1·32-16,得到两组[-16,16]上的均匀随机数;(3)统计投在小圆内的次数N1(即满足a2+b2<9的点(a,b)的个数),投中小圆与中圆形成的圆环的次数N2(即满足9<a2+b2<36的点(a,b)的个数),投中木板的总次数N(即满足-16<a<16,-16<b<16的点(a,b)的个数);(4)计算频率f n(A)=N1N,f n(B)=N2N,即分别为概率P(A),P(B)的近似值.[归纳升华]用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别(1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.2.现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解析:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a1、b1(共N组);(2)经过平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出满足不等式b<2a-43,即6a-3b>4的数组数N1.所求概率P≈N1N.可以发现,试验次数越多,概率P越接近25 144.利用随机模拟的方法计算不规则图形的面积多维探究型(1)如图,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.无法计算(2)利用随机模拟的方法近似计算图中阴影部分(抛物线y =2-2x -x 2与x 轴围成的图形)的面积.解析: (1)由几何概型的公式可得S 阴影S 正方形=23,又S 正方形=4, ∴S 阴影=4×23=83.(2)①利用计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND ;②经过平移和伸缩变换,a =a 1·4-3,b =b 1·3,得到一组[-3,1]和一组[0,3]上的均匀随机数;③统计试验总次数N 和落在阴影部分的点数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数);④计算频率N 1N就是点落在阴影部分的概率的近似值;⑤设阴影部分的面积为S ,由几何概型概率公式得点落在阴影部分的概率为S 12,所以S 12≈N 1N ,故S ≈12N 1N即为阴影部分面积的近似值.[归纳升华]利用随机模拟法估计图形面积的步骤(1)把已知图形放在平面直角坐标系中,将图形看成某规则图形(长方形或圆等)内的一部分,并用阴影表示;(2)利用随机模拟方法在规则图形内任取一点,求出落在阴影部分的概率P (A )=N 1N ;(3)设阴影部分的面积是S ,规则图形的面积是S ′,则有S S ′=N 1N ,解得S =N 1NS ′,则已知图形面积的近似值为N 1NS ′.3.利用随机模拟的方法近似计算图中阴影部分(曲线y =2x与直线x =±1及x 轴围成的图形)的面积.解析: 设事件A 为“随机向正方形内投点,所投的点落在阴影部分”,操作步骤如下:第一步,用计数器n 记录做了多少次试验,用计数器m 记录其中有多少次(x ,y )满足-1<x <1,0<y <2x(即点落在图中阴影部分),首先设置n =0,m =0;第二步,用变换rand( )*2-1产生-1~1之间的均匀随机数x 表示所投点的横坐标,用变换rand( )*2产生0~2之间的均匀随机数y 表示所投点的纵坐标;第三步,判断点是否落在阴影部分,即是否满足y <2x,如果是, 则计数器m 的值加1,即m =m +1,如果不是,m 的值保持不变;第四步,表示随机试验次数的计数器n的值加1,即n=n+1,如果还要试验,则返回步骤第二步继续执行,否则结束.程序结束后事件A发生的频率mn作为事件A的概率的近似值.设阴影部分的面积为S,正方形面积为4,由几何概型概率计算公式得,P(A)=S4,所以mn≈S4,故4mn可作为阴影部分面积S的近似值.。

人教A版高中数学必修3第三章概率3.3几何概型教案(2)

人教A版高中数学必修3第三章概率3.3几何概型教案(2)

1.设 x 是[0,1] 内的一个均匀随机数 ,经过变换 y=2x+ 3,则 x=0.5 对应变换成的均匀随机数是
A.0
B.2
C.4
D.5
【知识点:随机模拟方法】
解 C :当 x=0.5 时,y=2×0.5+3= 4. 2. 在线段 [0,3]上任投一点,则此点坐标小于 1 的概率为 ( )
1
1
1
A. 2
(2)经过伸缩变换, a=a1*12 得到 [0, 12]内的均匀随机数.
(3)统计试验总次数 N 和[6 ,9] 内随机数个数 N1
(4)计算频率 N1 . N
记事件 A={ 面积介于 36cm2 与 81cm2 之间 }={ 长度介于 6cm 与 9cm 之间 } ,则 P(A )的近似
值为 fn(A)= N1 . N
B.3
C.4
D.1
【知识点:几何概型】 解: B 3. 若将一个质点随机投入如图所示的长方形 ABCD 中,其中 AB= 2, BC= 1, 则质点落在以 AB 为直径的半圆内的概率是 ( )
π
π
π
A. 2
B.4
C.6
π D.8
【知识点:几何概型】
阴影面积
12π·2 1π
解 B:设质点落在以 AB 为直径的半圆内为事件 A,则 P(A)= 长方形面积 = 1×2 = 4.
在古典概型中, 涉及到用随机模拟的方法求随机事件的概率, 那么能否用随机模拟的方 法解一些几何概型问题呢?
例 4. 取一根长度为 3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于 概率有多大? 【知识点:几何概型,随机模拟方法;数学思想:数学抽象,数学建模】 详解 1:(1)利用计算器或计算机产生一组 0 到 1 区间的均匀随机数 a1=RAND . (2)经过伸缩变换, a=a1*3 . (3)统计出 [1 ,2]内随机数的个数 N1 和 [0,3] 内随机数的个数 N.

人教版高中数学必修3第三章概率-《3.3几何概型》教案

人教版高中数学必修3第三章概率-《3.3几何概型》教案

几何概型一、教学目标(1)学生能掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)能识别实际问题中概率模型是否为几何概型。

(3)会利用几何概型公式对简单的几何概型问题进行计算。

二、教学重点与难点教学重点:(1)几何概型的特点及与古典概型的区别(2)几何概型概率计算公式及应用。

教学难点:把求未知量的问题转化为几何概型求概率的问题;三、教学方法与手段让学生通过对几个试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,并在解决问题中,给学生寻找发现、讨论交流、合作分享的机会。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

四、教学过程一、 创设情境 引入新课【知识回顾】(1)1 (2) 2A () A P A ⎧⎧⎨⎪⎩⎪⎪⎨=⎪⎪⎪⎩试验中所有可能出现的基本事件只有有限个;、古典概型的特点每个基本事件出现的可能性相等。

古典概型包含基本事件的个数、事件的概率公式:基本事件的总数 【课前练习】判断下列试验中事件发生的概率是否为古典概型?(1)抛掷两颗骰子,求出现两个“4点”的概率;(学生口答)(2)5本不同的语文书,4本不同的数学书,从中任取2本,取出的书恰好都是数学书的概率;(学生口答)(3)取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m的概率;学生分析:剪刀落在绳子的任意一个位置是等可能的,但剪刀落的位置是无限个的,因而无法利用古典概型;(4)下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?(1)(2)学生分析:指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而无法利用古典概型;(5)有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.学生分析:细菌在1升水的杯中任何位置的机会是等可能的,但细菌所在的位置却是无限多个的,因而不能利用古典概型。

高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

高中数学 第三章《概率》《3.3几何概型》教案 新人教A版必修3

黑龙江省大庆外国语学校高中数学 第三章《概率》《3.3几何概型》教案 新人教A 版必修3一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法:通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法; 四、教学过程:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。

例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。

2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

人教版高中数学必修三 第三章 概率几何概型教案

人教版高中数学必修三 第三章 概率几何概型教案

几何概型教案一、教学目标:(1)知识与技能目标 :通过具体实例正确理解几何概型定义及与古典概型的区别;掌握几何概型的概率计算公式并能解决简单实际问题 。

(2)过程与方法目标 :通过解决引例问题及归纳定义、公式,体验从特殊到一般的思想方法;通过实际问题,培养学生数学建模能力;通过对问题的观察、对比和交流讨论,领悟类比思想与转化思想.(3)情感、态度与价值观目标 :通过对几何概型的教学,培养学生独立思考探索的能力,增强学生合作交流的机会,帮助学生树立科学的世界观和辩证的思想.二、教学重点、难点:重点:几何概型的判断及几何概型中概率的计算公式难点:选择正确的几何度量,通过数学建模解决实际问题三、教学方法:引导发现式四、教学手段:多媒体辅助式教学五、教学过程;(一) 复习提问上节课我们学习了古典概型,大家还记得它的特点和求概率公式吗?1、古典概型的两个特点:(1)有限性:试验中所有可能出现的基本事件只有有限个.(2)等可能性:每个基本事件出现的可能性相等.2、计算古典概型的公式:(二)问题情境我们来看一个很简单的古典概型问题 1、从区间[0,10]内任取一个整数 ,求取到(1,3)x ∈的概率。

2、从区间[0,10]内任取一个实数 ,求取到(1,3)x ∈的概率。

(三)归纳特点从刚才问题中,你能发现上述概型有什么特点吗?(1)试验中所有可能出现的基本事件有无限多个;(2)每个基本事件出现的可能性相等.如果满足这两个特点的概型我们把他叫做几何概型。

(四)得出定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型。

概率计算公式:x xP(A)= 构成事件A 的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)(五)例题分析【例1】某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率.分析:假如他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。

人教A版高中数学必修3第三章 概率3.3 几何概型教案(4)

人教A版高中数学必修3第三章 概率3.3 几何概型教案(4)

§3.3 几何概型§3.3.1 几何概型一、教材分析这部分是新增加的内容.介绍几何概型主要是为了更广泛地满足随机模拟的需要,但是对几何概型的要求仅限于初步体会几何概型的意义,所以教科书中选的例题都是比较简单的.随机模拟部分是本节的重点内容.几何概型是另一类等可能概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.利用古典概型产生的随机数是取整数值的随机数,是离散型随机变量的一个样本;利用几何概型产生的随机数是取值在一个区间的随机数,是连续型随机变量的一个样本.比如[0,1]区间上的均匀随机数,是服从[0,1]区间上均匀分布的随机变量的一个样本.随机模拟中的统计思想是用频率估计概率.本节的教学需要一些实物模型为教具,如教科书中的转盘模型、例3中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.均匀分布是一种常用的连续型分布,它来源于几何概型.由于没有讲随机变量的定义,教科书中均匀分布的定义仅是描述性的,不是严格的数学定义,要求学生体会如果X落到[0,1]区间内任何一点是等可能的,则称X 为[0, 1]区间上的均匀随机数.二、教学目标1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

高中数学第三章概率第3节几何概型教学案新人教A版必修3

高中数学第三章概率第3节几何概型教学案新人教A版必修3

构成事件 A的区域长度 面积或体积
P( A) = 试验的全部结果所构成的区域长度
面积或体积 .
[ 问题思考 ]
(1) 几何概型有何特点?
提示:几何概型的特点有:
①试验中所有可能出现的结果 ( 基本事件 ) 有无限多个;
②每个基本事件出现的可能性相等.
(2) 古典概型与几何概型有何区别?
提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是
第 3 节 几何概型
[ 核心必知 ]
1.预习教材,问题导入
根据以下提纲,预习教材 P135~P136,回答下列问题.
(1) 教材问题中甲获胜的概率与什么因素有关?
提示:与两图中标注 B 的扇形区域的圆弧的长度有关.
(2) 教材问题中试验的结果有多少个?其发生的概率相等吗?
提示:试验结果有无穷个,但每个试验结果发生的概率相等.
B.几何概型中事件发生的概率与它的位置或形状无关
C.几何概型在一次试验中可能出现的结果有无限多个
D.几何概型中每个结果的发生都具有等可能性
解析:选 A 几何概型和古典概型是两种不同的概率模型,故选
A.
2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部
分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是
2.归纳总结,核心必记
(1) 几何概型的定义与特点
①定义:如果每个事件发生的概率只与构成该事件区域的长度
( 面积或体积 ) 成比例,
则称这样的概率模型为几何概率模型,简称为几何概型.
②特点: ( ⅰ ) 可能出现的结果有无限多个; ( ⅱ ) 每个结果发生的可能性相等.
(2) 几何概型中事件 A 的概率的计算公式

人教版高中数学必修三 第三章 概率 《几何概型》教案

人教版高中数学必修三  第三章 概率 《几何概型》教案

《几何概型》教案教材分析:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.几何概型的基本特点是:在每次随机试验中,不同的试验结果有无限多个,即基本事件有无限个;在这个随机试验中,每个试验结果出现的可能性相等,即基本事件是等可能的.几何概型与古典概型的区别在于,几何概型是无限个等可能事件的情况,而古典概型中的等可能事件只有有限个.教材从两者的比较入手,通过分析简单的几何概型的例子入手引出几何概型的计算方法。

本节安排的例题和习题分别从一维的长度,二维的面积,三维的体积作为测度进行分析的.教学目标:知识与技能:1.学生初步掌握并运用几何概型解决有关概率问题;2、能够正确区分几何概型与古典概型;3、提高学生判断与选择几何概型的概率公式的能力;过程与方法:通过实例把几何概型与古典概型进行比较分析发掘几何概型的特点以及几何概型的概率计算方法;情感态度价值观:学生体会数学来源于实践,并且培养学生发现问题、分析问题进而解决问题的良好习惯.教学重点与难点:重点:几何概型的特点及其几何概型的概率公式的判断与选择;难点:几何概型的概率公式的判断与选择.教学方法:探究性学习,体现以“教师为主导,学生为主体”教学过程:一、知识回顾1.古典概型的特点2.概率公式:二、探索研究【对比研究】(骰子游戏):甲乙两人掷骰子,掷一次,规定谁掷出6点朝上则谁胜,请问甲、乙谁获胜的概率大?学生分析:掷骰子的结果是有限个,且掷得每个结果都是等可能性的,符合古典概型的特点,因而可以利用古典概型计算;学生求解:1;6p=甲16p=乙。

(转盘游戏):图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.在两种情况下分别求甲获胜的概率是多少?①②师生共同分析:1、指针指向的每个方向都是等可能性的,但指针所指的位置却是无限个的,因而不是古典概型;2、利用B区域的所对弧长、所占的角度或所占的面积与整个圆的弧长、角度或面积成比例研究概率;学生求解:法一(利用B区域所占的弧长):1(1)();2B p B ==所在扇形区域的弧长整个圆的弧长3(2)().5B p B ==所在扇形区域的弧长整个圆的弧长法二(利用B 区域所占的圆心角):1801(1)();3602B p B ︒︒===所在圆心角的大小圆周角336035(2)();3605B p B ︒︒⨯===所在圆心角的大小圆周角 法三(利用B 区域所占的面积):1(1)();2B p B ==所在扇形的面积整个圆的面积3(2)().5B p B ==所在扇形的面积整个圆的面积【提出问题】⑴两个问题中,求概率的方法一样吗?若不一样,请问是什么原因? ⑵你是如何解决这些问题的?学生对比分析:⑴ 骰子游戏中色子的六个面上的数字是有限个的,且每次投掷都是等可能性的,因而是古典概型;转盘游戏中指针指向的每个方向都是等可能性的,但指针所指的方向却是无限个的,因而不是古典概型.⑵借助几何图形的长度、面积等计算概率;【问题探究】分析下列三个问题的概率,从中你能得出哪些求概率的结论?问题 1(绳子问题):某人在家门前相距6米的两棵树间系一条绳子,并在绳子上挂一个衣架,求衣架钩与两树的距离都大于2米的概率.学生分析:衣架钩与两树的距离都大于2米, 所以衣架钩应在图中B 、C 之间的任何一点都可以,结果有无数多种,而且等可能,所以不是古典概型;学生求解:记“衣架钩与两树的距离都大于2米”为事件A , 所以30P()0.650A == 学生归纳:1、该概率的特点不符合古典概型,不能利用古典概型;2、A P()A =构成事件的区域长度试验的全部结果构成的区域长度 问题2(撒豆子问题):如图,假设你在每个图形上随机撒一粒黄豆,计算它落到阴影部分的概率.学生分析:豆子撒在图形的每个位置的机会是等可能的,但豆子的位置却是无限多个的,因而不能利用古典概型。

人教版高中数学必修三第三章概率3.3几何概型教案

人教版高中数学必修三第三章概率3.3几何概型教案
【重点】几何概型的特点及公式的应用
【难点】几何概型的应用
师生互认学习目标,引导学生带着目标进入新课学习,有的放矢。












小组内讨论:参照古典概型的特点,上述试验的特点
是什么?
特点:(1)_________________________________;
(2)______________________________________。
3.一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率。
巩固所学知识,提高课堂知识的运用能力。




【反思小结】(没有总结,就没有提高!)
(1)请回顾本节课所学过的知识内容有哪些?
1、概念
2、特点
3、公式
具有上述特点的试验称为几何概型。
我们通过上面的试验,得出了几何概型的概念,明确了几何概型事件的两个基本特点。那么如何用数学表达式来解决几何概型事件的概率问题呢?
探究二:
问题1:从区间[1,6]中任取一个实数,求取到的数比3小的概率是多少?
问题2:下面是运动会射箭比赛的靶面,靶面半径为10cm,黄心半径为1cm.现一人随机射箭,假设每箭都能中靶,且射中靶面内任一点都是等可能的,请问射中黄心的概率是多少?
引例2:取一个边长为2a的正方形(如图),随机地向正方形内丢一粒豆子。
思考:上述试验还是不是古典概型?为什么?
温故知新,类比正弦函数的图象和性质,研究余弦函数




齐读学习目标、学习重点、学习难点:

人教A版 必修3第三章:概率3.3几何概型学案(无答案)

人教A版 必修3第三章:概率3.3几何概型学案(无答案)

几何概型一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:● 了解几何概型的概念及基本特点;● 熟练掌握几何概型中概率的计算公式;● 会进行简单的几何概率计算;● 能运用模拟的方法估计概率,掌握模拟估计面积的思想.重点难点:● 重点:掌握几何概型中概率的计算公式;会进行简单的几何概率计算.● 难点:将实际问题转化为几何概型,并正确应用几何概型的概率计算公式解决问题.学习策略:● 几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.二、学习与应用(一)古典概型的定义:(1)有限性:试验中所有可能出现的基本事件只有 ;(2)等可能性:每个基本事件出现的可能性 .我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.(二)计算古典概型的概率的基本步骤为:(1)计算所求事件A 所包含的基本事件 m ;(2)计算基本事件的 n ;(3)应用公式()P A 计算概率.知识回顾——复习学习新知识之前,看看你的知识贮备过关了吗?“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

(三)古典概型的概率公式:()P A = .应用公式的关键在于准确计算事件A 所包含的基本事件的 和基本事件的 .知识点一:几何概型(一)几何概型的概念:对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都 ;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是 , 图形, 图形等.用这种方法处理随机试验,称为几何概型.(二)几何概型的基本特点:(1)试验中所有可能出现的结果(基本事件)有 个;(2)每个基本事件出现的可能性 .(三)几何概型的概率:一般地,在几何区域D 中随机地取一点,记事件"该点落在其内部一个区域d 内"为事件A ,则事件A 发生的概率()P A = .说明:(1)D 的测度不为 ;(2)其中"测度"的意义依D 确定,当D 分别是线段,平面图形,立体图形时,相应的"测度"分别是 , 和 .(3)区域为"开区域";(4)区域D 内随机取点是指:该点落在区域内任何一处都是 的,落在任何部分的可能性大小只与该部分的测度 而与其 无关.知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修三第三章3.3几何概型教学设计一,教材分析本节课是新教材人教版必修3第三章第三节的第一课,它在课本中的位置排在古典概型之后,在概率的应用之前.我认为教材这样安排的目的,一是为了体现几何概型(3.31)和古典概型的区别和联系,在比较中巩固这两种概型;并引入了均匀随机数的产生(3.32)二是为解决实际问题提供一种简单可行的概率求法,在教材中起承上启下的作用.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.二,学情分析通过最近几年的实际调查发现,学生在学习本节课时特别容易和古典概型相混淆,把几何概型的“无限性”误认为古典概型的“有限性”.究其原因是思维不严谨,研究问题时过于“想当然”,对几何概型的概念理解不清.因此我认为要在几何概型的特征和概念的理解上下功夫,不要浮于表面.另外,在解决几何概型的问题时,几何度量的选择也是需要特别重视的,在实际授课时,应当引导学生发现规律,找出适当的方法来解决问题.前面学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。

在古典概型向几何概型的过渡时,以及实际背景如何转化为长度比、面积比、体积比时,会有一些困难。

但只要引导得当,理解几何概型,完成教学目标,是切实可行的。

根据学生的状况及新课程标准,对教材作了如下处理:开头的两个问题,学生独立思考,说出结果,师生共同纠正。

之后的探究处理成演示试验,以强化数学知识实际背景与形成过程,便于激发学生的学习兴趣,加深对知识的理解与应用。

例题、习题的选用,尽可能选用与日常生活息息相关的例子。

考虑到突出重点和化解难点的需要,在练习环节根据教材和学生的实际,适当改造和增补例题,并设计成不同形式,逐步提高思维的层次,使一般学生都能熟练掌握要求的内容,学有余力的学生能得到进一步的加深。

三,教学目标1.知识目标①通过探究,让学生理解几何概型试验的基本特征,并与古典概型相区别;②理解并掌握几何概型的定义;③了解几何概型的概念及基本特点;熟练掌握几何概型中概率的计算公式;会进行简单的几何概率计算.2.过程与方法:(1)利用PPT让学生从熟悉的图片中产生对问题的积极思考。

(2)经历思维,探究知识的建构过程,并在师生、生生的交流与思维的碰撞的过程中,学生发现了几何概型计算方法。

(3)教师例题引导,学生独立完成练习并由小组交流推荐回答,提高表达能力。

(4)巩固知识形成解题方法。

3.情感目标:①让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价身边的一些随机现象;②通过学习,让学生体会生活和学习中与几何概型有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.4.能力目标:培养学生的分析能力和抽象概括能力;渗透转化、数形结合等思想方法;提高解决实际问题的能力四.教学重点:正确理解几何概型的定义、特点;掌握几何概型中概率的计算公式;会进行简单的几何概率计算.五,教学难点:①根据古典概型与几何概型的区别,来判断一个试验是否为几何概型②几何概型的应用 , 将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

六.教学方法:根据上面对教材的分析,并结合学生的认知水平和思维特点,本节课我采用以下教学方法.教法方面:采用启发式、讨论式以及讲练结合的方式,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题.学法方面:在引导学生分析时,鼓励学生大胆质疑,围绕中心各抒己见,留出思考时间和空间,让学生去联想、探索,从而弄清思路和解决问题.七,设计思想:提供必要的概率统计数学基础; 激发学生的数学学习兴趣,形成积极主动的学习方式; 突出数学的人文价值,提高学生的数学文化品味; 注重信息技术与数学课程内容的整合;学生成为课堂学习的主体,教师成为课堂上的主持人,把思考,讨论,研究的时间还给学生,成为独具慧眼的发现者,善于发现学生的长处,成为热情的观众,精彩时报以掌声,给予充分的肯定,失误时,评论切磋,提出中肯的意见。

前面已经学习过了第二章统计和第三章概率的前两节内容,概率是研究随机现象规律的学科,它为应用数学解决实际问题提供了新的思想和方法,同时为统计学的发展提供了理论基础。

由于概率统计的应用性强,有利于培养学生的应用意识和动手能力,在数学课程中,加强概率统计的份量成为必然。

“几何概型”这一节就是新增加的内容,是安排在“古典概型”之后的第二类概率模型,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸,同时也更广泛地满足了随机模拟的需要。

几何概型的关键是建立合理的几何模型解决相关概率问题,通过建立基本事件与相应元素的对应,达到求解相关概率问题的目的,体现了数形结合的数学思想,是概率问题与几何问题的一种完美结合本节内容极能体现新课程理念,可以成为“知识与技能、过程与方法及情感态度价值观”三个纬度目标有机融合的重要载体,从而实现三位一体的课程功能。

八.教学过程:(注意紧扣教材内容教学,以教材内容为主题,其他扩充内容为辅)(一)创设情景,引入新课引例1北京奥运会圆满闭幕,某玩具厂商为推销其生产的福娃玩具,扩大知名度,特举办了一次有奖活动:顾客随意掷两颗骰子,如果点数之和大于10,则可获得一套福娃玩具,问顾客能得到一套福娃玩具的概率是多少?设计意图:复习巩固古典概型的特点及其概率公式,为几何概型的引入做好铺垫.引例2厂商为了增强活动的趣味性,改变了活动方式,设立了一个可以自由转动的转盘(如图1)转盘被等分成8个扇形区域.顾客随意转动转盘,如果转盘停止转动时,指针正好指向阴影区域,顾客则可获得一套福娃玩具.问顾客能得到一套福娃玩具的概率是多少?设计意图:1.以实际问题引发学生的学习兴趣和求知欲望;2.以此为铺垫,通过具体问题情境引入课题;3.简单直观,符合学生的思维习惯和认知规律.问题提出后,学生根据日常生活经验很容易回答:“由面积比计算出概率为1/4.”提问:为什么会想到用面积之比来解决问题的呢?这样做有什么理论依据吗?学生思考,回答:“上一节刚学习的古典概型的概率就是由事件所包含的基本事件数占试验的基本事件总数的比例来解决的,所以联想到用面积的比例来解决.”教师继续提问:这个问题是古典概型吗?通过提问,引导学生回顾古典概型的特点:有限性和等可能性.发现这个问题虽然貌似古典概型,但是由于这个问题中的基本事件应该是“指针指向的位置”,而不是“指针指向的区域”,所以有无限多种可能,不满足有限性这个特点,因此不是古典概型.也就是说,我们不能用古典概型的概率公式去解决这个问题,刚才我们的解答只是猜测.到这里,我们自然而然地需要一个理论依据去支持这个猜测,从而引入几何概型的概念.(二)结合教材问题:学生活动图中有两个转盘.甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.同学们能在两种情况下分别猜想甲获胜的概率分别是多少吗?请将你的结论先偷偷告诉同桌.学生分组做游戏:同桌二人一组(自定甲乙)玩自制如上图转盘.记录胜败次数.1、你最关心的目标是什么?(想获胜的心理状态)2 、在字母B区域内的标准是什么?如何度量?圆弧的长度。

3 、可否将刚才猜想的结果用一个公式来表示?(具有几何特征)教师活动教师利用PPT展示图片。

教师分析学生的观点,师生交流,理清思路,明确概念,正确表达。

体会数学来源与生活又高于生活。

总结如下:甲获胜的概率与字母B所在扇形区域的圆弧的长度有关,而与字母B所在区域的位置无关.因为转转盘时,指针指向每个圆弧上的哪一点都是等可能的.只要字母B所在的扇形区域的圆弧长度不变,不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的.学生活动学生结合教材130页回答与教师的引导进行补充与改正。

教师活动针对学生体表的回答教师采用PPT课件,在总结时关注数学语言的规范性和精确性让学生体验问题的几何性。

(三).几何概型的定义:教师活动1、如果每个事、件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2、几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.2、(2)每个基本事件出现的可能性相等.学生活动学生对定义的阐述与修正。

设计意图检验学生的概括能力与自学水平,准确表达几何概型的定义,反映数学的类比思想。

学生体验到探究的乐趣与数学表达的科学性与简炼,体会数学化。

(四).几何概型概率的计算公式:教师活动(板书)学生活动思考:1、引例2概率如何用公式表达?3、转盘问题中若是改为“现在向该圆形区域内随机地投掷一石子,求石子落在B区域内的概率?设计意图类比古典概率的计算方法,给出了计算公式,教师通过思考让学生加深对公式的理解,特别是公式的适用范围与问题特征,为其运用打下基础(五)讨论研究1.几何概型的特征:无限性,等可能性;2.几何概型与古典概型关系:几何概型是在古典概型基础上进一步的发展,是等可能事件的概念从有限向无限的延伸.3.判断下列问题是不是几何概型:⑴抛掷一枚硬币,观察其出现正面或反面;⑵某人射击中靶或不中靶.分析:因为⑴事件结果有限;⑵不是等可能的,均不满足定义,所以两个都不是几何概型.(六)教材例题讲解与拓展教材例1某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解:设A={等待的时间不多于10分钟}.我们所关心的事件A恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率的公式得即“等待的时间不超过10分钟”的概率为教材例题2假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.分析:我们有两种方法计算事件的概率.(1)利用几何概型的公式.(2)利用随机模拟的方法.解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生结合教材132页例题2展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.教材例3. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即假设正方形的边长为2,则由于落在每个区域的豆子数是可以数出来的,所以这样就得到了π的近似值.另外,我们也可以用计算器或计算机模拟,步骤如下:(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.让同学们结合教材例题3进行理解接下来请同学们把讲过的例题认真理解一下,部分没有讲过的教材内容请同学们先自学然后提出问题来一起探究拓展与练习(多媒体展示):例1.在集合M={x为实数|1≤x≤10}中,求x>3.5的概率.分析:因为x能取的值为无限个,且每个值被取得的可能性相等,所以此问题属于几何概型.解:记“x>3.5”为事件A,则其几何测度为区间长度,所以P(A)=(3.5,10]的区间长度/[1,10]的区间长度=(10-3.5)/(10-1)=13/18.答:x>3.5的概率为13/18.例2.取一个边长为2a的正方形及其内切圆(如图2),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.分析:由于是随机丢豆子,故可认为豆子落入正方形内任一点的机会都是均等的,于是豆子落入圆中的概率应等于圆面积与正方形面积的比.解:记“豆子落入圆内”为事件A,则P(A)=圆的面积/正方形的面积=(Пa2 )/(4a2)=П/4.答:豆子落入圆内的概率为П/4.思考练习(多媒体展示):练习1. 如图6,将一个长与宽不等的长方形水平放置,长方形对角线将其分成四个区域.在四个区域内涂上红、蓝、黄、白四种颜色,并在中间装个指针,使其可以自由转动.对于指针停留的可能性,下列说法正确的是()A.一样大 B. 黄、红区域大 C. 蓝、白区域大 D. 由指针转动圈数确定设计意图:通过与引例2对比,使学生发现这两个问题选择的正确几何度量应该是“角度”,而不是“面积”.而引例2之所以用面积比也能解决问题,是因为其面积比恰好等于角度比.提出问题:如何才能找到最恰当的几何度量呢?引导学生找问题中的“提示”.如问题3中在圆周上任意取点,因此选取弧长作为几何度量是最恰当的方法.教材练习2.如右下图,假设你在每个图形上随机撒一粒黄豆,分别计算它落到阴影部分的概率教材练习1 .有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.设计意图:在练习1的基础上,学生能通过练习2、3、4并结合例题1进一步明确了公式中的长度、面积、体积。

相关文档
最新文档