2020年高考数学模拟试卷3(附详细答案)
2020年新疆乌鲁木齐市高考数学三模试卷(文科)(问卷) (解析版)
2020年新疆乌鲁木齐市高考(文科)数学三模试卷一、选择题(共12小题).1.已知i是虚数单位,则2i(1+i)=()A.﹣2+2i B.2+2i C.2i D.﹣2i2.已知集合A={x|(x﹣2)(x+2)≤0},B={﹣2,﹣1,0,1,2,3},则A∩B=()A.∅B.{0,1,2}C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}3.命题P:∀x∈R,x2+1≥1,则¬P是()A.∀x∈R,x2+1<1B.∀x∈R,x2+1≥1C.D.4.已知等差数列{a n}满足a1+a3+a5=18,a3+a5+a7=30,则a2+a4+a6=()A.20B.24C.26D.285.若角α的终边过点P(3,﹣4),则sin2α的值为()A.B.C.D.6.某校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则这两个数学建模兴趣班所有同学的平均成绩是()A.85B.85.5C.86D.86.57.正方体ABCD﹣A′B′C′D′中,AB的中点为M,DD′的中点为N,则异面直线B′M与CN所成角的大小为()A.0°B.45°C.60°D.90°8.在Rt△ABC中,AB=AC=1,点D满足,则=()A.B.C.1D.29.直线y=x﹣2与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则p的值为()A.B.1C.D.210.在四面体ABCD中,AB=,DA=DB=CA=CB=1,则四面体ABCD的外接球的表面积为()A.πB.2πC.3πD.4π11.M是双曲线C:上位于第二象限的一点,F1,F2分别是左、右焦点,MF1⊥F1F2.x轴上的一点N使得∠NMF2=90°,A,B两点满足,,且A,B,F2三点共线,则双曲线C的离心率为()A.B.C.D.12.定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=42﹣|x﹣1|﹣4,且对任意实数x∈[2k ﹣2,2k+1﹣2](k∈N,k≥2),都有,若g(x)=f(x)﹣log a x有且仅有5个零点,则实数a的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.已知定义在R上的奇函数f(x)满足:当x<0时,f(x)=log3(1﹣x),则f(8)=.15.若f(x)=2sinωx(0<ω<1)在区间上的最大值是,则ω=.16.在正项等比数列{a n}中,a4+a6=,2a1,,a2成等差数列,则数列{a n•a n+1}的前n项之积的最小值为.三、解答题:第17~21题每题12分,解答应在答卷的相应各题中写出文字说明,证明过程或演算步骤.17.在△ABC中,a,b,c是∠A,∠B,∠C所对的边,a=,c=1,sin A+cos A=0.(Ⅰ)求b;(Ⅱ)若D为BC边上一点,且AD⊥AB,求△ACD的面积.18.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如图的等高条形图:(Ⅰ)将频率视为概率,求学习时长不超过1小时但考试成绩超过120分的概率;(Ⅱ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”.P(K2≥k0)0.0500.0100.001 k0 3.841 6.63510.828 K2=.19.如图,将直角边长为的等腰直角三角形ABC,沿斜边上的高AD翻折,使二面角B ﹣AD﹣C的大小为,翻折后BC的中点为M.(Ⅰ)证明BC⊥平面ADM;(Ⅱ)求点D到平面ABC的距离.20.已知椭圆C:右焦点为F(2,0),P为椭圆上异于左右顶点A,B的一点,且△PAB面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线AP与直线x=a交于点Q,线段BQ的中点为M,证明直线FM平分∠PFB.21.已知f(x)=e x﹣alnx+2a(a>0).(Ⅰ)当a=e时,求f(x)的单调区间;(Ⅱ)设x0是f(x)的极小值点,求f(x0)的最大值.选考题:共10分,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.已知曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)设C1与C2交点为A,B,求△AOB的面积.23.设a,b均为正数,且a2+b2=2,证明:(Ⅰ)(a+b)(a3+b3)≥4;(Ⅱ).参考答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中只有一.项是符合题目要求的.1.已知i是虚数单位,则2i(1+i)=()A.﹣2+2i B.2+2i C.2i D.﹣2i【分析】根复数的基本运算进行求解即可.解:2i(1+i)=2i+2i2=﹣2+2i,故选:A.2.已知集合A={x|(x﹣2)(x+2)≤0},B={﹣2,﹣1,0,1,2,3},则A∩B=()A.∅B.{0,1,2}C.{﹣1,0,1}D.{﹣2,﹣1,0,1,2}【分析】求出集合A,B,由此能求出A∩B.解:∵集合A={x|(x﹣2)(x+2)≤0}={x|﹣2≤x≤2},B={﹣2,﹣1,0,1,2,3},∴A∩B={﹣2,﹣1,0,1,2}.故选:D.3.命题P:∀x∈R,x2+1≥1,则¬P是()A.∀x∈R,x2+1<1B.∀x∈R,x2+1≥1C.D.【分析】根据全称命题的否定是特称命题,写出其特称命题可得答案.解:命题的否定是:∃x0∈R,+1<1,故选:C.4.已知等差数列{a n}满足a1+a3+a5=18,a3+a5+a7=30,则a2+a4+a6=()A.20B.24C.26D.28【分析】由题意利用等差数列的性质,求出公差d的值,可得要求式子的值.解:∵等差数列{a n}满足a1+a3+a5=18,a3+a5+a7=30,设公差为d,相减可得6d=30﹣18=12,∴d=2.则a2+a4+a6=a1+a3+a5+3d=24,故选:B.5.若角α的终边过点P(3,﹣4),则sin2α的值为()A.B.C.D.【分析】直接利用三角函数的定义和三角函数关系式的恒等变换求出结果.解:角α的终边过点P(3,﹣4),所以,.所以=﹣.故选:D.6.某校有甲、乙两个数学建模兴趣班.其中甲班有40人,乙班有50人.现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则这两个数学建模兴趣班所有同学的平均成绩是()A.85B.85.5C.86D.86.5【分析】直接根据平均值的求解公式即可求解.解:由题意可知,两个数学建模兴趣班所有同学的平均成绩=85.故选:A.7.正方体ABCD﹣A′B′C′D′中,AB的中点为M,DD′的中点为N,则异面直线B′M与CN所成角的大小为()A.0°B.45°C.60°D.90°【分析】利用异面直线所成的角的定义,取A′A的中点为E,则直线B′M与CN所成角就是直线B′M与BE成的角.解:取A′A的中点为E,连接BE,则直线B′M与CN所成角就是直线B′M与BE 成的角,由题意得B′M⊥BE,故异面直线B′M与CN所成角的大小为90°,故选:D.8.在Rt△ABC中,AB=AC=1,点D满足,则=()A.B.C.1D.2【分析】画出图形,建立坐标系,求出相关的向量,然后求解数量积.解:在Rt△ABC中,AB=AC=1,点D满足,可知:D是BC的一个3等分点,建立如图所示的坐标系,则B(1,0),C(0,1),D(,),可得=(1,0)•(,)=.故选:A.9.直线y=x﹣2与抛物线y2=2px(p>0)交于A,B两点,若OA⊥OB,则p的值为()A.B.1C.D.2【分析】直线与抛物线联立求出两根之和及两根之积,再由OA⊥OB可得数量积=0,求出p的值.解:设A(x1,y1),B(x2,y2),联立方程组⇒y2=2p(y+2),可得y2﹣2py﹣4p=0,∴y1y2=﹣4p,y1+y2=2p,∵OA⊥OB,所以数量积=0,∴x1x2+y1y2=0,所以=4,4+(﹣4p)=0,⇒p=1.故选:B.10.在四面体ABCD中,AB=,DA=DB=CA=CB=1,则四面体ABCD的外接球的表面积为()A.πB.2πC.3πD.4π【分析】根据线段长度得到△ABC与△ABD均为直角三角形,得到球心以及半径,即可求出四面体ABCD的外接球的表面积.解:设AB的中点为O,连接OD,OC,如图,∵在四面体ABCD中,AB=,DA=DB=CA=CB=1,∴AD2+BD2=AB2,AC2+BC2=AB2,即△ABC与△ABD均为直角三角形,故OA=OB=OC=OD,即O为外接球球心,OA=R=;∴四面体ABCD的外接球的表面积为4πR2=2π.故选:B.11.M是双曲线C:上位于第二象限的一点,F1,F2分别是左、右焦点,MF1⊥F1F2.x轴上的一点N使得∠NMF2=90°,A,B两点满足,,且A,B,F2三点共线,则双曲线C的离心率为()A.B.C.D.【分析】由双曲线的方程可得其左右焦点的坐标,再由MF1⊥F1F2可得M的坐标,设N 的坐标,由题意=0,可得N的坐标,由,,可得A,B的坐标,再由A,B,F2三点共线可得对应边成比例,求出a,c的关系,进而求出离心率的值.解:由双曲线的方程可得左右焦点坐标F1(﹣c,0),F2(c,0),因为M在第二象限,且MF1⊥F1F2,可得M(﹣c,),设N(m,0),由∠NMF2=90°可得=0,即(m+c,﹣)•(2c,﹣)=0,整理可得2c(m+c)+=0,解得m=﹣,即N(﹣,0),由,,所以A(﹣﹣,),B(﹣c,),由A,B,F2三点共线,可得=,即==,整理可得c4﹣6a2c2+a4=0,即e4﹣6e2+1=0,解得e2=3,因为双曲线的离心率e>1,所以e=+1,故选:A.12.定义在R上的函数y=f(x),当x∈[0,2]时,f(x)=42﹣|x﹣1|﹣4,且对任意实数x∈[2k ﹣2,2k+1﹣2](k∈N,k≥2),都有,若g(x)=f(x)﹣log a x有且仅有5个零点,则实数a的取值范围是()A.B.C.D.【分析】作出y=f(x)的函数图象,根据y=f(x)和y=log a x的图象有5个交点列不等式组得出a的范围.解:当x∈[0,2]时,f(x)=42﹣|x﹣1|﹣4,故f(x)在[0,2]上的函数图象关于直线x=1对称,又任意实数x∈[2k﹣2,2k+1﹣2](k∈N,k≥2),都有,作出y=f(x)的函数图象如图所示:∵g(x)=f(x)﹣log a x有且仅有5个零点,∴y=log a x的图象与y=f(x)的图象有5个交点,显然a>1∴,解得<a<.故选:C.二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.【分析】首先求出所有的基本事件的个数,再从中找到2本数学书相邻的个数,最后根据概率公式计算即可.解:2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有共有=6种结果,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故本数学书相邻的概率P=.故答案为:.14.已知定义在R上的奇函数f(x)满足:当x<0时,f(x)=log3(1﹣x),则f(8)=﹣2.【分析】直接利用奇函数的定义即可得到答案.解:因为定义在R上的奇函数f(x)满足:当x<0时,f(x)=log3(1﹣x),则f(8)=﹣f(﹣8)=﹣log3[1﹣(﹣8)]=﹣log39=﹣2;故答案为:﹣2.15.若f(x)=2sinωx(0<ω<1)在区间上的最大值是,则ω=.【分析】根据已知区间,确定ωx的范围,求出它的最大值,结合0<ω<1,求出ω的值.解:,故答案为:16.在正项等比数列{a n}中,a4+a6=,2a1,,a2成等差数列,则数列{a n•a n+1}的前n项之积的最小值为2﹣20.【分析】直接利用关系式的应用求出数列的通项公式,进一步求出数列的积,最后利用二次函数性质的应用求出结果.解:正项等比数列{a n}中,a4+a6=,2a1,,a2成等差数列,设首项为a1,公比为q,则:,整理得:,解得.所以:,则:,所以,所以==,当n=5时,数列{a n•a n+1}的前n项之积的最小值为.故答案为:2﹣20三、解答题:第17~21题每题12分,解答应在答卷的相应各题中写出文字说明,证明过程或演算步骤.17.在△ABC中,a,b,c是∠A,∠B,∠C所对的边,a=,c=1,sin A+cos A=0.(Ⅰ)求b;(Ⅱ)若D为BC边上一点,且AD⊥AB,求△ACD的面积.【分析】(Ⅰ)根据已知条件和特殊角的三角函数值求得角A的度数,然后由余弦定理求得b的值;(Ⅱ)欲求△ACD的面积的面积,只需通过解直角三角形求得高AD的长度即可.解:(Ⅰ)由,得,∴A=150°.又∵,c=1,又a2=b2+c2﹣2bc cos A,即,解得;(Ⅱ)由(Ⅰ)得,∴,∴,∴,∴.18.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如图的等高条形图:(Ⅰ)将频率视为概率,求学习时长不超过1小时但考试成绩超过120分的概率;(Ⅱ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”.P(K2≥k0)0.0500.0100.001 k0 3.841 6.63510.828K2=.【分析】(Ⅰ)由等高条形图得到学习时长不超过1小时,但考试成绩超过120分的人数,由古典概型概率计算公式得答案;(Ⅱ)由题意填写2×2列联表,求出K2,结合临界值表得结论.解:(Ⅰ)从等高条形图中看出,学习时长不超过1小时,但考试成绩超过120分的人数为10人,∴其概率为;(Ⅱ)依题意,得2×2列联表≤120分>120分合计数学成绩在线学习时长≤1小时151025>1小时51520合计202545∵,∴没有99%的把握认为“高三学生的这次摸底成绩与其在线学习时长有关”.19.如图,将直角边长为的等腰直角三角形ABC,沿斜边上的高AD翻折,使二面角B ﹣AD﹣C的大小为,翻折后BC的中点为M.(Ⅰ)证明BC⊥平面ADM;(Ⅱ)求点D到平面ABC的距离.【分析】(Ⅰ)证明DM⊥BC,AM⊥BC,然后证明BC⊥平面ADM;(Ⅱ)设点D到平面ABC的距离为d,通过V A﹣BCD=V D﹣ABC,求解点D到平面ABC的距离.【解答】(Ⅰ)证明:∵折叠前AB=AC,AD是斜边上的高,∴D是BC的中点,∴BD=CD,又因为折叠后M是BC的中点,∴DM⊥BC,折叠后AB=AC,∴AM⊥BC,AM∩DM=M,∴BC⊥平面ADM;(Ⅱ)解:设点D到平面ABC的距离为d,由题意得V A﹣BCD=V D﹣ABC,∵,∴,∴.20.已知椭圆C:右焦点为F(2,0),P为椭圆上异于左右顶点A,B的一点,且△PAB面积的最大值为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线AP与直线x=a交于点Q,线段BQ的中点为M,证明直线FM平分∠PFB.【分析】(Ⅰ)由题意得,,解出a2和b2的值即可;(Ⅱ)设直线AP的方程为x=my﹣3,将其与椭圆的方程联立,消去x,可求出点P的坐标,易得点Q和M的坐标,设∠MFB=α,则tan,再结合正切的二倍角公式与直线的斜率与倾斜角的关系证得∠PFB=2α=2∠MFB即可.解:(Ⅰ)由题意得,,解得a2=9,b2=5,∴椭圆C的标准方程为.(Ⅱ)证明:设直线AP的方程为x=my﹣3,代入,得(5m2+9)y2﹣30my =0,解得y=0或,∴,∴,易知直线AP与x=3的交点,而B(3,0),∴线段BQ的中点,设∠MFB=α,则,∴,,∴tan2α=tan∠PFB,又∵2α∈(0,π),∠PFB∈(0,π),∴∠PFB=2α=2∠MFB,即直线FM平分∠PFB.21.已知f(x)=e x﹣alnx+2a(a>0).(Ⅰ)当a=e时,求f(x)的单调区间;(Ⅱ)设x0是f(x)的极小值点,求f(x0)的最大值.【分析】(Ⅰ)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)求出函数的导数,表示出f(x)的最大值,根据函数的单调性求出函数的最大值即可.解:(Ⅰ)当a=e时,f(x)=e x﹣elnx+2e,,显然f'(1)=0,∵,∴f'(x)在(0,+∞)上是增函数,0<x<1时,f'(x)<f'(1)=0,∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增;(Ⅱ)由,且,∴f'(x)在(0,+∞)上单调递增,∴存在极小值点x0满足f'(x0)=0,即,∴=,令g(x)=e x(1﹣xlnx+2x),则g'(x)=e x(1﹣xlnx+2x+1﹣2lnx﹣1)=(x+2)ln x (﹣x),由x>0,∴由g'(x)=0得x=e2,∴.故f(x0)的最大值是g(e2)=.选考题:共10分,请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.22.已知曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)设C1与C2交点为A,B,求△AOB的面积.【分析】(Ⅰ)由题意曲线C1的参数方程化为普通方程,然后化为极坐标方程.(Ⅱ)联立方程,求出A、B坐标,然后求解三角形的面积解:(Ⅰ)由题意曲线C1的参数方程为(t为参数),得(x﹣2)2+(y ﹣3)2=5,即x2+y2﹣4x﹣6y+8=0曲线C1的极坐标方程:ρ2﹣4ρcosθ﹣6ρsinθ+8=0;(Ⅱ)联立方程,解得,,∴A(0,2),B(1,1),∴.23.设a,b均为正数,且a2+b2=2,证明:(Ⅰ)(a+b)(a3+b3)≥4;(Ⅱ).【分析】(Ⅰ)由分析法证明,只要证明a4+b4+ab3+ba3≥(a2+b2)2,由完全平方公式展开,整理即为ab(a﹣b)2≥0,即可得证;(Ⅱ)运用基本不等式推得+≤,结合不等式的性质,即可得证.【解答】证明:(Ⅰ)∵a2+b2=2,要证(a+b)(a3+b3)≥4,只需要证明a4+b4+ab3+ba3≥(a2+b2)2,也就是要证明a4+b4+ab3+ba3﹣a4﹣b4﹣2a2b2≥0,即证ab(a﹣b)2≥0,∵a,b均为正数,∴ab(a﹣b)2≥0,∴(a+b)(a3+b3)≥4;(Ⅱ)∵a,b均为正数,∴,∴,∴,又∵a2+b2=2,∴.。
2020年山东省济南市高考模拟文科数学试卷(5月份)含答案解析
2020年山东省济南市高考数学模拟试卷(文科)(5月份)一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.53.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.24.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣256.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.47.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC 的面积S等于()A.3B.C.D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.210.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为件.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是cm213.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于.14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是.15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是.三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.18.如图,四棱锥P﹣ABCD中,△PAD为正三角形,四边形ABCD是边长为2的菱形,∠BAD=60°平面ABE与直线PA,PD分别交于点E,F.(Ⅰ)求证:AB∥EF;(Ⅱ)若平面PAD⊥平面ABCD,试求三棱锥A﹣PBD的体积.19.已知在等比数列{a n}中,a n+1>a n,对n∈N*恒成立,且a1a4=8,a2+a3=6.(Ⅰ)求数列{a n}的通项公式(Ⅱ)若数列{b n}满足+…+=n,(n∈N*),求数列{b n}的前n项和S n.20.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率为,直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为.(1)求椭圆C的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.2020年山东省济南市高考数学模拟试卷(文科)(5月份)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,满分50分,每小题给出的四个选项中只有一项是符合题目要求的)1.设复数z=(i为虚数单位),则z=()A.iB.﹣iC.2iD.﹣2i【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法的运算法则化简复数为:a+bi的形式即可.【解答】解:复数z=(i为虚数单位),则z===﹣i.故选:B.2.设N是自然数集,P={x|y=,则集合P∩N中元素个数是()A.2B.3C.4D.5【考点】交集及其运算.【分析】求出P中x的范围确定出P,找出P与N的交集即可.【解答】解:由P中y=,得到3x﹣x2≥0,整理得:x(x﹣3)≤0,解得:0≤x≤3,即P=[0,3],∵N为自然数集,∴P∩N={0,1,2,3},则集合P∩N中元素个数是4,故选:C.3.如果log5a+log5b=2,则a+b的最小值是()A.25B.10C.5D.2【考点】基本不等式;对数的运算性质.【分析】利用对数的运算性质可得:ab=52,再利用基本不等式的性质即可得出.【解答】解:∵a,b>0,log5a+log5b=2=log5(ab),∴ab=52=25≤,解得a+b≥10,当且仅当a=b=5时取等号.则a+b的最小值是10.故选:B.4.“a>2且b>2”是“ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】依据充分性与必要性的定义,对两个条件之间的关系进行判断研究其因果规律,以确定两个条件的关系.【解答】解:若a>2且b>2,则ab>4成立,故充分性易证若ab>4,如a=8,b=1,此时ab>4成立,但不能得出a>2且b>2,故必要性不成立由上证明知“a>2且b>2”是“ab>4”的充分不必要条件,故选A5.执行如图的程序框图,则输出的S等于()A.0B.﹣3C.﹣10D.﹣25【考点】程序框图.【分析】模拟执行程序,依次写出每次循环得到的s,k的值,当k=5时,不满足条件k<5,退出循环,输出s的值为﹣10.【解答】解:模拟执行程序,可得k=1,s=1满足条件k<5,执行循环体,s=1,k=2满足条件k<5,执行循环体,s=0,k=3满足条件k<5,执行循环体,s=﹣3,k=4满足条件k<5,执行循环体,s=﹣10,k=5不满足条件k<5,退出循环,输出s的值为﹣10.故选:C.6.已知不等式组,表示的平面区域为D,若函数y=|x|+m的图象上存在区域D上的点,则实数m的最小值为()A.﹣6B.﹣4C.0D.4【考点】简单线性规划.【分析】由题意作平面区域,从而可得﹣3≤y≤5,0≤|x|≤3;化简y=|x|+m为m=y﹣|x|,从而确定最小值.【解答】解:由题意作平面区域如下,,结合图象可知,﹣3≤y≤5,0≤|x|≤3;∵y=|x|+m,∴m=y﹣|x|,故当y=﹣3,|x|=3,即过点A(﹣3,﹣3)时,m有最小值为﹣6;故选:A.7.在区间[0,]上随机取一个数x,则时间“sinx+cosx≥1”发生的概率为()A.B.C.D.【考点】几何概型.【分析】利用三角函数的辅助角公式求出sinx+cosx≤1的等价条件,利用几何概型的概率公式即可得到结论.【解答】解:由sinx+cosx≥1得sin(x+)≥1,即sin(x+)≥,∴2kπ+≤x+≤2kπ+,k∈Z即2kπ≤x≤2kπ+,k∈Z∵0≤x≤π,∴当k=0时,x的取值范围是0≤x≤,则“sinx+cosx≥1”发生的概率P==,故选:D.8.已知△ABC中,边a,b,c的对角分别为A,B,C,且a=,c=,C=,则△ABC的面积S等于()A.3B.C.D.【考点】正弦定理.【分析】由条件和正弦定理求出sinA,结合条件和内角的范围求出A,由内角和定理求出B,利用三角形面积公式求出△ABC的面积S.【解答】解:在△ABC中,∵a=,c=,C=,∴由正弦定理得,则sinA===,∵C是钝角,且0<A<π,∴A=,∴B=π﹣A﹣C=,∴△ABC的面积S===,故选:D.9.已知函数f(x)为定义在R上的奇函数,且当x≥0时,f(x)=log3(x+1)+a,则f(﹣8)等于()A.﹣3﹣aB.3+aC.﹣2D.2【考点】函数奇偶性的性质.【分析】根据奇函数的结论f(0)=0求出a,再由对数的运算得出结论.【解答】解:∵函数f(x)为奇函数,∴f(0)=a=0,f(﹣8)=﹣f(8)=﹣log3(8+1)=﹣2.故选:C.10.设F1,F2是双曲线﹣=1(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使•=0,且|PF1|=|PF2|,则该双曲线的离心率为()A.B.C.D.+1【考点】双曲线的简单性质.【分析】根据双曲线的定义结合直角三角形的性质建立方程关系进行求解即可.【解答】解:∵双曲线右支上存在一点P,使•=0,∴⊥,∵|PF1|=|PF2|,∴|F1F2|=2|PF2|=4c,即|PF2|=2c∴|PF1|﹣|PF2|=|PF2|﹣|PF2|=(﹣1)|PF2|=2a,∵|PF2|=2c∴2(﹣1)c=2a,e==,故选:C二、填空题(本大共5小题,每小题5分,满分25分)11.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:月平均气温x(℃)17 13 8 2月销售量y(件)24 33 40 55由表中数据算出线性回归方程=﹣2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为2件.【考点】线性回归方程.【分析】分别求出,,再根据样本中心点一定在线性回归方程上,求出a的值,写出线性回归方程,将x=24代入线性回归方程求出对应的y的值,这是一个预报值.【解答】解:∵=(17+13+8+2)=10,=(24+33+40+55)=38,a=58∴=﹣2x+58,∴=﹣2×24+58=2,故答案为:2.12.某几何体的三视图(单位:cm)如图所示,则该几何体的表面积是12+4\sqrt{2}cm2【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,即可得出.【解答】解:由三视图可知:该几何体是正方体沿对角面截取一半所得几何体,∴该几何体的表面积=22×2++2×2=12+4cm2.故答案为:12+4.13.过点P(3,1)的直线l与圆C:(x﹣2)2+(y﹣2)2=4相交于A,B两点,当弦AB 的长取最小值时,直线l的倾斜角等于45°.【考点】直线与圆的位置关系.【分析】由题意结合图象可得当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式和直线的垂直关系可得.【解答】解:∵(3﹣2)2+(1﹣2)2=2<4,∴点P在圆C内部,当弦AB的长取最小值时,直线l过P且与PC垂直,由斜率公式可得k PC==﹣1,故直线l的斜率为1,倾斜角为45°,故答案为:45°14.已知△ABC中,AB=AC=1,且|+|=|﹣|,=3,若点P是BC边上的动点,则的取值范围是[\frac{1}{4},\frac{3}{4}].【考点】平面向量数量积的运算.【分析】根据|+|=|﹣|得出•=0,⊥,建立平面直角坐标系,利用平面向量的坐标运算表示出•,根据坐标运算即可求出•的取值范围.【解答】解:△ABC中,AB=AC=1,|+|=|﹣|,∴•=0,∴⊥;以AC,AB为坐标轴建立平面直角坐标系,如图所示:则A(0,0),C(1,0),B(0,1),∵=3,∴E(,);直线BC方程为x+y=1,即x+y﹣1=0;设P(x,y),则0≤x≤1,则=(x,y),=(,),∴•=x+y=x+(1﹣x)=x+;∵0≤x≤1,∴≤x+≤;即•的取值范围是[,].故答案为:[,].15.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,x n满足f(﹣x i)=f(x i)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.已知函数g(x)=是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是(\frac{1}{4},\frac{1}{2}.【考点】抽象函数及其应用.【分析】根据条件得到函数f(x)存在n个关于y轴对称的点,作出函数关于y轴对称的图象,根据对称性建立不等式关系进行求解即可.【解答】解:由“n度局部偶函数”的定义可知,函数存在关于y对称的点有n个,当x<0时,函数g(x)=|sin(x)|﹣1,关于y轴对称的函数为y=|sin(﹣x)|﹣1=|sin (x)|﹣1,x>0,作出函数函数g(x)g和函数y=h(x)=|sin x|﹣1,x>0的图象如图:若g(x)是定义域为(﹣∞,0)∪(0,+∞)上的“3度局部偶函数”,则等价为函数g(x)和函数y=|sin(x)|﹣1,x>0的图象有且只有3个交点,若a>1,则两个函数只有一个交点,不满足条件,当0<a<1时,则满足,即,则,即<a<,故答案为:(,)三、解答题(共6小题,满分75分)16.2020年2月,国务院发布的《关于进一步加强城市规划建设管理工作的若干意见》中提到“原则上不再建设封闭住宅小区,已建成的住宅小区和单位大院要逐步打开”,济南某新闻媒体对某一小区100名不同年龄段的居民进行调查,如图是各年龄段支持以上做法的人数的频率分布直方图.(Ⅰ)求m的值;(Ⅱ)用分层抽样的方法抽取20人到演播大厅进行现场交流.(i)求年龄在35~55岁之间的人数;(ii)在55~75岁之间任意找两个人发言(不考虑先后顺序),至少一人再65~75岁之间的概率是多少?【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)根据各组的频率和等于1,即可求出m的值,(Ⅱ)(i)根据各组的人数比,利用分层抽样即可求出龄在35~55岁之间的人数,(ii)年龄在55~65岁之间的人数为3人,记为A,B,C,年龄在65~75岁之间的人数为2人,记为D,E,一一列举所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.【解答】解:(Ⅰ)因为各组的频率和等于1,m=0.1﹣(0.015+0.035+0.015+0.01)=0.025,(Ⅱ)依题意,各小组的人数为比0.015:0.035:0.025:0.015:0.010=3:7:5:3:2,(i)年龄在35~55岁之间的人数20×=12人,(ii)年龄在55~65岁之间的人数为20×=3人,记为A,B,C,年龄在65~75岁之间的人数为20×=2人,记为D,E,从55~75岁之间任意找两个人发言,有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10种,其中少一人再65~75岁之间的有AD,AE,BD,BE,CD,CE,DE共7种,所以至少一人再65~75岁之间的概率为.17.已知函数f(x)=sin2x+2sin2x.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)将函数f(x)的图象向左平移个单位,再向下平移1个单位后得到函数g(x)的图象,当x∈[﹣,]时,求函数g(x)的值域.【考点】三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.【分析】利用倍角公式降幂后再由两角差的正弦化简.(Ⅰ)由相位在正弦函数的增区间内求得x的取值范围可得函数f(x)的单调增区间;(Ⅱ)由函数的伸缩和平移变换求得g(x)的解析式,结合x的范围求得相位的范围,进一步求得函数g(x)的值域.【解答】解:f (x )=sin2x+2sin 2x==. (Ⅰ)由,解得.∴函数f (x )的单调增区间为[],k ∈Z ;(Ⅱ)将函数f (x )的图象向左平移个单位,得y=2sin[2(x)﹣]+1=2sin2x+1.再向下平移1个单位后得到函数g (x )=2sin2x . 由x ∈[﹣,],得2x ∈[],∴sin2x ∈[﹣],则函数g (x )的值域为[﹣].18.如图,四棱锥P ﹣ABCD 中,△PAD 为正三角形,四边形ABCD 是边长为2的菱形, ∠BAD=60°平面ABE 与直线PA ,PD 分别交于点E ,F . (Ⅰ)求证:AB ∥EF ;(Ⅱ)若平面PAD ⊥平面ABCD ,试求三棱锥A ﹣PBD 的体积.【考点】棱柱、棱锥、棱台的体积;空间中直线与直线之间的位置关系. 【分析】(1)由AB ∥CD 得出AB ∥平面PCD ,利用线面平行的性质得出AB ∥EF ; (2)过P 作PG ⊥AD 于G ,由面面垂直的性质得出PG ⊥平面ABCD ,于是V A ﹣PBD =V P ﹣ABD =.【解答】证明:(1)∵四边形ABCD 是菱形, ∴AB ∥CD ,又AB ⊄平面PCD ,CD ⊂平面PCD , ∴AB ∥平面PCD ,又AB ⊂平面ABEF ,平面ABEF ∩平面PCD=EF , ∴AB ∥EF .(2)过P 作PG ⊥AD 于G ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PG ⊥AD ,PG ⊂平面PAD , ∴PG ⊥平面ABCD .∵△PAD 为正三角形,四边形ABCD 是边长为2的菱形,∠DAB=60°, ∴PG=,S △ABD ==.∴V A ﹣PBD =V P ﹣ABD ===1.19.已知在等比数列{a n }中,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. (Ⅰ)求数列{a n }的通项公式( Ⅱ)若数列{b n }满足+…+=n ,(n ∈N *),求数列{b n }的前n 项和S n .【考点】数列的求和;等比数列的通项公式.【分析】(I )利用等比数列的通项公式及其性质即可得出. (II )利用等比数列的前n 项和公式、“错位相减法”即可得出.【解答】解:(I )设等比数列{a n }的公比为q ,a n+1>a n ,对n ∈N *恒成立,且a 1a 4=8,a 2+a 3=6. ∴a 2a 3=8,联立解得a 2=2,a 3=4. ∴q=2.∴a n =2×2n ﹣2=2n ﹣1. (II )∵数列{b n }满足+…+=n ,(n ∈N *),∴=1,解得b 1=1.n ≥2时, =n ﹣(n ﹣1)=1,∴b n =(2n ﹣1)•2n ﹣1.∴数列{b n }的前n 项和S n =1+3×2+5×22+…+(2n ﹣1)•2n ﹣1. 2S n =2+3×22+…+(2n ﹣3)•2n ﹣1+(2n ﹣1)•2n , ∴﹣S n =1+2(2+22+…+2n ﹣1)﹣(2n ﹣1)•2n =﹣1﹣(2n ﹣1)•2n =(3﹣2n )•2n﹣3,∴S n =(2n ﹣3)•2n +3.20.在平面直角坐标系xOy 中,椭圆C :+=1(a >b >0)的离心率为,直线y=x与椭圆C 交于点E ,F ,直线y=﹣x 与椭圆C 交于点G ,H ,且四边形EHFG 的面积为.(1)求椭圆C 的方程;(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.【考点】椭圆的简单性质.【分析】(1)利用椭圆C:+=1(a>b>0)的离心率为,得出a=2b,直线y=x 代入椭圆C,可得+=1,x=b,利用四边形EHFG的面积为,求出b,可得a,即可求得椭圆的方程;(2)设直线l1的方程代入椭圆的方程,消去y,整理得一元二次方程,由韦达定理,可求得P的坐标,以﹣代入,可得Q(,﹣),从而可求PQ的直线方程,令y=0,即可得到结论.【解答】解:(1)∵椭圆C:+=1(a>b>0)的离心率为,∴=,∴a=2b,直线y=x代入椭圆C,可得+=1,∴x=b,∵直线y=x与椭圆C交于点E,F,直线y=﹣x与椭圆C交于点G,H,且四边形EHFG的面积为,∴(b)2=,∴b=1,∴a=2,∴椭圆C的方程为=1;(2)设P(x1,y1),Q(x2,y2),直线斜率为k,则直线l1的方程为y=k(x+2)把它代入椭圆的方程,消去y,整理得:(1+4k2)x2+16k2x+(16k2﹣4)=0由韦达定理得﹣2+x1=﹣,∴x1=,∴y1=k(x1+2)=,∴P(,),以﹣代入,可得Q(,﹣),则k PQ=﹣∴PQ的直线方程为y﹣=﹣(x﹣),令y=0,则x=+=﹣.∴直线PQ过x轴上的一定点(﹣,0).21.已知函数f(x)=lnx﹣e x+mx,其中m∈R,函数g(x)=f(x)+e x+1.(Ⅰ)当m=1时,求函数f(x)在x=1处的切线方程;(Ⅱ)当m=﹣e时,(i)求函数g(x)的最大值;(ii)记函数φ(x)=|g(x)|﹣﹣,证明:函数φ(x)没有零点.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出m=1的函数f(x)的解析式和导数,求得切线的斜率和切点,由点斜式方程可得切线的方程;(Ⅱ)(i)当m=﹣e时,求得g(x)的解析式和导数,以及单调区间,即可得到所求最大值;(ii)求得函数φ(x)的解析式,令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+,求出导数,可得单调区间,可得h(x)的最大值,由|g(x)|的最小值为1,即可判断.【解答】解:(Ⅰ)当m=1时,函数f(x)=lnx﹣e x+x的导数为f′(x)=﹣e x+1,可得函数f(x)在x=1处的切线斜率为2﹣e,切点为(1,1﹣e),即有函数f(x)在x=1处的切线方程为y﹣(1﹣e)=(2﹣e)(x﹣1),即为y=(2﹣e)x﹣1;(Ⅱ)(i)当m=﹣e时,g(x)=f(x)+e x+1=lnx﹣ex+1,g′(x)=﹣e,当x>时,g′(x)<0,g(x)递减;当0<x<时,g′(x)<0,g(x)递增.可得g(x)在x=处取得极大值,且为最大值﹣1;(ii)证明:函数φ(x)=|g(x)|﹣﹣=|lnx﹣ex+1|﹣(+),令φ(x)=0,可得|lnx﹣ex+1|=+,(*)由h(x)=+的导数为h′(x)=,当x>e时,h′(x)<0,函数y递减;当0<x<e时,h′(x)>0,函数h(x)递增.即有函数h(x)=+的最大值为h(e)=+<1;由(i)可得g(x)≤﹣1,即有|g(x)|≥1,则方程(*)无解.即有函数φ(x)没有零点.2020年7月14日。
2020年山东省高考数学模拟试卷
2020年山东省高考数学模拟试卷学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共8小题)1.设集合A={(x,y)|x+y=2},B={(x,y)|y=x2},则A∩B=()A.{(1,1)} B.{(﹣2,4)}C.{(1,1),(﹣2,4)} D.∅2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1 B.﹣C.D.13.设向量=(1,1),=(﹣1,3),=(2,1),且(﹣λ)⊥,则λ=()A.3 B.2 C.﹣2 D.﹣34.(﹣x)10的展开式中x4的系数是()A.﹣210 B.﹣120 C.120 D.2105.已知三棱锥S﹣ABC中,∠SAB=∠ABC=,SB=4,SC=2,AB=2,BC=6,则三棱锥S﹣ABC的体积是()A.4 B.6 C.4D.66.已知点A为曲线y=x+(x>0)上的动点,B为圆(x﹣2)2+y2=1上的动点,则|AB|的最小值是()A.3 B.4 C.3D.47.设命题p:所有正方形都是平行四边形,则¬p为()A.所有正方形都不是平行四边形B.有的平行四边形不是正方形C.有的正方形不是平行四边形D.不是正方形的四边形不是平行四边形8.若a>b>c>1且ac<b2,则()A.log a b>log b c>log c a B.log c b>log b a>log a cC.log b c>log a b>log c a D.log b a>log c b>log a c二、多选题(共4小题)9.如图为某地区2006年~2018年地方财政预算内收入、城乡居民储蓄年末余额折线图.根据该折线图可知,该地区2006年~2018年()A.财政预算内收入、城乡居民储蓄年末余额均呈增长趋势B.财政预算内收入、城乡居民储蓄年末余额的逐年增长速度相同C.财政预算内收入年平均增长量高于城乡居民储蓄年末余额年平均增长量D.城乡居民储蓄年末余额与财政预算内收入的差额逐年增大10.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是()A.C的方程为﹣y2=1B.C的离心率为C.曲线y=e x﹣2﹣1经过C的一个焦点D.直线x﹣﹣1=0与C有两个公共点11.正方体ABCD﹣A1B1C1D1的棱长为1,E,F,G分别为BC,CC1,BB1的中点.则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等12.函数f(x)的定义域为R,且f(x+1)与f(x+2)都为奇函数,则()A.f(x)为奇函数B.f(x)为周期函数C.f(x+3)为奇函数D.f(x+4)为偶函数三、填空题(共4小题)13.某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有种.14.已知cos(α+)﹣sinα=,则sin(α+)=﹣.15.直线l过抛物线C:y2=2px(p>0)的焦点F(1,0),且与C交于A,B两点,则p=,+=.16.半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,则△ABC,△ACD与△ADB面积之和的最大值为.四、解答题(共6小题)17.在①b1+b3=a2,②a4=b4,③S5=﹣25这三个条件中任选一个,补充在下面问题中,若问题中的k存在,求k的值;若k不存在,说明理由.设等差数列{a n}的前n项和为S n,{b n}是等比数列,,b1=a5,b2=3,b5=﹣81,是否存在k,使得S k>S k+1且S k+1<S k+2?18.在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC.(1)若D为BC的中点,且△CDF的面积等于△ABC的面积,求∠ABC;(2)若∠ABC=45°,且BD=3CD,求cos∠CFB.19.如图,四棱锥S﹣ABCD中,底面ABCD为矩形,SA⊥平面ABCD,E,F分别为AD,SC的中点,EF与平面ABCD所成的角为45°.(1)证明:EF为异面直线AD与SC的公垂线;(2)若EF=BC,求二面角B﹣SC﹣D的余弦值.20.下面给出了根据我国2012年~2018年水果人均占有量y(单位:kg)和年份代码x绘制的散点图和线性回归方程的残差图(2012年~2018年的年份代码x分别为1~7).(1)根据散点图分析y与x之间的相关关系;(2)根据散点图相应数据计算得y i=1074,x i y i=4517,求y关于x的线性回归方程;(3)根据线性回归方程的残差图,分析线性回归方程的拟合效果(精确到0.01)附:回归方程中斜率和截距的最小二乘估计公式分别为:.21.设中心在原点,焦点在x轴上的椭圆E过点(1,),且离心率为,F为E的右焦点,P为E上一点,PF⊥x轴,⊙F的半径为PF.(1)求E和⊙F的方程;(2)若直线1:y=k(x﹣)(k>0)与⊙F交于A,B两点,与E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程:若不存在,说明理由.22.函数f(x)=(x>0),曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为.(1)求a;(2)讨论g(x)=x(f(x))2的单调性;(3)设a1=1,a n+1=f(a n),证明:2n﹣2|2lna n﹣ln7|<1.2020年山东省高考数学模拟试卷参考答案一、单选题(共8小题)1.【分析】可以选择代入选项中的元素.【解答】解:将(1,1)代入A,B成立,则(1,1)为A∩B中的元素.将(﹣2,4)代入A,B成立,则(﹣2,4)为A∩B中的元素.故选:C.【知识点】交集及其运算2.【分析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【解答】解:===﹣i,∴a+bi=﹣(﹣i)=i,∴a=0,b=1,∴a+b=1,故选:D.【知识点】复数代数形式的乘除运算3.【分析】利用(﹣λ)⊥,列出含λ的方程即可.【解答】解:因为﹣λ=(1+λ,1﹣3λ),又因为(﹣λ)⊥,所以(1+λ,1﹣3λ)•(2,1)=2+2λ+1﹣3λ=0,解得λ=3,故选:A.【知识点】平面向量的坐标运算4.【分析】由二项式展开式通项公式可得:二项式(﹣x)10的展开式的通项为T r+1=,再令2r﹣10=4求解即可.【解答】解:由二项式(﹣x)10的展开式的通项T r+1=得,令2r﹣10=4,得r=7,即展开式中x4的系数是,故选:B.【知识点】二项式定理5.【分析】根据条件可以计算出AC,进而判断出SA⊥AC,所以SA⊥平面ABC,则三棱锥体积可表示为•SA•S△ABC,计算出结果即可.【解答】解:如图,因为∠ABC=,所以AC==2,则SA2+AC2=40+12=52=SC2,所以SA⊥AC,又因为∠SAB=,即SA⊥AB,AB∩AC=A,SA⊄平面ABC,所以SA⊥平面ABC,所以V S﹣ABC=•SA•S△ABC==4,故选:C.【知识点】棱柱、棱锥、棱台的体积6.【分析】作出对勾函数的图象,利用圆的性质,判断当A,B,C三点共线时,|AB|最小,然后进行求解即可.【解答】解:作出对勾函数y=x+(x>0)的图象如图:由图象知函数的最低点坐标为A(2,4),圆心坐标C(2,0),半径R=1,则由图象知当A,B,C三点共线时,|AB|最小,此时最小值为4﹣1=3,即|AB|的最小值是3,故选:A.【知识点】直线与圆的位置关系7.【分析】找出条件和结论,否定条件和结论.【解答】解:命题的否定为否定量词,否定结论.故¬p,有的正方形不是平行四边形.故选:C.【知识点】命题的否定8.【分析】通过和1比较大小判断,特殊值代入排除选项.【解答】解:因为a>b>c>1,令a=16,b=8,c=2,则log c a>1>log a b所以A,C错,则故D错,B对.故选:B.【知识点】对数值大小的比较二、多选题(共4小题)9.【分析】根据图分析每一个结论.【解答】解:由图知财政预算内收入、城乡居民储蓄年末余额均呈增长趋势,A对.由图知城乡居民储蓄年末余额的年增长速度高于财政预算内收入的年增长速度,B错.由图知财政预算内收入年平均增长量低于城乡居民储蓄年末余额年平均增长,C错.由图知城乡居民储蓄年末余额与财政预算内收入的差额逐年增大,D对.故选:AD.【知识点】进行简单的合情推理10.【分析】根据条件可求出双曲线C的方程,再逐一排除即可.【解答】解:设双曲线C的方程为,根据条件可知=,所以方程可化为,将点(3,)代入得b2=1,所以a2=3,所以双曲线C的方程为,故A对;离心率e====,故B错;双曲线C的焦点为(2,0),(﹣2,0),将x=2代入得y=e0﹣1=0,所以C对;联立,整理得y2﹣2y+2=0,则△=8﹣8=0,故只有一个公共点,故D错,故选:AC.【知识点】双曲线的简单性质11.【分析】取DD1中点M,则AM为AF在平面AA1D1D上的射影,由AM与DD1不垂直,可得AF与DD1不垂直;取B1C1中点N,连接A1N,GN,得平面A1GN∥平面AEF,再由面面平行的性质判断B;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积判断C;利用反证法证明D错误.【解答】解:取DD1中点M,则AM为AF在平面AA1D1D上的射影,∵AM与DD1不垂直,∴AF与DD1不垂直,故A错;取B1C1中点N,连接A1N,GN,可得平面A1GN∥平面AEF,故B正确;把截面AEF补形为四边形AEFD1,由等腰梯形计算其面积S=,故C正确;假设C与G到平面AEF的距离相等,即平面AEF将CG平分,则平面AEF必过CG的中点,连接CG交EF于H,而H不是CG中点,则假设不成立,故D错.故选:BC.【知识点】直线与平面平行的判定12.【分析】利用已知条件推导出f(x)的周期,再利用周期即可得出f(x)与f(x+3)都为奇函数.【解答】解:∵f(x+1)与f(x+2)都为奇函数,∴f(﹣x+1)=﹣f(x+1)①,f(﹣x+2)=﹣f(x+2)②,∴由①可得f[﹣(x+1)+1]=﹣f(x+1+1),即f(﹣x)=﹣f(x+2)③,∴由②③得f(﹣x)=f(﹣x+2),所以f(x)的周期为2,∴f(x)=f(x+2),则f(x)为奇函数,∴f(x+1)=f(x+3),则f(x+3)为奇函数,故选:ABC.【知识点】函数的周期性、函数奇偶性的判断三、填空题(共4小题)13.【分析】先阅读题意,再结合排列组合中的分步原理计算即可得解.【解答】解:由排列组合中的分步原理,从复活选手中挑选1名选手为攻擂者,共=6种选法,从守擂选手中挑选1名选手为守擂者,共=6种选法,则攻擂者、守擂者的不同构成方式共有6×6=36种选法,即攻擂者、守擂者的不同构成方式共有36种,故答案为:36.【知识点】排列、组合及简单计数问题14.【分析】由条件利用两角和差的三角公式求得cos(α+)的值,再利用诱导公式求得sin(α+)的值.【解答】解:∵cos(α+)﹣sinα=cosα﹣sinα﹣sinα=(cosα﹣sinα)=cos(α+)=,∴cos(α+)=.则sin(α+)=sin(α﹣)=﹣cos(α﹣+)=﹣cos(α+)=﹣,故答案为:﹣.【知识点】两角和与差的余弦函数15.【分析】本题先根据抛物线焦点坐标可得p的值,然后根据抛物线的定义和准线,可知|AF|=x1+1,|BF|=x2+1.再根据直线斜率存在与不存在两种情况进行分类讨论,联立直线与抛物线方程,利用韦达定理最终可得结果.【解答】解:由题意,抛物线C的焦点F(1,0),∴=1,故p=2.∴抛物线C的方程为:y2=4x.则可设A(x1,y1),B(x2,y2).由抛物线的定义,可知:|AF|=x1+1,|BF|=x2+1.①当斜率不存在时,x1=x2=1.∴=+=+=1.②当斜率存在时,设直线l斜率为k(k≠0),则直线方程为:y=k(x﹣1).联立,整理,得k2x2﹣2(k2+2)x+k2=0,∴.∴=+===1.综合①②,可知:=1.故答案为:2;1.【知识点】直线与圆锥曲线的综合问题16.【分析】首先求出长方体的外接球的半径,进一步利用三角形的面积和基本不等式的应用求出结果.【解答】解:半径为2的球面上有A,B,C,D四点,且AB,AC,AD两两垂直,如图所示则设四面体ABCD置于长方体模型中,外接球的半径为2,故x2+y2+z2=16,S=S△ABC+S△ACD+S△ABD=,由于2(x2+y2+z2)﹣4S=(x﹣y)2+(y﹣z)2+(x﹣z)2≥0,所以4S≤2•16=32,故S≤8,故答案为:8.【知识点】球内接多面体四、解答题(共6小题)17.【分析】利用等差数列、等比数列的通项公式和前n项和公式,先求出,等比数列{b n}的通项公式,再分别结合三个条件一一算出等差数列{a n}的通项公式,并判断是否存在符合条件的k.【解答】解:∵{b n}是等比数列,b2=3,b5=﹣81,∴,解得,∴b n=﹣(﹣3)n﹣1,∴a5=b1=﹣1,若S k>S k+1,即S k>S k+a k+1,则只需a k+1<0,同理,若S k+1<S k+2,则只需a k+2>0,若选①:b1+b3=a2时,a2=﹣1+(﹣9)=﹣10,又a5=﹣1,∴a n=3n﹣16,∴当k=4时,a5<0,a6>0,符合题意,若选②:a4=b4时,a4=b4=27,又a5=﹣1,∴d=﹣28,∴等差数列{a n}为递减数列,故不存在k,使得a k+1<0,a k+2>0,若选③:S5=﹣25时,S5===5a3=﹣25,∴a3=﹣5,又a5=﹣1,∴a n=2n﹣11,∴当k=4时,a5<0,a6>0,符合题意,综上所求:①,③符合题意.故答案为:①,③.【知识点】等差数列的前n项和、等比数列18.【分析】(1)直接利用三角形的面积公式的应用建立等量关系,进一步求出∠ABC.(2)利用三角形的边的关系式的应用和余弦定理的应用求出cos∠CFB.【解答】解:(1)如图所示在△ABC中,∠A=90°,点D在BC边上.在平面ABC内,过D作DF⊥BC且DF=AC,所以,,且△CDF的面积等于△ABC的面积,由于DF=AC,所以CD=AB,D为BC的中点,故BC=2AC,所以∠ABC=60°.(2)如图所示:设AB=k,由于∠A=90°,∠ABC=45°,BD=3DC,DF=AC,所以AC=k,CB=k,BD=,DF=k,由于DF⊥BC,所以CF2=CD2+DF2,则.且BF2=BD2+DF2,解得,在△CBF中,利用余弦定理==.【知识点】余弦定理19.【分析】(1)根据异面直线共垂线的定义进行证明即可.(2)建立空间直角坐标系,求出点的坐标,利用向量法求出平面的法向量,利用向量法进行转化求解即可.【解答】解:(1)取SD的中点H,连EH,FH,则EH∥SA,则EH⊥平面ABCD,∴EH⊥AD,∵FH∥CD,CD⊥AD,∴FH⊥AD,∴AD⊥平面EFH,∴AD⊥EF设BC=2,∴EF=1,EM=FM=,∴CD=AB=,SA=,建立如图的空间直角坐标系,则E(0,1,0),F(,1,),S(0,0,),C(,2,0),则=(,0,),=(,2,﹣),则=1﹣1=0,即EF⊥SC,即EF为异面直线AD与SC的公垂线.(2)若EF=BC,设BC=2,则EF=1,则EM=FM=,CD=AB=,SA=,D(0,2,0),B(,0,0),则=(,2,﹣),=(0,2,0),=(﹣,0,0),设面BCS的法向量为=(a,b,c),则,则,取a=c=1,则=(1,0,1)设面SCD的法向量为=(x,y,z),则,则,取z=,则y=1,则=(0,1,),则cosθ===,∴余弦值为.【知识点】与二面角有关的立体几何综合题20.【分析】(1)根据散点图可以看出,散点均匀的分布在一条直线附近,故y与x成线性相关;(2)根据给出信息,分别计算出x,y的平均值,代入最小二乘法估计公式,即可得到回归方程;(3)根据所给残差图分别区域的宽度分析即可.【解答】解:(1)根据散点图可知,散点均匀的分布在一条直线附近,且随着x的增大,y增大,故y 与x成线性相关,且为正相关;(2)依题意,=(1+2+3+4+5+6+7)=4,=y i=1074≈153.43,===≈7.89,=﹣=154.43﹣7.89×4=121.87,所以y关于x的线性回归方程为:=7.89x+121.87;(3)由残差图可以看出,残差对应点分布在水平带状区域内,且宽度较窄,说明拟合效果较好,回归方程的预报精度较高.【知识点】线性回归方程21.【分析】(1)根据离心率可得,代入a2=b2+c2得a=2b,再代点即可得出E的方程,再求出点F、P的坐标,从而求出圆F的方程;(2)设出C、D的坐标,求出|CF|、|DF|,根据条件得到|AB|=|CD|=1,利用韦达定理代入即可得到结论.【解答】解:(1)由题意可设椭圆的标准方程为,∵椭圆的离心率e=,∴,∵a2=b2+c2,∴a=2b,将点(1,)代入椭圆的方程得:,联立a=2b解得:,∴椭圆E的方程为:,∴F(),∵PF⊥x轴,∴P(),∴⊙F的方程为:;(2)由A、B再圆上得|AF|=|BF|=|PF|=r=,设C(x1,y1),D(x2,y2),|CF|=1同理:,若|AC|=|BD|,则|AB|=|CD|=1,∴4﹣,由得,∴∴4﹣=1得12k2=12k2+3,无解,故不存在.【知识点】直线与椭圆的位置关系22.【分析】(1)求得f(x)的导数,可得切线的斜率和切点,以及切线方程,代入(0,),解方程可得a;(2)求得g(x)的解析式和导数,分解因式可得导数的符号,进而判断单调性;(3)运用分析法证明,结合f(x)和g(x)的单调性,以及a n+1=f(a n),等比数列的性质,对a n与的大小关系讨论,即可得证.【解答】解:(1)函数f(x)=(x>0)的导数为f′(x)=,曲线y=f(x)在点(1,f(1))处的切线斜率为,切点为(1,),切线方程为y﹣=(x﹣1),代入(0,)可得﹣=(0﹣1),解得a=7;(2)g(x)=x(f(x))2=x•()2=,g′(x)=,当x>0时,g′(x)>0,可得g(x)在(0,+∞)递增;(3)要证2n﹣2|2lna n﹣ln7|<1,只需证|lna n﹣ln7|<,即为|ln|<,只要证|ln|<|ln|,由f(x)在(0,+∞)递减,a n>0,若a n>,a n+1=f(a n)<f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12>7,此时a n>,由(2)知a n a n+12=g(a n)>g()=7;若a n<,a n+1=f(a n)>f()=,此时<1<,只要证ln<ln(),即为<(),即a n a n+12<7,此时a n<,由(2)知a n a n+12=g(a n)<g()=7;若a n=,不等式显然成立.综上可得|ln|<|ln|,(n≥1,n∈N*)成立,则|ln|<•|ln|=•ln7,由ln7<lne2=1,可得|ln|<,则2n﹣2|2lna n﹣ln7|<1成立.【知识点】利用导数研究函数的单调性。
2020年高考模拟山西省临汾市高考数学第三次模拟试卷(理科)含解析
2020年高考模拟高考数学第三次模拟试卷(理科)一、选择题1.已知函数/(x)-2x,集合A=(x|/-(x)WO},B={x\f(x)W0},则AI~IB=()A.[-1,0]B.[-1,2]C.[0,1]D.(-8,1]U[2,+8)2.设7是虚数单位,若复数z=l+i,则2-+z2= Z3.4. 5. 6.A.1+i B.1-i C.-1-i D.一1+i命题w Vxe(0,1),e~x>lnx"的否定是(A.Vxe(o,1),e~x^:lnxB.3xo£(0,1),e~x o>ZwxoC.3xoG(0,1),e~x o<ZnxoD.3xoG(0,1),e-XoWlnx。
已知援i=J§,应=2,若如G-Q,则向量二+E在向量£方向的投影为()在三角形ABC中,A.充分不必要C.充要R7木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为(B-2「1C--2"sinA>sinB"是"tanA>tanB"的()条件B.必要不充分D.既不充分也不必要阅读如图所示的程序框图,运行相应的程序,则输出的结果为(I弓始]B.6A.111222~3A1.2())c.2-4D)7.)B. 48tt +9-、v 危A. 2471+9^/38.函数 j=cos2x - y/^inlx (xG[O, -^-])兀B. [0,—]oC. 48tt +18-/3的单调递增区间是(D. 144tt +18-/3兀A - T ]C [匹兰• 6,2x-4y+4<09.在平面直角坐标系中,若不等式组2x+y-10<0所表示的平面区域内存在点Go, jo),)c 「兀 兀D.[—,—3 25x-2y+2》0使不等式xo+myo+lW 0成立,则实数钢的取值范围为()A. (— °°, — —]B. (- °°, -C. [4, +°°)D. (一 8, — 4]10. 已知函数/ (x) =e x ~1+x - 2的零点为初,若存在实数〃使x 2 - ax - a+3 = 0且\m - n\W1,则实数0的取值范围是()A. [2, 4]B. [2,方C, [?, 3]D. [2, 3]O O2 211. 已知双曲线E: %一土=1(0>°,力>°)满足以下条件:①双曲线E 的右焦点与抛物线y 2=4x 的焦点H 重合;②双曲线E 与过点P (4, 2)的幕函数f (x)=尸的图象交于点0 且该暴函数在点。
2020年高考模拟内蒙古高考数学模拟试卷(理科)(3月份) 含解析
2020年高考模拟高考数学模拟试卷(理科)(3月份)一、选择题1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.23.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.164.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y =x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.参考答案一、选择题(共12小题,每小题5分,满分60分)1.设复数z的共轭复数为,i为虚数单位,若z=1﹣i,则(3+2)i=()A.﹣2﹣5i B.﹣2+5i C.2+5i D.2﹣5i【分析】把z=1﹣i代入(3+2)i,再由复数代数形式的乘除运算化简得答案.解:由z=1﹣i,得(3+2)i=(3+2+2i)i=(5+2i)i=﹣2+5i.故选:B.2.已知集合M={x|x2﹣2x﹣3<0},N={x|x2﹣mx<0},若M∩N={x|0<x<1},则m的值为()A.1B.﹣1C.±1D.2【分析】可以求出M={x|﹣1<x<3},从而可以根据M∩N={x|0<x<1}即可得出N={x|0<x<m},从而得出m=1.解:∵M={x|﹣1<x<3},N={x|x2﹣mx<0},M∩N={x|0<x<1},∴N={x|0<x<m},∴m=1.故选:A.3.已知等差数列{a n}中,S n为其前n项的和,S4=24,S9=99,则a7=()A.13B.14C.15D.16【分析】由已知结合等差数列的求和公式可求d,a1,然后结合等差数列的通项公式即可求解.解:因为S4=24,S9=99,,解可得,a1=3,d=2则a7=a1+6d=15.故选:C.4.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角为θ,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.1﹣sin 2θB.C.1﹣sinθD.【分析】分别求出小正方形的面积及大正方形的面积,然后根据几何概率的求解公式即可.解:由题意可知,小正方形的边长为2(cosθ﹣sinθ),面积S1=4(cosθ﹣sinθ)2=4(1﹣sin2θ),大正方形的面积S=2×2=4,故镖落在小正方形内的概率P=(1﹣sin2θ).故选:A.5.函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)的图象大致是()A.B.C.D.【分析】利用函数的奇偶性排除选项,通过函数的导数求解函数的极值点的个数,求出f(π)的值,推出结果即可.解:函数f(x)=ln|x|+|sin x|(﹣π≤x≤π且x≠0)是偶函数排除A.当x>0时,f(x)=lnx+sin x,可得:f′(x)=+cos x,令+cos x=0,作出y=与y=﹣cos x图象如图:可知两个函数有一个交点,就是函数有一个极值点.f(π)=lnπ>1,故选:B.6.从6名女生3名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A.45种B.120 种C.30种D.63种【分析】6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.利用组合数的意义、乘法原理即可得出.解:6名女生3名男生中,选出3名学生组成课外小组,根据分层抽样要求,应选出2名女生,1名男生.∴不同的抽取方法数=•=45.故选:A.7.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球表面积()A.B.2C.4D.12π【分析】首先把三视图转换为几何体,进一步利用几何体的表面积公式的应用求出结果.解:根据几何体的三视图,把几何体转换为:所以:该几何体的球心为O,R=,.故选:D.8.设F1,F2分别是椭圆E的左、右焦点,过点F1的直线交椭圆E于A,B两点,A在x轴上方,且满足|AF1|=3|F1B|,,则A点位于()A.第一象限B.第二象限C.y轴上D.都有可能【分析】设|BF2|=k,题意开发其他的焦半径的值,再由余弦定理可得a与k的关系,进而可得|AF2|=3k=|AF1|,可得A在y轴上.解:设|BF1|=k,则|AF1|=3k由椭圆的定义可得:|AF2|=2a﹣3k,|BF2|=2a﹣k,|AB|=4k,在△ABF2中,由余弦定理可得:|AB|2=|AF2|2+|BF﹣2|AF2|•|BF2|cos∠AF2B,即16k2=(2a﹣3k)2+(2a﹣k)2﹣2(2a﹣3k)(2a﹣k),整理可得a=3k,所以|AF2|=3k=|AF1|,|BF2|=5k,F1A⊥F2A,即△AF1F2为等腰直角三角形,所以A在y轴上,故选:C.9.已知函数,函数y=f(x)﹣a有四个不同的零点,从小到大依次为x1,x2,x3,x4,则x1+x2+x3+x4的最大值为()A.1+e B.4+e C.1﹣e D.1+2e【分析】作出函数f(x)的图象,结合题意,利用根与系数的关系利用函数的单调性得解.解:若函数y=f(x)﹣a有四个不同的零点,则有a∈(1,e],当x>0时,f(x)=x+﹣3≥2﹣3=1,可得f(x)在x>2递增,在0<x<2处递减,由f(x)=,x≤0,x<﹣1时,f(x)递减;﹣1<x<0时,f(x)递增,可得x=﹣1处取得极小值1,作出f(x)的图象,以及直线y=a,可得===,即有x1+1+x2+1=0,可得x1+x2=﹣2,x3,x4是方程﹣3=a的两根,即x2﹣(3+a)x+4=0的两个根,∴x3+x4=3+a,则x1+x2+x3+x4=﹣2+3+a=a+1≤e+1,故最大值为e+1,故选:A.10.O为△ABC内一点,且,若B,O,D三点共线,则t的值为()A.B.C.D.【分析】根据即可得出,而根据B,O,D三点共线,可设,从而可得出,这样根据平面向量基本定理即可得出,解出t即可.解:由得,,∴,∵B,O,D三点共线,∴可设,且,∴,∴,解得.故选:D.11.已知F1、F2分别是双曲线(a>0,b>0)的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交叉双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆内,则双曲线离心的取值范围是()A.(,+∞)B.(2,+∞)C.(,2)D.(1,2)【分析】确定M,F1,F2的坐标,进而由•<0,结合a、b、c的关系可得关于ac的不等式,利用离心率的定义可得范围.解:设直线方程为y=(x﹣c),与双曲线(a>0,b>0)联立,可得交点坐标为P(,﹣)∵F1(﹣c,0),F2(c,0),∴=(﹣,),=(,),由题意可得•<0,即<0,化简可得b2<3a2,即c2﹣a2<3a2,故可得c2<4a2,c<2a,可得e=<2,∵e>1,∴1<e<2故选:D.12.定义在R上的偶函数f(x)的导函数为f′(x),且当x>0时,xf′(x)+2f(x)<0.则()A.B.9f(3)>f(1)C.D.【分析】构造函数g(x)=x2f(x),结合已知条件及导数与单调性关系可判断g(x)的单调性及奇偶性,从而可求解.解:令g(x)=x2f(x),当x>0时,xf′(x)+2f(x)<0,则g′(x)=2xf(x)+x2f′(x)=x[2f(x)+f′(x)]<0即g(x)在(0,+∞)上单调递减,因为f(﹣x)=f(x),所以g(﹣x)=(﹣x)2f(﹣x)=x2f(x)=g(x)即g(x)为偶函数,根据偶函数的对称性可知,g(x)在(﹣∞,0)上单调递增,g(e)>g(3),所以=,故选:D.二、填空题(共4小题,每小题5分,满分20分)13.设x,y满足,则z=2x+y的最小值为﹣6.【分析】由约束条件作出可行域,数形结合得到最优解,求出最优解的坐标,代入目标函数得答案.解:由x,y满足作出可行域如图,化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过B(﹣2,﹣2)时直线在y轴上的截距最小,z最小z=﹣2×2﹣2=﹣6.故答案为:﹣6.14.在等比数列{a n}中,已知a2+a4=8,a6+a8=4,则a10+a12+a14+a16=3.【分析】由已知结合等比数列的通项公式可求公比q,然后结合等比数列的性质即可求解.解:设等比数列的公比为q,则,解可得q4=,所以a10+a12+a14+a16=+(a6+a8)q8=8×=3.故答案为:3.15.“砥砺奋进的五年”,首都经济社会发展取得新成就.自2012年以来北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收人快速增长,人民生活品质不断提升.右图是北京市2012﹣2016年城乡居民人均可支配收人实际增速趋势图(例如2012年,北京城镇居民收人实际增速为7.3%,农村居民收人实际增速为8.2%).从2012﹣2016五年中任选两年,则至少有一年农村和城镇居民收入实际增速均超过7%的概率为.【分析】设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,利用列举法能出至少有一年农村和城镇居民收入实际增速均超过7%的概率.解:设至少有一年农村和城镇居民实际收入增速均超7%为事件B,这五年中任选两年,有(2012,2013),(2012,2014),(2012,2015),(2012,2016),(2013,2014),(2013,2015),(2013,2016),(2014,2015),(2014,2016),(2015,2016)共10种情况,其中至少有一年农村和城镇居民实际收入增速均超过7%的为前9种情况,所以至少有一年农村和城镇居民收入实际增速均超过7%的概率P(B)=,故答案为:.16.在棱长为a的正方体内有一个和各面都相切的球,过正方体中两条互为异面直线的棱的中点作直线,则该直线被球面截在球内的弦长为.【分析】由题意画出图形,利用直线与圆的位置关系及垂径定理求解.解:如图,M,N是正方体中两条互为异面直线的棱的中点,直线MN与球O的表面交于E,F两点,连接MO,并延长交于P,则P为对棱的中点,取EF的中点G,则OG∥PN,且OG==.在Rt△OGE中,OE=,则EF=2EG=2.故答案为:.三、解答题(共5小题,满分60分)17.已知,2sin x),=(sin,,函数.(1)求函数f(x)的零点;(2)已知在△ABC中,角A,B,C所对的边分别为a,b,c,且f(A)=2,△ABC 的外接圆半径为,求△ABC周长的最大值.【分析】(1)根据向量数量积的定义求出f(x),结合零点的定义进行求解即可.(2)根据条件先求出A和a的大小,结合余弦定理,以及基本不等式的性质进行转化求解即可.解:(1)f(x)==2cos x sin(x﹣)+2sin x cos(x﹣)=2sin(2x﹣),由f(x)=0得2x﹣=kπ,k∈Z,得x=+,即函数的零点为x=+,k∈Z.(2)∵f(A)=2,∴f(A)=2sin(2A﹣)=2,得sin(2A﹣)=1,即2A﹣=2kπ+,即A=kπ+,在三角形中,当k=0时,A=,满足条件,∵△ABC的外接圆半径为,∴=2,即a=2×=3,由余弦定理得a2=b2+c2﹣2bc cos A=b2+c2﹣bc=(b+c)2﹣3bc≥=(b+c)2﹣(b+c)2=(b+c)2,即(b+c)2≤4×9=36,即b+c≤6当且仅当b=c时取等号,则a+b+c≤9,即三角形周长的最大值为9.18.如图,在平行四边形ABCD中,AB=2,AD=1,∠BAD=60°,EDBF是矩形,DE =a,平面EDBF⊥平面ABCD.(1)若a=1,求证:AE⊥CF;(2)若二面角A﹣EF﹣B的余弦值为,求a的值.【分析】(1)根据勾股定理判断AD⊥BD,AE⊥EF,AE⊥EC,得到AE⊥平面EFC,最后得出结论;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,求出平面AEF 和平面DEFB的法向量,利用夹角公式列方程,求出a.解:(1)连接AC,在三角形ABD中AB=2,AD=1,∠BAD=60°,由余弦定理得BD=,AD2+BD2=AB2,故AD⊥BD,EDBF是矩形,DE=1,平面EDBF⊥平面ABCD,故BF⊥平面ABCD,DE⊥平面ABCD,则AF=,AE2+EF2=AF2,故AE⊥EF,由AC=,EC=,AE=,得AE2+EC2=AC2,故AE⊥EC,EC∩EF=E,所以AE⊥平面EFC,FC⊂平面EFC,所以AE⊥FC;(2)以D为原点,DA,DB,DE分别为x,y,z轴建立空间直角坐标系,则A(1,0,0),E(0,0,a),F(0,),,设平面AEF的法向量为,由,得,平面DEFB的法向量为,由cos<>=,得a=.19.设动圆P(圆心为P)经过定点(0,2),被x轴截得的弦长为4,P的轨迹为曲线E.(1)求曲线E的方程;(2)直线l:y=x+m(m∈R)与曲线E交于不同的两点A、B,线段AB的垂直平分线与y轴交于点M,若tan∠AMB=﹣2,求m的值.【分析】(1)设动圆P的圆心为(x,y),半径为r,根据题意列出方程组化简即可得到曲线E的方程;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立直线l与抛物线方程,利用韦达定理求出C的坐标为(2,4+m),利用弦长公式求出|AB|=4,所以|AC|=2,又y0=6+m,所以|MC|=,再利用二倍角的正切公式求出tan,所以tan∠AMC===,即可解出m的值.解:(1)设动圆P的圆心为(x,y),半径为r,被x轴截得的弦长为|AB|,依题意得:,化简整理得:x2=4y,∴曲线E的方程为:x2=4y;(2)设A(x1,y1),B(x2,y2),线段AB的中点坐标C(x3,y3),M(0,y0),联立方程,整理得:,∴△=16×2+4×4m=32+16m>0,∴m>﹣2,∴,x1x2=﹣4m,,∴,y3=4+m,∴线段AB的中点C的坐标为(2,4+m),又|AB|===4,∴|AC|=2,又AB的垂直平分线方程为:y﹣(4+m)=﹣,∴y0=6+m,∴|MC|=,∵CM垂直平分AB,∴∠AMB=2∠AMC,又tan∠AMB==﹣2,解得tan或﹣(舍去),∴在Rt△AMC中,tan∠AMC===,∴m=0,满足m>﹣2,∴m的值为0.20.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如表:M≥205质量指标值m m<185185≤m<205等级三等品二等品一等品从某企业生产的这种产品中抽取200件,检测后得到如右的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似服从正态分布N(216,139),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?【分析】(1)根据抽样调查数据,求得一等品所占比例的估计值为0.375,由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率,求得在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,然后利用古典概型概率计算公式求解;(3)求出“质量提升月”活动前,该企业这种产品的质量指标值的均值,再由“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),得质量指标的均值约为216,作差得答案.解:(1)根据抽样调查数据,一等品所占比例的估计值为0.260+0.090+0.025=0.375.由于该估计值小于0.5,故不能认为该企业生产的这种产品符合“一等品至少要占全部产品50%”的规定;(2)由直方图知,一、二、三等品的频率分别为:0.375,0.5,0.125.故在样本中用分层抽样的方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中抽取4件,一、二、三等品都有的情形由2种.①一等品2件,二等品1件,三等品1件.②一等品1件,二等品2件,三等品1件.P=;(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为:170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4.“质量提升月”活动后,产品质量指标值X近似满足X~N(216,139),即质量指标的均值约为216.所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了15.6.21.已知函数f(x)=x﹣2+ae x(e为自然对数的底数)(1)讨论f(x)的单调性;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>6.【分析】(1)对函数求导,然后结合导数与单调性的关系对a进行分类讨论确定导数符号,即可求解函数单调性;(2)由零点存在的条件,结合函数的性质,把所要证明的不等式转换为函数的单调性与大小关系的比较.解:(1)f′(x)=1+ae x,当a≥0时,f′(x)>0,则f(x)在R上单调递增,当a<0时,令f′(x)=0可得x=ln(﹣),故函数的单调递增区间为(﹣),单调递减区间(ln(﹣),+∞),(2)证明:由f(x)=0可得a=,设g(x)=,则,当x<3时,g′(x)<0,函数单调递减,当x>3时,g′(x)>0,函数单调递增,当x=3时,g(x)取得最小值g(3)=﹣,当x>时,g(x)<0,当x<2时,g(x)>0,不妨设x1<x2,则x1∈(2,3),x2∈(3,+∞),所以6﹣x1>3,且g(x)在(3,+∞)上单调递增,要证x1+x2>6,只要证x2>6﹣x1>3,故只要证g(x2)>g(6﹣x1),因为g(x1)=g(x2)=a,只要证g(x1))>g(6﹣x1),即,即证(x1﹣4)+x﹣2<0,令h(x)=e2x﹣6(x﹣4)+x﹣2,2<x<3,则h′(x)=e2x﹣6(2x﹣7)+1,令m(x)=h′(x),则m′(x)=4e2x﹣6(x﹣3)<0,所以m(x)在(2,3)上单调及,h′(x)>h′(3)=0,故h(x)在(2,3)上单调递增,h(x)<h(3)=0,即e2x﹣6(x﹣4)+x﹣2<0,从而:x1+x2>6.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l的参数方程为;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为(1)若a=1,求C与l交点的直角坐标;(2)若C上的点到l的距离的最大值为,求a.【分析】(1)求出曲线C的普通方程和当a=1时,直线l的普通方程,列方程组能求出C与l的交点的直角坐标.(2)直线l的普通方程是x+y﹣1﹣a=0,C上的点(2cos θ,sin θ)到l的距离为,由此利用C上的点到l的距离的最大值为,能求出a.解:(1)∵曲线C的极坐标方程为,∴曲线C的普通方程为,∵直线l的参数方程为,∴当a=1时,直线l的普通方程为x+y﹣2=0.由解得或从而C与l的交点的直角坐标是.(2)直线l的普通方程是x+y﹣1﹣a=0,故C上的点(2cos θ,sin θ)到l的距离为,当a≥﹣1时,d的最大值为.由题设得,所以当a<﹣1时,d的最大值为.由题设得,所以.综上,.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣|x﹣a|.(1)当a=﹣2时,求不等式0<f(x)≤3的解集;(2)若a≤0,∃x∈(0,+∞)使f(x)≤a2﹣3成立,求a的取值范围.【分析】(1)当a=﹣2时,利用绝对值不等式得f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)|=3,即f(x)≤3的解集为R;再由f(x)>0,得|x﹣1|>|x+2|,解之,即可得到不等式0<f(x)≤3的解集;(2)当a≤0,x∈(0,+∞)时,可求得f(x)=|x﹣1|﹣x+a的最小值为f(1)=a﹣1,解不等式a2﹣3≥a﹣1即可得到答案.解:(1)当a=﹣2时,因为f(x)=|x﹣1|﹣|x+2|≤|(x﹣1)﹣(x+2)=3,|所以f(x)≤3的解集为R;由f(x)>0,得|x﹣1|>|x+2|,解得x<﹣,故不等式0<f(x)≤3的解集为(﹣∞,﹣);(2)当a≤0,x∈(0,+∞)时,f(x)=|x﹣1|﹣x+a=,则f(x)min=f(1)=a﹣1,故a2﹣3≥a﹣1,解得:a≥2或a≤﹣1,又a≤0,所以a≤﹣1.所以a的取值范围是(﹣∞,﹣1].。
2020年四川省德阳市高考(文科)数学三诊试卷 (解析版)
2020年四川省德阳市高考数学三诊试卷(文科)一、选择题(共12小题).1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0}B.{0,1}C.{﹣1,1}D.{﹣1,0,1} 2.如图,若向量对应的复数为z,则复数z+为()A.3+i B.﹣3﹣i C.3﹣i D.1+3i3.在正方形ABCD中,弧AD是以AD为直径的半圆,若在正方形ABCD中任取一点,则该点取自阴影部分内的概率为()A.B.C.D.4.已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.30B.25C.15D.105.设向量=(﹣2,1),+=(m,﹣3),=(3,1),若(+)⊥,设、的夹角为θ,则cosθ=()A.﹣B.C.D.﹣6.若函数f(x)=e x(sin x+a)在区间R上单调递增,则实数a的取值范围为()A.[,+∞)B.(1,+∞)C.[﹣1,+∞)D.(,+∞)7.若函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π),已知函数y=|f(x)|的图象如图,则()A.f(x)=2sin(4x+)B.f(x)=2sin(4x﹣)C.f(x)=2sin(x﹣)D.f(x)=2sin(x+)8.如图,△ABC是等腰直角三角形,AB=AC,在△BCD中∠BCD=90°且BC=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若AM=,那么()A.平面ABD⊥平面BCD B.平面ABC⊥平面ABDC.AB⊥CD D.AC⊥BD9.执行如图所示的程序框图,如果输入的N是10,那么输出的S是()A.2B.﹣1C.﹣1D.2﹣110.已知双曲线﹣=1与圆x2+y2﹣5x+4=0交于点P,圆在点P处的切线恰好过双曲线的左焦点(﹣2,0),则双曲线的离心率为()A.+B.C.D.11.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽.比如圆就是等宽曲线.其宽就是圆的直径.如图是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等.A.1个B.2个C.3个D.4个12.已知函数f(x)=ax2﹣2x+lnx有两个极值点x1,x2,若不等式f(x1)+f(x2)<x1+x2+t 恒成立,那么t的取值范围是()A.[﹣1,+∞)B.[﹣2﹣2ln2,+∞)C.[﹣3﹣ln2,+∞)D.[﹣5,+∞)二、填空题(共4小题).13.已知f(x)=,则f[f(3)]=.14.设数列{a n}的前n项和为S n,且a n=2n﹣1,则数列{}的前n项和为.15.某车间每天能生产x吨甲产品,y吨乙产品,由于条件限制,每天两种产品的总产量不小于1吨不大于3吨且两种产品的产量差不超过1吨.若生产甲产品1吨获利2万元,乙产品1吨获利1万元,那么该车间每天的最高利润为万元.16.已知点M(,﹣1),直线l过抛物线C:x2=4y的焦点交抛物线C于A、B两点,且AM恰与抛物线C相切,那么直线l的斜率为.三、解答题:解答应写出文字说明、证明过程或演算步骤17.我市某校800名高三学生在刚刚结束的一次数学模拟考试中,成绩全部在100分到150分之间,抽取其中一个容量为50的样本,将成绩按如下方式分成五组:第一组[100,110),第二组[110,120),…,第五组[140,150],得到频率分布直方图.(1)若成绩在130分及以上视为优秀,根据样本数据估计该校在这次考试中成绩优秀的人数;(2)若样本第一组只有一个女生,其他都是男生,第五组只有一个男生,其他都是女生.现从第一、五组中各抽1个同学组成一个实验组,求所抽取的2名同学中恰为一个女生一个男生的概率.18.在三角形△ABC中,内角A、B、C对应的边分别为a、b、c,已知b cos C+c cos B=2,b sin C=a.(1)求△ABC的面积;(2)若b:c=:1,求A.19.如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若AB=BD=BB1=2,求几何体P﹣AB1C1的体积.20.巳知函数f(x)=ax﹣2lnx﹣2,g(x)=axe x﹣4x.(1)求函数f(x)的极值;(2)当a=2时,证明:g(x)+f(x)≥0.21.已知动点Q到点F(1,0)的距离和到直线l:x=4的距离之比为.(1)求动点Q的轨迹方程C;(2)已知点P(1,),过点F的直线和曲线C交于A、B两点,直线PA、PB、AB 分别交直线x=4于M、N、H.(i)证明:H恰为线段MN的中点;(ii)是否存在定点G,使得以MN为直径的圆过点G?若存在,求出定点G的坐标,否则说明理由.请考生在22.23二题中任选-题作答注意:只能做所选定的题目如果多做,则按所做第一个题目计分作答时.请用2B铅笔在答题卡上将所选题号后的方框涂黑[选修4-4:坐标系与参数方程](本题满分10分)22.在平面直角坐标系xOy中,已知直线l:x=4,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ.(1)求直线l的极坐标方程和圆C的直角坐标方程;(2)射线OP:θ=α(α∈(0,))交圆C于O、A,交直线l于B,若A,B两点在x轴上投影分别为M、N,求MN长度的最小值,并求此时A、B两点的极坐标.[选修4-5:不等式选讲](本题满分0分)23.已知函数f(x)=+﹣m≥0恒成立.(1)求m的取值范围;(2)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.参考答案一、选择题(共12小题).1.设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0}B.{0,1}C.{﹣1,1}D.{﹣1,0,1}【分析】求出集合N,然后直接求解M∩N即可.解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣4,0,1},所以M∩N={0,1}.故选:B.2.如图,若向量对应的复数为z,则复数z+为()A.3+i B.﹣3﹣i C.3﹣i D.1+3i【分析】由已知求得z,代入z+,再由复数代数形式的乘除运算化简得答案.解:由题意,得z=1﹣i,则z+=1﹣i+=1﹣i+=3+i.故选:A.3.在正方形ABCD中,弧AD是以AD为直径的半圆,若在正方形ABCD中任取一点,则该点取自阴影部分内的概率为()A.B.C.D.【分析】根据对称性得到阴影部分的面积等于△AOB的面积;再结合面积比即可求解结论.解:由对称性可得,阴影部分的面积等于△AOB的面积;而△AOB的面积占整个正方形面积的;故选:D.4.已知等比数列{a n}中,a5=3,a4a7=45,则的值为()A.30B.25C.15D.10【分析】根据题意,设数列{a n}的公比为q,由等比中项的性质可得a4a7=a4a6q=(a5)2q=45,解可得q的值,结合等比数列的通项公式有==q(1+q),计算即可得答案.解:根据题意,等比数列{a n}中,设其公比为q,若a5=3,a4a7=45,则a4a7=a8a6q=(a5)2q=45,则q=5,故选:A.5.设向量=(﹣2,1),+=(m,﹣3),=(3,1),若(+)⊥,设、的夹角为θ,则cosθ=()A.﹣B.C.D.﹣【分析】由已知利用平面向量垂直的坐标表示可求m的值,根据平面向量数量积的坐标表示、模、夹角即可求解.解:∵+=(m,﹣3),=(3,1),(+)⊥,∴3m﹣3=0,可得m=5,可得+=(1,﹣3),∴=(3,﹣4),∴设、的夹角为θ,则cosθ===﹣.故选:D.6.若函数f(x)=e x(sin x+a)在区间R上单调递增,则实数a的取值范围为()A.[,+∞)B.(1,+∞)C.[﹣1,+∞)D.(,+∞)【分析】求函数的导数,要使函数单调递增,则f′(x)≥0恒成立,然后求出实数a 的取值范围.解:因为f(x)=e x(sin x+a),所以f′(x)=e x(sin x+a+cos x).要使函数单调递增,则f′(x)≥0恒成立.所以a≥﹣sin x﹣cos x,所以﹣≤﹣sin x﹣cos x≤,故选:A.7.若函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π),已知函数y=|f(x)|的图象如图,则()A.f(x)=2sin(4x+)B.f(x)=2sin(4x﹣)C.f(x)=2sin(x﹣)D.f(x)=2sin(x+)【分析】直接利用函数y=|f(x)|的周期为函数y=f(x)的周期的一半,根据函数的图象和沿x轴的翻折,进一步利用函数f()=±2来求出φ的值,最后求出函数的关系式.解:由于函数y=|f(x)|的周期为函数y=f(x)的周期的一半,根据函数的图象函数y=f(x)的周期T,满足,所以ω=4.整理得φ=kπ+(k∈Z),解得φ=kπ﹣(k∈Z),故选:A.8.如图,△ABC是等腰直角三角形,AB=AC,在△BCD中∠BCD=90°且BC=3.将△ABC沿BC边翻折,设点A在平面BCD上的射影为点M,若AM=,那么()A.平面ABD⊥平面BCD B.平面ABC⊥平面ABDC.AB⊥CD D.AC⊥BD【分析】由直角三角形的斜边的中线长为斜边的一半,以及平面的垂线和斜线的性质,判定M为BC的中点,由线面垂直的性质和判定,可得结论.解:△ABC是等腰直角三角形,AB=AC,BC=3,点A在平面BCD上的射影为点M,若AM=,AM⊥平面BCD,则AM⊥CD,可得CD⊥平面ABC,可得CD⊥AB,故选:C.9.执行如图所示的程序框图,如果输入的N是10,那么输出的S是()A.2B.﹣1C.﹣1D.2﹣1【分析】模拟执行程序框图可知程序框图的功能是求,S=+++…++的值,用裂项法即可得解.解:模拟执行程序框图,可得N=10,S=0,k=1满足条件k<10,k=2,S=+,…不满足条件k<10,退出循环,输出S的值为﹣1.故选:C.10.已知双曲线﹣=1与圆x2+y2﹣5x+4=0交于点P,圆在点P处的切线恰好过双曲线的左焦点(﹣2,0),则双曲线的离心率为()A.+B.C.D.【分析】设出切线的斜率,求出切线方程,然后求解切点坐标,代入双曲线方程,然后求解双曲线的离心率即可.解:设圆在点P处的切线的斜率为k,则切线方程为:y=k(x+2),可得kx﹣y+2k=0,圆x2+y2﹣5x+3=0的圆心(,0),半径为:,不妨取切线方程y=(x+2)代入圆的方程可得:(1+)x2﹣5x+x+4+=0,解得x=2,解得a=b=,故选:C.11.将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽.比如圆就是等宽曲线.其宽就是圆的直径.如图是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等.A.1个B.2个C.3个D.4个【分析】若曲线Γ和圆的宽相等,设曲线Γ的宽度为1,则圆的半径为,根据定义逐一判断即可得出结论.解:若曲线Γ和圆的宽相等,设曲线Γ的宽度为1,则圆的半径为,(1)根据定义,可以得到曲线Γ是等宽曲线,错误;(3)根据(2)得(3)错误;综上,正确的有2个.故选:B.12.已知函数f(x)=ax2﹣2x+lnx有两个极值点x1,x2,若不等式f(x1)+f(x2)<x1+x2+t 恒成立,那么t的取值范围是()A.[﹣1,+∞)B.[﹣2﹣2ln2,+∞)C.[﹣3﹣ln2,+∞)D.[﹣5,+∞)【分析】由题意可得f′(x)=(x>0),由函数f(x)=ax2﹣2x+lnx 有两个极值点x1,x2,可得方程2ax2﹣2x+1=0在(0,+∞)上有两个不相等的正实数根,由根与系数的关系可求得a的取值范围,由f(x1)+f(x2)﹣(x1+x2)═﹣﹣1﹣ln2a,令h(a)=﹣﹣1﹣ln2a,利用导数研究其最大值即可.解:函数f(x)的定义域为(0,+∞),f′(x)=(x>0),所以方程2ax2﹣2x+5=0在(0,+∞)上有两个不相等的正实数根,因为f(x1)+f(x2)﹣(x1+x5)=a﹣2x6+lnx1+a﹣2x2+lnx2﹣x1﹣x7=a[(x1+x2)2﹣2x1x2]﹣2(x1+x2)+ln(x1x2)=﹣﹣7﹣ln2a,h′(a)=,易知h′(a)>0在(0,)上恒成立,故h(a)<h()=﹣5,所以t的取值范围是[﹣3,+∞).故选:D.二、填空题:共4小题,每小题5分,共20分将等案填在答题卡上13.已知f(x)=,则f[f(3)]=.【分析】直接利用分段函数的解析式,由里及外逐步求解即可.解:∵f(x)=,∴f(3)=﹣lg100=﹣2;故答案为:.14.设数列{a n}的前n项和为S n,且a n=2n﹣1,则数列{}的前n项和为..【分析】通过数列{a n}的通项公式为a n=2n﹣1判断数列是等差数列,求出数列的和,化简的表达式,然后求和即可.解:∵数列{a n}的通项公式为a n=2n﹣1,所以数列是等差数列,首项为1,公差为2,S n=n+=n2,可得数列{}的前n项和为1+3+3+…+n=.故答案为:.15.某车间每天能生产x吨甲产品,y吨乙产品,由于条件限制,每天两种产品的总产量不小于1吨不大于3吨且两种产品的产量差不超过1吨.若生产甲产品1吨获利2万元,乙产品1吨获利1万元,那么该车间每天的最高利润为5万元.【分析】由题意列出不等式组,画出可行域,设该车间每天的利润为z,则目标函数z=2x+y,根据简单的二元线性规划的解决方法,即可求出每天利润的最大值.解:由题意可知,设该车间每天的利润为z,则z=2x+y,由图可知,当目标函数过点A时,取得最大值,所以z的最大值为8×2+1=5,故答案为:5.16.已知点M(,﹣1),直线l过抛物线C:x2=4y的焦点交抛物线C于A、B两点,且AM恰与抛物线C相切,那么直线l的斜率为.【分析】设直线AB的方程,代入抛物线方程,利用韦达定理及导数的几何意义,即可求得x1,x2,求得直线l的斜率.解:方法一:抛物线C的焦点为(0,1),设A(x1,y1),B(x5,y2),直线AB的方程为y=kx+1,联立方程组,消去y,整理得:x2﹣4kx﹣4=0,由,求导,直线AM的斜率==,整理得x18﹣3x1﹣6=0,所以或,即k=,所以直线AB的斜率为k==.故答案为:.三、解答题:解答应写出文字说明、证明过程或演算步骤17.我市某校800名高三学生在刚刚结束的一次数学模拟考试中,成绩全部在100分到150分之间,抽取其中一个容量为50的样本,将成绩按如下方式分成五组:第一组[100,110),第二组[110,120),…,第五组[140,150],得到频率分布直方图.(1)若成绩在130分及以上视为优秀,根据样本数据估计该校在这次考试中成绩优秀的人数;(2)若样本第一组只有一个女生,其他都是男生,第五组只有一个男生,其他都是女生.现从第一、五组中各抽1个同学组成一个实验组,求所抽取的2名同学中恰为一个女生一个男生的概率.【分析】(1)由频率分布直方图可知,成绩在130分及以上的同学在第四、五组内,由频率/组距×组距×总体数量即可得解;(2)由频率/组距×组距×样本容量,可分别算出第一小组由3人(记为A1,A2,B1)和第五小组有4人(记为A3,B2,B3,B4),然后用列举法写出从第一、五组中各抽1个同学组成一个实验组的情况以及恰有1男1女的情况,最后由古典概型计算概率的方式即可得解.解:(1)由频率分布直方图可知,成绩在130分及以上的同学在第四、五组内,其频率为(0.032+0.008)×10=0.2,(2)第一小组共有0.006×10×50=3人,其中2男1女,分别记为A1,A6,B1;现从第一、五组中各抽1个同学组成一个实验组的情况有:A2B3,A2B5,A3B1,B1B2,B1B3,B1B4,共12种,A2B2,A2B4,A2B4,A3B1,共7种.故抽取的2名同学中恰为一个女生一个男生的概率为.18.在三角形△ABC中,内角A、B、C对应的边分别为a、b、c,已知b cos C+c cos B=2,b sin C=a.(1)求△ABC的面积;(2)若b:c=:1,求A.【分析】(1)由余弦定理化简已知等式解得a=2,由已知可求b sin C=,进而根据三角形的面积公式即可计算得解.(2)由(1)及条件和余弦定理可得:,化简可得sin(A+)=1,结合A的范围,利用正弦函数的性质即可求解A的值.解:(1)∵b cos C+c cos B=2,∴由余弦定理可得:b•+c•=5,∵b sin C=a=,(5)由(1)及条件和余弦定理可得:,因为:A∈(0,π),可得:A+=,可得A=.19.如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若AB=BD=BB1=2,求几何体P﹣AB1C1的体积.【分析】(1)四边形PBO1D中,由已知证明PO1与BD的交点O为PO1的中点,也是BD的中点,可得四边形PBO1D是平行四边形,故PB∥DO1,再由直线与平面平行的判定可得PB∥平面ADO1;(2)连接PC1和AC交于点E,求出三角形PAE的面积,可得三角形PAC1的面积,再由等体积法求几何体P﹣AB1C1的体积.【解答】(1)证明:由已知可得,PO1⊥平面A1B1C1D1,且四棱柱ABCD﹣A2B1C1D1的侧棱与底面垂直,故PO1∥BB1∥DD6,即P、B、O1、D四点共面.可知,在四边形PBO1D中,PO1与BD的交点O为PO1的中点,也是BD的中点.又PB⊄平面ADO1,O1D⊂ADO1,(3)解:∵=,连接PC1和AC交于点E,由△POE≌△C1CE,得OE=,∴=.∴几何体P﹣AB1C6的体积为.20.巳知函数f(x)=ax﹣2lnx﹣2,g(x)=axe x﹣4x.(1)求函数f(x)的极值;(2)当a=2时,证明:g(x)+f(x)≥0.【分析】(1)求导得f'(x)=,定义域为(0,+∞),再分a≤0和a>0两类讨论f'(x)与0的大小关系,即可得f(x)的单调性,从而求极值;(2)可将g(x)+f(x)化简为2xe x﹣2ln(xe x)﹣2,要证g(x)+f(x)≥0,需证f (xe x)≥0;利用(1)中的结论可知f(x)≥0恒成立,故而得证.【解答】(1)解:∵f(x)=ax﹣2lnx﹣2,∴f'(x)=a﹣=,定义域为(5,+∞),当a≤0时,f'(x)<0,f(x)在(0,+∞)上单调递减,无极值;∴极小值为f()=2(lna﹣ln2),无极大值.当a≤0时,函数f(x)无极值;(8)证明:当a=2时,g(x)+f(x)=2x﹣2lnx﹣2+2xe x﹣7x=2xe x﹣2x﹣2lnx﹣2=2xe x﹣7ln(xe x)﹣2,由(1)知,当a=2时,极小值为f()=f(1)=2(ln6﹣ln2)=0,这也是f(x)的最小值,故当a=2时,有g(x)+f(x)≥0.21.已知动点Q到点F(1,0)的距离和到直线l:x=4的距离之比为.(1)求动点Q的轨迹方程C;(2)已知点P(1,),过点F的直线和曲线C交于A、B两点,直线PA、PB、AB 分别交直线x=4于M、N、H.(i)证明:H恰为线段MN的中点;(ii)是否存在定点G,使得以MN为直径的圆过点G?若存在,求出定点G的坐标,否则说明理由.【分析】(1)设Q(x,y),由题意列式,化简得答案;(2)(i)证明AB的斜率为0时,H恰为线段MN的中点.当AB的斜率不为0时,设直线AB:x=ty+1(t≠0),联立直线方程与椭圆方程,化为关于y的一元二次方程,利用根与系数的关系求得MN中点的纵坐标,即可验证H恰为线段MN的中点;(ii)当AB的斜率不为0时,求出以MN为直径的圆的方程,取y=0可得圆过定点(1,0)或(7,0),验证AB的斜率为0时也成立,即可得到存在定点G(1,0)或(7,0),使得以MN为直径的圆过G.【解答】(1)解:设Q(x,y),由题意得:,化简可得动点Q的轨迹方程为:;直线PB:y=﹣,得N(2,﹣3).当直线AB的斜率不为0时,设直线AB:x=ty+1(t≠0),A(x1,y1),B(x2,y2),H(4,).∴,.同理可得N(4,).∴线段MN的中点坐标为(4,),即为H点.(ii)解:当直线AB的斜率不等于0时,|MN|=||=||.若存在定点G,使得以MN为直径的圆过点G,由对称性可知,G一定在x轴上.则=解得x=1或x=7.当直线AB的斜率等于0时,M(4,3),N(6,﹣3),H(4,0),综上,存在定点G(1,0)或(7,4),使得以MN为直径的圆过G.请考生在22.23二题中任选-题作答注意:只能做所选定的题目如果多做,则按所做第一个题目计分作答时.请用2B铅笔在答题卡上将所选题号后的方框涂黑[选修4-4:坐标系与参数方程](本题满分10分)22.在平面直角坐标系xOy中,已知直线l:x=4,以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ.(1)求直线l的极坐标方程和圆C的直角坐标方程;(2)射线OP:θ=α(α∈(0,))交圆C于O、A,交直线l于B,若A,B两点在x轴上投影分别为M、N,求MN长度的最小值,并求此时A、B两点的极坐标.【分析】(1)直接利用转换关系,把直线的普通方程转换为极坐标方程,进一步把圆的极坐标方程转换为直角坐标方程.(2)利用极径的应用和三角函数关系式的变换和正弦型函数的性质的应用求出结果,最后求出点A和B的极坐标.解:(1)已知直线l:x=4,转换为极坐标方程为ρcosθ=4.圆C的极坐标方程为ρ=4sinθ.整理得ρ2=4ρsinθ,根据转换为直角坐标方程为x2+y2﹣3y=0.得到A(4sinα,α),B(),若A,B两点在x轴上投影分别为M、N,当时,|MN|min=2,即最小值为4.所以点A(2),B(4).[选修4-5:不等式选讲](本题满分0分)23.已知函数f(x)=+﹣m≥0恒成立.(1)求m的取值范围;(2)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【分析】(1)由参数分离和绝对值不等式的性质,即可得到所求范围;(2)可令3a+b=s,a+2b=t,用s,t表示a,b,结合乘1法和基本不等式,计算可得所求最小值.解:(1)f(x)=+﹣m=|x+1|+|x﹣3|﹣m≥0⇔m≤|x+1|+|x﹣2|恒成立,因为|x+1|+|x﹣3|≥|x+1﹣x+3|=5,当且仅当﹣1≤≤3时取得等号.(2)由(1)可得n =7,即+=4,(a>7,b>0),即有+=4,所以7a+4b =+=2s+t当且仅当s=t,即b=2a=时取得等号.所以7a+4b的最小值为.。
2024年山东潍坊市高三三模数学高考试卷试题(含答案详解)
潍坊市高考模拟考试(潍坊三模)数学2024.5一、选择题:本题共8小题,每小题5分,共40分.每小题只有一个选项符合题目要求.1.设复数πsin 2i 4z θ⎛⎫=++ ⎪⎝⎭是纯虚数,则θ的值可以为()A .π4B .5π4C .2023π4D .2025π42.已知集合{}{}3,2,1,0,1,2,3,|3,Z A B x x n n =---==∈,则A B ⋂的子集个数是()A .3个B .4个C .8个D .16个3.如图,半径为1的圆M 与x 轴相切于原点O ,切点处有一个标志,该圆沿x 轴向右滚动,当圆M 滚动到与出发位置时的圆相外切时(记此时圆心为N ),标志位于点A 处,圆N 与x 轴相切于点B ,则阴影部分的面积是()A .2B .1C .π3D .π44.某同学在劳动课上做了一个木制陀螺,该陀螺是由两个底面重合的圆锥组成.已知该陀螺上、下两圆锥的体积之比为1:2,上圆锥的高与底面半径相等,则上、下两圆锥的母线长之比为()A B .12C .2D 5.牛顿迭代法是求方程近似解的一种方法.如图,方程()0f x =的根就是函数()f x 的零点r ,取初始值()0,x f x 的图象在点()()00,x f x 处的切线与x 轴的交点的横坐标为()1,x f x 的图象在点()()11,x f x 处的切线与x 轴的交点的横坐标为2x ,一直继续下去,得到12,,,n x x x ,它们越来越接近r .设函数()2f x x bx =+,02x =,用牛顿迭代法得到11619x =,则实数b =()A .1B .12C .23D .346.已知1F ,2F 分别为椭圆C :22162x y+=的左、右焦点,点()00,P x y 在C 上,若12F PF ∠大于π3,则0x 的取值范围是()A .(),-∞+∞B .(C .(),-∞+∞D .(7.已知函数()f x 的导函数为()f x ',且()1e f =,当0x >时,()1e xf x x<'+,则不等式()ln 1e xf x x ->的解集为()A .()0,1B .()0,∞+C .()1,∞+D .()()0,11,∞⋃+8.已知()()()()()()828901289321111x x a a x a x a x a x ++=+++++++++ ,则8a =()A .8B .10C .82D .92二、多项选择题:本大题共3个小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.9.在棱长为1的正方体1111ABCD A B C D -中,M N ,分别为棱111,C D C C 的中点,则()A .直线BN 与1MB 是异面直线B .直线MN 与AC 所成的角是3πC .直线MN ⊥平面ADND .平面BMN 截正方体所得的截面面积为98.10.下列说法正确的是()A .从装有2个红球和2个黑球的口袋内任取2个球,事件“至少有一个黑球”与事件“至少有一个红球”是互斥事件B .掷一枚质地均匀的骰子两次,“第一次向上的点数是1”与“两次向上的点数之和是7”是相互独立事件C .若123452,,,,,x x x x x 的平均数是7,方差是6,则12345,,,,x x x x x 的方差是65D .某人在10次射击中,设击中目标的次数为X ,且()10,0.8B X ,则8X =的概率最大11.已知12F F ,双曲线()222:104x y C b b-=>的左、右焦点,点P 在C 上,设12PF F △的内切圆圆心为I ,半径为r ,直线PI 交12F F 于Q ,若53PQ PI = ,1215PI PF t PF =+,R t ∈则()A .25t =B .圆心I 的横坐标为1C .5r =D .C 的离心率为2三、填空题:本大题共3个小题,每小题5分,共15分.12.已知向量()()()1,2,4,2,1,a b c λ==-=,若()20c a b ⋅+= ,则实数λ=13.已知关于x 的方程()()2cos 0x k ωϕω+=≠的所有正实根从小到大排列构成等差数列,请写出实数k 的一个取值为14.已知,,a b c 均为正实数,函数()()22ln f x x a b x x =+++.(1)若()f x 的图象过点()1,2,则12a b+的最小值为;(2)若()f x 的图象过点(),ln c ab c +,且()3a b t c +≥恒成立,则实数t 的最小值为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、说明过程或演算步骤.15.如图,在直三棱柱111ABC A B C -中,1,2AB AC AB AC AA ⊥==,E 是棱BC的中点.(1)求证:1//A C 平面1AB E ;(2)求二面角11A B E A --的大小.16.已知正项等差数列{}n a 的公差为2,前n 项和为n S ,且12311S S S ++,,成等比数列.(1)求数列{}n a 的通项公式n a ;(2)若()1,1sin ,2nn n n S b n S n π⎧⎪⎪=⎨-⎪⋅⎪⎩为奇数,为偶数,求数列{}n b 的前4n 项和.17.在平面直角坐标系中,O 为坐标原点,E 为直线:1l y =-上一点,动点F 满足FE l ⊥,OF OE ⊥ .(1)求动点F 的轨迹C 的方程;(2)若过点1,02T ⎛⎫⎪⎝⎭作直线与C 交于不同的两点,M N ,点()1,1P ,过点M 作y 轴的垂线分别与直线,OP ON 交于点,A B .证明:A 为线段BM 的中点.18.某高校为了提升学校餐厅的服务水平,组织4000名师生对学校餐厅满意度进行评分调查,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,绘制如图所示的频率分布直方图,并将分数从低到高分为四个等级:满意度评分[0,60)[60,80)[80,90)[]90100,满意度等级不满意基本满意满意非常满意(1)求图中a 的值,并估计满意度评分的25%分位数;(2)若样本中男性师生比为1:4,且男教师评分为80分以上的概率为0.8,男学生评分为80分以上的概率0.55,现从男性师生中随机抽取一人,其评分为80分以上的概率为多少?(3)设在样本中,学生、教师的人数分别为()1200m n n m ≤≤≤,,记所有学生的评分为12,,m x x x ,,其平均数为x ,方差为2x s ,所有教师的评分为12,,n y y y ,,其平均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x y s s s ==,试求m 的最小值.19.一个完美均匀且灵活的项链的两端被悬挂,并只受重力的影响,这个项链形成的曲线形状被称为悬链线.1691年,莱布尼茨、惠根斯和约翰・伯努利等得到“悬链线”方程e e 2x xccc y -⎛⎫+ ⎪⎝⎭=,其中c 为参数.当1c =时,就是双曲余弦函数()e e ch 2x x x -+=,类似地双曲正弦函数()e e sh 2x xx --=,它们与正、余弦函数有许多类似的性质.(1)类比三角函数的三个性质:①倍角公式sin22sin cos x x x =;②平方关系22sin cos 1x x +=;③求导公式()()''sin cos cos sin x x x x ⎧=⎪⎨=-⎪⎩,写出双曲正弦和双曲余弦函数的一个正确的性质并证明;(2)当0x >时,双曲正弦函数()sh y x =图象总在直线y kx =的上方,求实数k 的取值范围;(3)若1200x x >>,,证明:()()()()()2221112121ch sh 1ch sh sin sin cos .x x x x x x x x x x ⎡⎤⎡⎤+--⋅+>+--⎣⎦⎣⎦1.C【分析】根据题意得到πsin 04θ⎛⎫+= ⎪⎝⎭,将四个选项代入检验,得到答案.【详解】由题意得πsin 04θ⎛⎫+= ⎪⎝⎭,A 选项,当π4θ=时,ππsin 144⎛⎫+= ⎪⎝⎭,不合题意,A 错误;B 选项,当5π4θ=时,5ππsin 144⎛⎫+=- ⎪⎝⎭,不合要求,B 错误;C 选项,当2023π4θ=时,2023ππsin sin 506π044⎛⎫+==⎪⎝⎭,故C 正确;D 选项,当2025π4θ=时,2025ππsin 144⎛⎫+=⎝⎭,D 错误.故选:C 2.C【分析】由交集的定义求得A B ⋂,根据子集个数的计算方法即可求解.【详解】由题意得,{3,0,3}A B ⋂=-,则A B ⋂的子集有328=个,故选:C .3.B【分析】根据给定条件,求出劣弧AB 的长,再利用扇形面积公式计算即得.【详解】由圆M 与圆N 外切,得2MN =,又圆M ,圆N 与x 轴分别相切于原点O 和点B ,则2OB MN ==,所以劣弧AB 长等于2OB =,所以劣弧AB 对应的扇形面积为12112⨯⨯=.故选:B 4.A【分析】由圆锥的体积公式及圆锥高、半径与母线的关系计算即可.【详解】设上、下两圆锥的底面半径为r ,高分别为12,h h ,体积分别为12,V V ,因为上圆锥的高与底面半径相等,所以1h r =,则2111222221π1312π3r h V h r V h h r h ====得,22h r =,=,5=,故选:A .5.D【分析】求得()f x 在()()22f ,的切线方程,代入16,019⎛⎫⎪⎝⎭求解即可.【详解】()2f x x b '=+,(2)4f b '=+,()242f b =+,则()f x 在()()22f ,处的切线方程为()()()4242y b b x -+=+-,由题意得,切线过16,019⎛⎫⎪⎝⎭代入得,()()16424219b b ⎛⎫-+=+- ⎪⎝⎭,解得34b =,故选:D .6.D【分析】由已知可知1PF ,2PF的坐标和模,由向量数量积的定义及坐标运算可得关于0x 的不等关系,即可求解.【详解】因为椭圆C :22162x y +=,所以26a =,22b =,所以2224c a b =-=,所以()12,0F -,()22,0F ,因为点()00,P x y 在C 上,所以2200162x y +=,所以2200123y x =-,0x <<,又()1002,PF x y =--- ,()2002,PF x y =-- ,所以222120002423PF PF x y x ⋅=+-=- ,又)10033PF x ==+=+ ,)2003PF x x ==-=- ,所以121212cos PF PF PF PF F PF ⋅=⋅∠ ,因为12F PF ∠大于π3,所以121212πcos cos 3PF PF F PF PF PF ⋅∠<⋅ ,所以()()2000221233332x x x -<+⋅-⋅,解得0x <<所以0x 的取值范围是(.故选:D .7.A【分析】由不等式化简构造新函数,利用导数求得新函数的单调性,即可求解原不等式.【详解】不等式()ln 1exf x x->等价于()e ln x f x x >+,即()e ln 0x f x x -+>,构造函数()()e ln ,0x g x f x x x =-+>,所以1()()e xg x f x x''=--,因为0x >时,()1e xf x x<'+,所以()0g x '<对(0,)∀∈+∞x 恒成立,所以()g x 在(0,)+∞单调递减,又因为(1)(1)e ln10g f =--=,所以不等式()e ln 0x f x x -+>等价于()(1)g x g >,所以01x <<,即()ln 1exf x x->的解集为()0,1.故选:A.8.B【分析】由()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,利用二项式定理求解指定项的系数.【详解】()()()()88321211x x x x ⎡⎤⎡⎤++=++++⎣⎦⎣⎦,其中()811x ⎡⎤++⎣⎦展开式的通项为()()88188C 11C 1rrr r rr T x x --+=+⋅=+,N r ∈且8r ≤,当0r =时,()()8818C 11T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的2,可得()821x +;当1r =时,()()77128C 181T x x =+=+,此时只需乘以第一个因式()12x ⎡⎤++⎣⎦中的()1x +,可得()881x +.所以82810a =+=.故选:B【点睛】关键点点睛:本题的关键点是把()()832x x ++表示成()()81211x x ⎡⎤⎡⎤++++⎣⎦⎣⎦,利用即可二项式定理求解.9.ABD【分析】根据异面直线成角,线面垂直的判定定理,梯形面积公式逐项判断即可.【详解】对于A ,由于BN ⊂平面11BB C C ,1MB 平面1111BB C C B ,B BN =∉,故直线BN 与1MB 是异面直线,故A 正确;对于B ,如图,连接1CD ,因为M N ,分别为棱111C D C C ,的中点,所以1∥MN CD ,所以直线MN 与AC 所成的角即为直线1CD 与AC 所成的角,又因为1ACD △是等边三角形,所以直线1CD 与AC 所成的角为π3,故直线MN 与AC 所成的角是π3,故B 正确;对于C ,如图,假设直线MN ⊥平面ADN ,又因为DN ⊂平面ADN ,所以MN DN ⊥,而222MN DN DM ===,这三边不能构成直角三角形,所以DN 与MN 不垂直,故假设错误,故C 错误;对于D ,如图,连接11,A B A M ,因为111,A B CD CD MN ∥∥,所以1//A B MN ,所以平面BMN 截正方体所得的截面为梯形1A BNM ,且11,2MN A B A M BN ====4,所以截面面积为19(2248⨯+⨯=,故D 正确.故选:ABD.10.BCD【分析】由互斥事件的定义即可判断A ;由独立事件的乘法公式验证即可判断B ;由平均值及方差的公式即可判断C ;由二项分布的概率公式即可判断D .【详解】对于A ,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,所以不是互斥事件,故A 错误;对于B ,设A =“第一次向上的点数是1”,B =“两次向上的点数之和是7”,则()16P A =,()61366P B ==,()136P AB =,因为()()()P AB P A P B =⋅,所以事件A 与B 互相独立,故B 正确;对于C ,由123452,,,,,x x x x x 的平均数是7,得12345,,,,x x x x x 的平均数为8,由123452,,,,,x x x x x 方差是6,则()()222222123451234514752536xx x x x x x x x x ++++-+++++⨯+=,所以()()222222123451234516856x x x x x x x x x x ++++-+++++⨯=,所以12345,,,,x x x x x 的方差()()22222212345123451685655xx x x x x x x x x ++++-+++++⨯=,故C 正确;对于D ,由()10,0.8B X 得,当()110,Z x r r r =≤≤∈时,()101041C 55rrr P x r -⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭,当2r ≥时,令()()()101011111041C 411551141C 55r rr r r r P x r r P x r k ----⎛⎫⎛⎫⋅ ⎪ ⎪=-⎝⎭⎝⎭==≥=-⎛⎫⎛⎫⋅ ⎪ ⎝⎭⎝⎭,即445r ≤,令()()()10101911041C 1551141041C 55r rrr r r P x r r P x r k -+-+⎛⎫⎛⎫⋅ ⎪ ⎪=+⎝⎭⎝⎭==≥=+-⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭,解得395r ≥,即394455r ≤≤,所以当8r =时,()8P X =最大,故D 正确,故选:BCD .11.ACD【分析】由121533PQ PF t PF =+ ,且12,,F Q F 三点共线,得到25t =,可判定A 正确;根据双曲线的定义和122EF EF c +=,求得12,EF a c EF c a =+=-,可判定B 错误;利用角平分线定理得到11222PF QF PF QF ==,结合三角形的面积公式,分别求得,c r 的值,可判定C 正确;结合离心率的定义和求法,可判定D 正确.【详解】对于A 中,因为12515333PQ PI PF t PF ==+,且12,,F Q F 三点共线,所以15133t +=,可得25t =,所以A 正确;对于B 中,设切点分别为,,E F G ,则12122EF EF PF PF a -=-=,又因为122EF EF c +=,所以12,EF a c EF c a =+=-,所以点E 为右顶点,圆心I 的横坐标为2,所以B 错误;对于C 中,因为121233PQ PF PF =+ ,所以122QF QF =,由角平分线定理,得11222PF QF PF QF ==,又因为1224PF PF a -==,所以128,4PF PF ==,由53PQ PI = 可得52P y r =,所以()121152122222PF F S c r c r =+⋅=⨯⨯ ,可得4c =,所以128F F =,则12PF F △为等腰三角形,所以1211(812)422PF F S r =+⋅=⨯⨯ 5r =,所以C 正确;对于D 中,由离心率422c e a ===,所以D 正确.【点睛】方法点拨:对于双曲线的综合问题的求解策略:1、与双曲线的两焦点有关的问题,在“焦点三角形”中,常利用正弦定理、余弦定理,结合122PF PF a -=,运用平方的方法,建立12PF PF ⋅的联系;2、当与直线有关的问题,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式,根与系数的关系构造相关变量关系式进行求解;3、当与向量有关相结合时,注意运用向量的坐标运算,将向量间的关系转化为点的坐标问题,再根据与系数的关系,将所求问题与条件建立联系求解.12.3-【分析】根据向量线性运算和数量积公式得到方程,求出答案.【详解】()()()22,44,26,2a b +=+-=,()()()21,6,2620c a b λλ⋅+=⋅=+=,解得3λ=-.故答案为:3-13.10,,12(答案不唯一,填写其中一个即可)【分析】根据三角降幂公式化简,再结合图象求得k 的取值即可.【详解】因为()()2cos 0x k ωϕω+=≠,所以cos 2()12x k ωϕ++=,即cos 2()21x k ωϕ+=-,要想方程所有正实根从小到大排列构成等差数列,则需要210k -=或1±,所以10,1,2k =.故答案为:10,,12(答案不唯一,填写其中一个即可).14.9113【分析】(1)由()f x 的图象过点()1,2得21a b +=,根据基本不等式“1”的妙用计算即可;(2)由()f x 的图象过点(),ln c ab c +得()22c ac b a c +=-,进而得出22c ac b a c+=-,利用换元法及基本不等式即可求得3ca b+的最大值,即可得出t 的最小值.【详解】(1)由()f x 的图象过点()1,2得,(1)122f a b =++=,即21a b +=,所以()12222559b a a b a b a b ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当22b a a b =,即13a b ==时等号成立.由()3a b t c +≥恒成立得,3ct a b≥+,(2)因为()f x 的图象过点(),ln c ab c +,则()()22ln ln f c c a b c c ab c =+++=+,即()22c ac b a c +=-,当2a c =时,0c =不合题意舍,所以2a c ≠,即2a c ≠,则22c acb a c+=-,则由0b >得2a c >,所以222222233533512ac c c ac a ac c c a b a ac c a a a c c c --===+-+⎛⎫+-+ ⎪⎝⎭+-,设20am c-=>,所以()()222237332521351a m m c m m a a m m c c -==+++-++⎛⎫-+ ⎪⎝⎭1131337m m =≤++,当且仅当33m m=,即1m =,则3,4a c b c ==时,等号成立,故答案为:9;113.【点睛】方法点睛:第二空由()f x 的图象过点(),ln c ab c +得出22c acb a c+=-,代入消元得出关于,a c 的齐次式,换元后根据基本不等式计算可得.15.(1)证明见解析(2)30︒【分析】(1)取11B C 的中点D ,连接1,,A D CD DE ,先得出平面1//A DC 平面1AB E ,由面面平行证明线面平行即可;(2)建立空间直角坐标系,根据面面夹角的向量公式计算即可.【详解】(1)取11B C 的中点D ,连接1,,A D CD DE ,由直三棱柱111ABC A B C -得,1111,//B C BC B C BC =,1111,//AA BB AA BB =,因为E 是棱BC 的中点,点D 是11B C 的中点,所以1B D CE =,所以四边形1ECDB 为平行四边形,所以1//CD B E ,同理可得四边形1BEDB 为平行四边形,所以11,//,BB DE BB DE =所以11,//AA DE AA DE =,所以四边形1AEDA 为平行四边形,所以1//A D AE ,因为AE ⊂平面1AB E ,1A D ⊄平面1AB E ,所以1A D //平面1AB E ,同理可得//CD 平面1AB E ,又1A D CD D = ,1,A D CD ⊂平面1A DC ,所以平面1//A DC 平面1AB E ,又1AC ⊂平面1A DC ,所以1//A C 平面1AB E .(2)设122AB AC AA ===,以A 为原点,分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系,如图所示,则()()()()110,0,0,0,0,1,2,0,1,1,1,0A A B E ,所以()()()()11111,1,0,2,0,1,2,0,0,1,1,1AE AB A B EA ====--,设平面1AEB 的一个法向量为()1111,,n x y z =,由11100AE n AB n ⎧⋅=⎪⎨⋅=⎪⎩ 得,1111020x y x z +=⎧⎨+=⎩,取11x =,的()11,1,2n =-- ,设平面11A EB 的一个法向量为()2222,,n x y z =,由112120A B n EA n ⎧⋅=⎪⎨⋅=⎪⎩ 得,2222200x x y z =⎧⎨--+=⎩,取21y =,的()20,1,1n = ,设平面1AEB 与平面11A EB 的夹角为θ,则1212cos n n n n θ⋅===由图可知二面角11A B E A --为锐角,则二面角11A B E A --的大小为30︒.16.(1)21n a n =+(2)28(1)41nn n n -++【分析】(1)根据12311S S S ++,,成等比数列求得1a ,即可求得{}n a 的通项公式.(2)根据{}n a 的通项公式求得n S ,分奇偶项分别求出n b 再求和,即可求得{}n b 的前4n 项和.【详解】(1)因为2213(1)(1)S S S =++,所以2111(22)(1)(37)a a a +=++,即11(1)(3)0a a +-=,解得11a =-或3,又因为0n a >,所以13a =,所以32(1)21n a n n =+-=+.(2)1()(2)2n n n a a S n n +==+,所以1111()22nS n n =-+,所以n 为奇数时,1341134111111111111(1()()2323524141n n b b b S S S n n --+++=+=-+-++--+ 11(1)241n =-+,n 为偶数时,424424(42)44(42)16n n n n b b S S n n n n n--+=-=-⨯-⨯+=-24416(12)8(1)n b b b n n n +++=-+++=-+ ,所以前4n 项和4112(1)8(1)8(1)24141n nT n n n n n n =--+=-+++.17.(1)2y x =(2)证明见详解.【分析】(1)设动点F 的坐标为(),x y ,直接利用题中的条件列式并化简,从而求出动点F 的轨迹方程;(2)要证A 为线段BM 的中点,只需证12A B x x x =+即可,设直线的方程为12x my =+,设点()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,联立直线与曲线的方程,列出韦达定理,由直线OP ,ON 可求得点,A B ,计算120B A x x x +-=即可证.【详解】(1)设点(),F x y ,则(),1E x -,因为OF OE ⊥,所以0OF OE =⋅ ,所以20x y -=,即2x y =,所以动点F 的轨迹方程为:2y x =;(2)因为BM y ⊥轴,所以设()11,M x y ,()22,N x y ,()1,A A x y ,()1,B B x y ,若要证A 为线段BM 的中点,只需证12A B x x x =+即可,当直线MN 斜率不存在或斜率为0时,与抛物线只有一个交点,不满足题意,所以直线MN 斜率存在且不为0,12120x x y y ≠,设直线MN :12x my =+,0m ≠,由212x my y x⎧=+⎪⎨⎪=⎩得22210mx x -+=,442148m m ∆=-⨯⨯=-,由题意可知,直线MN 与抛物线C 有两个交点,所以0∆>,即480m ->,所以12m <,由根与系数的关系得,121x x m +=,1212x x m=,由题意得,直线OP 方程y x =,所以()11,A y y ,直线ON 方程22y y x x =,所以2112,x y B y y ⎛⎫⎪⎝⎭,所以22212111111111222222212B A x y x x x x x x x y x x x x y x x ⎛⎫⋅+-=+-=+-=+- ⎪⎝⎭()121211112122222112202x x x x x x x x x x x x x x m m +-⎛⎫=⋅=+-=-⨯= ⎪⎝⎭,所以A 为线段BM 的中点.18.(1)0.035a =;72.5(2)0.6(3)160【分析】(1)由频率分布直方图的概率和为1,列出方程,求得0.035a =,再利用百分位数的计算方法,即可求解;(2)设“抽到男学生”为事件A ,“评分80分以上”为事件B ,结合全概率公式,即可求解;(3)根据题意,利用方差的计算公式,求得245x y s s s =,得到160y x y x s s m n s s +=,令x y s t s =,得到160n my t +=,利用基本不等式求得nmy t+≥200n m =-,得出不等式160≥m 的范围,即可求解.【详解】(1)解:由频率分布直方图的性质,可得:(0.0020.0040.00140.00200.0025)101a +++++⨯=,解得0.035a =,设25%分位数为0x ,由分布直方图得0.020,040.140.2++=,所以0700.05100.2x -=,解得072.5x =.(2)解:设“抽到男学生”为事件A ,“评分80分以上”为事件B ,可得()0.8,(|)0.55,()0.2,(|)0.8P A P B A P A P B A ====,由全概率公式得()()(|)()(|)0.80.550.20.80.6P B P A P B A P A P B A =⋅+⋅=⨯+⨯=.(3)解:由x y =,可得mx n yz x m n+==+,所以22222111111[()()][()()]200200m n m ni i i i i j i j s x z y z x x y y =====-+-=-+-∑∑∑∑2214()2005x y x y ms ns s s =+=,所以22160x y x y ms ns s s +=,即160y xy xs s mn s s +=,令x y s t s =,则160nmy t+=,由于n my t +≥=n my t =时,等号成立,又因为200n m =-,可得160≥=220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤≤≤且200m n +=,所以160m ≥,所以实数m 的最大值为160.19.(1)答案见解析,证明见解析(2)(],1-∞(3)证明见解析【分析】(1)类比,写出平方关系,倍角关系和导数关系,并进行证明;(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,求导,分1k ≤和1k >两种情况,结合基本不等式,隐零点,得到函数单调性,进而得到答案;(3)结合新定义将所证变为()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,先利用导数求得()=e cos x f x x -'在()0,∞+上单调递增,再设()()()()()111,0h x f x x f x xf x x =+-->',利用导数得其单调性及()0h x >,从而()()()111f x x f x xf x >+'+,得证.【详解】(1)平方关系:()()22chsh 1x x -=;倍角公式:()()()sh 22sh ch x x x =;导数:()()sh()ch()ch()sh()x x x x ''⎧=⎪⎨=⎪⎩.理由如下:平方关系,()()2222e e e e ch sh 22x x x x x x --⎛⎫⎛⎫+--=- ⎪ ⎪⎝⎭⎝⎭2222e e e e 12244x x x x --++=--=+;倍角公式:()()()()()22e e e e e e sh 22sh ch 22x x x x x x x x x ----+-===;导数:()()e e ee sh()ch 22x xxxx x --'--+===,()e e ch()sh 2x x x x -'-==;以上三个结论,证对一个即可.(2)构造函数()()sh F x x kx =-,()0,x ∞∈+,由(1)可知()()ch F x x k ='-,①当1k ≤时,由e e ch()12x xx -+=≥,又因为0x >,故e e x x -≠,等号不成立,所以()()ch 0F x x k '=->,故()F x 为严格增函数,此时()(0)0F x F >=,故对任意0x >,()sh x kx >恒成立,满足题意;②当1k >时,令()()(),0,G x F x x ∞∈'=+,则()()sh 0G x x ='>,可知()G x 是严格增函数,答案第15页,共15页由(0)10G k =-<与1(ln 2)04G k k=>可知,存在唯一0(0,ln 2)x k ∈,使得0()0G x =,故当0(0,)x x ∈时,0()()()0F x G x G x =<=',则()F x 在0(0,)x 上为严格减函数,故对任意0(0,)x x ∈,()()00F x F <=,即()sh x kx >,矛盾;综上所述,实数k 的取值范围为(],1-∞;(3)因为()()ch sh e xx x +=,所以原式变为()()21212121e 1e sin sin cos x x x x x x x x --⋅>+--,即证()()121112121e sin e sin e cos x x x x x x x x x +-+>-+-,设函数()=e sin x f x x -,即证()()()12121f x x f x x f x >+'+,()=e cos x f x x -',设()()=e cos x t x f x x =-',()e sin x t x x '=+,0x >时()0t x '>,()t x 在()0,∞+上单调递增,即()=e cos x f x x -'在()0,∞+上单调递增,设()()()()()111,0h x f x x f x xf x x =+-->',则()()()11h x f x x f x =+'-'',由于()=e cos x f x x -'在()0,∞+上单调递增,11x x x +>,所以()()11f x x f x +>'',即()0h x '>,故()h x 在()0,∞+上单调递增,又()00h =,所以0x >时,()0h x >,所以()()()1110f x x f x xf x +-->',即()()()111f x x f x xf x >+'+,因此()()()12121f x x f x x f x >+'+恒成立,所以原不等式成立,得证.【点睛】思路点睛:对新定义的题型要注意一下几点:(1)读懂定义所给的主要信息筛选出重要的关键点(2)利用好定义所给的表达式以及相关的条件(3)含有参数是要注意分类讨论的思想.。
2020年高考模拟重庆市直属校(3月)高考(理科)数学模拟测试卷 含解析
2020年高考模拟高考数学模拟试卷(理科)(3月份)一、选择题1.设集合A={x|x2<9},B={﹣3,﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣2,﹣1,0,1,2}D.{﹣2,﹣1,0}2.设(1+i)(a+bi)=2,其中a,b是实数,i为虚数单位,则|3a+bi|=()A.2B.C.D.3.已知数列{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16,则log2a9=()A.15B.16C.17D.184.若实数x,y满足约束条件,则z=x+y的最小值为()A.﹣8B.﹣6C.1D.35.我国古代有着辉煌的数学研究成果,其中《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》有着丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.现拟从这5部专著中选择2部作为学生课外兴趣拓展参考书目,则所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.6.如图,四棱柱ABCD﹣A1B1C1D1中,ABCD为平行四边形,E,F分别在线段DB,DD1上,且,G在CC1上且平面AEF∥平面BD1G,则=()A.B.C.D.7.在直角坐标系xOy中,半径为lm的⊙C在t=0时圆心C与原点O重合,⊙C沿x轴以1m/s的速度匀速向右移动,⊙C被y轴所截的左方圆弧长记为x,令y=cos x,则y关于时间t(0≤t≤l,单位:s)的函数的图象大致为()A.B.C.D.8.的展开式中,各二项式系数和为32,各项系数和为243,则展开式中x3的系数为()A.40B.30C.20D.109.设函数f(x)=cos(ωx+φ)(x∈R)(ω>0,﹣π<φ<0)的部分图象如图所示,如果,x1≠x2,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.10.已知三棱锥P﹣ABC的四个顶点在球O的球面上,球O的半径为4,△ABC是边长为6的等边三角形,记△ABC的外心为O1.若三棱锥P﹣ABC的体积为则PO1=()A.B.C.D.11.设双曲线)的左顶点为A,右焦点为F(c,0),若圆A:(x+a)2+y2=a2与直线bx﹣ay=0交于坐标原点O及另一点E,且存在以O为圆心的圆与线段EF相切,切点为EF的中点,则双曲线的离心率为()A.B.C.D.312.函数f(x)=,若关于x的方程f2(x)﹣af(x)+a﹣a2=0有四个不等的实数根,则a的取值范围是()A.B.(﹣∞,﹣1)∪[1,+∞)C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}二、填空题:(共4小题,每小题5分,共20分)13.已知向量与的夹角为120°,且,则=.14.已知函数f(x)=3|x﹣a|(a∈R)满足f(x)=f(4﹣x),则实数a的值为.15.设各项均为正数的数列{a n}的前n项和S n满足S n2﹣(n2+n﹣2)S n﹣2(n2+n)=0,n∈N*,则数列的前2020项和T2020=.16.设抛物线y2=2x的焦点为F,准线为1,弦AB过点F且中点为M,过点F,M分别作AB的垂线交l于点P,Q,若|AF|=3|BF|,则|FP|•|MQ|=.三、解答题:(共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)求角B的大小;(Ⅱ)若a=4,且BC边上的高为,求△ABC的周长.18.如图,四边形ABCD为平行四边形,点E在AB上,AE=2EB=2,且DE⊥AB.以DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB=60°.(Ⅰ)求证:平面BFC⊥平面BCDE;(Ⅱ)若直线DF与平面BCDE所成角的正切值为,求二面角E﹣DF﹣C的正弦值.19.为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg).根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布N(μ,σ2).在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ﹣3σ,μ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.(Ⅰ)下面是检验员在2月24日抽取的20件药品的主要药理成分含量:9.7810.049.9210.1410.049.2210.139.919.959.969.8810.019.989.9510.0510.059.9610.12经计算得=x i=9.96,s==≈0.19其中x i为抽取的第i件药品的主要药理成分含量,i=1,2,…,20.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对本次的生产过程进行检查?(Ⅱ)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ﹣3σ,μ+3σ)之外的药品件数,求P(X=1)及X的数学期望.附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.20.已知椭圆的左、右焦点分别为F1,F2,过点F1的直线与C 交于A,B两点.△ABF2的周长为,且椭圆的离心率为.(Ⅰ)求椭圆C的标准方程:(Ⅱ)设点P为椭圆C的下顶点,直线PA,PB与y=2分别交于点M,N,当|MN|最小时,求直线AB的方程.21.已知函数f(x)=e ax﹣x﹣1,且f(x)≥0.(Ⅰ)求a;(Ⅱ)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,问:是否存在x0∈(x1,x2),使f'(x0)=k成立?若存在,求出x0的值(用x1,x2表示);若不存在,请说明理由.请从下面所给的22、23两题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为(t为参数),直线l与曲线C交于M,N两点.(Ⅰ)若点P的极坐标为(2,π),求|PM|•|PN|的值;(Ⅱ)求曲线C的内接矩形周长的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=x|x﹣a|,a∈R.(Ⅰ)当f(2)+f(﹣2)>4时,求a的取值范围;(Ⅱ)若a>0,∀x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范围.参考答案一、选择题:(共12小题,每小题5分,共60分)1.设集合A={x|x2<9},B={﹣3,﹣2,﹣1,0,1,2},则A∩B=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣2,﹣1,0,1,2}D.{﹣2,﹣1,0}【分析】可以求出集合A,然后进行交集的运算即可.解:∵A={x|﹣3<x<3},B={﹣3,﹣2,﹣1,0,1,2},∴A∩B={﹣2,﹣1,0,1,2}.故选:C.2.设(1+i)(a+bi)=2,其中a,b是实数,i为虚数单位,则|3a+bi|=()A.2B.C.D.【分析】根据复数的基本运算法则进行化简即可.解:由题意可知:,∴a=1,b=﹣1,∴3a+bi=3﹣i,∴|3a+bi|=|3﹣i|=,故选:D.3.已知数列{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16,则log2a9=()A.15B.16C.17D.18【分析】由等比数列的能项公式得2q2=2×2q+16,且q>0,解得q=4,由此能求出log2a9的值.解:∵数列{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16,∴2q2=2×2q+16,且q>0,解得q=4,∴log2a9==17.故选:C.4.若实数x,y满足约束条件,则z=x+y的最小值为()A.﹣8B.﹣6C.1D.3【分析】由题意作平面区域,),从而求最小值解:由题意作平面区域如下,由解得,A(﹣4,﹣2),z=x+y经过可行域的A时,目标函数取得最小值.故z=x+y的最小值是﹣6,故选:B.5.我国古代有着辉煌的数学研究成果,其中《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》有着丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.现拟从这5部专著中选择2部作为学生课外兴趣拓展参考书目,则所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率为()A.B.C.D.【分析】基本事件总数n==10,所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著包含的基本事件个数m==7,由此能求出所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率.解:我国古代有着辉煌的数学研究成果,其中《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》有着丰富多彩的内容,这5部专著中有3部产生于汉、魏、晋、南北朝时期.现拟从这5部专著中选择2部作为学生课外兴趣拓展参考书目,基本事件总数n==10,所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著包含的基本事件个数m==7,则所选2部专著中至少有一部不是汉、魏、晋、南北朝时期专著的概率为p==.故选:B.6.如图,四棱柱ABCD﹣A1B1C1D1中,ABCD为平行四边形,E,F分别在线段DB,DD1上,且,G在CC1上且平面AEF∥平面BD1G,则=()A.B.C.D.【分析】推导出EF∥BD1,平面ADD1A1∥平面BCC1B1,由G在CC1上且平面AEF∥平面BD1G,得AF∥BG,从而==.解:∵四棱柱ABCD﹣A1B1C1D1中,ABCD为平行四边形,E,F分别在线段DB,DD1上,且,∴EF∥BD1,平面ADD1A1∥平面BCC1B1,∵G在CC1上且平面AEF∥平面BD1G,∴AF∥BG,∴==.故选:B.7.在直角坐标系xOy中,半径为lm的⊙C在t=0时圆心C与原点O重合,⊙C沿x轴以1m/s的速度匀速向右移动,⊙C被y轴所截的左方圆弧长记为x,令y=cos x,则y关于时间t(0≤t≤l,单位:s)的函数的图象大致为()A.B.C.D.【分析】根据题意,由特殊值法分析:令t=0、、1,求出对应的y的值,据此分析即可得答案.解:根据题意,⊙C的半径为1,则其周长l=2π,当t=0时,⊙C被y轴所截的左方圆弧长记为x=π,此时y=cosπ=﹣1;当t=时,⊙C被y轴所截的左方圆弧长记为x=,此时y=cos=﹣<0;当t=1时,⊙C被y轴所截的左方圆弧长记为x=2π,此时y=cos2π=1;据此排除BCD;故选:A.8.的展开式中,各二项式系数和为32,各项系数和为243,则展开式中x3的系数为()A.40B.30C.20D.10【分析】由题意利用二项式系数的性质求出n、m的值,再利用二项展开式的通项公式,求出展开式中x3的系数.解:∵的展开式中,各二项式系数和为2n=32,∴n=5.再令x=1,可得各项系数和为(m+1)5=243=35,∴m=2,则展开式中的通项公式为T r+1=•m5﹣r•,令5﹣=3,可得r=4,故展开式中x3的系数为•2=10,故选:D.9.设函数f(x)=cos(ωx+φ)(x∈R)(ω>0,﹣π<φ<0)的部分图象如图所示,如果,x1≠x2,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.【分析】由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式,再利用余弦函数的图象的对称性求得x1+x2的值,可得f(x1+x2)的值.解:根据函数f(x)=cos(ωx+φ)(x∈R)(ω>0,﹣π<φ<0)的部分图象,可得=﹣,∴ω=2.再根据五点法作图可得2•+φ=﹣,∴φ=﹣,∴f(x)=cos(2x﹣).如果,x1≠x2,则2x1﹣∈(﹣,),2x2﹣∈(﹣,),∵f(x1)=f(x2),∴2x1﹣+(2x2﹣)=0,∴x1+x2=,则f(x1+x2)=cos(﹣)=cos=﹣cos=﹣,故选:B.10.已知三棱锥P﹣ABC的四个顶点在球O的球面上,球O的半径为4,△ABC是边长为6的等边三角形,记△ABC的外心为O1.若三棱锥P﹣ABC的体积为则PO1=()A.B.C.D.【分析】由题意可得:S△ABC==9,O1A=2,O1O=2.设点P到平面BAC的高为h,由=×h×9,解得h.可得点P所在小圆⊙O2(⊙O1与⊙O2所在平面平行)上运动,即可得出.解:由题意可得:S△ABC==9,O1A=2,O1O=2.设点P到平面BAC的高为h,由=×h×9,解得h=4.∴点P所在小圆⊙O2(⊙O1与⊙O2所在平面平行)上运动,OO2=2.∴O2P=2.∴PO1==2.故选:D.11.设双曲线)的左顶点为A,右焦点为F(c,0),若圆A:(x+a)2+y2=a2与直线bx﹣ay=0交于坐标原点O及另一点E,且存在以O为圆心的圆与线段EF相切,切点为EF的中点,则双曲线的离心率为()A.B.C.D.3【分析】联立.⇒E(﹣,﹣),由OE=OF,e=.解:联立.⇒E(﹣,﹣),∵OE=OF,∴,∴4a4=c4⇒e=.故选:B.12.函数f(x)=,若关于x的方程f2(x)﹣af(x)+a﹣a2=0有四个不等的实数根,则a的取值范围是()A.B.(﹣∞,﹣1)∪[1,+∞)C.(﹣∞,﹣1)∪{1}D.(﹣1,0)∪{1}【分析】利用导数先判断出函数f(x)的图象,条件可转化为关于t的方程t2﹣at+a﹣a2=0有两个实数根t1=0,t2=1或t1∈(0,1),t2∈(﹣∞,0)∪(1,+∞),分情况讨论即可解:当x≥0时,f′(x)e1﹣x(1﹣x),所以当0<x<1时,f′(x)>0,f(x)单调递增;当x>1时,f′(x)<0,f(x)单调递减,且f(0)=0,当x→+∞时,f(x)→0,当x<0时,f(x)单调递减,所以f(x)的图象如图所示:令t=f(x),则由上图可知当t=0或1时,方程t=f(x)有两个实根;当t∈(0,1)时,方程t=f(x)有3个实数根;当t∈(﹣∞,0)∪(1,+∞)时,方程t=f(x)有一个实数根,所以关于x的方程程f2(x)﹣af(x)+a﹣a2=0有四个不等的实数根等价于关于t的方程t2﹣at+a﹣a2=0有两个实数根t1=0,t2=1或t1∈(0,1),t2∈(﹣∞,0)∪(1,+∞),当t1=0,t2=1时,a=1,当t1∈(0,1),t2∈(﹣∞,0)∪(1,+∞)时,(02﹣a×0+a﹣a2)(12﹣a×1+a﹣a2)<0,解得﹣1<a<0,综上所述,a∈(﹣1,0)∪{1}.故选:D.二、填空题:(共4小题,每小题5分,共20分)13.已知向量与的夹角为120°,且,则=﹣5.【分析】由题意可得向量的模长,再直接代入数量积可得.解:因为向量与的夹角为120°,且,所以:||==;则=××cos120°=10×(﹣)=﹣5;故答案为:﹣5.14.已知函数f(x)=3|x﹣a|(a∈R)满足f(x)=f(4﹣x),则实数a的值为2.【分析】结合指数函数的性质,建立指数方程进行求解即可.解:∵f(x)=f(4﹣x),∴函数关于x=2对称,即f(a)=f(4﹣a),即3|a﹣a|=3|4﹣a﹣a|,即30=3|4﹣2a|即|4﹣2a|=0,得2a﹣4=0,得a=2,故答案为:215.设各项均为正数的数列{a n}的前n项和S n满足S n2﹣(n2+n﹣2)S n﹣2(n2+n)=0,n∈N*,则数列的前2020项和T2020=.【分析】本题先对题干中的等式进行因式分解,根据题意可得S n的表达式,然后根据公式a n=可计算出数列{a n}的通项公式,即可计算出数列的通项公式,然后运用裂项相消法即可计算出前2020项和T2020的值.解:依题意,由S n2﹣(n2+n﹣2)S n﹣2(n2+n)=0,n∈N*,可得[S n﹣(n2+n)](S n+2)=0.∵数列{a n}的各项均为正数,∴S n>0.∴S n=n2+n,n∈N*.当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+n﹣[(n﹣1)2+(n﹣1)]=2n.∴a n=2n,n∈N*.∴==(﹣).∴T2020=++…+=(1﹣)+(﹣)+…+(﹣)=(1﹣+﹣+…+﹣)=(1﹣)=.故答案为:.16.设抛物线y2=2x的焦点为F,准线为1,弦AB过点F且中点为M,过点F,M分别作AB的垂线交l于点P,Q,若|AF|=3|BF|,则|FP|•|MQ|=.【分析】作BF⊥l于F,作AE⊥l于E,令准线于x轴交点为S,AB交准线于K.设BH=m,则AF=3m,可得∠HKB=,FK=2,QM=MK•tan30°=4m×tan30°.=,即可求解.解:如图,作BF⊥l于F,作AE⊥l于E,令准线于x轴交点为S,AB交准线于K.设BH=m,则AF=3m,∵,∴BK=2m则sin∠HKB=,∴∠HKB=30°.∵,∴,∴,∴FK=2.∴.QM=MK•tan30°=4m×tan30°.=则|FP|•|MQ|=.故答案为:.三、解答题:(共70分)17.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)求角B的大小;(Ⅱ)若a=4,且BC边上的高为,求△ABC的周长.【分析】(Ⅰ)由正弦定理,两角和到正弦函数公式化简已知等式可得sin A cos B=sin B sin A,结合sin A>0,可得cos B=sin B,结合范围B∈(0,π),可求B的值.(Ⅱ)由已知可求c的值,在△ABC中,由余弦定理可求b到值,即可得解△ABC的周长.解:(Ⅰ)∵.∴由正弦定理可得:sin C=sin B(cos A+sin A),∵sin C=sin(A+B)=sin A cos B+cos A sin B,∴可得:sin A cos B=sin B sin A,∵A∈(0,π),sin A>0,∴cos B=sin B,∵B∈(0,π),∴tan B=,B=.(Ⅱ)如图,AD=,B=,则c=AB==2,又a=4,在△ABC中,由余弦定理b2=a2+c2﹣2ac cos B=4,可得b=2,可得△ABC的周长为a+b+c=6+2.18.如图,四边形ABCD为平行四边形,点E在AB上,AE=2EB=2,且DE⊥AB.以DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB=60°.(Ⅰ)求证:平面BFC⊥平面BCDE;(Ⅱ)若直线DF与平面BCDE所成角的正切值为,求二面角E﹣DF﹣C的正弦值.【分析】(Ⅰ)由DE⊥AB,得DE⊥EB,DE⊥EF,从而DE⊥平面BEF,进而DE⊥BF,FB⊥EB,BF⊥平面BCDE,由此能证明平面BFC⊥平面BCDE.(Ⅱ)以B为原点,BA为x轴,在平面ABCD中过点B作AB的垂线为y轴,BF为z 轴,建立空间直角坐标系,利用向量法能求出二面角E﹣DF﹣C的正弦值.解:(Ⅰ)证明:∵DE⊥AB,∴DE⊥EB,DE⊥EF,∴DE⊥平面BEF,∴DE⊥BF,∵AE=2EB=2,∴EF=2,EB=1,∵∠FEB=60°,∴由余弦定理得BF==,∴EF2=EB2+BF2,∴FB⊥EB,由①②得BF⊥平面BCDE,∴平面BFC⊥平面BCDE.(Ⅱ)解:以B为原点,BA为x轴,在平面ABCD中过点B作AB的垂线为y轴,BF 为z轴,建立空间直角坐标系,设DE=a,则D(1,a,0),F(0,0,),=(﹣1,﹣a,),∵直线DF与平面BCDE所成角的正切值为,∴直线DF与平面BCDE所成角的正弦值为,平面BCDE的法向量=(0,0,1),∴|cos<>|===,解得a=2,∴D(1,2,0),C(﹣2,2,0),∴=(0,2,0),=(﹣1,﹣2,),设平面EDF的法向量=(x,y,z),则,取z=1,得=(),同理得平面DFC的一个法向量=(0,,2),∴cos<>==,∴二面角E﹣DF﹣C的正弦值为sin<>==.19.为了保障某治疗新冠肺炎药品的主要药理成分在国家药品监督管理局规定的值范围内,武汉某制药厂在该药品的生产过程中,检验员在一天中按照规定从该药品生产线上随机抽取20件产品进行检测,测量其主要药理成分含量(单位:mg).根据生产经验,可以认为这条药品生产线正常状态下生产的产品的主要药理成分含量服从正态分布N(μ,σ2).在一天内抽取的20件产品中,如果有一件出现了主要药理成分含量在(μ﹣3σ,μ+3σ)之外的药品,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对本次的生产过程进行检查.(Ⅰ)下面是检验员在2月24日抽取的20件药品的主要药理成分含量:9.7810.049.9210.1410.049.2210.139.919.959.969.8810.019.989.9510.0510.059.9610.12经计算得=x i=9.96,s==≈0.19其中x i为抽取的第i件药品的主要药理成分含量,i=1,2,…,20.用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对本次的生产过程进行检查?(Ⅱ)假设生产状态正常,记X表示某天抽取的20件产品中其主要药理成分含量在(μ﹣3σ,μ+3σ)之外的药品件数,求P(X=1)及X的数学期望.附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.【分析】(I)由=9.96,s=0.19.可得:=9.96,=0.19,由样品数据看出有一样药品的主要药理成分(9.22)含量在(μ﹣3σ,μ+3σ)=(9.39,10.53)之外的药品,即可判断出结论.(II)抽取的一件药品中其主要药理成分含量在(μ﹣3σ,μ+3σ)之内的概率为0.9974,而主要药理成分含量在(μ﹣3σ,μ+3σ)之内的概率为0.0026,可得X~B(20,0.0026),可得P(X=1),及其E(X).解:(I)由=9.96,s=0.19.可得:=9.96,=0.19,由样品数据看出有一样药品的主要药理成分(9.22)含量在(μ﹣3σ,μ+3σ)=(9.39,10.53)之外的药品,因此需对本次的生产过程进行检查.(II)抽取的一件药品中其主要药理成分含量在(μ﹣3σ,μ+3σ)之内的概率为0.9974,而主要药理成分含量在(μ﹣3σ,μ+3σ)之内的概率为0.0026,故X~B(20,0.0026),∴P(X=1)=0.997419×0.0026≈0.0494.X的数学期望E(X)=20×0.0026≈0.052.20.已知椭圆的左、右焦点分别为F1,F2,过点F1的直线与C 交于A,B两点.△ABF2的周长为,且椭圆的离心率为.(Ⅰ)求椭圆C的标准方程:(Ⅱ)设点P为椭圆C的下顶点,直线PA,PB与y=2分别交于点M,N,当|MN|最小时,求直线AB的方程.【分析】(Ⅰ)由题意可得4a=4,结合离心率即可求出c,再利用b2=a2﹣c2即可求出b2,从而求出椭圆C的方程;(Ⅱ)点P(0,﹣1),F1(﹣1,0),设A(x1,y1),B(x2,y2),显然直线AB与x轴不重合,设直线AB的方程为:x=my﹣1,则可知m≠﹣1,与椭圆方程联立,利用韦达定理可求|MN|=6,当m=0时,|MN|=6,当m≠0时利用基本不等式求得|MN|的最小值为6<6,在m=1处取得,所以当|MN|最小时,直线AB的方程为:x=y﹣1,即x﹣y+1=0.解:(Ⅰ)由题意可得:4a=4,,∴a=,c=1,∴b2=a2﹣c2=1,∴椭圆C的方程为:;(Ⅱ)点P(0,﹣1),F1(﹣1,0),设A(x1,y1),B(x2,y2),显然直线AB与x轴不重合,设直线AB的方程为:x=my﹣1,则可知m≠﹣1,联立方程,消去y得:(m2+2)y2﹣2my﹣1=0,∴,,直线PA的方程为:(y1+1)x﹣x1y﹣x1=0,可得,同理,|MN|=||=3||=3=3=6,当m=0时,|MN|=6,当m≠0时,|MN|=6,由于m+∈(﹣∞,﹣2)∪[2,+∞),则,此时|MN|的最小值为6<6,在m=1处取得,综上所述,当|MN|最小时,直线AB的方程为:x=y﹣1,即x﹣y+1=0.21.已知函数f(x)=e ax﹣x﹣1,且f(x)≥0.(Ⅰ)求a;(Ⅱ)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2))(x1<x2),记直线AB的斜率为k,问:是否存在x0∈(x1,x2),使f'(x0)=k成立?若存在,求出x0的值(用x1,x2表示);若不存在,请说明理由.【分析】(I)结合已知先对函数求导,然后结合已知导数可求函数的单调性,进而可求函数的最小值,解不等式可求;(II)结合直线的斜率公式及函数的性质及零点判定定理即可求解.解:(1)若a≤0,则对一切x>0,f(x)=)=e ax﹣x﹣1<0,不符合题意,若a>0,f′(x)=ae ax﹣1,令f′(x)=ae ax﹣1=0可得x=,当x<时,f′(x)<0,函数f(x)单调递减,当x>时,f′(x)>0,函数f(x)单调递增,故当x=﹣时,函数取得最小值f(﹣)=,由题意可得,有≥0①,令g(t)=t﹣tlnt﹣1,则g′(t)=﹣lnt,当0<t<1时,g′(t)>0,g(t)单调递增,当t>1时,g′(t)<0,g(t)单调递减,故当t=1时,g(t)取得最大值g(1)=0,当且仅当=1即a=1时①成立,综上a=1;(II)由题意可知,k==﹣1,令t(x)=f′(x)﹣k=e x﹣,则可知y=t(x)在[x1,x2]上单调递增,且t(x1)=[﹣(x2﹣x1)﹣1],t(x2)=[e﹣(x1﹣x2)﹣1],由(I)可知f(x)=e x﹣x﹣1≥0,x=0时取等号,∴﹣(x2﹣x1)﹣1≥0,e﹣(x1﹣x2)﹣1≥0,∴t(x1)<0,t(x2)>0,由零点判定定理可得,存在x0∈(x1,x2),使得t(x0)=0且,综上可得,存在x0∈(x1,x2),使f'(x0)=k成立请从下面所给的22、23两题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为(t为参数),直线l与曲线C交于M,N两点.(Ⅰ)若点P的极坐标为(2,π),求|PM|•|PN|的值;(Ⅱ)求曲线C的内接矩形周长的最大值.【分析】(Ⅰ)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(Ⅱ)利用一元二次方程根和系数关系式的应用和三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果.解:(Ⅰ)曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,转换为直角坐标方程为.点P的极坐标为(2,π),转换为直角坐标为(﹣2,0)由于点P(﹣2,0)在直线l 上,所以直线l的参数方程为(t为参数),转化为(t为参数),所以代入曲线的方程为,整理得,所以|PM|•|PN|=|t1t2|=4.(Ⅱ)不妨设Q(),(),所以该矩形的周长为4()=16sin().当时,矩形的周长的最大值为16.[选修4-5:不等式选讲]23.已知函数f(x)=x|x﹣a|,a∈R.(Ⅰ)当f(2)+f(﹣2)>4时,求a的取值范围;(Ⅱ)若a>0,∀x,y∈(﹣∞,a],不等式f(x)≤|y+3|+|y﹣a|恒成立,求a的取值范围.【分析】(1)求得关于a的不等式,由绝对值的意义,去绝对值,解不等式,求并集即可;(2)原不等式等价为f(x)max≤(|y+3|+|y﹣a|)min,运用家的孩子不等式的性质和二次函数的最值求法,分别求得最值,解不等式可得所求范围.解:(1)f(2)+f(﹣2)>4,可得2|2﹣a|﹣2|2+a|>4,即|a﹣2|﹣|a+2|>2,则或或,解得a≤﹣2或﹣2<a<﹣1或a∈∅,则a的范围是(﹣∞,﹣1);(2)f(x)≤|y+3|+|y﹣a|恒成立,等价为f(x)max≤(|y+3|+|y﹣a|)min,其中当x,y∈(﹣∞,a],|y+3|+|y﹣a|≥|y+3+a﹣y|=|a+3|=a+3,当且仅当﹣3≤y≤a取得等号,而f(x)=﹣x(x﹣a)=﹣(x﹣)2+≤,当且仅当x=a时取得等号.所以≤a+3,解得0<a≤6.。
山东省2020年高考模拟考试数学试题 Word版含答案
山东省2020年普通高等院校统一招生模拟考试高三教学质量检测数学试题2020.02本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,将第I 卷选择题的正确答案选项填涂在答题卡相应位置上,考试结束,将答题卡交回.考试时间120分钟,满分150分. 注意事项:1.答卷前,考生务必将姓名、座号、准考证号填写在答题卡规定的位置上. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试题卷上.3.第Ⅱ卷答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第I 卷(选择题 共60分)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数2,i z z 在复平面内对应的点分别为()()11221,1,0,1z Z Z z =,则 A .1i +B .1i -+C .1i --D .1i -2.设a R ∈,则“sin cos αα=”是“sin 21α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.向量a b r r ,满足()()1,2a b a b a b ==+⊥-u u r u u r r r r r,则向量a b r r 与的夹角为 A .45oB .60oC .90oD .120o4.已知数列{}n a 中,372,1a a ==.若1n a ⎧⎫⎨⎬⎩⎭为等差数列,则5a = A .23B .32C .43D .345.已知点()2,4M 在抛物线()2:20C y px p =>上,点M 到抛物线C 的焦点的距离是A .4B .3C .2D .16.在ABC ∆中,2,20AB AC AD AE DE EB x AB y AC +=+==+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,若,则 A .2y x =B .2y x =-C .2x y =D .2x y =-7.已知双曲线()2222:1,0,0x y C a b a b-=>>的左、右焦点分别为12,F F O ,为坐标原点,P是双曲线在第一象限上的点,()21212=2=2,0,PF PF m m PF PF m >⋅=u u u u r u u u u r u u u r u u u u r ,则双曲线C 的渐近线方程为 A .12y x =±B .22y x =±C .y x =±D .2y x =±8.已知奇函数()f x 是R 上增函数,()()g x xf x =则A. 233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D. 23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分。
2020年陕西省高考数学三模试卷(理科)(有答案解析)
2020年陕西省高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知复数z满足(1-i)z=1+i,则复数z=()A. 1+iB. 1-iC. iD. -i2.设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于()A. {-1,0,1,2,3}B. {0,1,2,3}C. {1,2,3}D. {2}3.若向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,则x=()A. 1B. 2C. 3D. 44.已知tan(α+)=-2,则tan()=()A. B. C. -3 D. 35.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n行的所有数字之和为2n-1,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…则此数列的前15项和为()A. 110B. 114C. 124D. 1256.若正数m,n满足2m+n=1,则+的最小值为()A. 3+2B. 3+C. 2+2D. 37.执行如图所示的程序框图,则输出S的值为ln5,则在判断框内应填()A. i≤5?B. i≤4?C. i<6?D. i>5?8.已知在三棱锥P-ABC中,PA=PB=BC=1,AB=,AB⊥BC,平面PAB⊥平面ABC,若三棱锥的顶点在同一球面上,则该球的表面积为()A. B. C. D.9.一只蚂蚁从正方体ABCD-A1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到达顶点C1位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是()A. B. C. D.10.函数y=-2sin x的图象大致是()A. B.C. D.11.已知双曲线与抛物线y2=8x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=5,则双曲线的离心率为()A. 2B. 2C.D.12.已知函数f(x)=ln x-ax2,若f(x)恰有两个不同的零点,则a的取值范围为()A. (,+∞)B. [.+∞)C. (0,)D. (0,]二、填空题(本大题共4小题,共20.0分)13.设x,y满足约束条件,则z=x-2y的最小值是______.14.设S n为等比数列{a n}的前n项和,8a2-a5=0,则=______.15.(1+)(1-x)6展开式中x3的系数为______.16.曲线y=2ln x在点(e2,4)处的切线与坐标轴所围三角形的面积为______.三、解答题(本大题共7小题,共82.0分)17.在△ABC中,a,b,c分别是角A,B,C的对边,且(a+b+c)(a+b-c)=3ab.(Ⅰ)求角C的值;(Ⅱ)若c=2,且△ABC为锐角三角形,求a+b的取值范围.18.已知某种细菌的适宜生长温度为10℃-25℃,为了研究该种细菌的繁殖数量y(单位:个)随温度x(单位:℃)变化的规律,收集数据如下:温度x/℃12141618202224繁殖数量y/个2025332751112194对数据进行初步处理后,得到了一些统计量的值,如表所示:1866 3.8112 4.3142820.5其中k i=ln y i,=(Ⅰ)请绘出y关于x的散点图,并根据散点图判断y=bx+a与y=ce dx哪一个更适合作为该种细菌的繁殖数量y关于温度x的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)根据(1)的判断结果及表格数据,建立y关于x的回归方程(结果精确到0.1);(Ⅲ)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?参考公式:对于一组数据(u i,v i)(i=1,2,3,…,n),其回归宜线v=βu+a的斜率和截距的最小二成估计分别为β=,,参考数据:e5.5≈245.19.如图,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分别为AC,DC的中点(Ⅰ)求证:EF⊥BC;(Ⅱ)求二面角E-BF-C的余弦值20.已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(Ⅰ)若,求椭圆的方程;(Ⅱ)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点.若坐标原点O在以MN为直径的圆上,且,求k的取值范围.21.已知函数f(x)=e x-x2-1.(1)若函数g(x)=,x∈(0,+∞),求函数g(x)的极值;(2)若k∈Z,且f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,求k的最大值.22.在平面直角坐标系xOy中,曲线C1过点P(a,1),其参数方程为(t为参数,a∈R).以O为极点,x轴非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.(Ⅰ)求曲线C1的普通方程和曲线C2的直角坐标方程;(Ⅱ)已知曲线C1与曲线C2交于A,B两点,且||=2||,求实数a的值.23.已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.(Ⅰ)解关于x的不等式g(x)≥f(x)-|x-1|;(Ⅱ)如果对∀x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求实数c的取值范围.-------- 答案与解析 --------1.答案:C解析:解:由题设(1-i)z=1+i得z==故选:C.由复数的除法进行变行即可求出复数的除法与乘法是复数的基本运算2.答案:B解析:解:∵A={0,1,2},B={2,3},∴A∪B={0,1,2,3}.故选:B.可以求出集合A,然后进行并集的运算即可.考查描述法、列举法的定义,以及并集的运算.3.答案:A解析:解:向量=(1,1),=(-1,3),=(2,x)满足(3+)•=10,可得(2,6)•(2,x)=10,可得4+6x=10,解得x=1.故选:A.利用向量的坐标运算以及数量积的运算法则化简求解即可.本题考查向量的坐标运算,向量的数量积的应用,考查计算能力.4.答案:A解析:【分析】本题主要考查两角差的和的正切公式的应用,属于基础题.由题意利用两角差的和的正切公式,求得tan()=tan[(α+)+]的值.【解答】解:∵tan(α+)=-2,∴tan()=tan[(α+)+]===-,故选:A.5.答案:B解析:解:数列的前15项为2,3,3,4,6,4,5,10,10,5,6,15,20,15,6,可得此数列的前15项和为2+3+3+4+6+4+5+10+10+5+6+15+20+15+6=4-2+8-2+16-2+32-2+64-2=(4+8+16+32+64)-10=114.故选:B.由题意写出数列的前15项计算可得所求和.本题考查数列在实际问题中的运用,考查数列的求和,以及运算能力,属于基础题.6.答案:A解析:解:∵2m+n=1,则+=(+)(2m+n)=3+,当且仅当时取等号,即最小值3+2,故选:A.由题意可得,+=(+)(2m+n),展开后利用基本不等式可求.本题主要考查了利用基本不等式求解最值,解题的关键是对应用条件的配凑.7.答案:B解析:解:∵ln(1+)=ln=ln(i+1)-ln i,∴i=1时,S=ln2-ln1=ln2,i=2时,S=ln2+ln3-ln2=ln3,i=3时,S=ln3+ln4-ln3=ln4,i=4,S=ln4+ln5-ln4=ln5,此时i=5不满足条件,输出S=ln5,即条件为i≤4?,故选:B.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和判断,利用条件进行模拟运算是解决本题的关键.8.答案:B解析:【分析】求出P到平面ABC的距离,AC为截面圆的直径,由勾股定理可得R2=()2+d2=()2+(-d)2,求出R,即可求出球的表面积.本题考查球的表面积,考查学生的计算能力,求出球的半径是关键.属于中档题.【解答】解:由题意,AC为截面圆的直径,AC==,设球心到平面ABC的距离为d,球的半径为R,∵PA=PB=1,AB=,∴PA⊥PB,∵平面PAB⊥平面ABC,∴P到平面ABC的距离为.由勾股定理可得R2=()2+d2=()2+(-d)2,∴d=0,R2=,∴球的表面积为4πR2=3π.故选:B.9.答案:D解析:解:①中线段为虚线,②正确,③中线段为实线,④正确,故选:D.根据空间几何体的三视图的画法结合正方体判断分析.本题考查了空间几何体的三视图的画法,属于中档题,空间想象能力.10.答案:C解析:解:当x=0时,y=0-2sin0=0故函数图象过原点,可排除A又∵y'=故函数的单调区间呈周期性变化分析四个答案,只有C满足要求故选:C.根据函数的解析式,我们根据定义在R上的奇函数图象必要原点可以排除A,再求出其导函数,根据函数的单调区间呈周期性变化,分析四个答案,即可找到满足条件的结论.本题考查的知识点是函数的图象,在分析非基本函数图象的形状时,特殊点、单调性、奇偶性是我们经常用的方法.11.答案:A解析:【分析】根据抛物线和双曲线有相同的焦点求得p和c的关系,根据抛物线的定义可以求出P的坐标,代入双曲线方程与p=2c,b2=c2-a2,联立求得a和c的关系式,然后求得离心率e.本题主要考查了双曲线,抛物线的简单性质.考查了学生综合分析问题和基本的运算能力.解答关键是利用性质列出方程组.【解答】解:∵抛物线y2=8x的焦点坐标F(2,0),p=4,∵抛物线的焦点和双曲线的焦点相同,∴p=2c,c=2,∵设P(m,n),由抛物线定义知:|PF|=m+=m+2=5,∴m=3.∴P点的坐标为(3,),∴,解得:,c=2,则双曲线的离心率为2,故选:A.12.答案:C解析:解:f(x)=ln x-ax2,可得f′(x)=-2ax,①a≤0时,f′(x)>0函数是增函数,不可能有两个零点,②0<a时,令f′(x)=-2ax=0,解得x=,当0时,f′(x)>0函数是增函数,当x>时,f′(x)<0函数是减函数,f(x)的最大值为:f()=ln-a()2=-,f(x)恰有两个不同的零点,当x→0+时,f(x)→-∞,当x→+∞时,f(x)→-∞,所以->0,解得a∈(0,).故选:C.利用函数的导数,求解函数的最大值大于0,结合函数的单调性,判断零点的个数即可.本题考查函数的零点问题,渗透了转化思想,分类讨论思想的应用,是一道难题.13.答案:-2解析:解:由x,y满足约束条件作出可行域如图,化目标函数z=x-2y为y=x-.联立,解得:C(0,1).由图可知,当直线y=x-过C(0,1)时直线在y轴上的截距最大,z有最小值,等于0-2×1=-2.故答案为:-2.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.14.答案:解析:解:∵8a2-a5=0,∴q3==8,∴q=2,则==,故答案为:.由已知结合等比数列的性质可求q3=,进而可求q,然后结合等比数列的求和公式,代入即可求解.本题主要考查了等比数列的性质及求和公式的简单应用,属于基础试题.15.答案:-26解析:解:由(1-x)6的展开式的通项得:T r+1=(-x)r,则(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,故答案为:-26.由二项式定理及二项式展开式的通项公式得:(1+)(1-x)6展开式中x3的系数为(-1)3+(-1)5=-26,得解.本题考查了二项式定理、二项式展开式的通项公式及分类讨论思想,属中档题.16.答案:e2解析:解:根据题意,曲线y=2ln x,其导数y′=,则x=e2处的切线的斜率k=y′=,则切线的方程为y-4=(x-e2),即y=x+2,x=0,y=2,切线与y轴的交点坐标为(0,2),y=0,x=-e2,切线与y轴的交点坐标为(-e2,0),则切线与坐标轴所围三角形的面积S=×2×|-e2|=e2;故答案为:e2根据题意,求出y=2ln x的导数,由导数的几何意义可得切线的斜率k=y′=,进而可得切线的方程,求出切线与x轴、y轴交点的坐标,由三角形面积公式计算可得答案.本题考查利用导数计算曲线的切线方程,关键是掌握导数的几何意义.17.答案:解:(Ⅰ)△ABC中,(a+b+c)(a+b-c)=3ab,∴a2+b2-c2=ab,由余弦定理得,cos C==;又∵C∈(0,π),∴C=;(Ⅱ)由c=2,C=,根据正弦定理得,====,∴a+b=(sin A+sin B)=[sin A+sin(-A)]=2sin A+2cos A=4sin(A+);又∵△ABC为锐角三角形,∴,解得<A<;∴<A+<,∴2<4sin(A+)≤4,综上,a+b的取值范围是(2,4].解析:(Ⅰ)化简(a+b+c)(a+b-c)=3ab,利用余弦定理求得C的值;(Ⅱ)由正弦定理求出a+b的解析式,利用三角恒等变换化简,根据题意求出A的取值范围,从而求出a+b的取值范围.本题考查了三角恒等变换与正弦、余弦定理的应用问题,是中档题.18.答案:解:(Ⅰ)绘出y关于x的散点图,如图所示;由散点图可知,y=ce dx更适合作为该种细菌的繁殖数量y关于x的回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,即k=dx+ln c,由d==≈0.183≈0.2,ln c=3.8-0.183×18≈0.5.∴ln y=0.2x+0.5,则y关于x的回归方程为y=e0.5•e0.2x;(Ⅲ)当x=25时,计算可得y=e0.5•e5=e5.5≈245;即温度为25℃时,该种细菌的繁殖数量的预报值为245.解析:(Ⅰ)绘出y关于x的散点图,由散点图判断y=ce dx更适合作为回归方程类型;(Ⅱ)把y=ce dx两边取自然对数,得ln y=dx+ln c,求出回归系数,写出回归方程;(Ⅲ)利用回归方程计算x=25时y的值即可.本题考查了线性回归方程的应用问题,也考查了数学转化思想与计算能力,是中档题.19.答案:证明:(Ⅰ)证法一:过E作EO⊥BC,垂足为O,连OF.由△ABC≌△DBC可证出△EOC≌△FOC.所以∠EOC=∠FOC=,即FO⊥BC.又EO⊥BC,∴BC⊥平面EFO,又EF⊂平面EFO,∴EF⊥BC.证法二:由题意,以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y 轴,在平面ABC内过B作垂直BC的直线为z轴,建立如图所示空间直角坐标系.则B(0,0,0),A(0,-1,),D(,-1,0),C(0,2,0).E(0,,),F(,,0),∴=(,0,-),=(0,2,0),∴•=0.∴EF⊥BC.(2)解:解法一:过O作OG⊥BF,垂足为G,连EG.由平面ABC⊥平面BDC,从而EO⊥平面BDC,又OG⊥BF,由三垂线定理知EG⊥BF.∴∠EGO为二面角E-BF-C的平面角.在△EOC中,EO=EC=BC•cos30°=,由△BGO∽△BFC知,OG=•FC=,∴tan∠EGO==2,∴cos∠EGO=,即二面角E-BF-C的余弦值为.解法二:在图中,平面BFC的一个法向量为=(0,0,1).设平面BEF的法向量为=(x,y,z),又=(,,0),=(0,,).,取x=1,得=(1,-,1).设二面角E-BF-C的大小为θ,且由题意知θ为锐角,则cos θ=|cos<>=||==,故.二面角E-BF-C的余弦值为.解析:(Ⅰ)法一:过E作EO⊥BC,垂足为O,连OF.证出△EOC≌△FOC.从而FO⊥BC.又EO⊥BC,进而BC⊥平面EFO,由此能证明EF⊥BC.法二:以B为坐标原点,在平面DBC内过B作垂直BC的直线为x轴,BC所在直线为y轴,在平面ABC内过B作垂直BC的直线为z轴,建立空间直角坐标系.利用向量法能证明EF⊥BC.(2)法一:过O作OG⊥BF,垂足为G,连EG.由三垂线定理知EG⊥BF.∠EGO为二面角E-BF-C 的平面角.由此能求出二面角E-BF-C的余弦值.法二:求出平面BFC的一个法向量和平面BEF的法向量,利用向量法能求出二面角E-BF-C的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.20.答案:解:(Ⅰ)由题意得,得.(2分)结合a2=b2+c2,解得a2=12,b2=3.(3分)所以,椭圆的方程为.(4分)(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,(6分)依题意,OM⊥ON,易知,四边形OMF2N为平行四边形,所以AF2⊥BF2,(7分)因为,,所以.(8分)即,(9分)将其整理为k2=-=-1-(10分)因为,所以,12≤a2<18.(11分)所以,即.(13分)解析:(Ⅰ)由题意得,得,由此能求出椭圆的方程.(Ⅱ)由得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2).所以,依题意OM⊥ON知,四边形OMF2N为矩形,所以AF2⊥BF2,因为,,所以.由此能求出k的取值范围.本题考查椭圆方程的求法和直线与椭圆位置关系的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.21.答案:解:(1)函数f(x)=e x-x2-1,则f′(x)=e x-2x,又g(x)=,x∈(0,+∞),则g′(x)==;设y=e x-x-1,则y′=e x-1>0在x∈(0,+∞)上恒成立,即y=e x-x-1在x>0时单调递增;所以y=e x-x-1>0;令g′(x)>0,可得x>1,令g′(x)<0,可得0<x<1;所以g(x)的单调增区间为(1,+∞),减区间为(0,1);所以函数g(x)的极小值为g(1)=e-2,无最大值;(2)不等式f(x)+(3x2+x-3k)≥0对任意x∈R恒成立,即为e x+x2+x--1≥0对任意x恒成立,即k≤e x+x2+x-对任意x∈R恒成立;设h(x)=e x+x2+x-,则h′(x)=e x+x+,易知h′(x)在R上单调递增,h′(-1)=-<0,h′(0)=>0,则存在唯一的x0∈(-1,0),使h′(x0)=0,即+x0+=0;当x<x0时,h′(x)<0,h(x)单调递减,当x>x0时,h′(x)>0,h(x)单调递增,所以h(x)min=h(x0)=++x0-;又h′(x0)=0,则h(x0)=(--x0)++x0-=(-x0-3),又x0∈(-1,0),则h(x0)∈(-1,-),即k≤e x+x2+x-对任意x∈R恒成立,所以k≤h(x0),由k max=-1,得出k的最大值为-1.解析:(1)根据题意,对函数g(x)=求导数,利用导数判断g(x)的单调性,并求g(x)的极值;(2)根据题意化为k≤e x+x2+x-对任意x∈R恒成立,构造函数,利用导数求该函数的最小值即可.本题考查了利用导数研究函数的单调性与极值问题,也考查了不等式恒成立问题,也考查了构造法与转化思想,是难题.22.答案:解:(I)∵曲线C1过点P(a,1),其参数方程为(t为参数,a∈R),∴曲线C1的普通方程为x-y-a+1=0,∵曲线C2的极坐标方程为ρcos2θ+4cosθ-ρ=0.∴曲线C2的极坐标方程为ρ2cos2θ+4ρcosθ-ρ2=0,∴x2+4x-x2-y2=0,即曲线C2的直角坐标方程为y2=4x.(说明:化简不对,但准确写出互化公式得1分)(2)设A、B两点所对应参数分别为t1,t2,联解,得,要有两个不同的交点,则,即a>0,由韦达定理有,∵||=2||,∴,或=-2,当时.根据直线参数方程的几何意义可知t1=2t2,,解得a=,a=,符合题意,∴实数a的值为.当时.根据直线参数方程的几何意义可知t1=-2t2,,解得a=,a=>0,符合题意,∴实数a的值为.综上,a的值为或.解析:(I)由曲线C1参数方程能求出曲线C1的普通方程;曲线C2的极坐标方程化为ρ2cos2θ+4ρcosθ-ρ2=0,由此能求出曲线C2的直角坐标方程.(2)设A、B两点所对应参数分别为t1,t2,联解,得,由此能求出实数a的值.本题考查极坐标方程化普通方程,韦达定理,直线参数方程的几何意义,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.23.答案:(本小题满分10分)选修4-5:不等式选讲解:(Ⅰ)∵函数f(x)和g(x)的图象关于原点对称,∴g(x)=-f(-x)=-(x2-2x),∴g(x)=-x2+2x,x∈R.∴原不等式可化为2x2-|x-1|≤0.上面不等价于下列二个不等式组:…①,或…②,由①得,而②无解.∴原不等式的解集为.…(5分)(Ⅱ)不等式g(x)+c≤f(x)-|x-1|可化为:c≤2x2-|x-1|.作出函数F(x)=2x2-|x-1|的图象(这里略).由此可得函数F(x)的最小值为,∴实数c的取值范围是.…(10分)解析:先将M,N化简,再计算交集或并集,得出正确选项本题考查二次函数图象与性质.。
2020年黑龙江省大庆一中高考数学三模试卷(理科) (解析版)
2020年黑龙江省大庆一中高考数学三模试卷(理科)一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.22.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.33.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.34.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.102410246.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.18.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.11.已知,则a4=()A.21B.42C.﹣35D.﹣21012.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.二、填空题(共4小题).13.已知实数x,y满足约束条件,则的取值范围为.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2<x<2},B={x|x2﹣x+m<0},若A∪B={x|﹣2<x<3},则实数m=()A.﹣6B.6C.5D.2【分析】推导出3是方程x2﹣x+m=0的一个根,从而32﹣3+m=0,由此能求出结果.解:∵集合A={x|﹣2<x<2},B={x|x2﹣x+m<8},A∪B={x|﹣2<x<3},所以32﹣3+m=0,解得m=﹣6,故选:A.2.已知(2+i)(a+i)=5+5i,则实数a=()A.0B.1C.2D.3【分析】利用复数代数形式的乘除运算化简等式左边,再由复数相等的条件列式求得a 值.解:∵(2+i)(a+i)=2a﹣1+(a+2)i=5+4i,∴,解得a=3,故选:D.3.已知双曲线与椭圆的焦点相同,则该双曲线的离心率为()A.B.C.D.3【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,然后求解a,即可求解双曲线的离心率.解:椭圆的焦点坐标为(2,4),(﹣2,0),所以4=a+a﹣2,解得a=5,离心率,故选:A.4.设f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递增,则()A.f(log23)<f(log32)<f(log2)B.f(log2)<f(log23)<f(log32)C.f(log2)<f(log32)<f(log23)D.f(log32)<f(log2)<f(log23)【分析】先判断括号内的大小关系,再借助于单调性即可得到结论.解:由题意知,函数f(x)在定义域R上单调递增,由可得,故选:C.5.为庆祝中华人民共和国成立70周年,2019年10月1日晚,金水桥南,百里长街成为舞台,3290名联欢群众演员跟着音乐的旋律,用手中不时变幻色彩的光影屏,流动着拼组出五星红旗、祖国万岁、长城等各式图案和文字.光影潋滟间,以《红旗颂》《我们走在大路上》《在希望的田野上》《领航新时代》四个章节,展现出中华民族从站起来、富起来到强起来的伟大飞跃.在每名演员的手中都有一块光影屏,每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,则每块屏可以表示出不同图案的个数为()A.2048B.21024C.10242D.10241024【分析】根据乘法原理解题.解:每块屏有1024颗灯珠,若每个灯珠的开、关各表示一个信息,根据乘法原理可得表示出不同图案的个数为2×2×…×2=21024,故选:B.6.已知等差数列{a n}中,a2=2,前5项的和S5满足15<S5<25,则公差d取值范围为()A.B.(1,4)C.(1,3)D.【分析】利用等差数列的求和公式、不等式的解法即可得出.解:∵S5=5a2+d=5a1+10d=2(2﹣d)+10d=10+5d,∴15<5d+10<25,解得1<d<3.故选:C.7.“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD中,△ABC满足“勾3股4弦5”,且AB=3,E为AD上一点,BE⊥AC.若=λ+μ,则λ+μ的值为()A.B.C.D.1【分析】建立平面直角坐标系,进而利用向量的坐标表示,设,由可得,再由,利用坐标表示建立方程组求解即可.解:由题意建立如图所示直角坐标系,,设,所以,解得.所以解得故选:B.8.执行如图所示的程序框图,则输出S的值为()A.0B.C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:由程序框图可知,n=1,;n=7;;n=5,,n=7,S=0;n=9,;所以周期为8,又2020=8×252+4,故选:D.9.在长方体ABCD﹣A1B1C1D1中,E,F,G分别为棱AA1,C1D1,DD1的中点,AB=AA1=2AD,则异面直线EF与BG所成角的大小为()A.30°B.60°C.90°D.120°【分析】建立平面直角坐标系,根据题意写出各点坐标,得出的坐标,代入数量积公式运算,可得两个向量互相垂直,进一步确定异面直线EF与BG所成角的大小.解:如图,以D为坐标原点,分别以,,的方向为x轴、y轴、z轴的正方向建立空间直角坐标系D﹣xyz,设AD=1,则E(1,0,1),F(0,2,2),G(0,0,1),B(1,4,0),,所以,故选:C.10.将函数的图象向左平移个单位长度,然后再将所得图象上所有点的横坐标扩大为原来的2倍(纵坐标不变),所得图象对应的函数解析式为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.解:将的图象向左平移个单位长度,得到的图象,然后横坐标扩大为原来的2倍(纵坐标不变),得到的图象,故选:D.11.已知,则a4=()A.21B.42C.﹣35D.﹣210【分析】先把原式化简,再根据二项式的特点,求解即可.解:因为,a4即为(x﹣1)7展开式中x4的系数,故选:C.12.已知函数f(x)=,若方程f(x)=mx+m﹣恰有四个不相等的实数根,则实数m的取值范围是()A.B.C.D.【分析】由题意,方程方程f(x)=mx+m﹣恰有四个不相等的实数根,等价于y=f (x)与y=mx+m﹣恰有4个交点,求出直线y=mx+m﹣与y=lnx相切时m的值及过原点时m的值,即可求出m的取值范围.解:画出函数f(x)的图象如图中实线部分所示,方程恰有四个不相等的实数根,而是斜率为m,过定点的直线,设切点坐标为(a,ln(a+1)),=,又点在切线上,代入可解得a=﹣2,当直线过原点,即图中l2,所以当时,两函数的图象有4个不同的交点.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.已知实数x,y满足约束条件,则的取值范围为.【分析】画出约束条件的可行域,利用目标函数的几何意义,转化求解即可.解:作出不等式组表示的可行域如图所示,表示可行域内的点与原点连线的斜率,,k OB=3,点B不在可行域内,故的取值范围为.故答案为:.14.已知函数f(x)=2sin2x+a sin2x的最大值为3,则实数a的值为±1.【分析】由已知利用二倍角的三角函数公式,两角和的正弦函数公式,正弦函数的性质即可求解.解:因为,其中,所以f(x)的最大值为,解得a=±1.故答案为:±1.15.记数列{a n}的前n项和为S n满足S n+1=4S n+2.且a1=2,b n=log2a n,则数列{b n}的前n 项和T n=n2.【分析】由S n+1=4S n+2,可得,当n≥2时,S n=4S n﹣1+2,两式相减可得a n+1=4a n(n ≥2).利用等比数列的通项公式可得a n,进而得出b n,利用等差数列的求和公式即可得出T n.解:由S n+1=4S n+2①可得,当n≥2时,S n=4S n﹣1+2②,①﹣②得S n+1﹣S n=4•(S n﹣S n﹣1),即a n+3=4a n(n≥2).又a1=5,所以a2=3S3+2=3a1+2=8,则a5=4a1,所以,b n=log3a n=2n﹣1,故答案为:n2.16.已知圆C:x2+y2+2(a﹣1)x﹣12y+2a2=0.当C的面积最大时,实数a的值为﹣1;若此时圆C关于直线:l2:mx+ny﹣6=0(m>0,n>0)对称,则的最大值为.【分析】化圆的方程为标准方程,求得圆的半径,利用二次函数求最值可得圆的半径的最大值,即可得到圆面积最大时的a值;再由圆心在直线上可得关于m与n的等式,然后利用基本不等式求最值.解:圆C:x2+y2+2(a﹣1)x﹣12y+8a2=0的方程可化为[x+(a﹣1)]2+(y﹣6)2=﹣a8﹣2a+37,当a=﹣1时,﹣a2﹣2a+37取得最大值38,此时圆C的半径最大,面积也最大;∵圆C关于直线l:mx+ny﹣6=0(m>0,n>8)对称,又m>0,n>0,当且仅当时,即时取等号,即的最大值为.故答案为:﹣1;.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在平面四边形ABCD中,∠BAD=60°,∠BCD=120°,AB=3,AD=2.(1)若CD=1,求BC;(2)求四边形ABCD面积的最大值.【分析】(1)在△ABD中,由余弦定理可求BD的值,再根据余弦定理即可求出BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.在△BCD中,由正弦定理可求BC,利用三角形面积公式,三角函数恒等变换的应用可求S△BCD=sin(2θ+30°)﹣,结合范围0°<θ<60°,利用正弦函数的性质可求S△BCD的最大值,即可求出四边形ABCD 面积的最大值.解:(1)在△ABD中,因为AB=3,AD=2,∠BAD=60°,则:BD8=AB2+AD2﹣2AB•AD•cos∠BAD=9+7﹣2×3×2×=2在△BCD中,因为BD=,CD=1,∠BCD=120°,即7=BC8+1+BC,(2)设∠CBD=θ,则∠CDB=60°﹣θ.所以S△BCD=BD•BC•sin∠CBD=sin(60°﹣θ)sinθ=(cosθ﹣sinθ)sinθ=(sin2θ+cos2θ﹣)=sin(7θ+30°)﹣,∴S△BCD≤,∴四边形ABCD面积的最大值为+=.18.如图,在四棱锥P﹣ABCD中,△ABD与△PBD都是边长为2的等边三角形,△BCD 为等腰直角三角形,∠BCD=90°,.(1)证明:BD⊥PA;(2)若M为PA的中点,求平面BMD与平面PBC所成锐二面角的余弦值.【分析】(1)取BD中点O,证明BD⊥平面POA,从而可得BD⊥PA;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小.【解答】(1)证明:设BD的中点为O,连接OP,OA.因为△ABD,△PBD为等边三角形,所以BD⊥AO,且BD⊥PO.所以BD⊥平面PAO,又PA⊂平面PAO,(2)解:因为△ABD,△PBD的边长为2,所以,又因为PO⊥BD,AO⊥BD,故OA,OB,OP两两垂直,则,,B(0,1,0),D(0,﹣1,8),C(﹣1,0,0),,设平面BMD的一个法向量为=(x1,y1,z1),则,设平面BMD的一个法向量为=(x2,y2,z2),则,∴cos<>===,所以平面BMD与平面PBC所成锐二面角的余弦值为.19.已知抛物线C:x2=4y,过点D(0,2)的直线l交C于A,B两点,过点A,B分别作C的切线,两切线相交于点P.(1)记直线PA,PB的斜率分别为k1,k2,证明k1,k2为定值;(2)记△PAB的面积为S△PAB,求S△PAB的最小值.【分析】(1)设A,B的坐标分别为,.利用抛物线方程求解函数的导数,设出直线方程与抛物线联立,利用韦达定理转化证明即可.(2)设P点坐标为(x,y),求出切线PA的方程,切线PB的方程,求出|AB|,点P 到直线AB的距表示三角形的面积,求解S△PAB的最小值.(1)证明:因为A,B两点在曲线x2=4y上,故设A,B的坐标分别为,【解答】.因为,所以,则,.所以,所以k1k2为定值.由(1)知切线PA的方程为①①﹣②得;①×x2﹣﹣②×x1得.由(1)知x=2k,y=﹣2,所以P点坐标为(2k,﹣2),因为点P到直线AB的距离.因为k2+3≥2,所以当k=0时,S△PAB的最小值为.20.甲、乙、丙三人参加竞答游戏,一轮三个题目,每人回答一题为体现公平,制定如下规则:①第一轮回答顺序为甲、乙、丙;第二轮回答顺序为乙、丙、甲;第三轮回答顺序为丙,甲、乙;第四轮回答顺序为甲、乙、丙;…,后面按此规律依次向下进行;②当一人回答不正确时,竞答结束,最后一个回答正确的人胜出.已知,每次甲回答正确的概率为,乙回答正确的概率为,丙回答正确的概率为,三个人回答每个问题相互独立.(1)求一轮中三人全回答正确的概率;(2)分别求甲在第一轮、第二轮、第三轮胜出的概率;(3)记P n为甲在第n轮胜出的概率,Q n为乙在第n轮胜出的概率,求P n与Q n,并比较P n与Q n的大小.【分析】(1)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(2)由题意,利用相互独立事件的概率乘法公式,计算求得结果.(3)先求出前7种情况,总结规律,得出结论.解:(1)设一轮中三人全回答正确为事件M,则.(2)甲在第一轮胜出的概率为;故甲在第二轮胜出的概率为×(××)×==;(3)由(2)知;=;P3=×=.….当n=3k+1(k∈N*)时,;同理可得,当n=3k(k∈N*)时,;当n=3k+2(k∈N*)时,.当n=3k+2(k∈N*)时,P n<Q n.21.已知函数f(x)=ae x(a∈R).(1)当a=1时,求函数f(x)的图象在点x=0处的切线方程;(2)若g(x)=ln(x+b),当a≥1,b≤2时,证明:f(x)>g(x).【分析】(1)代入a的值,求出f(0),f′(0),求出切线方程即可;(2)结合a,b的范围,问题转化为可证e x>ln(x+2)成立,设h(x)=e x﹣ln(x+2),根据函数的单调性证明即可.【解答】(1)解:当a=1时,f(x)=e x.因为f'(x)=e x,所以f'(0)=1,f(2)=1.即x﹣y+1=0.当b≤2时,ln(x+b)≤ln(x+2),设h(x)=e x﹣ln(x+2),则,又因为,,即.当x∈(x0,+∞)时,h'(x)>0.又因为,ln(x0+2)=﹣x0,所以当x∈(﹣2,+∞)时h(x)>0,即e x>ln(x+7).所以当a≥1,b≤2时,f(x)>g(x).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρsinθtanθ=2.(1)求曲线C1的普通方程与曲线C2的直角坐标方程;(2)若C1与C2交于M,N两点,点P的极坐标为,求|PM|2+|PN|2的值.【分析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系式的应用求出结果.解:(1)由曲线C1的参数方程消去参数t可得,曲线C1的普通方程为4x﹣3y﹣8=0.由x=ρcosθ,y=ρsinθ可得,曲线C2的直角坐标方程为y2=2x(x≠0).所以点P在曲线C1上.将曲线C6的参数方程(t为参数)代入y2=2x,设点M,N对应的参数分别为t1,t2,则,.所以.一、选择题23.已知函数f(x)=|x﹣1|﹣2|x+1|.(1)求不等式f(x)≤2的解集;(2)若关于x的不等式f(x)>|a+2|的解集不是空集,求实数a的取值范围.【分析】(1)根据f(x)≤2,利用零点分段法,求出不等式的解集即可;(2)问题转化为f(x)max>|a+2|,得到关于a的不等式,解出即可.解:(1)由题意得|x﹣1|﹣2|x+2|≤2.①当x≥1时,不等式|x﹣2|﹣2|x+1|≤2可化为x﹣1﹣2x﹣4≤2,解得x≥﹣5,所以x≥1.②当﹣1≤x<1时,不等式|x﹣1|﹣5|x+1|≤2可化为1﹣x﹣2x﹣2≤7,解得x≥﹣1,所以﹣1≤x<1.③当x<﹣1时,不等式|x﹣1|﹣2|x+3|≤2可化为1﹣x+2x+2≤2,解得x≤﹣2,所以x<﹣1.(2)由(1)知,对于任意x∈R,f(x)≤2,且当x=﹣1时取等号,关于x的不等式f(x)>|a+7|的解集不是空集,所以实数a的取值范围为(﹣4,0).。
2020年湖南省邵阳市高考数学第三次联考试卷(三模)(含答案解析)
2020年湖南省邵阳市高考数学第三次联考试卷(三模)一、选择题(本大题共12小题,共60.0分)1.复数z满足(l-i)z= |2+2i|,则z=()A.l-iB.1+ i CZ-回 D. ^2+yj2i2.设集合A=(%|x2<2%),B=(x|l<x<4),则AU B=()A.(一8,4)B.[0,4]C. (1,2]D.(1,+co)3.已知&是等差数列{%}的前项和,若ag.=S2ois=2015,则首项角=()A.2015B.-2015C.2013D. -20134.己知双的线。
§一荃=1的左、右焦点分别为F19F29P为C上一点,瓦6=亦・。
为坐标原点,若|PFJ=10,则\OQ\=()5.A.10 B.1或9执行如图所示的程序框图,若输出的S=A.i>2014B.i>2014c.i>2015D.i >2017026.函数了。
)=j的大致图象为()7.命题“任意向量a, b. \a^b\>\a\\b\"的否定为()A. 任意向量X E ,B. 存在向Ma. b.C. 任意向量,D. 存在向量由正\a b\ > |a||b|\a-b\> |a || b||a-b| > |a||b||淑引 < |a||b|8.己知函数/(对=也云,若f (々)= b・则f (一。
)等于()AM B. -b C. | D •-匕o b 9.己知正四面体的棱长为2,则它的外接球的表面枳为()A.顼yrB. 2>/3nC. 3jtD. 6兀10.某学校需要把6名实习老师安排到A, B, C 三个班级去听课,每个班级安排2名老师,已知甲不能安排到A 班,乙和丙不能安排到同一班级,则安排方案的种数有()A. 24B. 36C. 48D. 7211. 旦、旦是椭圆W + S=l (a>b>0)的左,右焦点,8是该椭圆短轴的一个端点.直线BF ]与椭圆C 交于点A,若\AB\.届F2I ,|4月I 成等差数列,则该怖圆的离心率为A 上B.爽C.| D .竺4 2 2 212. 己知函数/•(》)=伫;2 _心 x <o >Q 若方程/\x )=x + a 有2个不同的实根,则实数〃的取值范围是()A.(a|0<a<1>1}B.{a|a>1)C. {a|a=—1或。
2020年高考模拟山西省临汾市高考数学第三次模拟试卷(理科) 含解析
2020年高考模拟高考数学第三次模拟试卷(理科)一、选择题1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx04.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+188.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4] 10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+112.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是.(把你认为正确命题的序号都填上)三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;(2)我们知道抛物线有性质:“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.参考答案一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},则A∩B=()A.[﹣1,0]B.[﹣1,2]C.[0,1]D.(﹣∞,1]∪[2,+∞)【分析】求出集合A,B,由此能求出A∩B.解:∵函数f(x)=x2﹣2x,集合A={x|f(x)≤0},B={x|f'(x)≤0},∴A={x|x2﹣2x≤0}={x|0≤x≤2},B={2x﹣2≤0}={x|x≤1},∴A∩B={x|0≤x≤1}.故选:C.2.设i是虚数单位,若复数z=1+i,则+z2=()A.1+i B.1﹣i C.﹣1﹣i D.﹣1+i【分析】根据复数的基本运算法则进行化简即可.解:复数z=1+i,|z|=,z2=(1+i)2=2i,则+z2===1﹣i+2i=1+i故选:A.3.命题“∀x∈(0,1),e﹣x>lnx”的否定是()A.∀x∈(0,1),e﹣x≤lnxB.∃x0∈(0,1),e>lnx0C.∃x0∈(0,1),e<lnx0D.∃x0∈(0,1),e≤lnx0【分析】根据全称量词命题的否定是存在量词命题,写出即可.解:全称量词命题的否定是存在量词命题,所以命题“∀x∈(0,1),e﹣x>lnx”的否定是:“∃x∈(0,1),e﹣x≤lnx”.故选:D.4.已知||=,||=2,若⊥(﹣),则向量+在向量方向的投影为()A.B.C.﹣D.﹣【分析】运用向量垂直的条件:数量积为0,以及向量的平方即为模的平方,和向量投影的概念,计算即可得到所求值.解:||=,||=2,若⊥(﹣),则•(﹣)=0,即为•=2=3,(+)•=•+2=3+4=7,则向量+在向量方向的投影为=.故选:B.5.在三角形ABC中,“sin A>sin B”是“tan A>tan B”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【分析】根据充分条件和必要条件的定义分别进行判断即可.解:sin A>sin B⇔a>b⇔π>A>B>0,∵π>A>B>0推不出tan A>tan B,tan A>tan B推不出π>A>B>0,∴“sin A>sin B”是“tan A>tan B”的既不充分也不必要条件.故选:D.6.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.B.6C.D.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算变量n×S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解:执行程序框图,可得S=0,n=2,满足条件,S=,n=4,满足条件,S==,n=6,满足条件,S=+=,n=8,由题意,此时应该不满足条件,退出循环,输出S的值为=.故选:D.7.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积为()A.24π+9B.48π+9C.48π+18D.144π+18【分析】首先把三视图转换为几何体,进一步求出几何体的体积.解:由已知中的三视图知圆锥底面半径为,圆锥的高h=,圆锥母线l=,截去的底面弧的圆心角为120°,底面剩余部分的面积为S==,故几何体的体积为:V=,故选:C.8.函数y=cos2x﹣sin2x(x∈[0,])的单调递增区间是()A.[0,]B.[0,]C.[,]D.[,]【分析】利用辅助角公式进行转化,结合三角函数的单调性进行求解即可.解:因为y=cos2x﹣sin2x=2cos(2x+),由2kπ﹣π≤2x+≤2kπ,k∈Z,解得2kπ﹣≤2x≤2kπ﹣,k∈Z,即kπ﹣≤x≤kπ﹣,k∈Z,即函数的增区间为[kπ﹣,kπ﹣],k∈Z,所以当k=1时,增区间为[,],∵x∈[0,],∴增区间为[,],故选:D.9.在平面直角坐标系中,若不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,则实数m的取值范围为()A.(﹣∞,﹣]B.(﹣∞,﹣]C.[4,+∞)D.(﹣∞,﹣4]【分析】作出不等式组对应的平面区域,根据线性规划的知识,结合直线斜率与区域的关系进行求解即解:作出不等式对应的平面区域,如图所示:其中A(2,6),直线x+my+1=0过定点D(﹣1,0),当m=0时,不等式x+1≤0表示直线x+1=0及其左边的区域,不满足题意;当m>0时,直线x+my+1=0斜率﹣<0,不等式x+my+1≤0表示直线x+my+1=0下方的区域,不满足题意;当m<0时,直线x+my+1=0的斜率﹣>0,不等式x+my+1≤0表示直线x+my+1=0上方的区域,要使不等式组所表示的平面区域内存在点(x0,y0),使不等式x0+my0+1≤0成立,只需直线x+my+1=0的斜率﹣≤K AD=2,解得m.综上可得实数m的取值范围为(﹣∞,﹣],故选:B.10.已知函数f(x)=e x﹣1+x﹣2的零点为m,若存在实数n使x2﹣ax﹣a+3=0且|m﹣n|≤1,则实数a的取值范围是()A.[2,4]B.[2,]C.[,3]D.[2,3]【分析】先对函数f(x)求导,然后结合导数与函数的性质可求m,代入不等式可求n 的范围,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,分离参数后结合对勾函数的性质可求.解:因为f(x)=e x﹣1+x﹣2,且f(1)=0,所以函数f′(x)=e x﹣1+x﹣2单调递增且有唯一的零点为m=1,所以|1﹣n|≤1,∴0≤n≤2,问题转化为:使方程x2﹣ax﹣a+3=0在区间[0,2]上有解,即a===x+1+﹣2,在区间[0,2]上有解,而根据“对勾函数”可知函数y=x+1+﹣2,在区间[0,2]的值域为[2,3],∴2≤a≤3,故选:D.11.已知双曲线E:﹣=1(a>0,b>0)满足以下条件:①双曲线E的右焦点与抛物线y2=4x的焦点F重合;②双曲线E与过点P(4,2)的幂函数f(x)=x a的图象交于点Q,且该幂函数在点Q处的切线过点F关于原点的对称点.则双曲线的离心率是()A.B.C.D.+1【分析】先根据导函数的几何意义求出点Q的坐标,再代入双曲线方程结合c=1,c2=a2+b2,从而求出离心率.解:依题意可得,抛物线y2=4x的焦点为F(1,0),F关于原点的对称点(﹣1,0),∵2=4α,,所以,f'(x)=,设Q,则,解得x0=1,∴Q(1,1),可得,又c=1,c2=a2+b2,可解得a=,故双曲线的离心率是,故选:B.12.已知函数f(x)=xe1﹣x,若对于任意的x0∈(0,e],函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,则实数a的取值范围为()A.(1,e]B.(e﹣,e]C.(e﹣,e+]D.(1,e﹣]【分析】函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.利用导数可得,当x∈(0,e],0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,分析知F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,可得当x∈(0,x1)时,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F(x)在(x1,e)上是减函数.结合∀x0∈(0,e],方程lnx ﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,得F(x)max=F(x1)>1,且F(e)≤0.由此求得1<a<2e.解:函数g(x)=lnx﹣x2+ax﹣f(x0)+1在(0,e]内都有两个不同的零点,等价于方程lnx﹣x2+ax+1=f(x0)在(0,e]内都有两个不同的根.f′(x)=e1﹣x﹣xe1﹣x=(1﹣x)e1﹣x,∴当x∈(0,1)时,f′(x)>0,f(x)是增函数;当x∈(1,e]时,f′(x)<0,f(x)是减函数,因此0<f(x)≤1.设F(x)=lnx﹣x2+ax+1,F′(x)=,若F′(x)=0在(0,e)上无解,则F(x)在(0,e]上是单调函数,不合题意;F′(x)=0在(0,e)有解,且易知只能有一个解.设其解为x1,当x∈(0,x1)时,F′(x)>0,F(x)在(0,x1)上是增函数;当x∈(x1,e)时,F′(x)<0,F(x)在(x1,e)上是减函数.∵∀x0∈(0,e],方程lnx﹣x2+ax+1=f(x0)在(0,e]内有两个不同的根,∴F(x)max =F(x1)>1,且F(e)≤0.由F(e)≤0,即lne﹣e2+ae+1≤0,解得a≤e﹣.由F(x)max=F(x1)>1,即>1,∴>0.∵,∴,代入>0,得>0.设m(x)=lnx+x2﹣1,m′(x)=>0,∴m(x)在(0,e)上是增函数,而m(1)=ln1+1﹣1=0,由>0,可得m(x1)>m(1),得1<x1<e.由在(1,e)上是增函数,得1<a<2e.综上所述1<a≤e﹣,故选:D.二、填空题(共4小题,每小题5分,共20分.将答案填在题中的横线上.)13.(1﹣2x)(1+x)6的展开式中x2的系数为3.【分析】由二项式定理及展开式的通项公式即可求解.解:由(1﹣x)6展开式的通项为:T r+1=(﹣1)r x r;得(1﹣2x)(1+x)6的展开式中x2的系数为+(﹣2)=3.故答案为:3.14.我国著名的数学家秦九韶在《数书九章》提出了“三斜求积术”.他把三角形的三条边分别称为小斜、中斜和大斜.三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个数,相减后余数被4除,所得的数作为“实”,1作为“隅”,开平方后即得面积.所谓“实”、“隅”指的是在方程px2=q中,p为“隅”,q为“实”.即若△ABC的大斜、中斜、小斜分别为a,b,c,则S2=[a2c2﹣()2].已知点D是△ABC 边AB上一点,AC=3,BC=2,∠ACD=45°,tan∠BCD=,则△ABC的面积为.【分析】由已知结合两角和的三角公式及同角平方关系可求cos∠ACB,然后结合余弦定理可求AB,代入已知公式即可求解.解:因为tan∠ACB=tan(∠ACD+∠BCD)==﹣,所以cos∠ACB=﹣,由余弦定理可知AB2=AC2+BC2﹣2AC•BC cos∠ACB,==16,即AB=4,根据“三斜求积术”可得S2==,所以S=.故答案为:15.过直线y=kx+7上一动点M(x,y)向圆C:x2+y2+2y=0引两条切线MA,MB,切点为A,B,若k∈[1,4],则四边形MACB的最小面积S∈[,]的概率为【分析】求出圆的圆心与半径,利用四边形面积的最小值求出MC的最小值,利用点到直线的距离求解即可.解:连接MC,由圆的切线性质可知,AC⊥MA,BC⊥MB,又因为圆C:x2+y2+2y=0的圆心C(0,﹣1),半径r=1,所以S MACB=2△MAC=2×=MA=,要使得四边形MACB的面积最小,则MC最小,即当CM垂直直线y=kx+7时,满足题意,此时|MC|min=,S MACB的最小值为,又因为1≤k≤4,解可得,,故所求的概率为:.故答案为:.16.三棱锥S﹣ABC中,点P是Rt△ABC斜边AB上一点.给出下列四个命题:①若SA⊥平面ABC,则三棱锥S﹣ABC的四个面都是直角三角形;②若AC=4,BC=4,SC=4,SC⊥平面ABC,则三棱锥S﹣ABC的外接球体积为32;③若AC=3,BC=4,SC=,S在平面ABC上的射影是△ABC内心,则三棱锥S﹣ABC的体积为2;④若AC=3,BC=4,SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的最大角为60°.其中正确命题的序号是①②③.(把你认为正确命题的序号都填上)【分析】①由线面垂直的判定定理与性质定理即可判断;②三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,进而求出外接球的半径,即可得解;③由线面垂直的判定定理可知SO⊥平面ABC,所以SO⊥OC,再结合勾股定理以及内切圆的半径公式可求得SO=1,最后利用三棱锥的体积公式即可得解;④因为SA⊥平面ABC,所以直线PS与平面SBC所成的角最大时,P点与A点重合,再在△SCA中,求出tan∠ASC即可得解.解:对于①,因为SA⊥平面ABC,所以SA⊥AC,SA⊥AB,SA⊥BC,又BC⊥AC,所以BC⊥平面SAC,所以BC⊥SC,故四个面都是直角三角形,∴①正确;对于②,若AC=4,BC=4,SC=4,SC⊥平面ABC,∴三棱锥S﹣ABC的外接球可以看作棱长为4的正方体的外接球,∴,,∴体积为,∴②正确;对于③,设△ABC内心是O,则SO⊥平面ABC,连接OC,则有SO2+OC2=SC2,又内切圆半径,所以,SO2=SC2﹣OC2=3﹣2=1,故SO=1,∴三棱锥S﹣ABC的体积为,∴③正确;对于④,若SA=3,SA⊥平面ABC,则直线PS与平面SBC所成的角最大时,P点与A 点重合,在Rt△SCA中,,∴∠ASC=45°,即直线PS与平面SBC所成的最大角为45°,∴④不正确,故答案为:①②③.三、解答题(共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知等差数列{a n}的前n项和为S n,且满足a4+a6=18,S11=121.(1)求数列{a n}的通项公式;(2)设b n=(a n+3)2n,数列{b n}的前n项和为T n,求T n.【分析】(1)设数列{a n}的公差为d,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求通项公式;(2)求得b n=(n+1)•2n+1,运用数列的错位相减法求和,结合等比数列的求和公式,化简可得所求和.解:(1)设数列{a n}的公差为d,a4+a6=18,可得2a1+8d=18,即a1+4d=9,S11=121,可得11a1+×11×10d=121,即a1+5d=11,解得a1=1,d=2,可得a n=1+2(n﹣1)=2n﹣1;(2)由(1)可知b n=(a n+3)2n=(n+1)•2n+1,数列{b n}的前n项和为T n=2•22+3•23+…+(n+1)•2n+1,2T n=2•23+3•24+…+(n+1)•2n+2,两式作差,得﹣T n=8+23+24+…+2n+1﹣(n+1)•2n+2=8+﹣(n+1)•2n+2,化简可得T n=n•2n+2.18.某小学为了了解该校学生课外阅读的情况,在该校三年级学生中随机抽取了50名男生和50名女生进行调查,得到他们在过去一整年内各自课外阅读的书数(本),并根据统计结果绘制出如图所示的频率分布直方图.如果某学生在过去一整年内课外阅读的书数(本)不低于90本,则称该学生为“书虫”.(1)根据频率分布直方图填写下面2×2列联表,并据此资料,在犯错误的概率不超过5%的前提下,你是否认为“书虫”与性别有关?男生女生总计书虫非书虫总计附:K2=P(k2≥k)0.250.150.100.050.025k 1.323 2.072 2.706 3.814 5.024(2)从所抽取的50名女生中随机抽取两名,记“书虫”的人数为X,求X的分布列和数学期望.【分析】(1)由已知可得列联表,利用K2计算公式即可得出.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,利用超几何分布列计算公式即可得出.解:(1)由频率分布直方图可得,男生书虫、非书虫的人数分别为12,38,女生书虫、非书虫的人数分别为4,46,故得如下2×2列联表:男生女生总计书虫12416非书虫384684总计5050100根据列联表中数据可得:K2==4.762.由于4.762>3.841,所以在犯错误的概率不超过5%的前提下,可以认为“书虫”与性别有关.(2)由频率分布直方图可得女生“书虫”的人数为4,X的所有可能取值为0,1,2,则P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为X012PX的数学期望为E(X)=0×+1×+2×=.19.如图,己知边长为2的正三角形ABE所在的平面与菱形ABCD所在的平面垂直,且∠DAB=60°,点F是BC的中点.(1)求证:BD⊥EF;(2)求二面角E﹣DF﹣B的余弦值.【分析】(1)取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.EO⊥平面ABCD.EO ⊥BD,由四边形ABCD为菱形,得BD⊥AC,BD⊥OF,由此能证明BD⊥平面EOF.从而BD⊥EF.(2)连结DO,由题意知EO⊥AB,DO⊥AB.推导出DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.利用向量法能求出二面角E﹣DF﹣B的余弦值.解:(1)证明:取AB的中点O,连结EO,OF,AC,由题意知EO⊥AB.又因为平面ABCD⊥平面ABE,所以EO⊥平面ABCD.因为BD⊂平面ABCD,所以EO⊥BD,因为四边形ABCD为菱形,所以BD⊥AC,又因为OF∥AC,所以BD⊥OF,所以BD⊥平面EOF.又EF⊂平面EOF,所以BD⊥EF.(2)解:连结DO,由题意知EO⊥AB,DO⊥AB.又因为平面ABCD⊥平面ABE,所以DO⊥平面ABE,以O为原点,建立如图所示的空间直角坐标系O﹣xyz.则O(0,0,0),E(,0,0),D(0,0,),F(0,,),B(0,1,0),=(,0,﹣),=(0,).设平面DEF的一个法向量为=(x,y,z),则,令x=1,所以=(1,,1).又由(1)可知EO⊥平面ABCD,所以平面DFB的一个法向量为=(1,0,0),设二面角E﹣DF﹣B的平面角为θ,则cosθ==.20.已知F1,F2为椭圆E:+=1(a>b>0)的左、右焦点,点P(1,)在椭圆上,且过点F2的直线l交椭圆于A,B两点,△AF1B的周长为8.(1)求椭圆E的方程;“过抛物线y2=2px(p>0)的焦点为F的弦AB满足|AF|+|BF|(2)我们知道抛物线有性质:=|AF|•|BF|.”那么对于椭圆E,问否存在实数λ,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立,若存在求出λ的值;若不存在,请说明理由.【分析】(1)利用椭圆的定义,结合三角形的周长,求出a,设出椭圆方程,代入点的坐标求解即可点的椭圆方程.(2)求出F2(1,0),设直线l的方程为x=my+1,与椭圆方程联立,消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),利用韦达定理,不妨设y1>0,y2<0,求出|AF2|,|BF2|,通过,转化求解,推出|AF2|+|BF2|=|AF2|•|BF2|,点的存在实数.解:(1)根据椭圆的定义,可得|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,△AF1B的周长为4a=8,得a=2,所以,椭圆E的方程为:+=1,将点P(1,)代入椭圆E的方程可得b=,所以椭圆E的方程为+=1.(2)由(1)可知c==1,得F2(1,0),依题意可知直线l的斜率不为0,故可设直线l的方程为x=my+1,由消去x,整理得(3m2+4)y2+6my﹣9=0,设A(x1,y1),B(x2,y2),则y1+y2=,,不妨设y1>0,y2<0,|AF2|===,同理|BF2|=,所以===•=,即|AF2|+|BF2|=|AF2|•|BF2|,所以存在实数,使得|AF2|+|BF2|=λ|AF2|•|BF2|成立.21.已知函数f(x)=e x﹣2+1.(1)求函数f(2x)在x=1处的切线方程;(2)若不等式f(x+y)+f(x﹣y)≥mx对任意的x∈[0,+∞),y∈[0,+∞)都成立,求实数m的取值范围.【分析】(1)利用导数的几何意义即可求解;(2))根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y ﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,利用基本不等式得到对x∈(0,+∞)恒成立,令h(x)=,利用导数得到当x=2 时,h(x)取得最小值,为h(2)=,所以m≤2,从而求得实数m的取值范围.解:(1)设t(x)=f(2x)=e2x﹣2+1,则t'(x)=2e2x﹣2,当x=1时,t(1)=2,t'(1)=2,∴函数f(2x)在x=1 处的切线方程为:y﹣2=2(x﹣1),即2x﹣y=0;(2)根据题意可得e x+y﹣2+e x﹣y﹣2+2≥mx,对任意的x∈[0,+∞),y∈[0,+∞)都成立,当x=0时,不等式即为e x+y﹣2+e x﹣y﹣2+2≥0,显然成立,当x>0时,设g(x)=e x+y﹣2+e x﹣y﹣2+2,则不等式e x+y﹣2+e x﹣y﹣2+2≥mx恒成立,即为不等式g(x)≥mx恒成立,∵g(x)=e x+y﹣2+e x﹣y﹣2+2=e x﹣2(e y+e﹣y)+2(当且仅当y=0时取等号),∴由题意可得2e x﹣2+2≥mx,即有对x∈(0,+∞)恒成立,令h(x)=,则h'(x)=2×=2×,令h'(x)=0,即有(x﹣1)e x﹣2=1,令m(x)=(x﹣1)e x﹣2,则m'(x)=e x﹣2+(x ﹣1)e x﹣2=xe x﹣2,当x>0 时,m'(x)=xe x﹣2>0,∴m(x)在(0,+∞)上单调递增,又∵m(2)=(2﹣1)e2﹣2=1,∴(x﹣1)e x﹣2=1有且仅有一个根x=2,当x∈(2,+∞)时,h'(x)>0,h(x)单调递增,当x∈(0,2)时,h'(x)<0,h (x)单调递减,∴当x=2 时,h(x)取得最小值,为h(2)=,∴m≤2,∴实数m的取值范围(﹣∞,2].请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.作答时请写清题号.[选修4-4坐标系与参数方程]22.在直角坐标系xOy中,直线l的参数方程为(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=cos().(Ⅰ)求直线l的普通方程,并把圆C的方程化为直角坐标方程;(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|.【分析】(Ⅰ)直接利用转换关系把参数方程直角坐标方程和极坐标方程之间进行转换.(Ⅱ)利用点到直线的距离公式的应用求出结果.解:(Ⅰ)直线l的参数方程为(t为参数).转换为直角坐标方程为:.圆C的极坐标方程为ρ=cos().转换为直角坐标方程为:.(Ⅱ)由于:直线l与圆C相交于A,B两点,故:圆心()到直线的距离d=,则:=.[选修4-5不等式选讲]23.已知函数f(x)=|x+2|.(1)求不等式f(2x)﹣f(x﹣4)>2的解集;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,求实数a的取值范围.【分析】(1))利用函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,分段解不等式f(2x)﹣f(x﹣4)>2即可;(2)当a>0时,不等式f(ax)+af(x)≥a+1恒成立,利用绝对值不等式的意义,可得⇔,f(ax)+af(x)=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,再解|2a﹣2|≥a+1即可.解:(1))函数f(2x)﹣f(x﹣4)=|2x+2|﹣|x﹣2|=,当x<﹣1时,不等式即﹣x﹣4>2,求得x<﹣6,∴x<﹣6;当﹣1≤x<2时,不等式即3x>2,求得x>,<x<2;当x≥2时,不等式即x+4>2,求得x>﹣2,∴x≥2.综上所述,不等式的解集为{x|>或x<﹣6}.(2)当a>0时,f(ax)+af(x)=|ax+2|+a|x+2|=|ax+2|+|ax+2a|≥|(ax+2)﹣(ax+2a|=|2a﹣2|,∵不等式f(ax)+af(x)≥a+1恒成立,∴|2a﹣2|≥a+1,2a﹣2≥a+1或2a﹣2≤﹣1﹣a,解得a≥3或0<a≤,∴实数a的取值范围为(0,]∪[3,+∞).。
2019-2020学年江西省九江市高考数学三模试卷(理科)(有答案)
江西省九江市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣74.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=05.设Sn 是等差数列{an}的前n项和,若S672=2,S1344=12,则S2016=()A.22 B.26 C.30 D.346.设x1=18,x2=19,x3=20,x4=21,x5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S值及其统计意义分别是()A.S=2,即5个数据的方差为2B.S=2,即5个数据的标准差为2C.S=10,即5个数据的方差为10D.S=10,即5个数据的标准差为107.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π)满足f(n)=,则f(1)=()8.已知函数f(n)(n∈N+A.97 B.98 C.99 D.1009.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.3211.若函数f(x)=cosx+axsinx,x∈(﹣,)存在零点,则实数a的取值范围是()A.(0,+∞)B.(1,+∞)C.(﹣∞,﹣1) D.(﹣∞,0)12.如图所示,已知椭圆C: =1(a>b>0),⊙O:x2+y2=b2,点A、F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点,且为定值,则椭圆C的离心率为()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若二项展开式的第三项系数为80,则实数a=_______.14.若函数f(x)的定义域为[﹣2,2],则函数y=f(2x)•ln(2x+1)的定义域为_______.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =_______.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为_______.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在△ABC 中,三边a ,b ,c 所对应的角分别是A ,B ,C ,已知a ,b ,c 成等比数列. (1)若+=,求角B 的值;(2)若△ABC 外接圆的面积为4π,求△ABC 面积的取值范围.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x 1,y 1)(i=1,2,…6)如表所示: 试销价格x (元) 4 5 6 7 a 9 产品销量y (件) b8483 807568已知变量x ,y 具有线性负相关关系,且x i =39,y i =480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a ,b 的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.19.如图所示,四棱锥P ﹣ABCD 中,底面ABCD 为菱形,∠ABC=60°,PA=PC ,PB=PD=AB . (1)求证:平面PAC ⊥平面ABCD ;(2)求直线PB 与平面PCD 所成角的正弦值.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,直线l 的参数方程为(t 为参数,α∈(0,)),以原点O为极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4cosθ. (1)若直线l 与曲线C 有且仅有一个公共点M ,求点M 的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.江西省九江市高考数学三模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x<1},N={x|2x>1},则M∩N=()A.∅B.{x|x<0} C.{x|x<1} D.{x|0<x<1}【考点】交集及其运算.【分析】利用指数函数的单调性求出集合N中的解集;利用交集的定义求出M∩N.【解答】解:N={x|2x>1}={x|x>0}∵M={x|x<1},∴M∩N={X|0<X<1}故选D2.复数﹣在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数代数形式的乘除运算.【分析】化简复数为:a+bi的形式,求出对应点的坐标即可.【解答】解:.对应点的坐标()在第三象限.故选:C.3.在Rt△ABC中,∠A=90°,AB=2,AC=4,E,F分别为AB,BC的中点,则=()A.9 B.﹣9 C.7 D.﹣7【考点】平面向量数量积的运算.【分析】结合向量的加法与减法法则把表示出来,并根据向量的数量积运算法则计算即可.【解答】解:,故选:D.4.已知直线l经过圆C:x2+y2﹣2x﹣4y=0的圆心,且坐标原点到直线l的距离为,则直线l的方程为()A.x+2y+5=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+3=0【考点】直线与圆的位置关系.【分析】求出圆C 的圆心C (1,2),设直线l 的方程为y=k (x ﹣1)+2,由坐标原点到直线l 的距离为,求出直线的斜率,由此能求出直线l 的方程.【解答】解:圆C :x 2+y 2﹣2x ﹣4y=0的圆心C (1,2),∵直线l 经过圆C :x 2+y 2﹣2x ﹣4y=0的圆心,且坐标原点到直线l 的距离为,∴当直线l 的斜率不存在时,直线l 的方程为x=1,此时坐标原点到直线l 的距离为1,不成立; 当直线l 的斜率存在时,直线l 的方程为y=k (x ﹣1)+2, 且=,解得k=﹣,∴直线l 的方程为y=﹣(x ﹣1)+2,即x+2y ﹣5=0. 故选:C .5.设S n 是等差数列{a n }的前n 项和,若S 672=2,S 1344=12,则S 2016=( ) A .22 B .26 C .30 D .34 【考点】等差数列的前n 项和.【分析】由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列,由此能求出S 2016. 【解答】解:∵S n 是等差数列{a n }的前n 项和,S 672=2,S 1344=12, 由等差数列的性质得S 672,S 1344﹣S 672,S 2016﹣S 1344成等差数列, 得到:2×10=2+S 2016﹣12, 解得S 2016=30. 故选:C .6.设x 1=18,x 2=19,x 3=20,x 4=21,x 5=22,将这五个数据依次输入如图所示的程序框进行计算,则输出的S 值及其统计意义分别是( )A .S=2,即5个数据的方差为2B .S=2,即5个数据的标准差为2C .S=10,即5个数据的方差为10D .S=10,即5个数据的标准差为10【考点】程序框图.【分析】算法的功能是求S=++…+的值,根据条件确定跳出循环的i 值,计算输出S的值.【解答】解:由程序框图知:算法的功能是求S=++…+的值,∵跳出循环的i值为5,∴输出S=×[(18﹣20)2+(19﹣20)2+(20﹣20)2+(21﹣20)2+(22﹣20)2]=×(4+1+0+1+4)=2.故选:A.7.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为()A.B.8+π C.D.12+π【考点】轨迹方程.【分析】根据题意判断出轨迹是四个角处的四个直角扇形与正方形的四条边上的四条线段组成,然后根据圆的周长公式进行计算即可求解.【解答】解:由题意,轨迹为四条线段加四个四分之一的圆.如图,四个角上的图形合起来刚好是一个半径为0.5的圆,周长为:2π×0.5=π,再加上四个边上滑动为四个等长的线段,长度均为2,合起来就是:2×4+π=8+π.故选:B.8.已知函数f(n)(n∈N)满足f(n)=,则f(1)=()+A.97 B.98 C.99 D.100【考点】函数的值.【分析】由已知条件,利用分段函数的性质推导出f(96)=f[f=97,由此能求出f(1)的值.【解答】解:∵函数f(n)(n∈N)满足f(n)=,+∴f=f[f=98,f(98)=f[f=97,f(97)=f[f=98,f(96)=f[f=97,依此类推,得f(99)=f(97)=…=f(1)=98.故选:B.9.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出A、B入住同一标间包含的基本事件个数,由此能求出A、B入住同一标间的概率.【解答】解:某宾馆随机安排A、B、C、D、E五名男生入住3个标间,共有种情形,A、B入住同一标间有种情形,∴A、B入住同一标间的概率为.故选:B.10.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于()A.B.16 C.D.32【考点】由三视图求面积、体积.【分析】如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1,即四棱锥A ﹣BB 1C 1C ,即可得出.【解答】解:如图所示,该多面体的直观图为直三棱柱ABC ﹣A 1B 1C 1截去一个三棱锥A ﹣A 1B 1C 1, 即四棱锥A ﹣BB 1C 1C , ∴.故选:C .11.若函数f (x )=cosx+axsinx ,x ∈(﹣,)存在零点,则实数a 的取值范围是( )A .(0,+∞)B .(1,+∞)C .(﹣∞,﹣1)D .(﹣∞,0)【考点】函数零点的判定定理. 【分析】确定函数是偶函数,a <0,f (x )在上只有一个零点,即可得出结论.【解答】解:∵f (﹣x )=cos (﹣x )﹣axsin (﹣x )=cosx+axsinx=f (x ), ∴函数是偶函数,当a ≥0时,恒成立,函数无零点,当a <0时,,∴函数f (x )在上单调递减,∵,∴f (x )在上只有一个零点,由f (x )是偶函数可知,函数恰有两个零点.故选:D .12.如图所示,已知椭圆C :=1(a >b >0),⊙O :x 2+y 2=b 2,点A 、F 分别是椭圆C 的左顶点和左焦点,点P 是⊙O 上的动点,且为定值,则椭圆C 的离心率为( )A .B .C .D .【考点】椭圆的简单性质. 【分析】设P (x 1,y 1),由是常数,得,然后利用,转化为关于x 1 的方程,由系数相等可得a ,c 的关系式,从而求得椭圆C 的离心率. 【解答】解:设F (﹣c ,0),c 2=a 2﹣b 2, 设P (x 1,y 1),要使得是常数,则有,λ是常数,∵,∴,比较两边系数得b 2a 2=λ(b 2+c 2),a=λc, 故c (b 2+a 2)=a (b 2+c 2),即2ca 2﹣c 3=a 3, 即e 3﹣2e+1=0,即(e ﹣1)(e 2+e ﹣1)=0, 又0<e <1, ∴.故选:D .二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若二项展开式的第三项系数为80,则实数a=2.【考点】二项式定理的应用.【分析】由条件利用二项展开式的通项公式,求得实数a 的值. 【解答】解:由题意可得二项展开式的第三项系数为,∴10a 3=80,解得a=2, 故答案为:2.14.若函数f (x )的定义域为[﹣2,2],则函数y=f (2x )•ln(2x+1)的定义域为.【考点】函数的定义域及其求法.【分析】由函数f (x )的定义域为[﹣2,2],可得f (2x )的定义域为满足﹣2≤2x ≤2的x 的取值集合,再与2x+1>0的解集取交集即可得到函数y=f (2x )•ln(2x+1)的定义域. 【解答】解:要使原函数有意义,则,解得.∴函数y=f (2x )•ln(2x+1)的定义域为.故答案为:.15.已知数列{a n }各项均不为0,其前n 项和为S n ,且a 1=1,2S n =a n a n+1,则S n =.【考点】数列递推式.【分析】利用递推关系、等差数列的通项公式及其前n 项和公式即可得出. 【解答】解:当n=1时,2S 1=a 1a 2,即2a 1=a 1a 2,∴a 2=2.当n ≥2时,2S n =a n a n+1,2S n ﹣1=a n ﹣1a n ,两式相减得2a n =a n (a n+1﹣a n ﹣1), ∵a n ≠0,∴a n+1﹣a n ﹣1=2,∴{a 2k ﹣1},{a 2k }都是公差为2的等差数列,又a 1=1,a 2=2, ∴{a n }是公差为1的等差数列, ∴a n =1+(n ﹣1)×1=n , ∴S n =.故答案为:.16.如图所示,半径为1的球内切于正三棱锥P ﹣ABC 中,则此正三棱锥体积的最小值为8.【考点】棱柱、棱锥、棱台的体积.【分析】设棱锥底面边长为a,高为h,作过棱锥的高和斜高的截面,根据三角形相似得出a,h的关系,代入棱锥的体积公式,利用导数求出体积的最小值.【解答】解:设正三棱锥P﹣ABC的底面边长AB=a,高为PO=h.设内切球球心为M,与平面PAC的切点为N,D为AC的中点,则MN⊥PD.DO==.MN=1,PM=h﹣1,∴PN===.∵Rt△PMN∽Rt△PDO,∴,即,∴a=.∴,,令V'=0得h=4,故当h=4时,.故答案为8.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.(1)若+=,求角B的值;(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.【考点】正弦定理;余弦定理.【分析】(1)由切化弦、两角和的正弦公式化简式子,由等比中项的性质、正弦定理列出方程,即可求出sinB,由内角的范围和特殊角的三角函数值求出B;(2)由余弦定理和不等式求出cosB的范围,由余弦函数的性质求出B的范围,由正弦定理和三角形的面积公式表示出△ABC面积,利用B的范围和正弦函数的性质求出△ABC面积的范围.【解答】解:(1)由题意得,,∵a,b,c成等比数列,∴b2=ac,○由正弦定理有sin2B=sinAsinC,∵A+C=π﹣B,∴sin(A+C)=sinB,得,即,由b2=ac知,b不是最大边,∴.(2)∵△ABC外接圆的面积为4π,∴△ABC的外接圆的半径R=2,由余弦定理b2=a2+c2﹣2accosB,得,又b2=ac,∴,当且仅当a=c时取等号,∵B为△ABC的内角,∴,由正弦定理,得b=4sinB,∴△ABC的面积,∵,∴,∴.18.某工厂为了对新研发的产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组检测数据(x1,y1)(i=1,2,…6)如表所示:试销价格x(元) 4 5 6 7 a 9 产品销量y(件) b 84 83 80 75 68已知变量x,y具有线性负相关关系,且xi =39, yi=480,现有甲、乙、丙三位同学通过计算求得其归直线方程分别为:甲y=4x+54;乙y=﹣4x+106;丙y=﹣4.2x+105,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?并求出a,b的值;(2)若由线性回归方程得到的估计数据与检测数据的误差不超过1,则该检测数据是“理想数据“,现从检测数据中随机抽取3个,求“理想数据“的个数ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(1)xi =39, yi=480,x的和为39,y的和为480,解得a和b的值,并求得,,由x,y具有线性负相关关系,甲同学的不对,将,,代入验证,乙同学的正确;(2)分别求出有回归方程求得y值,与实际的y相比较,判断是否为“理想数据“,并求得ξ的取值,分别求得其概率,写出分布列和数学期望.【解答】解:(1)已知变量x,y具有线性负相关关系,故甲不对,且xi=39,4+5+6+7+a+9=39,a=8,y=480,b+84+83+80+75+68=480,b=90,i∵=6.5,=80,将,,代入两个回归方程,验证乙同学正确,故回归方程为:y=﹣4x+106;(2)X 4 5 6 7 8 9y 90 84 83 80 75 68y 92 88 84 80 76 72“理想数据“的个数ξ取值为:0,1,2,3;P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.“理想数据“的个数ξ的分布列:X 0 1 2 3P =数学期望E(X)=0×+1×+2×+3×=1.5.19.如图所示,四棱锥P﹣ABCD中,底面ABCD为菱形,∠ABC=60°,PA=PC,PB=PD=AB.(1)求证:平面PAC⊥平面ABCD;(2)求直线PB与平面PCD所成角的正弦值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(1)设AC与BD相交于点O,连接PO,根据三线合一得出PO⊥AC,PO⊥BD,故而PO⊥平面ABCD,得出平面PAC⊥平面ABCD;(2)以O为原点,以OB,OD,OP为坐标轴建立空间直角坐标系,设AB=2,求出和平面PCD的法向量,则|cos<>|即为所求.【解答】(1)证明:设AC与BD相交于点O,连接PO,∵ABCD为菱形,∴O为AC,BD的中点.∵PA=PC,PB=PD,∴PO⊥AC,PO⊥BD.又AC∩BD=O,AC,BD⊂平面ABCD,∴PO⊥平面ABCD,又PO⊂平面PAC,∴平面PAC⊥平面ABCD.(2)解:∵ABCD为菱形,∠ABC=60°,∴△ABC为正三角形,AC⊥BD,不妨设PB=PD=AB=2,则BO=,∴PO=1.以O为原点,以OB,OD,OP为坐标轴建立如图所示的空间直角坐标系O﹣xyz,∴P(0,0,1),B(,0,0),C(0,1,0),D(﹣,0,0).∴=(,0,﹣1),=(0,1,﹣1),=(﹣,0,﹣1).设平面PCD的法向量为=(x,y,z),则,即.令x=1得=(1,﹣,﹣).∴cos<>===.∴直线PB与平面PCD所成角的正弦值为.20.如图所示,已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 垂直于x 轴的直线与抛物线C 相交于A ,B 两点,抛物线C 在A ,B 两点处的切线及直线AB 所围成的三角形面积为4. (1)求抛物线C 的方程;(2)设M ,N 是抛物线C 上异于原点O 的两个动点,且满足k OM •k ON =k OA •k OB ,求△OMN 面积的取值范围.【考点】抛物线的简单性质.【分析】(1)求出A ,B 坐标,利用导数解出切线方程,求出切线与x 轴的交点,利用三角形的面积列方程解出p ;(2)计算k OA •k OB =﹣4,设出MN 方程,求出MN 与x 轴的交点,联立方程组,根据根与系数的关系计算|y M ﹣y N |,得出△OMN 面积S 关于t 的函数,解出函数的最值. 【解答】解:(1)抛物线的焦点坐标为F (,0),∴,由,得,∴抛物线C 在A 处的切线斜率为1,由抛物线C 的对称性,知抛物线C 在B 处的切线卸斜率为﹣1, ∴抛物线过A 点的切线方程为y ﹣p=x ﹣,令y=0得x=﹣. ∴,解得p=2.∴抛物线C 的方程为y 2=4x .(2)k OA =2,k OB =﹣2,∴k OA •k OB =﹣4,设,则,∴y 1y 2=﹣4.令直线MN 的方程为x=ty+n , 联立方程组消去x 得:y 2﹣4ty ﹣4n=0,则y 1y 2=﹣4n ,y 1+y 2=4t ,∵y 1y 2=﹣4,∴n=1.即直线MN 过点(1,0). ∴.∵t 2≥0,∴S △OMN ≥2.综上所示,△OMN 面积的取值范围是[2,+∞).21.已知函数f (x )=x 2+ax ﹣lnx ,g (x )=e x (a ∈R ).(1)是否存在a 及过原点的直线l ,使得直线l 与曲线y=f (x ),y=g (x )均相切?若存在,求a 的值及直线l 的方程;若不存在,请说明理由; (2)若函数F (x )=在区间(0,1]上是单调函数,求a 的取值范围.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出f (x ),g (x )的导数,设出切点,求得切线的斜率,运用点斜式方程可得切线的方程,即可判断存在a=e ﹣1及l :y=ex ; (2)求出F (x )的解析式和导数,令,求出导数,判断单调性,再对a 讨论,分a ≤2,a >2,判断h (x )的单调性,进而得到F (x )的单调性,即可得到所求范围. 【解答】解:(1)g (x )的导数为g'(x )=e x , 设曲线y=g (x )在点处切线过原点,则切线方程为,由点在切线上,可得,解得x 1=1,即有切线方程为y=ex ,设直线y=ex 与曲线y=f (x )切于点(x 2,y 2), 由f (x )的导数为,可得,即有,又,则,可得,解得x 2=1,a=e ﹣1.故存在a=e ﹣1及l :y=ex ,使得直线l 与曲线y=f (x ),y=g (x )均相切. (2),,令,则,易知h'(x )在(0,1]上单调递减,从而h'(x )≥h'(1)=2﹣a .①当2﹣a ≥0时,即a ≤2时,h'(x )≥0,h (x )在区间(0,1]上单调递增, 由h (1)=0,可得h (x )≤0在(0,1]上恒成立, 即F'(x )≤0在(0,1]上恒成立.即F (x )在区间(0,1]上单调递减,则a ≤2满足题意;②当2﹣a <0时,即a >2时,由h'(1)=2﹣a <0,当x >0且x→0时,h'(x )→+∞, 故函数h'(x )存在唯一零点x 0∈(0,1],且h (x )在(0,x 0)上单调递增, 在(x 0,1)上单调递减,又h (1)=0,可得F (x )在(x 0,1)上单调递增.注意到h (e ﹣a )<0,e ﹣a ∈(0,x 0),即有F (x )在(0,e ﹣a )上单调递减, 这与F (x )在区间(0,1]上是单调函数矛盾,则a >2不合题意. 综合①②得,a 的取值范围是(﹣∞,2].四.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.如图所示,直线AB 为圆O 的切线,切点为B ,点C 在圆O 上,∠ABC 的平分线BE 交圆O 于点E ,DB 垂直BE 交圆O 于点D . (1)证明:DB=DC ; (2)设圆O 的半径为1,BC=,延长CE 交AB 于点F ,求线段BF 的长.【考点】与圆有关的比例线段.【分析】(1)连接DE交BC于点G,由弦切角定理可得∠ABE=∠BCE,由已知角平分线可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE为⊙O的直径,Rt△DBE≌Rt△DCE,利用三角形全等的性质即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分线,即可得到BG=.设DE的中点为O,连接BO,可得∠BOG=60°.从而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.进而得到线段BF的长【解答】(1)证明:连接DE交BC于点G,由弦切角定理得,∠ABE=∠BCE.∵∠ABE=∠CBE,∴∠CBE=∠BCE,BE=CE.又∵DE⊥BE,∴DE是直径,∠DCE=90°.∴△DBE≌△DCE,∴DC=DB.(2)解:设DE与BC相交于点G,由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线.∵,∴.连接BO,∵圆O的半径为1,∴∠BOG=60°,∠ABE=∠BCE=∠CBE=30°,∴CF⊥BF.,∴.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,直线l的参数方程为(t为参数,α∈(0,)),以原点O 为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ.(1)若直线l与曲线C有且仅有一个公共点M,求点M的直角坐标;(2)若直线l与曲线C相交于A,B两点,线段AB的中点横坐标为,求直线l的普通方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C 的直角坐标方程.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=0,解出即可得出点M的直角坐标.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.利用中点坐标公式即可得出.【解答】解:(1)曲线C的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,把ρ2=x2+y2,x=ρcosθ,代入可得C的直角坐标方程为:x2﹣4x+y2=0,即(x﹣2)2+y2=4.把直线l的参数方程代入上式并整理得t2﹣6tcosα+5=0.令△=(6cosα)2﹣20=0,解得.∴点M的直角坐标为.(2)设A,B两点对应的参数分别为t1,t2,则t1+t2=6cosα.线段AB的中点对应的参数为.则,解得.∴直线l的普通方程为x﹣y+1=0.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|﹣|x+1|.(1)求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(1)利用绝对值的几何意义,求不等式|f(x)|<1的解集;(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,分类讨论,转化为|f(x)|≥2,求实数x的取值范围.【解答】解:(1)x<﹣1时,f(x)=﹣x+1+x+1=2<1,不成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|<1,∴﹣<x<;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|>1,不成立,综上所述不等式|f(x)|<1的解集为{x|﹣<x<};(2)a=0时,不等式成立,a≠0时,|f(x)|≥||1﹣|﹣|1+||∵||1﹣|﹣|1+||<2,∴|f(x)|≥2,x<﹣1时,f(x)=﹣x+1+x+1=2,成立;﹣1≤x≤1时,f(x)=﹣x+1﹣x﹣1=﹣2x,|﹣2x|≥2,∴x=±1;x>1时,f(x)=x﹣1﹣x﹣1=﹣2,|f(x)|=2,成立,综上所述实数x的取值范围为{x|x≤﹣1或x≥1}.。
2020年高考数学(理科)全国2卷高考模拟试卷(3)
2020年高考数学(理科)全国2卷高考模拟试卷(3)一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞) 2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√33.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( ) A .若a ∥α,b ∥β,a ∥b ,则α∥β B .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2 D .34√26.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√347.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( )A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关 12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1 D .x 29−y 216=1二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 .14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 条.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 km 处,最少费用为 万元.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为 cm .三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a2+a3=a5﹣b1,②a2•a3=2a7,③S3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n}的公差d>0,前n项和为S n,若_______,数列{b n}满足b1=1,b2=1 3,a nb n+1=nb n﹣b n+1.(1)求{a n}的通项公式;(2)求{b n}的前n项和T n.注:如果选择多个条件分别解答,按第一个解答计分.18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n(单位:笼,n∈N),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X为一天的包子需求量,求X的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子?(Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y为当天的利润(单位:元),求Y的分布列和数学期望.19.(12分)如图所示,在四棱锥P﹣ABCD中,四边形ABCD为菱形,∠DAB=60°,AB =2,△P AD为等边三角形,平面P AD⊥平面ABCD.(1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.2020年高考数学(理科)全国2卷高考模拟试卷(3)参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分)1.(5分)设集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2},则( ) A .A ∩B =(0,53] B .A ∩B =(0,13] C .A ∪B =(13,+∞)D .A ∪B =(0,+∞)【解答】解:∵集合A ={x |x >0},B ={x |log 2(3x ﹣2)<2}, ∴B ={x |23<x <2},则A ∪B =(0,+∞),A ∩B =(23,2),故选:D .2.(5分)已知i 是虚数单位,复数z 满足1−2i z=1+i ,则|z |=( ) A .√52B .3√22C .√102D .√3【解答】解:由1−2i z=1+i ,得z =1−2i1+i =(1−2i)(1−i)(1+i)(1−i)=−12−32i ,∴|z |=|z |=√(−12)2+(−32)2=√102.故选:C .3.(5分)在△ABC 中,“AB →•AC →=BA →•BC →”是“|AC →|=|BC →|”( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】解:因为在△ABC 中AB →•AC →=BA →•BC →等价于AB →•AC →−BA →•BC →=0等价于AB →•(AC →+BC →)=0,因为AC →+BC →的方向为AB 边上的中线的方向.即AB 与AB 边上的中线相互垂直,则△ABC 为等腰三角形,故AC =BC , 即|AC|→=|BC →|,所以为充分必要条件. 故选:C .4.(5分)已知a ,b 是两条直线,α,β,γ是三个平面,则下列命题正确的是( )A .若a ∥α,b ∥β,a ∥b ,则α∥βB .若α⊥β,a ⊥α,则a ∥βC .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥αD .若α∥β,a ∥α,则a ∥β【解答】解:A .若a ∥α,b ∥β,a ∥b ,则α∥β,不正确,可能相交; B .若α⊥β,a ⊥α,则a ∥β或a ⊂β,因此不正确; C .若α⊥β,α⊥γ,β∩γ=a ,则a ⊥α,正确;证明:设α∩β=b ,α∩γ=c ,取P ∈α,过点P 分别作m ⊥b ,n ⊥c , 则m ⊥β,n ⊥γ,∴m ⊥a ,n ⊥a ,又m ∩n =P ,∴a ⊥α. D .若α∥β,a ∥α,则a ∥β或a ⊂β. 故选:C .5.(5分)三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,则三棱锥P ﹣ABC 的体积的最大值是( ) A .4√2B .2√2C .43√2D .34√2【解答】解:由题意三棱锥P ﹣ABC 内接于半径为2的球中,P A ⊥平面ABC ,∠BAC =π2,BC =2√2,棱锥的高为P A ,可得16=8+P A 2,所以P A =2√2,所以三棱锥的体积为:13×12×AB ×AC ×PA =√23•AB •AC ≤√23⋅AB 2+AC 22=4√23,当且仅当AB =AC =2时,三棱锥的体积取得最大值. 故选:C .6.(5分)抛物线y 2=2px (p >0)的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足∠AFB =2π3.设线段AB 的中点M 在l 上的投影为N ,则|MN||AB|的最大值是( )A .√3B .√32C .√33D .√34【解答】解:设|AF |=a ,|BF |=b ,A 、B 在准线上的射影点分别为Q 、P , 连接AQ 、BQ由抛物线定义,得|AF |=|AQ |且|BF |=|BP |,在梯形ABPQ 中根据中位线定理,得2|MN |=|AQ |+|BP |=a +b . 由余弦定理得|AB |2=a 2+b 2﹣2ab cos 2π3=a 2+b 2+ab ,配方得|AB |2=(a +b )2﹣ab , 又∵ab ≤(a+b 2) 2,∴(a +b )2﹣ab ≥(a +b )2﹣( a+b 2) 2=34(a +b )2得到|AB |≥√32(a +b ). 所以|MN||AB|≤a+b2√32(a+b)=√33, 即|MN||AB|的最大值为√33. 故选:C .7.(5分)函数f (x )=sin x +cos x +sin x •cos x 的值域为( ) A .[﹣1,1]B .[﹣1,√2+12]C .[﹣1,√2−12]D .[−1,√2]【解答】解:设sin x +cos x =t (−√2≤t ≤√2)所以:sinxcosx =t 2−12则:f (x )=sin x +cos x +sin x •cos x=t +t 2−12=12(t +1)2−1当t =√2时,函数取最大值:f(x)max =f(√2)=√2+12 当t =﹣1时,函数取最小值:f (x )min =f (﹣1)=﹣1 所以函数的值域为:[−1,√2+12] 故选:B .8.(5分)函数f (x )=ln (x 3+4)﹣e x﹣1的图象大致是( )A .B .C .D .【解答】解:∵x 3+4>0,∴x 3>﹣4,解得x >−√43,∴函数的定义域为{x |x >−√43}, 当x →−√43时,f (x )→﹣∞,∴排除选项A ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f ′(x)=3x 2x 3+4−e x−1, f (0)=ln (0+4)﹣e ﹣1=ln 4﹣e ﹣1>0,∴排除选项C ; ∵f (x )=ln (x 3+4)﹣e x ﹣1,∴f '(0)=﹣e ﹣1<0,即x =0在函数的单调递减区间内,∴排除选项D .故选:B .9.(5分)如图是函数y =A sin (ωx +φ)(x ∈R ,A >0,ω>0,0<φ<π2)在区间[−π6,5π6]上的图象,为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有的点( )A .向左平移π3个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变B .向左平移π3个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C .向左平移π6个长度单位,再把所得各点的横坐标变为原来的12,纵坐标不变D .向左平移π6个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变【解答】解:由图可知A =1,T =π, ∴ω=2,又−π6ω+φ=2k π(k ∈Z ),∴φ=2k π+π3(k ∈Z ),又0<ϕ<π2, ∴φ=π3,∴y =sin (2x +π3).∴为了得到这个函数的图象,只需将y =sin x (x ∈R )的图象上的所有向左平移π3个长度单位,得到y =sin (x +π3)的图象,再将y =sin (x +π3)的图象上各点的横坐标变为原来的12(纵坐标不变)即可.故选:A .10.(5分)欲测量河宽即河岸之间的距离(河的两岸可视为平行),受地理条件和测量工具的限制,采用如下办法:如图所示,在河的一岸边选取A ,B 两个观测点,观察对岸的点C ,测得∠CAB =75°,∠CBA =45°,AB =120米,由此可得河宽约为(精确到1米,参考数据√6≈2.45,sin75°≈0.97)( )A .170米B .110米C .95米D .80米【解答】解:在△ABC 中,∠ACB =180°﹣75°﹣45°=60°, 由正弦定理得:AB sin∠ACB=AC sin∠ABC,∴AC =AB⋅sin∠ABC sin∠ACB=120×√22√32=40√6,∴S △ABC =12AB •AC •sin ∠CAB =12×120×40√6×sin75°≈5703.6, ∴C 到AB 的距离d =2S △ABC AB=2×5703.6120≈95. 故选:C .11.(5分)下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关【解答】解:频率是随机的,随实验而变化,但概率是唯一确定的一个值. 故选:C .12.(5分)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若(F 2F 1→+F 2A →)⋅F 1A →=0,则此双曲线的标准方程可能为( )A .x 2−y 212=1B .x 23−y 24=1C .x 216−y 29=1D .x 29−y 216=1【解答】解:若(F 2F 1→+F 2A →)•F 1A →=0,即为若(F 2F 1→+F 2A →)•(−F 2F 1→+F 2A →)=0, 可得AF 2→2=F 2F 1→2,即有|AF 2|=|F 2F 1|=2c , 由双曲线的定义可得|AF 1|=2a +2c ,在等腰三角形AF 1F 2中,tan ∠AF 2F 1=−247,cos ∠AF 2F 1=−725=4c 2+4c 2−(2a+2c)22⋅2c⋅2c,化为3c =5a , 即a =35c ,b =45c ,可得a :b =3:4,a 2:b 2=9:16. 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.(5分)设函数f (x )={x 2,0≤x <5f(x −5),x ≥5,那么f (18)的值 9 .【解答】解:∵函数f (x )={x 2,0≤x <5f(x −5),x ≥5,∴f (18)=f (3×5+3)=f (3)=32=9. 故答案为:9.14.(5分)为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘,几天后,随机打捞40条鱼,其中带有标记的共5条.利用统计与概率知识可以估计池塘中原来有鱼 400 条.【解答】解:为估计池塘中鱼的数量,负责人将50条带有标记的同品种鱼放入池塘, 几天后,随机打捞40条鱼,其中带有标记的共5条. 设池塘中原来有鱼n 条,则540=50n,解得n =400. 故答案为:400.15.(5分)某公司租地建仓库,每月土地占用费y 1与仓库到车站的距离成反比,而每月库存货物的运费y 2与到车站的距离成正比,如果在距离车站10km 处建仓库,这两项费用y 1和y 2分别为2万元和8万元,要使这两项费用之和最小,仓库应建立在距离车站 5 km 处,最少费用为 8 万元.【解答】解:设x 为仓库与车站距离,由题意可设y 1=k 1x,y 2=k 2x , 把x =10,y 1=2与x =10,y 2=8分别代入上式得k 1=20,k 2=0.8, ∴y 1=20x ,y 2=0.8x费用之和y =y 1+y 2=0.8x +20x ≥2√20x ×0.8x =2×4=8, 当且仅当0.8x =20x ,即x =5时等号成立.当仓库建在离车站5km 处两项费用之和最小.最少费用为8万元. 故答案为:5,8.16.(5分)如图,圆形纸片的圆心为O 半径为4cm ,该纸片上的正方形ABCD 的中心为O ,E ,F ,G ,H 为圆O 上的点,△ABE 、△BCF 、△CDG 、△DAH 分别是以AB ,BC ,CD ,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB ,BC ,CD ,DA 为折痕折起△ABE 、△BCF 、△CDG 、△DAH ,使得E ,F ,G ,H 重合,得到一个四棱锥,当四棱锥体积取得最大值,正方形ABCD 的边长为165cm .【解答】解:连接OG 交CD 于点M ,则OG ⊥DC ,点M 为CD 的中点,连接OC , △OCM 为直角三角形,设正方形的边长为2x ,则OM =x ,由圆的半径 为4,则MG =4﹣x ,设额E ,F ,G ,H 重合于点P ,则PM =MG =4﹣x >x 则0x <2,高PO =√(4−x)2−x 2=√16−8x , V =13(2x)2√16−8x =8√23√2x 4−x 5, 设y =2x 4﹣x 5,y ′=8x 3﹣5x 4=x 3(8﹣5x ),当0<x <85时,y ′>0,y =2x 4﹣x 5单调递增;当85<x <2时,y ′<0,y =2x 4﹣x 5单调递减,所以当x =85时,V 取得最大值,此时,2x =165. 即正方形ABCD 的边长为165时,四棱锥体积取得最大值.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在①a 2+a 3=a 5﹣b 1,②a 2•a 3=2a 7,③S 3=15这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{a n }的公差d >0,前n 项和为S n ,若 _______,数列{b n }满足b 1=1,b 2=13,a n b n +1=nb n ﹣b n +1. (1)求{a n }的通项公式; (2)求{b n }的前n 项和T n .注:如果选择多个条件分别解答,按第一个解答计分. 【解答】解:若选①:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2+a 3=a 5﹣b 1,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n). 若选②:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵a 2•a 3=2a 7,∴(2+d )(2+2d )=2(2+6d ),∵d >0,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 若选③:(1)∵a n b n +1=nb n ﹣b n +1,∴当n =1时,a 1b 2=b 1﹣b 2,∵b 1=1,b 2=13,∴a 1=2. 又∵S 3=15,∴d =3, ∴a n =3n ﹣1;(2)由(1)知:(3n ﹣1)b n +1=nb n ﹣b n +1,即3nb n +1=nb n ,∴b n+1=13b n .又b 1=1,所以数列{b n }是以1为首项,以13为公比的等比数列,∴bn=(13)n−1,T n =1−(13)n1−13=32(1−3−n ). 18.(12分)某包子店每天早晨会提前做好若干笼包子,以保证当天及时供应,每卖出一笼包子的利润为40元,当天未卖出的包子作废料处理,每笼亏损20元.该包子店记录了60天包子的日需求量n (单位:笼,n ∈N ),整理得到如图所示的条形图,以这60天各需求量的频率代替相应的概率.(Ⅰ)设X 为一天的包子需求量,求X 的数学期望.(Ⅱ)若该包子店想保证80%以上的天数能够足量供应,则每天至少要做多少笼包子? (Ⅲ)为了减少浪费,该包子店一天只做18笼包子,设Y 为当天的利润(单位:元),求Y 的分布列和数学期望.【解答】解:(Ⅰ)由题意得,X 的数学期望为E(X)=16×1060+17×1560+18×2060+19×1060+20×560=17.75. (Ⅱ)因为P(n ≤18)=34<0.8,P(n ≤19)=1112>0.8, 所以包子店每天至少要做19笼包子.(Ⅲ)当n =16时,Y =16×40﹣2×20=600; 当n =17时,Y =17×40﹣20=660; 当n ≥18时,Y =18×40=720. 所以Y 的可能取值为600,660,720,P(Y =600)=16,P(Y =660)=14,P(Y =720)=1−16−14=712. 所以Y 的分布列为Y 600660720P1614712所以Y 的数学期望为E(Y)=600×16+660×14+720×712=685.19.(12分)如图所示,在四棱锥P ﹣ABCD 中,四边形ABCD 为菱形,∠DAB =60°,AB =2,△P AD 为等边三角形,平面P AD ⊥平面ABCD . (1)求证AD ⊥PB .(2)在棱AB 上是否存在点F ,使DF 与平面PDC 所成角的正弦值为2√55?若存在,确定线段AF 的长度;若不存在,请说明理由.【解答】(1)证明:取AD 中点O ,连接PO ,OB ,因为平面P AD ⊥平面ABCD ,△P AD 为等边三角形,O 为AD 的中点, 所以PO ⊥平面ABCD ,PO ⊥AD因为四边形ABCD 为菱形,且∠DAB =60°,O 为AD 中点, 所以BO ⊥AD因为PO ∩BO =O ,所以AD ⊥面PBO ,所以AD ⊥PB ;(2)解:在△OCD 中,OC =√1+4−2×1×2×(−12)=√7,∴PC =√10, ∴S △PCD =12×√10×√62=√152设A 到平面PCD 的距离为h ,则13×12×2×2×sin120°×√3=13×√152h ,∴h =2√155, ∵DF 与平面PDC 所成角的正弦值为2√55, ∴2√155DF=2√55,∴DF =√3,∴F 是AB 的中点,AF =1.20.(12分)已知椭圆C :x 212+y 24=1,A 、B 分别是椭圆C 长轴的左、右端点,M 为椭圆上的动点.(1)求∠AMB 的最大值,并证明你的结论;(2)设直线AM 的斜率为k ,且k ∈(−12,−13),求直线BM 的斜率的取值范围. 【解答】解:(1)根据椭圆的对称性,不妨设M (x 0,y 0),(﹣2√3<x 0<2√3,0<y 0≤2),过点M 作MH ⊥x 轴,垂足为H ,则H (x 0,0)(0<y 0≤2), 于是又tan ∠AMH =|AH||MH|=x 0+2√3y 0,tan ∠BMH =|BH||MH|=2√3−x 0y 0, ∴tan ∠AMB =tan (∠AMH +∠BMH )=tan∠AMH+tan∠BMH1−tan∠AMHtan∠BMH =4√3y 0x 02+y 02−12,因为点M (x 0,y 0)在椭圆C 上,所以x 0212+y 024=1,所以x 02=12﹣3y 02, 所以tan ∠AMB =−2√3y 0,而0<y 0≤2, 所以tan ∠AMB =−2√3y 0≤−√3,因为0<∠AMB <π, 所以∠AMB 的最大值为2π3,此时y 0=2,即M 为椭圆的上顶点,由椭圆的对称性,当M 为椭圆的短轴的顶点时,∠AMB 取最大值,且最大值为2π3;(2)设直线BM 的斜率为k '.M (x 0,y 0),则k =0x 0+2√3,k '=0x 0−2√3,所以kk '=y 02x 02−12,又x 0212+y 024=1,所以x 02=12﹣3y 02,所以kk '=−13.因为−12<k <−13,所以k '∈(23,1)所以直线BM 的斜率的取值范围.(23,1).21.(12分)已知函数f (x )=xlnx +λx 2,λ∈R .(Ⅰ)若λ=﹣1,求曲线f (x )在点(1,f (1)处的切线方程;(Ⅱ)若关于x 的不等式f (x )≤λ在[1,+∞)上恒成立,求实数λ的取值范围. 【解答】解:(Ⅰ)当λ=﹣1时,f (x )=xlnx +λx 2,则f ′(x )=lnx +1﹣2x . 故f ′(1)=﹣1,又f (1)=﹣1.故所求期限的方程为y ﹣(﹣1)=﹣1•(x ﹣1),即x +y =0; (Ⅱ)由题意得,xlnx +λx 2≤λ在[1,+∞)上恒成立, 设函数g (x )=xlnx +λ(x 2﹣1). 则g ′(x )=lnx +1+2λx .故对任意x ∈[1,+∞),不等式g (x )≤0=g (1)恒成立, ①当g ′(x )≤0,即lnx+1x≤−2λ恒成立时,函数g (x )在[1,+∞)上单调递减,设r (x )=lnx+1x ,则r ′(x )=−lnxx2≤0, ∴r (x )max =r (1),即1≤﹣2λ,解得λ≤−12,符合题意;②当λ≥0时,g ′(x )≥0恒成立,此时函数g (x )在[1,+∞)上单调递增, 则不等式g (x )≥g (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; ③当−12<λ<0时,设q (x )=g ′(x )=lnx +1+2λx ,则q ′(x )=1x +2λ, 令q (x )=0,解得x =−12λ>1, 故当x ∈(1,−12λ)时,函数g (x )单调递增, ∴当x ∈(1,−12λ)时,g (x )>0成立,不符合题意, 综上所述,实数λ的取值范围为(﹣∞,−12]. 四.解答题(共1小题,满分10分,每小题10分)22.(10分)在直角坐标系xOy 中,参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C ,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线D 的极坐标方程为ρsin(θ+π4)=3√102. (Ⅰ)求曲线C 的普通方程及曲线D 的直角坐标方程;(Ⅱ)设M 、N 分别为曲线C 和曲线D 上的动点,求|MN |的最小值.【解答】解:(Ⅰ)参数方程{x =cosθy =sinθ(其中θ为参数)的曲线经过伸缩变换φ:{x′=2xy′=y 得到曲线C :x 24+y 2=1;曲线D 的极坐标方程为ρsin(θ+π4)=3√102.转化为直角坐标方程为:x +y −3√5=0; (Ⅱ)设点P (2cos θ,sin θ)到直线x +y ﹣3√5=0的距离d =√5|√2=√5sin(θ+α)−3√5|√2,当sin (θ+α)=1时,d min =√10. 五.解答题(共1小题)23.已知函数f (x )=2|x |+|x ﹣2|. (1)解不等式f (x )≤4;(2)设函数f (x )的最小值为m ,若实数a 、b 满足a 2+b 2=m 2,求4a 2+1b 2+1最小值.【解答】解:(1)当x <0时,则f (x )=﹣3x +2≤4,解得:−23≤x <0, 当0≤x ≤2时,则f (x )=x +2≤4,解得:0≤x ≤2, 当x >2时,则f (x )=3x ﹣2≤4,此时无解, 综上,不等式的解集是{x |−23≤x ≤2};(2)由(1)知,当x <0时,f (x )=﹣3x +2>2, 当0≤x ≤2时,则f (x )=x +2≥2, 当x >2时,则f (x )=3x ﹣2>4, 故函数f (x )的最小值是2, 故m =2,即a 2+b 2=4, 则4a 2+1b 2+1=15(a 2+b 2+1)(4a 2+1b 2+1)第21页(共21页)=15[5+4(b 2+1)a 2+a 2b 2+1] ≥15(5+2√4(b 2+1)a 2⋅a 2b 2+1)≥95, 当且仅当4(b 2+1)a 2=a 2b 2+1且a 2+b 2=4, 即a 2=103,b 2=23取“=”, 故4a 2+1b 2+1的最小值是95.。
_数学丨2023届高考全国甲卷乙卷全真模拟(三)数学试卷及答案
2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,22.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和893.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.26.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c<<B .a c b<<C .c<a<bD .c b a<<7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i i yy =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB 的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.20.已知抛物线()2:20C x pyp =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q ,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B 两点,)M .(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.2023年高考数学全真模拟卷三(全国卷)理科数学(考试时间:120分钟;试卷满分:150分)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}31A x x =-<,{B y y ==,则A B = ()A .∅B .[)4,+∞C .()2,+∞D .[)0,2【答案】C【分析】根据一元一次不等式可解得集合A ,再根据函数值域求法可求得集合B ,由交集运算即可得出结果.【详解】由题意可得{}2A x x =>,由函数值域可得{}0B y y =≥,所以{}2A B x x ⋂=>.故选:C 2.某班40人一次外语测试的成绩如下表:分数727375767880838791人数1234108642其中中位数为()A .78B .80C .79D .78和89【答案】C【分析】根据中位数的概念即可求得.【详解】解:由题意得:所有成绩从小到大排列,第二十位是78,第二十一位是80,则中位数为7880792+=.故选:C 3.若复数z 满足()()1i i 4z -+=,其中i 为虚数单位,则z 的虚部为()A .2B .2-C .1D .1-【答案】C【分析】根据复数的除法运算与减法运算得2i z =+,进而根据复数的概念求解即可.【详解】解:由题意可知()()()41i 4i i 2i 1i 1i 1i z +=-=-=+--+,所以,z 的虚部为1.故选:C.4.双曲线22221(0,0)x y a b a b -=>>,焦点到渐近线的距离为1,则双曲线方程为()A .2214y x -=B .2214x y -=C .22123x y -=D .22132x y -=【答案】B【分析】由离心率可得12b a =,从而可得渐近线方程,根据焦点到渐近线的距离为1可得c ,从而可求a ,故可得双曲线的方程.【详解】由题可知c a =,222514b e a =+=,得12b a =,则渐近线方程为20x y ±=,焦点到渐近线的距离为1,1=,可解得c =,所以2a =,由222c a b =+得1b =.所以双曲线方程为2214x y -=.故选:B.5.“天圆地方”观反映了中国古代科学对宇宙的认识,后来发展成为中国传统文化的重要思想.中国古人将琮、璧、圭、璋、璜、琥六种玉制礼器谓之“六瑞”,玉琮内圆外方,表示天和地,中间的穿孔表示天地之间的沟通,可以说是中国古代世界观很好的象征物.下面是一玉琮图及其三视图,设规格如图所示(单位:cm ),则三视图中A ,B 两点在实物中对应的两点在实物玉璧上的最小距离约为()(3π≈ 1.4≈)A .8.4B .9.8C .10.4D .11.2【答案】A【分析】玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,将圆柱侧面展开,线段AB 的长就是沿该圆柱表面由A 到B 的最短距离.【详解】本题考查传统文化与圆柱的侧面展开图.由题意,将玉琮的中空部分看成一圆柱,A ,B 两点可看成是圆柱轴截面所对应矩形的对角线的端点,现沿该圆柱表面由A到B ,如图,将圆柱侧面展开,可知()min 8.4AB =≈.故选:A .6.已知定义在R 上的函数()21x mf x -=-(m 为实数)是偶函数,记0.5log 3a =,()2log 5b f =,()c f m =,则a 、b 、c 的大小关系为()A .a b c <<B .a c b<<C .c<a<bD .c b a<<【答案】B【分析】由偶函数的性质可得m 的值,即可得函数()f x 的解析式,分析函数单调性,结合对数的运算性质比较大小.【详解】()21x mf x -=-(m 为实数)是R 上的偶函数,∴()()f x f x -=,即2121x m x m ----=-,∴--=-x m x m ,即()()22x m x m --=-,∴0mx =,则0m =,此时()21xf x =-,0.5log 30a =<,()2log 540b f ==>,()(0)0c f m f ===,则a c b <<.故选:B7.若某一几何体的三视图如图所示,则该几何体是()A .三棱柱B .四棱柱C .五棱柱D .六棱柱【答案】C【分析】根据三视图还原出立体图形即可得到答案.【详解】根据其三视图还原出其立体图形如下图所示,易得其为五棱柱,故选:C.8.已知,a b ∈R ,则“1ab ≥”是“222a b +≥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】根据充分条件、必要条件及不等式的性质可得解.【详解】由22||12||||2ab a b a b ≥⇒+≥≥,而222a b +≥不一定能得到1ab ≥,例如,0,2a b ==,所以“1ab ≥”是“222a b +≥”的充分而不必要条件.故选:A 9.已知△ABC 满足22AB BA CA =⋅,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形【答案】D【分析】根据已知得到22cos c bc A =,利用正弦定理可求得sin 2sin cos =C B A ,结合三角形内角和为π以及两角和的正弦公式可求得in 0()s A B -=,即可确定三角形形状.【详解】解:根据22AB BA CA =⋅得到:22cos c bc A =,由正弦定理2sin sin b cR B C==,可得2sin 2sin sin cos C B C A =,又C 为三角形的内角,得到sin 0C ≠,可得sin 2sin cos =C B A ,又[]sin sin ()sin()C A B A B π=-+=+,∴sin()sin cos cos sin 2sin cos A B A B A B B A +=+=,即sin cos cos sin 0A B A B -=,∴in 0()s A B -=,且A 和B 都为三角形的内角,∴A B =,则ABC 的形状为等腰三角形.故选:D .10.在新型冠状病毒肺炎疫情联防联控期间,社区有5名医务人员到某学校的高一、高二、高三3个年级协助防控和宣传工作.若每个年级至少分配1名医务人员,则不同的分配方法有()A .25种B .50种C .300种D .150种【答案】D【分析】首先分析将5个人分为三小组且每小组至少有一人,则可能分法有:(2,2,1),(3,1,1)两种情况,每种情况利用分步计数原理计算情况数,最后相加即可.【详解】当5个人分为2,2,1三小组,分别来自3个年级,共有2213531322C C C A 90A ⋅=种;②当5个人分为3,1,1三小组时,分别来自3个年级,共有3113521322C C C A 60A ⋅=种.综上,选法共有9060150+=.故选:D.11.已知函数()2tan sin tan 1xf x x x =++,则下列结论正确的是()A .()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递减B .()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极小值C .设()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为M ,最小值为m ,则4M m +=D .()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点【答案】D【分析】由商数关系化简函数,结合导数法可得函数性质及图象,即可逐个判断.【详解】因为()22sin tan cos sin sin tan 1sin 1cos xx x f x x x x x x =+=++⎛⎫+ ⎪⎝⎭πsin sin cos π,2x x x x k k ⎛⎫=+≠+∈ ⎪⎝⎭Z ,所以()()()22cos cos 12cos 1cos 1f x x x x x '=+-=-⋅+.当ππ,22x ⎛⎫∈- ⎪⎝⎭时,令()0f x '=,解得π3x =±,则当x 变化时,()f x ',()f x 的变化情况如下表所示.x ππ,23⎛⎫-- ⎪⎝⎭π3-ππ,33⎛⎫- ⎪⎝⎭π3ππ,32⎛⎫ ⎪⎝⎭()f x '-0+0-所以()f x 在区间ππ,22⎛⎫- ⎪⎝⎭上的图象如图所示.对A ,()f x 在区间ππ,33⎛⎫- ⎪⎝⎭上单调递增,A 错;对B ,()f x 在区间π0,2⎛⎫ ⎪⎝⎭上有极大值,无极小值,B 错;对C ,()()2g x f x =-在区间ππ,22⎛⎫- ⎪⎝⎭上的最大值为24M =-,最小值为24m =--,4M m +=-,C 错;对D ,()f x 在区间ππ,22⎛⎫- ⎪⎝⎭内有且只有一个零点,D 对.故选:D.12.已知函数()f x 的定义域为R ,且满足()()110f x f x -+-=,()()8f x f x +=,()11f =,()31f =-,()()21,021,24x a x f x x b x ⎧-++<≤⎪=⎨+-<≤⎪⎩,给出下列结论:①1a =-,3b =-;②()20231f =;③当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ;④若函数()f x 的图象与直线y mx m =-在y 轴右侧有3个交点,则实数m 的取值范围是111,16264⎛⎫⎛⎫--⋂- ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为()A .4B .3C .2D .1【答案】C【分析】由()11f =,()31f =-解出,a b 的值可判断①;由周期和奇偶函数的性质计算()20231f =-可判断②;作出函数()f x 在[]0,4上的图象,根据图象可判断③;讨论当0m >和0m <,方程()mx m f x -=的解的个数可判断④.【详解】因为()()110f x f x -+-=,所以()()f x f x -=-,所以函数()f x 为奇函数,()00f =.因为()()8f x f x +=,所以()f x 的周期为8.又()()21111f a =-++=,所以10a +=,所以1a =-,()3311f b =+-=-,所以3b =-,故①正确.因为,()()()()202325381111f f f f =⨯-=-=-=-,故②错误.易知()()211,0231,24x x f x x x ⎧--+<≤⎪=⎨--<≤⎪⎩,作出函数()f x 在[]0,4上的图象,根据函数()f x 为奇函数,及其周期为8,得到函数()f x 在R 上的图象,如图所示,由()f x 的图象知,当[]4,6x ∈-时,()0f x <的解集为()()2,02,4- ,故③正确.由题意,知直线()1y mx m m x =-=-恒过点()1,0,与函数()f x 的图象在y 轴右侧有3个交点根据图象可知当0m >时,应有51m m ⨯-<,即14m <,且同时满足()mx m f x -=,[]8,10x ∈无解,即当[]8,10x ∈时,()()()108f x x x =--,()()108x x mx m --=-无解,所以Δ0<,解得1616m -<<+所以1164m -<<.当0m <时,应有31m m ⨯->-,即12m >-,且同时满足()mx m f x -=,[]6,8x ∈无解,即当[]6,8x ∈时,()()()68f x x x =--,()()58x x mx m --=-无解,所以Δ0<,解得1212m --<<-+1122m -<<-+综上,1164m -<或1122m -<<-+.故选:C.第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.函数()12f x x x=+在1x =处切线的倾斜角为_______.【答案】45【分析】求导,求出斜率,进而可得倾斜角.【详解】()212f x x '=-+,则()11211f '=-+=,即函数()12f x x x=+在1x =处切线的斜率为1,则倾斜角为45 故答案为:45 14.已知平面向量(2,)a x =-,b = ,且()a b b -⊥,实数x 的值为_____.【答案】【分析】表示出(3,a b x -=- ,其与b =数量积为0,可算得出x .【详解】解:因为(2,)a x =-,b = ,所以(3,a b x -=-又()a b b -⊥,则()30a b b x -⋅=-= 故x =故答案为:15.设1F 、2F 分别为椭圆()222210x y a b a b+=>>的左右焦点,与直线y b =相切的圆2F 交椭圆于点E ,且E 是直线1EF 与圆2F 相切的切点,则椭圆焦距与长轴长之比为________.【答案】3【分析】根据题意可得12EF EF ⊥,利用椭圆性质可得()()22222a b b c -+=,结合222a b c =+,即可求得22c a .【详解】如图所示,连接2EF ,易得12EF EF ⊥,圆2F 的半径r b =,所以2EF b =,而122EF EF a +=,所以12EF a b =-,122F F c =,所以()()22222a b b c -+=,且有222a b c =+,化简可得23a b =,所以()22249a a c =-,所以2259a c =,可得22c a =.故答案为:16.已知函数()ln f x ax x x =-与函数()e 1xg x =-的图象上恰有两对关于x 轴对称的点,则实数a 的取值范围为__________.【答案】(),1e -∞-【分析】图象恰有两对关于x 轴对称的点,即0x ∃>,使得()()f x g x -=,即ln e 1xax x x -+=-有两解,对等式全分离,构造()ln e 1x x x h x x-+=,求导求单调性,求出值域,对图象进行判断,即可得出a 的取值范围.【详解】因为函数()f x 与()g x 的图象上恰有两对关于x 轴对称的点,所以0x >时()()f x g x -=有两解,即ln e 1x ax x x -+=-有两解,所以ln e 1x x x a x-+=有两解,令()ln e 1x x x h x x -+=,则()()()2e 11x x h x x --'=,所以当()0,1x ∈时,()0h x '>,函数()h x 单调递增;当()1,x ∈+∞时,()0h x '<,函数()h x 单调递减,所以()h x 在1x =处取得极大值,()11e h =-,且()0,1x ∈时,()h x 的值域为(),1e -∞-;()1,x ∈+∞时,()h x 的值域为(),1e -∞-,因此ln e 1x x x a x-+=有两解时,实数a 的取值范围为(),1e -∞-.故答案为:(),1e -∞-三、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答)(一)必考题:共60分17.已知公差不为0的等差数列{}n a 的前n 项和为n S ,2S 、4S 、55S +成等差数列,且2a 、7a 、22a 成等比数列.(1)求{}n a 的通项公式;(2)若11n n n b a a +=,数列{}n b 的前n 项和为n T ,证明:16n T <.【答案】(1)21n a n =+(2)证明见解析【分析】(1)公式法列方程组解决即可;(2)运用裂项相消解决即可.【详解】(1)由题知,设{}n a 的公差为d ,由题意得42527222250S S S a a a d =++⎧⎪=⎨⎪≠⎩,即11121112(46)(2)(510)5(6)()(21)0a d a d a d a d a d a d d +=++++⎧⎪+=++⎨⎪≠⎩,解得132a d =⎧⎨=⎩,所以1(1)3(1)221n a a n d n n =+-=+-⨯=+,所以{}n a 的通项公式为21n a n =+.(2)证明:由(1)得21n a n =+,所以111111(21)(23)22123n n n b a a n n n n +⎛⎫===- ⎪++++⎝⎭,所以1111111111123557212323236n T n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅+-=-<⎪ ⎪+++⎝⎭⎝⎭.18.为促进新能源汽车的推广,某市逐渐加大充电基础设施的建设,该市统计了近五年新能源汽车充电站的数量(单位:个),得到如下表格:年份编号x 12345年份20162017201820192020新能源汽车充电站数量y /个37104147196226(1)已知可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的线性回归方程,并预测2024年该市新能源汽车充电站的数量.参考数据:51710i i y ==∑,512600i i i x y ==∑,()521149.89i iy y =-=∑ 3.16≈.参考公式:相关系数()()niix x yyr --=∑回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为;()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆˆay bx =-.【答案】(1)答案见解析;(2)ˆ471yx =+;预测2024年该市新能源汽车充电站的数量为424个.【分析】(1)利用相关系数的计算公式即可得解;(2)先利用已知数据和公式得到y 关于x 的线性回归方程,再将2024年所对应的年份编号代入线性回归方程即可得解.【详解】解:(1)由已知数据得()11234535x =⨯++++=,17101425y =⨯=,()()()2222152101210i i x x=-=-+-+++=∑,()()55115260053142470iii i i i x x yy x y x y ==--=-=-⨯⨯=∑∑,所以4700.993.16149.89r ≈≈⨯.因为y 与x 的相关系数近似为0.9,接近1,说明y 与x 的线性相关程度相当高,从而可以用线性回归模型拟合y 与x 的关系.(2)由(1)得()()()51215470ˆ4710iii ii x x y y bx x ==--===-∑∑,ˆˆ1424731ay bx =-=-⨯=,放所求线性回归方程为ˆ471yx =+.将2024年对应的年份编号9x =代人回归方程得ˆ4791424y=⨯+=,故预测2024年该市新能源汽车充电站的数量为424个.19.如图,在四棱锥P -ABCD 中,AB CD ∥,AB ⊥BC ,122BC CD PA PD AB =====,PC =E 为AB的中点.(1)证明:BD ⊥平面APD ;(2)求平面APD 和平面CEP 的夹角的余弦值.【答案】(1)证明见解析(2)22【分析】(1)已知条件求出AB ,BD ,AD 的长度,勾股定理证得BD AD ⊥,取AD 的中点O ,连接OP ,OC ,有PO AD ⊥,得PO ,勾股定理证得PO OC ⊥,从而PO ⊥平面ABCD ,有BD OP ⊥,所以BD ⊥平面APD .(2)建立空间直角坐标系,求相关点的坐标,求相关向量的坐标,求平面APD 和平面CEP 的一个法向量,利用向量夹角公式求平面APD 和平面CEP 的夹角的余弦值【详解】(1)在直角梯形ABCD 中,易得AB =4,BD =AD =,∴222AD BD AB +=,∴BD ⊥AD .取AD 的中点O ,连接OP ,OC ,易得PO ⊥AD ,PO =,如图所示,在△CDO 中,易得OC ==,又PC =,∴222OC PO PC +=,∴PO ⊥OC ,又PO ⊥AD ,AD OC O = ,,AD OC ⊂平面ABCD ,∴PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥OP ,又BD ⊥AD ,AD OP O ⋂=,,AD OP ⊂平面APD ,∴BD ⊥平面APD .(2)如图,以D 为坐标原点,DA ,DB 所在直线分别为x ,y 轴,过点D 且与PO 平行的直线为z 轴建立空间直角坐标系,则D (0,0,0),()A ,()0,B ,)E,P,()C ,∴(CP =,()CE = ,∵BD ⊥平面APD ,∴平面APD 的一个法向量为()10,1,0n =.设平面CEP 的法向量为()2,,n x y z =u u r,则2200n CP n CE ⎧⋅=⎪⎨⋅=⎪⎩,得00⎧+=⎪⎨=⎪⎩,取y =1,得()20,1,1n = ,∴122cos ,2n n =,∴平面APD 和平面CEP 的夹角的余弦值为22.20.已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,点P 是直线1:2l y x =-上一动点,直线l 与直线1l 交于点Q,QF =(1)求抛物线C 的方程;(2)过点P 作抛物线C 的两条切线,PA PB ,切点为,A B ,且95FA FB -≤⋅≤,求PAB 面积的取值范围.【答案】(1)24x y=(2)⎡⎣【分析】(1)计算2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,根据距离公式计算得到2p =,得到抛物线方程.(2)求导得到导函数,计算切线方程得到AB 的直线方程为()002y y xx +=,联立方程,根据韦达定理得到根与系数的关系,根据向量运算得到034y -≤≤,再计算PAB S =△.【详解】(1)直线1:2l y x =-,当2p y =-时,22p x =-,即2,22p p Q ⎛⎫-- ⎪⎝⎭,0,2p F⎛⎫⎪⎝⎭,则QF ==,解得2p =或25p =-(舍去),故抛物线C 的方程为24x y =.(2)设()11,A x y ,()22,B x y ,()00,P x y ,24x y =,2x y '=,PA 的直线方程为:()1112x y x x y =-+,整理得到()112y y xx +=,同理可得:PB 方程为()222y y xx +=,故()()010*******y y x x y y x x ⎧+=⎪⎨+=⎪⎩,故AB 的直线方程为()002y y xx +=,()00224y y xx x y ⎧+=⎨=⎩,整理得到200240x x x y -+=,12012024 x x x x x y +=⎧⎨=⎩,()()()1122121212,1,11FA FB x y x y x x y y y y ⋅=-⋅-=+-++()02221212221212000216123164x x x x x x x x y x y y +-=+-+=-++=-,09235y -≤-≤,解得034y -≤≤,设P 到AB 的距离为d ,12PABS AB d =⋅=△,034y -≤≤,故[]2044,20y +∈,4,PAB S ⎡∈⎣△21.已知01a <<,函数()1x f x x a -=+,()1log a g x x x =++.(1)若()e e g =,求函数()f x 的极小值;(2)若函数()()y f x g x =-存在唯一的零点,求a 的取值范围.【答案】(1)2(2)1,1e ⎡⎫⎪⎢⎣⎭【分析】(1)由()e e g =可求出1ea =,则()1e xf x x -=+,然后对函数求导,由导数的正负可求出函数的单调区间,从而可求出函数的极小值;(2)令()1log 1x a F x ax -=--(0x >),则()111ln ln x F x xa a x a -⎛⎫'=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,利用导数可求出其单调区间和最小值,然后分11ln 10ln a a a----≥和10ea <<讨论函数的零点即可.【详解】(1)由()1e e e 1log e e ea g a =⇒++=⇒=,所以()1e x f x x -=+,()11e xf x -'=-,令()01f x x '=⇒=,当1x <时,()0f x '<,当1x >时,()0f x ¢>,所以()f x 在(,1)-∞上递减,在(1,)+∞上递增,所以()f x 的极小值为()12f =;(2)()()1log 1x a f x g x a x --=--,令()1log 1x a F x a x -=--(0x >),()F x 存在唯—的零点,()11111ln ln ln ln x x F x a a xa a x a x a --⎛⎫'=-=- ⎪⎝⎭,令()11ln ln x x xaa a ϕ-=-,()()11ln ln x x a x a a ϕ-'=+,令()10ln x x aϕ'=⇒=-,当10ln x a<<-时,()0x ϕ'<;当1ln x a>-时,()0x ϕ'>,所以()x ϕ在10,ln a ⎛⎫- ⎪⎝⎭上递减,在1,ln a ⎛⎫-+∞ ⎪⎝⎭上递增,所以()11ln min 11ln ln ax a a a ϕϕ--⎛⎫=-=-- ⎪⎝⎭,①若11ln 10ln aa a----≥,即111ln ln ln ln a a a ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭,令1ln t a-=,所以()111ln ln 10t t t t t ⎛⎫--≤⇒-+≥ ⎪⎝⎭,所以1t ≥,所以11ln a -≥,即11ea <时,()()min 00x F x ϕ'≥⇒≥,所以()F x 在()0,∞+上递增,注意到()10F =,所以()F x 存在唯一的零点,符合题意②当10e a <<时,()100ln aϕ=->,()min 0x ϕ<,()22213(ln )133ln ln ln a a a a a aϕ-=-=,令22()3(ln )1t a a a =-,10ea <<,则221()3[2(ln )2ln ]6ln (ln 1)t a a a a a a a a a'=+⋅⋅=+,因为10ea <<,所以ln 1a <-,所以()6ln (ln 1)0t a a a a '=+>,所以22()3(ln )1t a a a =-在10,e ⎛⎫⎪⎝⎭上单调递增,所以2221113()3(ln 110e e e e t a t ⎛⎫⎛⎫<=-=-< ⎪ ⎪⎝⎭⎝⎭,所以()22213(ln )133ln 0ln ln a a a a a aϕ-=-=>所以()x ϕ即()F x '在10,ln a ⎛⎫- ⎪⎝⎭和1,ln a ⎛⎫-+∞ ⎪⎝⎭上各有一个零点1x ,2x ,()F x 在()10,x 上递增,()12,x x 上递减,()2,0x 上递增,而()11ln 0ln F a a'=-<,所以121x x <<,()1log 1x a F x a x -=--,当110a x a -<<时,()111log 11(1)0a F a a x a x -------<-=<;当1x a >时,()10log 10a F x a>--=,而()()110F x F >=,()()210F x F <=,所以()F x 在()10,x ,()12,x x 和()2,x +∞上各有一个零点,共3个零点了,舍去.综上,a 的取值范围为1,1e ⎡⎫⎪⎢⎣⎭.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB = ,求直线l 的斜率.【答案】(1)2214x y +=(2)【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则121222221,cos 4sin cos 4sin t t t t ααααα+=-=-++,∵2AM MB = ,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.[选修4-5:不等式选讲]23.已知:()1f x x x m =+--,0m >.(1)若2m =,求不等式()2f x >的解集;(2)()()g x f x x m =--,若()g x 的图象与x 轴围成的三角形面积不大于54,求m 的取值范围.【答案】(1)3,2∞⎛⎫+ ⎪⎝⎭;(2)(]0,8.【分析】(1)利用零点分段法求解出绝对值不等式;(2)先求出()21,312,121,1x m x m g x x m x m x m x -++>⎧⎪=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,由函数单调性得到()()max 1g x g m m ==+,根据函数图象与x 轴围成的三角形面积不大于54,列出方程,求出m 的取值范围.【详解】(1)当2m =时,()3,21221,123,1x f x x x x x x >⎧⎪=+--=--≤≤⎨⎪-<-⎩,当2x >时,()32f x =>成立;当12x -≤≤时,()212f x x =->,则322x <≤;当1x <-时,()32f x =-<不合题意,综上,()2f x >的解集为3,2∞⎛⎫+ ⎪⎝⎭;(2)因为0m >,所以()21,12312,121,1x m x m g x x x m x m x m x m x -++>⎧⎪=+--=+--≤≤⎨⎪--<-⎩,由()0g x =,解得:122121,3m x m x -=+=,则()21444133m x x m ---==+,当1x <-时,()g x 单调递增,当1x m -≤≤时,()g x 单调递增,当x >m 时,()g x 单调递减,所以当x m =时,()g x 取得最大值,()()max 1g x g m m ==+,∴图象与x 轴围成的三角形面积为()()221421154233S m m =⨯+=+≤,解得:108m -≤≤,又0m >,则08m <≤,∴m 的取值范围是(]0,8.。
2020年吉林省长春市东北师大附中高考数学三模试卷(二)(有答案解析)
解析:解:依题意,数列{an}是等比数列,所以 16a52=a2a6= ,所以 q2= ,
又因为数列{an}为正项等比数列,所以 q= ,
所以 an=
=2•43-n=27-2n,
令 an>1,即 27-2n>1,得 n< ,因为 n∈N*,所以 n≤3,
要使数列{an}的前 n 项积 Tn 中 T3 最大, 故选:A. 根据 a3=2,16a52=a2a6,求出数列{an}的通项公式,计算出 Tn 的表达式,讨论其指数的 最值即可. 本题考查了等比数列的性质、通项公式、前 n 项积的最大值等.属于中档题.
解:因为全称命题的否定是特称命题,所以:命题 p:
,
则¬p 为:
.
故选:C.
4.答案:B
解析:解:等差数列{an}中,若(a1+a4+a7)+3a9=15, 由于:a1+a7=2a4, 所以:3a4+3a9=15, 整理得:a4+a9=a1+a12=5,
则:.Biblioteka 故选:B. 直接利用等差数列的性质和前 n 项和公式的应用求出结果. 本题考查的知识要点:等差数列的性质的应用,主要考察学生的运算能力和转换能力, 属于基础题型.
D. ∅
3. 已知命题 p:
,则¬p 为( )
A.
B.
C.
D.
4. 等差数列{an}中,若(a1+a4+a7)+3a9=15,则此数列的前 12 项和 S12=( )
A. 24
B. 30
C. 36
D. 48
5. 已知向量
, =(2,x-3),
,若 且 ,则 x 的值为( )
A. 2
2020年高考模拟陕西省汉中市部分学校高考(理科)数学(3月份)模拟测试试卷 解析版
2020年高考数学模拟试卷(理科)(3月份)一、选择题1.设集合A={y|y=5x+1},,则A∩B=()A.(1,2)B.(﹣1,+∞)C.(1,2]D.[1,2]2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1B.﹣C.D.13.已知m>1,,,,则()A.a<b<c B.a<c<b C.b<a<c D.b<c<a4.函数图象的大致形状是()A.B.C.D.5.我国古代数学家对圆周率π的近似值做出过杰出的贡献,魏晋时期的数学家刘徽首创用圆的内接正多边形的面积来逼近圆面积的方法,称为“割圆术”.在割圆术求π的方法中,若使用正三十二边形,则圆周率的近似值为()(附:)A.3.13B.3.12C.3.064D.3.1826.已知双曲线C的一个焦点为(0,5),且与双曲线的渐近线相同,则双曲线C的标准方程为()A.B.C.D.7.已知抛物线C:x2=2py(p>0)上一点P(m,3)到焦点F的距离为4,直线l过M(0,3)且与C交于A,B两点,|BF|=5,若|AM|=λ|BM|,则λ=()A.B.C.D.8.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.1439.在边长为3的等边△ABC中,点E满足,则=()A.9B.C.6D.10.在古装电视剧《知否》中,甲、乙两人进行一种投壶比赛,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的概率为,投中“双耳”的概率为,投中“依竿”的概率为,乙的投掷水平与甲相同,且甲、乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个“贯耳”,乙投了个“双耳”,则三场比赛结束时,甲获胜的概率为()A.B.C.D.11.已知函数f(x)=log3x的图象与函数g(x)的图象关于直线y=x对称,函数h(x)是最小正周期为2的偶函数,且当x∈[0,1]时,h(x)=g(x)﹣1,若函数y=k•f(x)+h(x)有3个零点,则实数k的取值范围是()A.(1,2log73)B.(﹣2,﹣2log53)C.(﹣2log53,﹣1)D.(﹣log73,﹣)12.正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF不平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等二、填空题13.设a1=2,a n+1=,b n=||,n∈N*,则数列{b n}的通项公式b n=.14.函数f(x)=的定义域为.15.函数f(x)=在x=处的切线与直线x﹣y+1=0垂直,则该切线在y轴上的截距为.16.在三棱锥P﹣ABC中,AB=BC=8,∠ABC=120°,D为AC的中点,PD⊥平面ABC,且PD=8,则三棱锥P﹣ABC的外接球的表面积为.三、解答题17.数列{a n}是首项为1,公差不为0的等差数列,且a1,a2,a5成等比数列;数列{b n}的前n项和为S n,且b1=2,(n∈N*).(Ⅰ)求a n,b n;(Ⅱ)若c n=a n•b n,且数列{c n}的前n项和为T n,证明:T n<9.18.2019年12月以来,发现多起病毒性病例,并迅速在全国范围内开始传播,专家组认为,本次病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为P(0<p<1),某位患者在隔离之前,每天有a位密切接触者,其中被感染的人数为X(0≤X≤a),假设每位密切接触者不再接触其他患者.(Ⅰ)求一天内被感染人数为X的概率P(X)与a、p的关系式和X的数学期望;(Ⅱ)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第n天新增患者的数学期望记为E n(n≥2).(i)求数列{E n}的通项公式,并证明数列{E n}为等比数列;(ⅱ)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率p′=ln(1+p)﹣.当p取最大值时,计算此时p'所对应的E6'值和此时p对应的E6值,根据计算结果说明戴口罩的必要性.(取a=10)(结果保留整数,参考数据:ln5≈1.6,ln3≈1.1,ln2≈0.7)19.如图,在四棱锥P﹣ABCD中,四边形ABCD是边长为2的正方形,,E 为PA的中点,点F在PD上,EF⊥平面PCD,M在DC的延长线上,且(1)证明:EF∥平面PBM;(2)过点C作BD的平行线,与直线AB相交于点G,当点Q在线段CG上运动时,二面角E﹣DQ﹣A能否等于60°?请说明理由.20.已知椭圆(a>b>0)的左、右焦点分别是F1,F2,点P为W的上顶点,点Q在W上,=7,且•=﹣.(1)求W的方程;(2)已知过原点的直线l1与椭圆W交于C,D两点,垂直于l1的直线l2过F1且与椭圆W交于M,N两点,若|CD|2=6|MN|,求.21.已知,g(x)=a(x+1).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)当a>0时,若关于x的方程f(x)+g(x)=0存在两个正实数根x1,x2(x1<x2),证明:a>e2且x1x2<x1+x2.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(β为参数),将曲线C1上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线C2,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C2的极坐标方程和l的直角坐标方程;(2)在极坐标系中,射线与l,C2分别交于A,B两点(异于极点),定点M(14,0),求△MAB的面积.[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(Ⅰ)ab+bc+ac≤;(Ⅱ)(a+)+(b+)+(c+)≥10.参考答案一、选择题1.设集合A={y|y=5x+1},,则A∩B=()A.(1,2)B.(﹣1,+∞)C.(1,2]D.[1,2]解:∵A=(1,+∞),B=(﹣1,2],∴A∩B=(1,2].故选:C.2.已知a+bi(a,b∈R)是的共轭复数,则a+b=()A.﹣1B.﹣C.D.1【分析】先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.解:===﹣i,∴a+bi=﹣(﹣i)=i,∴a=0,b=1,∴a+b=1,故选:D.3.已知m>1,,,,则()A.a<b<c B.a<c<b C.b<a<c D.b<c<a【分析】利用指数函数、对数函数幂函数的单调性即可得出.解:当m>1时,由对应函数的性质可知a<0,0<b<1,c>1,则a<b<c成立.故选:A.4.函数图象的大致形状是()A.B.C.D.【分析】根据条件先判断函数的奇偶性,和对称性,利用f(1)的值的符号是否对应进行排除即可.解:=•sin x,则f(﹣x)=•sin(﹣x)=•(﹣sin x)=•sin x=f(x),则f(x)是偶函数,则图象关于y轴对称,排除B,D,由f(x)=0,得1﹣e x=0或sin x=0,得x=kπ,k∈Z,即当x>0时,第一个零点为π,当x=1时,f(1)=•sin1<0,排除A,故选:C.5.我国古代数学家对圆周率π的近似值做出过杰出的贡献,魏晋时期的数学家刘徽首创用圆的内接正多边形的面积来逼近圆面积的方法,称为“割圆术”.在割圆术求π的方法中,若使用正三十二边形,则圆周率的近似值为()(附:)A.3.13B.3.12C.3.064D.3.182【分析】圆的内接正多边形的面来逼近圆面积,由,得,解:设正三十二边形的外接圆半径为r,三十二个小等腰三角形顶角为,,圆的内接正多边形的面来逼近圆面积由,得,故选:B.6.已知双曲线C的一个焦点为(0,5),且与双曲线的渐近线相同,则双曲线C的标准方程为()A.B.C.D.【分析】由已知是双曲线的方程可得渐近线的方程,设双曲线C的方程可得渐近线的方程,由题意可得a,b的关系,再由焦点的坐标可得a,b的值即求出双曲线C的方程.解:双曲线的渐近线方程为:y=x,由题意设双曲线C的方程为:﹣=1,由焦点坐标(0,5)可得a2+b2=25,①渐近线的方程为:y=x再由C与双曲线的渐近线相同,所以=,②,由①②可得a2=5,b2=20,所以双曲线C的方程为:﹣=1,故选:D.7.已知抛物线C:x2=2py(p>0)上一点P(m,3)到焦点F的距离为4,直线l过M(0,3)且与C交于A,B两点,|BF|=5,若|AM|=λ|BM|,则λ=()A.B.C.D.解:由题可知3+=4,得=1,∴p=2,故抛物线C的方程为x2=4y.∵|BF|=5,∴B点的坐标为(±4,4),当B点的坐标为(4,4)时,直线l的方程为y=,与x2=4y联立可得x2﹣x﹣12=0,解得x=4 或x=﹣3,∴A点的坐标为(﹣3,),∴,∴,同理,当B点的坐标为(﹣4,4)时,,故选:B.8.秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.143【分析】由题意,模拟程序的运行,依次写出每次循环得到的i,v的值,当i=﹣1时,不满足条件i≥0,跳出循环,输出v的值为48.解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.9.在边长为3的等边△ABC中,点E满足,则=()A.9B.C.6D.【分析】由得=2(﹣),即=+,代入即可求解解:由得=2(﹣),即=+,则=+•=×3×3+×3×3×cos60°=6.故选:C.10.在古装电视剧《知否》中,甲、乙两人进行一种投壶比赛,比赛投中得分情况分“有初”“贯耳”“散射”“双耳”“依竿”五种,其中“有初”算“两筹”,“贯耳”算“四筹”,“散射”算“五筹”,“双耳”算“六筹”,“依竿”算“十筹”,三场比赛得筹数最多者获胜.假设甲投中“有初”的概率为,投中“贯耳”的概率为,投中“散射”的概率为,投中“双耳”的概率为,投中“依竿”的概率为,乙的投掷水平与甲相同,且甲、乙投掷相互独立.比赛第一场,两人平局;第二场,甲投了个“贯耳”,乙投了个“双耳”,则三场比赛结束时,甲获胜的概率为()A.B.C.D.解:由题可知:筹数2456100P甲要想贏得比赛,在第三场比赛中,比乙至少多得三筹.甲得“四筹”,乙得“零筹”,甲可赢,此种情况发生的概率;甲得“五筹”,乙得“零筹”或“两筹”,甲可赢,此种情况发生的概率;甲得“六筹”,乙得“零筹”或“两筹”,甲可赢,此种情况发生的概率;甲得“十筹”,乙得“零筹”或“两筹”、“四筹”、“五筹”、“六筹”,甲都可蠃,此种情况发生的概率,故甲获胜的概率,故选:D.11.已知函数f(x)=log3x的图象与函数g(x)的图象关于直线y=x对称,函数h(x)是最小正周期为2的偶函数,且当x∈[0,1]时,h(x)=g(x)﹣1,若函数y=k•f(x)+h(x)有3个零点,则实数k的取值范围是()A.(1,2log73)B.(﹣2,﹣2log53)C.(﹣2log53,﹣1)D.(﹣log73,﹣)【分析】把函数y=k•f(x)+h(x)有3个零点,转化为k log3x=﹣h(x)有3个不同根,画出函数y=k log3x与y=﹣h(x)的图象,转化为关于k的不等式组求解.解:由函数f(x)=log3x的图象与函数g(x)的图象关于直线y=x对称,得g(x)=3x,函数h(x)是最小正周期为2的偶函数,当x∈[0,1]时,h(x)=g(x)﹣1=3x﹣1,函数y=k•f(x)+h(x)有3个零点,即k log3x=﹣h(x)有3个不同根,画出函数y=k log3x与y=﹣h(x)的图象如图:要使函数y=k log3x与y=﹣h(x)的图象有3个交点,则k<0,且,即﹣2<k<﹣2log53.∴实数k的取值范围是(﹣2,﹣2log53).故选:B.12.正方体ABCD﹣A1B1C1D1的棱长为2,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与直线AF垂直B.直线A1G与平面AEF不平行C.平面AEF截正方体所得的截面面积为D.点C与点G到平面AEF的距离相等【分析】在A中,若D1D⊥AF,则DD1⊥平面AEF,从而CC1⊥EF,不成立;在B中,取B1C1的中点Q,连接A1Q,GQ,推导出平面A1GO∥平面AEF,从而A1G∥平面AEF;在C中,连接D1F,D1A,延长D1F,AE交于点S,则EF∥AD1,所以A,E,F,D1四点共面,从而截面即为梯形AEFD1,进而;在D中,记点C 与点G到平面AEF的距离分别为h1,h2,由,,得以h1≠h2.解:在A中,若D1D⊥AF,又因为D1D⊥AE且AE∩AF=A,所以DD1⊥平面AEF,所以DD1⊥EF,所以CC1⊥EF,不成立,故A错误;在B中,如图所示,取B1C1的中点Q,连接A1Q,GQ,由条件可知:GQ∥EF,A1Q∥AE,且GQ∩A1Q=Q,EF∩AE=E,所以平面A1GO∥平面AEF,又因为A1G⊂平面A1GQ,所以A1G∥平面AEF,故B错误;在C中,如图所示,连接D1F,D1A,延长D1F,AE交于点S,因为E,F为C1C,BC的中点,所以EF∥AD1,所以A,E,F,D1四点共面,所以截面即为梯形AEFD1,又因为,,所以,所以,故C正确;在D中,记点C与点G到平面AEF的距离分别为h1,h2,因为,又因为,所以h1≠h2,故D错误.故选:C.二、填空题:共4小题,每小题5分.13.设a1=2,a n+1=,b n=||,n∈N*,则数列{b n}的通项公式b n=2n+1,n∈N*.解:a1=2,a n+1=,b n=||,n∈N,当n=1时,b1==4=22,a2==,当n=2时,b2==8=23,a3==,当n=3时,b3=||=16=24,a4==,则b3=32=24,由此猜想b n=2n+1,用数学归纳法证明,①当n=1时,成立,②假设当n=k时成立,即b k+1=2k+2,∵a k+1=,b k=||,∴b k+1=||=||=||=2b k=2k+2,故当n=k+1时猜想成立,由①②可知,b n=2n+1,n∈N*.故答案为:2n+1,n∈N*.14.函数f(x)=的定义域为(0,4].解:由2﹣log2x≥0,得log2x≤2,解得0<x≤4.∴函数f(x)=的定义域为(0,4].故答案为:(0,4].15.函数f(x)=在x=处的切线与直线x﹣y+1=0垂直,则该切线在y轴上的截距为﹣1.解:因f′(x)=cos(x﹣)﹣a sin x,由题意得f′()=1﹣a=﹣1,解得a=2,又f()=1﹣a=﹣1,则f(x)在x=处的切线方程为y+1=﹣(x﹣),令x=0得y=﹣1,则该切线在y轴上的截距为﹣1.故答案为:﹣1.16.在三棱锥P﹣ABC中,AB=BC=8,∠ABC=120°,D为AC的中点,PD⊥平面ABC,且PD=8,则三棱锥P﹣ABC的外接球的表面积为260π.【分析】由已知利用正弦定理可求△ABC的外接圆的半径r,设三棱锥P﹣ABC的外接球球心到平面ABC的距离为d,设外接球的半径为R,则△O1OB中,82+d2=R2,直角梯形O1ODP中,PD2=42+(8﹣d)2=R2,解得d=1,R2=65,即可得解三棱锥P﹣ABC 的外接球的表面积.解:在△ABC中,AB=BC=8,∠ABC=120°,所以△ABC的外接圆的半径,结合图形分析:圆心到D点的距离为4,另设三棱锥P﹣ABC的外接球球心到平面ABC的距离为d,设外接球的半径为R,则△O1OB中,82+d2=R2,直角梯形O1ODP中,PD2=42+(8﹣d)2=R2,解得d=1,R2=65,所以S=4πR2=260π,故答案为:260π.三、解答题:共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.数列{a n}是首项为1,公差不为0的等差数列,且a1,a2,a5成等比数列;数列{b n}的前n项和为S n,且b1=2,(n∈N*).(Ⅰ)求a n,b n;(Ⅱ)若c n=a n•b n,且数列{c n}的前n项和为T n,证明:T n<9.【分析】(Ⅰ)设数列{a n}的公差为d(d≠0),由已知列式求得d,则等差数列的通项公式可求.再由数列递推式求得数列{b n}的通项公式;(Ⅱ)由(Ⅰ)得,然后利用错位相减法求数列{c n}的前n项和为T n,即可证明T n<9.【解答】(Ⅰ)设数列{a n}的公差为d(d≠0),由a1,a2,a5成等比数列,得(1+d)2=1×(1+4d),解得d=0(舍去)或d=2.则a n=2n﹣1.∵b1=2,,当n=1时,,解得;当n≥2时,,有,即(n≥2),又,则;(Ⅱ)证明:由(Ⅰ)得.则,两边乘以,得.两式相减得==.∴<9得证.18.2019年12月以来,发现多起病毒性病例,并迅速在全国范围内开始传播,专家组认为,本次病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为P(0<p<1),某位患者在隔离之前,每天有a位密切接触者,其中被感染的人数为X(0≤X≤a),假设每位密切接触者不再接触其他患者.(Ⅰ)求一天内被感染人数为X的概率P(X)与a、p的关系式和X的数学期望;(Ⅱ)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有2位密切接触者,从某一名患者被感染,按第1天算起,第n天新增患者的数学期望记为E n(n≥2).(i)求数列{E n}的通项公式,并证明数列{E n}为等比数列;(ⅱ)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率p′=ln(1+p)﹣.当p取最大值时,计算此时p'所对应的E6'值和此时p对应的E6值,根据计算结果说明戴口罩的必要性.(取a=10)(结果保留整数,参考数据:ln5≈1.6,ln3≈1.1,ln2≈0.7)【分析】(Ⅰ)由题意X~B(a,p),由此能求出一天内被感染人数为X的概率P(X)与a、p的关系式和X的数学期望.(Ⅱ)(i)第n天被感染人数为(1+ap)n﹣1,第n﹣1天被感染人数为(1+ap)n﹣2,从而E n=(1+ap)n﹣1﹣(1+ap)n﹣2=ap(1+ap)n﹣2.由此能证明{E n}是以ap为首项,1+ap为公比的等比数列.(ii)令f(p)=ln(1+p)﹣,则f′(p)=,f(p)在(0,)上单调递增,在(,1)上单调递减,推导出E6>E6',从而戴口罩很有必要.解:(Ⅰ)由题意X~B(a,p),则P(X)=,EX=ap.(Ⅱ)(i)第n天被感染人数为(1+ap)n﹣1,第n﹣1天被感染人数为(1+ap)n﹣2,由题目中均值定义得:E n=(1+ap)n﹣1﹣(1+ap)n﹣2=ap(1+ap)n﹣2.∴=1+ap,且E1=ap,∴{E n}是以ap为首项,1+ap为公比的等比数列.(ii)令f(p)=ln(1+p)﹣,则f′(p)=,∴f(p)在(0,)上单调递增,在(,1)上单调递减,f(p)max=f()=ln=ln3﹣ln2﹣≈1.1﹣0.7﹣0.3=0.1.则当a=10,E n=10p(1+10p)n﹣2,E6'=10×0.1(1+10×0.1)4≈1.46,E6=10×0.5(1+10×0.5)4≈25.31,∵E6>E6',∴戴口罩很有必要.19.如图,在四棱锥P﹣ABCD中,四边形ABCD是边长为2的正方形,,E 为PA的中点,点F在PD上,EF⊥平面PCD,M在DC的延长线上,且(1)证明:EF∥平面PBM;(2)过点C作BD的平行线,与直线AB相交于点G,当点Q在线段CG上运动时,二面角E﹣DQ﹣A能否等于60°?请说明理由.【分析】(1)记PB的中点为H,连接EH,过F作FK∥DM交PM于K,连接HK,由已知结合求解三角形可得四边形EFKH是平行四边形,得EF∥HK,再由线面平行的判定可得EF∥平面PBM;(2)由已知证明证明PO⊥平面ABCD并求得PO=4.以点O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,分别求出平面EDQ与平面ABCD的一个法向量,由两法向量求出二面角E﹣DQ﹣A的余弦值,由余弦值大于即可得到二面角E﹣DQ﹣A不可能为60°.【解答】(1)证明:记PB的中点为H,连接EH,过F作FK∥DM交PM于K,连接HK,则EH∥AB,且.∵EF⊥平面PCD,∴EF⊥PD.在△PAD中,,AD=2,求得,,又,则,∵,∴KF=1,∵EH=FK,且AB∥EH∥CD∥FK,∴四边形EFKH是平行四边形,得EF∥HK,又HK⊂平面PBM,EF⊄平面PBM,∴EF∥平面PBM;(2)解:EF⊥平面PCD,∴EF⊥CD,而ABCD是正方形,∴CD⊥AD.∵EF与AD显然是相交直线,∴CD⊥平面PAD,∴平面PAD⊥平面ABCD.记AD的中点为O,则PO⊥平面ABCD,且PO=4.以点O为坐标原点,建立如图所示的空间直角坐标系O﹣xyz,则,D(0,1,0),设Q(a,3﹣a,0),2≤a≤4,∴,.设平面EDQ的一个法向量为,则,令y=4,得.平面ABCD的一个法向量为,设二面角E﹣DQ﹣A的大小是φ,则cosφ=|cos<>|=.∵2≤a≤4,∴,则,∴,∵,∴φ<60°,即二面角E﹣DQ﹣A不可能为60°.20.已知椭圆(a>b>0)的左、右焦点分别是F1,F2,点P为W的上顶点,点Q在W上,=7,且•=﹣.(1)求W的方程;(2)已知过原点的直线l1与椭圆W交于C,D两点,垂直于l1的直线l2过F1且与椭圆W交于M,N两点,若|CD|2=6|MN|,求.【分析】(1)根据向量的坐标运算,求得Q点坐标,代入椭圆方程,再由•=﹣.即可求得a和b的值,求得W的方程;(2)根据题意可知,直线l2存在且不为0,设直线方程,代入椭圆方程,利用韦达定理及弦长公式求得|MN|,同理求得|CD|,根据题意,即可求得直线l2的斜率,因此可以求得△F2CD的面积.解:(1)设椭圆W的焦距为2c,因为=7,所以Q的坐标为.因为Q在W上,将代入,得.又因为•=﹣,所以,所以c2﹣b2=2.又因为a2=b2+c2,所以a2=4,b2=1,因此W的方程为;(2)当直线l2的斜率不存在时,|CD|=2,|MN|=4,不符合题意;当直线l2的斜率为0时,|CD|=4,|MN|=1,也不符合题意.可设直线l2的方程为,联立方程组,消去y,整理得,则,.所以.由得或所以.又因为|CD|2=6|MN|,所以,解得k2=2,所以,因为F2到直线CD的距离,所以.21.已知,g(x)=a(x+1).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)当a>0时,若关于x的方程f(x)+g(x)=0存在两个正实数根x1,x2(x1<x2),证明:a>e2且x1x2<x1+x2.【分析】(1)先求导,根据导数的几何意义即可求出切线方程;(2)根据关于x的方程f(x)+g(x)=0存在两个正实数根可得e x=a(x﹣1)(x≠1)得方程存在两个正实数根x1,x2,构造函数h(x)=e x﹣ax+a,利用导数求出函数的零点,再令α=x1﹣1,β=x2﹣1,则,变形整理得.要证x1x2<x1+x2,则只需证αβ<1,根据斜率的意义结合导数和函数最值的关系即可证明.【解答】(1)解:∵,∴f(0)=1,f'(0)=3,∴曲线y=f(x)在点(0,f(0))处的切线方程为3x﹣y+1=0.(2)证明:由f(x)+g(x)=0存在两个正实数根x1,x2(x1<x2),整理e x=a(x﹣1)(x≠1)得方程存在两个正实数根x1,x2(x1<x2).由a>0,知x2>x1>1,令h(x)=e x﹣ax+a,则h'(x)=e x﹣a,当x>lna时,h'(x)>0,h(x)在(lna,+∞)上单调递增;当x<lna时,h'(x)<0,h(x)在(0,lna)上单调递减.所以h(x)min=h(lna)=2a﹣alna.因为h(x)=e x﹣ax+a有两个零点,即2a﹣alna<0,得a>e2.因为实数x1,x2是e x=a(x﹣1)的两个根,从而.令α=x1﹣1,β=x2﹣1,则,变形整理得.要证x1x2<x1+x2,则只需证αβ<1,即只要证(0<α<1<β),结合对数函数y=lnx的图象可知,只需要证(α,lnα),两点连线的斜率要比(α,lnα),(β,lnβ)两点连线的斜率小即可.因为,所以只要证,整理得(0<α<1).令(0<x<1),则,所以g(x)在(0,1)上单调递减,即g(x)>g(1)=0,所以(0<α<1)成立,故x1x2<x1+x2成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(β为参数),将曲线C1上的所有点的横坐标缩短为原来的,纵坐标缩短为原来的后得到曲线C2,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求C2的极坐标方程和l的直角坐标方程;(2)在极坐标系中,射线与l,C2分别交于A,B两点(异于极点),定点M(14,0),求△MAB的面积.【分析】(1)直接利用参数方程极坐标方程和直角坐标方程之间的转换的应用求出结果.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)将曲线C1:(β为参数),消去β得x2+y2=9,后得曲线C2:,化为极坐标方程为.直线l的极坐标方程为,即ρcosθ+ρsinθ﹣6=0,所以l的直角坐标方程为x+y﹣6=0.(2)M到射线的距离.因为,,所以,[选修4-5:不等式选讲]23.已知a,b,c为正数,且满足a+b+c=1.证明:(Ⅰ)ab+bc+ac≤;(Ⅱ)(a+)+(b+)+(c+)≥10.【分析】(Ⅰ)运用重要不等式和三个数的完全平方公式,可得证明;(Ⅱ)由1=a+b+c代入,结合基本不等式,以及累加法,结合不等式的性质可得证明.【解答】证明:(Ⅰ)a,b,c为正数,且满足a+b+c=1,则(a+b+c)2=a2+b2+c2+2ab+2bc+2ca=1,又由均值不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca,相加可得a2+b2+c2≥ab+bc+ca,即有3(ab+bc+ca)≤1,即ab+bc+ac≤得证.(Ⅱ)a,b,c为正数,且满足a+b+c=1,可得>0,>0,>0,则(a+)+(b+)+(c+)=1+++=4+(+)+(+)+(+),又由均值不等式得+≥2=2,同理可得+≥2,+≥2,则(a+)+(b+)+(c+)≥4+6=10得证.(当且仅当a=b=c=时等号成立).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开始输出k结束 S 10S ←1Y NS ←S k (第5题) k ←k +2k ←1 (第11题) 2020年高考数学模拟试卷(3)(附详细解析)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分. 1.已知集合{}|02A x x =<<,集合{}|1B x x =>,则AB = .2.若(a +b i)(3-4i)=25 (a ,b ∈R ,i 为虚数单位),则22a b +的值为 .3.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业 倾向,用分层抽样的方法从该校这四个专业中抽取60名学生进行调查, 则应从丁专业抽取的学生人数为 .4.从1个黑球,1个黄球,3个红球中随机取出三个球,则三球颜色互不 相同的概率是 .5.右图是一个算法的流程图,则输出的k 的值为 .6. 在平面直角坐标系xOy 中,双曲线x 216-y 29=1的顶点到其渐近线的距离为 .7. 各棱长都为2的正四棱锥与正四棱柱的体积之比为m ,则m 的值为 . 8. 已知公差不为零的等差数列{}n a 的前n 项和为n S ,且26a =,若137,,a a a 成 等比数列,则72S S +的值为 .9.已知实数x ,y 满足条件⎩⎪⎨⎪⎧2≤x ≤4,y ≥3,x +y ≤8,则yz x =的最大值与最小值之和为 .10.已知函数2()||2x f x x +=+,x ∈R ,则2(2)(2)f x x f x -<-的解集是 .11.将函数()π3sin 4y x =的图象向左平移3个单位,得函数()π3sin 4y x ϕ=+(πϕ<)的图象(如图),点,M N 分别是函数()f x 图象上y 轴 两侧相邻的最高点和最低点,设MON θ∠=, 则()tan ϕθ-的值为 .12.已知正实数,x y 满足111x y +=,则3411x yx y +--的最小值为 . 13.已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x 轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 .14.若方程2|21|0x x t ---=有四个不同的实数根1234,,,x x x x ,且1234x x x x <<<,则41322()()x x x x -+-的取值范围是 .二、解答题:本大题共6小题,共计90分. 15.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PD ⊥平面ABCD ,过AD 的平面 分别与PB ,PC 交于点E ,F . (1)求证:平面PBC ⊥平面PCD ; (2)求证:AD ∥EF .16.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知π1sin()cos 62C C +-=.(1)求角C ;(2)若a +b =4,设D 为AB 的中点,求线段CD 长的最小值.17.(本小题满分16分)在平面直角坐标系xOy 中,圆O :224x y +=,直线l :43200x y +-=.43()55A ,为 圆O 内一点,弦MN 过点A ,过点O 作MN 的垂线交l 于点P . (1)若MN ∥l ,求△PMN 的面积.(2)判断直线PM 与圆O 的位置关系,并证明.(第15题)18.(本小题满分16分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受.如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm ,宽26 cm ,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称.设菱形的两条对角线长分别为x cm 和y cm ,窗芯所需条形木料的长度之和为L .(1)试用x ,y 表示L ;(2)如果要求六根支条的长度均不小于2 cm ,每个菱形的面积为130 cm 2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?19.(本小题满分16分)已知函数32()3(2)f x x x a x =-+-,a ∈R . (1)求函数()f x 的单调增区间;(2)若函数()f x 有三个互不相同的零点0,1t ,2t ,其中12t t <.(ⅰ)若213t t =,求a 的值;(ⅰ)若对任意的12[]x t t ∈,,都有()16f x a -≤成立,求a 的取值范围.yx26cm30cm图1图220.(本小题满分16分)在数列{}n a 中,11a =,283a =,111(1)n n nn a a n λ++=++,λ为常数,*n ∈N . (1)求λ的值; (2)设nn a b n=,求数列{}n b 的通项公式; (3)是否存在正整数r s t ,,(r s t <<),使得r s t ,,与r s t a a a ,,都为等差数列?若存在,求r s t ,,的值;若不存在,请说明理由.2018年高考模拟试卷(3)数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定两题,并在相应的答题区域内作答.................. A .[选修4-1:几何证明选讲](本小题满分10分)如图,A ,B ,C 是圆O 上不共线的三点,OD AB ⊥于D ,BC 和AC 分别交DO 的延长线于P 和Q ,求证:OBP CQP ∠=∠.QPDCBAO(第21-A )B .[选修4-2:矩阵与变换](本小题满分10分)已知a b ∈R ,,向量11⎡⎤=⎢⎥⎣⎦α是二阶矩阵24a b ⎡⎤=⎢⎥⎣⎦A 的属性特征值3的一个特征向量, 求直线:230l x y --=在矩阵A 对应的变换作用下得到的直线l '的方程.C .[选修4-4:坐标系与参数方程](本小题满分10分)在极坐标系中,已知直线l 的方程为()πcos 24ρθ-=,圆C 的方程为4sin 2cos ρθθ=-, 试判断直线l 与圆C 的位置关系.D .[选修4-5:不等式选讲](本小题满分10分)对任意实数t ,不等式|3||21||21||2|t t x x -++-++≥恒成立,求实数x 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答卷纸指定区域内........作答. 22.(本小题满分10分)某商场准备在今年的“五一假”期间对顾客举行抽奖活动,举办方设置了A 、B 两种 抽奖方案,方案A 的中奖率为23,中奖可以获得2分;方案B 的中奖率为P 0(0<P 0<1),中奖可以获得3分;未中奖则不得分,每人有且只有一次抽奖机会,每次抽奖中奖与 否互不影响,并凭分数兑换奖品.(1)若顾客甲选择方案A 抽奖,顾客乙选择方案B 抽奖,记他们的累计得分为X ,若X ≤3的概率为79,求P 0;(2)若顾客甲、顾客乙两人都选择方案A 或都选择方案B 进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?23.(本小题满分10分)( 第23题 )ABCDFEM如图,在平行四边形ABCD 中,1AB =,2AD =,π3ABC ∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动,且EM EF λ=. (1)当12λ=时,求异面直线DE 与BM 所成角的大小;(2)设平面MBC 与平面ECD 所成二面角的大小为θ(π02θ<≤),求cos θ的取值范围2020年高考数学模拟试卷(3)参考答案 一、填空题:本大题共14小题,每小题5分,共70分.1.答案:{}|0x x > 解析:由并集定义可得AB ={}|0x x >.2.答案:25 解析:因为22a b +即为复数a +b i 模的平方,且2534a bi i+=+, 所以2225534a bi a b i+==+=+,即22a b +的值为25 3.答案:18 解析:由题意可得:甲、乙、丙、丁四个专业人数之比为3:3:8:6,所以 100名学生中丁专业抽取人数为6601820⨯=人. 4.答案:310解析:将黑球标记为a ,黄球标记为b ,红球标记为123,,c c c 基本事件 有123122313122313123,,;,,;,,;,,;,,;,,;,,;,,;,,;,,a b c a b c a b c a c c a c c a c c b c c b c c b c c c c c 共计10种, 其中颜色互不相同有3种,故所求事件概率为310. 5.答案:7 解析:第1次,1S =,3k =;第2次,3S =,5k =;第三次,1510S =>,7k =.6. 答案:125解析:顶点坐标为()4,0±,渐近线方程为34x y =±,由对称性不妨取顶点()4,0,渐近线方程为34y x =,故顶点到其渐近线的距离为125d =.7.2解析:方法一:正四棱柱的体积为82,底面积为4,故体4226,即2m =方法二:设正四棱锥与正四棱柱的高分别为12,h h .因为正四棱锥与正四棱柱的底面积相同,所以体积之比为12122332h h ==8. 答案:80解析:因为137,,a a a 成等比数列,所以2317a a a =⋅.又26a =,设公差为d , 故()()()26665d d d +=-⋅+,即22d d =,又公差不为零,故2d =.即42210a a d =+=. 所以72421780S S a a a +=++=. 9. 答案:154解析:将所给约束条件画出如下图所示的可行域.y z x =的几何意义为可行域中的任一点与原点连线的斜率.由图形可得:在点A 处取到最大值.又()2,6A ,故max 3z =.在点C 处取到最小值.又()4,3C ,故min 34z =.所以z 的最大值与最小值之和为315344+=10.答案:(02), 解析:10()4102x f x x x ⎧⎪=⎨--<⎪-⎩≥,,,, 所以)(x f 在(0)-∞,上单调递增,在[0)+∞,上为常数函数,则222220x x xx x ⎧-<-⎪⎨-<⎪⎩, 解得20<<x .11.答案:2-解析:将函数()π4y x =的图象向左平移3个单位,得函数()π3π44y x =+,所以()(3π,,2,3,,4M OM N ON MN ϕ=-===由余弦定理可得,5cos π6θθ==, ()()35tan tan ππ46ϕθ=-=-35tan πtan π462351tan πtan π46-==-++⋅. 12.答案:7+解析:方法一:因为111x y +=,所以11111,1x y y x-=-=.又343434111111x y y x x y x y+=+=+----,所以()11343434772743y x y xy x x y x y x y ⎛⎫++=++≥+⋅=+ ⎪⎝⎭当且仅当23x =时取等号.方法二:因为111x y+=,所以xy x y =+,即()()111x y -⋅-=.故()()31341434343477274311111111x y x y x y x y x y x y -+-++=+=++≥+⋅=+--------当且仅当23x =时取等号.方法三:因为()34343347411111111x y x x x x x y x x x y+=+=+=++-------, 所以3474311x y x y +≥+--23x y =时取等号.13.答案:1解析:设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ONr ⋅的值为1 14.【答案】(8,5]【解析】方程2|21|0x x t ---=有四个不同的实数根,在同一坐标系内作出函数2()|21|f x x x =--与函数()g x t =的图象如下图所示,所以14,x x 是方程221x x t --=的两根,23,x x 是方程221x x t --=-的两根,由求根公式得413222,22x x t x x t -=+-=-,且02t <<,所以41322()()2(222)x x x x t t -+-=++-,令()2(222)f t t t =++-,由22(222)()04t t f t t --+'==-得65t =,函数()f t 在区间6(0,]5递增,在区间6[,2)5递减,又6(0)62,()45,(2)85f f f ===,所以所求函数的取值范围是(8,.二、解答题:本大题共6小题,共90分. 15.(本小题满分14分)证:(1)因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为底面ABCD 是矩形,所以CD BC ⊥. 因为CDPD D =,,CD PD ⊂平面PCD ,所以BC ⊥平面PCD .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCD . (2)底面ABCD 是矩形,所以AD ∥BC , 因为BC ⊂平面PBC ,AD ⊄平面PBC ,所以AD ∥平面PBC . 因为AD ⊂平面ADFE ,平面ADFE 平面PBC EF =,所以AD ∥EF .16.(本小题满分14分)解:(1)因为π1sin()cos 62C C +-=11cos 22C C -=,所以π1sin()62C -=.又因为0πC <<,所以π3C =.(2)法一:因为D 是AB 中点,所以1()2CD CA CB =+,所以2221(2)4CD CA CA CB CB =+⋅+,即2221()4CD a b ab =++,所以224()CD a b ab =+-23()124a b +=≥,当且仅当2a b ==时等号成立.所以CD法二:在ABC △中,由余弦定理得2222cos CD AC AD AC AD A =+-⋅⋅,可设22214cos b c CD A bc+-=. 在ABC △中,由余弦定理得2222cos CB AC AB AC AB A =+-⋅⋅,可设222cos 2b c a A bc+-=.所以222222142b c CD b c a bc bc +-+-=,所以2221()4CD a b ab =++.下同法一.法三:以C 为原点,CA 为x 轴,建立如图所示的平面直角坐标系, 所以3(0)()22a a A b B ,,,,所以3()424a ab D +,, 所以2221()4CD a b ab =++, 下同法一.17.(本小题满分14分)解:(1)因为MN ∥l ,设直线MN 的方程为430x y c ++=, 由条件得,4343055c ⨯+⨯+=,解得5c =-,即直线MN 的方程为4350x y +-=.因为34OA k =,43MN k =-,所以1OA MN k k ⋅=-,即OA MN ⊥,所以22423MN OA =-=. 又因为直线MN 与直线l 间的距离22|20(5)|343d ---==+,即点P 到直线MN 的距离为3,所以△PMN 的面积为1233332⨯⨯=. (2)直线PM 与圆O 相切,证明如下: 设00()M x y ,,则直线MN 的斜率000035354545y y k x x --==--,因为OP ⊥MN ,所以直线OP 的斜率为005453x y ---,所以直线OP 的方程为005453x y x y -=--.联立方程组00545343200x y x y x y -⎧=-⎪-⎨⎪+-=⎩,,解得点P 的坐标为()0000004(53)4(54)4343y x y x y x -----,, C A Bxy所以()000000004(53)4(54)4343y x PM x y y x y x --=-----,,由于()00OM x y =,,2204x y +=, 所以2200000000004(53)4(54)4343x y y x PM OM x y y x y x --⋅=-----0000004(53)4(54)443x y y x y x ---=--000012164043x y y x -+=-=-,所以PM OM ⊥,即PM OM ⊥,所以直线PM 与圆O 相切,得证. 18.(本小题满分16分)解:(1)由题意,水平方向每根支条长为302152x m x -==-cm ,竖直方向每根支条长为261322y y n -==-cm2=cm .从而,所需木料的长度之和L 2(15)4(13)82yx =-+-+=822()x y ++cm .(2)由题意, 1132xy =,即260y x =,又由152,132,2x y--⎧⎪⎨⎪⎩≥≥可得1301311x ≤≤.所以260822()L x x=++.令260t x x =+,其导函数226010x -<在1301311x ≤≤上恒成立,故260t x x=+在130[,13]11上单调递减,所以可得372[33,]11t ∈.则26082()]L x x =+-+82]t =+-=82+.因为函数y =y =在372[33,]11t ∈上均为增函数,所以82L =+在372[33,]11t ∈上为增函数,故当33t =,即13,20x y ==时L有最小值16+.答:做这样一个窗芯至少需要16+cm 长的条形木料.19.(1)2()36(2)f x x x a '=-+-,其判别式2(6)12(2)12(+1)a a ∆=---=.①当1a -≤时,0∆≤,()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞+∞.………………………………………1分②当1a >-时,由()0f x '>,得x <x >所以()f x 的单调增区间为(-∞,)+∞. 3分综上,当1a -≤时,()f x 的单调增区间为(,)-∞+∞;当1a >-时,()f x 的单调增区间为(-∞,)+∞.4分(2)(ⅰ)方程()0f x =,即为323(2)0x x a x -+-=,亦即2[3(2)]0x x x a -+-=,由题意1t ,2t 是方程23(2)0x x a -+-=的两个实根, ………………5分故123t t +=,122t t a =-,且判别式21(3)4(2)0a ∆=--->,得14a >-. 由213t t =,得134t =,294t =, ………………………………………8分 故1227216t t a =-=,所以516a =.………………………………………9分(ⅱ)因为对任意的12[]x t t ∈,,()16f x a -≤恒成立. 因为123t t +=,12t t <,所以1232t t <<, 所以120t t <<或120t t <<.①当120t t <<时,对12[]x t t ∈,,()0f x ≤, 所以016a ≤-,所以16a ≤.又1220t t a =->,所以2a <.………………………………………12分②当120t t <<时,2()36(2)f x x x a '=-+-,由(1)知,存在()f x 的极大值点11(0)x t ∈,,且1x =(方法1)由题得321111()3(2)16f x x x a x a =-+--≤,将1x =(72a +,解得11a ≤.…14分又1220t t a =-<,所以2a >.因此211a <≤.…………………………15分 综上,a 的取值范围是1(2)(211]4-,,.………………………………………16分(方法2)211362a x x =-+,由题得321111()3(2)16f x x x a x a =-+--≤, 将211362a x x =-+,代入化简得31(1)8x --≥,得11x -≥,故110x -<≤,因为211362a x x =-+在1[10)x ∈-,上递减,故(211]a ∈,.综上,a 的取值范围是1(2)(211]4-,,. ……………………………………16分20.(本小题满分16分)解:(1)将1n =代入111(1)n n nn a a n ++=++λ,得2122a a =+λ, 由11a =,283a =,得3=λ. (2)由111(1)3n n n n a a n ++=++,得1113n n n a a n n +-=+,即113n nnb b +-=. 当2n ≥时,111221()()()n n n n n b b b b b b b b ----=-+-+⋅⋅⋅+-111[1()]33113n --=-111223n -=-⨯, 因为1111a b ==,所以131223n n b -=-⨯. 因为11b =也适合上式,所以131223n n b -=-⨯.(3)由(2)知,3()23n nna n =-. 假设存在正整数r s t ,,且r s t <<,使得r s t ,,与r s t a a a ,,同时成等差数列, 则2r t s +=且2r t s a a a +=,即()()()33322333r t s r t s r t s -+-=-,整理得2333r t sr t s +=, (*)设3n n n c =,*n ∈N ,则1111120333n n nn n n n n c c ++++--=-=< 所以{}n c 单调递减数列. ① 若1r =,当3s ≥时,则2293ss ≤, 所以()*左边13>,右边29≤,显然等式不成立,当2s =时,得313933t t ==,解得3t =, 所以1r =,2s =,3t =符合题意. ② 若2r ≥,因为s r >,所以1s r +≥, 所以1s r c c +≤,所以()112122033333r sr r r r r s r r +++---=≥≥,所以03t t ≤,所以t 不存在, 即2r ≥时,不存在符合题意的r s t ,,.综上,存在1r =,2s =,3t =,使得r s t ,,与r s t a a a ,,同时成等差数列.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内 作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .[选修4—1:几何证明选讲](本小题满分10分)证:连接OA ,因为OD AB ⊥,OA OB =,所以12BOD AOD AOB ∠=∠=∠, 又12ACB AOB ∠=∠,所以ACB DOB ∠=∠, 又因为180BOP DOP ∠=-∠,180QCP ACB ∠=-∠, 所以BOP QCP ∠=∠,所以B ,O ,C ,Q 四点共圆,所以OBP CQP ∠=∠. B .[选修4—2:矩阵与变换](本小题满分10分) 解:由题意,3=A αα,即2113411a b ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以2343a b +=⎧⎨+=⎩,,解得11a b ==-,,所以1214⎡⎤=⎢⎥-⎣⎦A . 设l 上一点()P x y ,在A 的作用下得到直线l '上一点()P x y ''',, 则1214x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,即24x x y y x y '=+⎧⎨'=-+⎩,, 所以1(2)31()6x x y y x y ⎧''=-⎪⎨⎪''=+⎩,,代入直线:230l x y --=,得75180x y ''--=, 即直线l '的方程为75180x y --=. C .[选修4—4:坐标系与参数方程](本小题满分10分) 解:由()πcos 24ρθ-=cos sin 2θθ+=,所以直线l直角坐标方程为0x y +-=. 由4sin 2cos ρθθ=-,得24sin 2cos ρρθρθ=-, 所以圆C 的直角坐标方程为22240x y x y ++-=,即()()22125x y ++-=. …… 8分所以圆心到直线的距离2d ==所以直线l 与圆C 相交. D .[选修4—5:不等式选讲](本小题满分10分)解:设()|3||21|f t t t =-++,即13221()432323t t f t t t t t ⎧-+<-⎪⎪⎪=+-⎨⎪->⎪⎪⎩,,,≤≤,,,所以()f t 的最小值为72,所以7|21||2|2x x -++≤.当2x <-时,不等式即为7(21)(2)2x x ---+≤,解得32x -≥,矛盾;当122x -≤≤时,不等式即为7(21)(2)2x x --++≤,解得12x -≥,所以1122x -≤≤;当12x >时,不等式即为7(21)(2)2x x -++≤,解得56x ≤,所以1526x <≤.综上,实数x 的取值范围是1526x -≤≤.AB C DFEMxyz【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时 应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)解:(1)由已知得,甲中奖的概率为23,乙中奖的概率为P 0,且两人中奖与否互不影响.记“这2人的累计得分X ≤3”的事件为C ,则事件C 的对立事件为“X =5”. 因为P (X =5)=23P 0,所以P (C )=1-P (X =5)=1-23P 0=79,所以P 0=13.(2)设甲、乙都选择方案A 抽奖的中奖次数为X 1,都选择方案B 抽奖的中奖次数 为X 2,则这两人选择方案A 抽奖累计得分的均值为E (2X 1), 选择方案B 抽奖累计得分的均值为E (3X 2).由已知可得,X 1~B (2,23),X 2~B (2,P 0),所以E (X 1)=2×23=43,E (X 2)=2P 0,从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=6P 0.若E (2X 1)>E (3X 2),则83>6P 0⇒0<P 0<49,若E (2X 1)<E (3X 2),则83<6P 0⇒49<P 0<1,若E (2X 1)=E (3X 2),则83=6P 0⇒P 0=49.综上所述,当0<P 0<49时,他们都选择方案A 进行抽奖时,累计得分的均值较大;当49<P 0<1时,他们都选择方案B 进行抽奖时,累计得分的均值较大; 当P 0=49时,他们都选择方案A 或都选择方案B 进行抽奖时,累计得分的均值相等.23.(本小题满分10分)解:(1)在△ABC 中,1AB =,2BC AD ==,π3ABC ∠=,则3AC 222AB AC BC +=,即90BAC ∠=.因为四边形ACEF 为矩形,所以FA AC ⊥, 因为平面ACEF ⊥平面ABCD ,平面ACEF平面ABCD AC =,FA ⊂平面ACEF ,所以FA ⊥平面ABCD . …… 2分建立如图所示的空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,3,0)C ,(3,0)D -,E ,(0,0,1)F ,当12λ=时,12EM EF =,所以M .所以(BM =-,(1,0,1)DE =,所以(1,0,1)(0BM DE ⋅=⋅-=,所以BM DE ⊥,即异面直线DE 与BM 所成角的大小为90. (2)平面ECD 的一个法向量1(0,1,0)=n , 设000(,,)M x y z ,由000(0,,1)(0,,0)(EM x y z λ==-=-,得0000)1x y z λ=⎧⎪=-⎨⎪=⎩,,,即),1)M λ-,所以(),1)BM λ--=,(BC =-. 设平面MBC 的法向量2(,,)x y z =n ,因为22,,BC BM ⎧⊥⎪⎨⊥⎪⎩n n即0,)0,x x y z λ⎧-=⎪⎨--+=⎪⎩取1y =,则xz =,所以平面MBC的一个法向量2)=n , 因为π02θ<≤,所以1212cos θ⋅==⋅n n n n因为01λ≤≤,所以1cos 2θ⎤∈⎥⎣⎦,。