河南省鹤壁市高级中学2020_2021学年高二数学上学期尖子生联赛调研试题二理

合集下载

2020-2021学年河南省鹤壁市高中高二年级上学期尖子生联赛调研(三)物理试题(解析版)

2020-2021学年河南省鹤壁市高中高二年级上学期尖子生联赛调研(三)物理试题(解析版)

河南省鹤壁市高中2020-2021学年高二年级上学期尖子生联赛调研(三)物理试题一.选择题(每题5分,共40分)1.小管同学为了探究感应电流的方向与什么因素有关,他把一灵敏电流计与一个线圈相连构成闭合电路,然后将条形磁铁插入或拔出线圈,如图所示。

其中线圈中所标箭头方向为感应电流方向。

则下列判断正确的是()A.甲图磁铁正在向下运动B.乙图磁铁正在向上运动C.丙图磁铁正在向上运动D.丁图磁铁正在向上运动2.如图所示电路中,平行金属板中带电质点P处于静止状态,所有电流表和电压表均可视为理想电表。

当滑动变阻器R4的的滑片向b端移动时,则()A.电流表A的示数变小,电压表V的示数变小B.此过程中电压表V1示数的变化量ΔU1和电流表A1示数的变化量ΔI1的比值的绝对值变小C.平行金属板之间原静止的质点P将向下运动D.R3上消耗的功率逐渐增大3.如图所示,足够长的平行板电容器与电动势为E、内阻为r的电源连接,电容器两极板间的距离为d,在靠近电容器右侧极板的某点有一粒子发射源,能向各个方向发射速度大小都为v的同种粒子,粒子质量为m、带电量为q(q<0),所有粒子运动过程中始终未与左侧极板接触。

将电容器两极板间的电场看做匀强电场,不计带电粒子的重力,则粒子再次到达电容器右侧极板时与出发点的最大距离为()A.B.C.D.4.如图所示,在y>0的区域内存在方向垂直于纸面向里的匀强磁场B1,在y<0的区域内存在方向垂直于纸面向外的匀强磁场B2,磁场B2的磁感应强度大小是磁场B1的2倍。

一带负电的粒子(重力不计)从y轴上P(0,h)点以某一速度沿x轴正方向射入磁场B1,若第一次经过x轴时的横坐标为h,则粒子第三次经过x轴时的横坐标为()A.3h B.C.4h D.5.如图所示垂直纸面向里的有界匀强磁场的宽度为d,在纸面内,相同的带正电的粒子(不计重力)从左边界的A点以大小相同的初速度,沿各种方向垂直射入磁场,有些粒子从右边界射出磁场,有些粒子从左边界射出磁场。

河南省鹤壁市高中2020_2021学年高二数学下学期第二次段考试题理

河南省鹤壁市高中2020_2021学年高二数学下学期第二次段考试题理

河南省鹤壁市高中2020-2021学年高二数学下学期第二次段考试题理一.选择题1.已知集合A={﹣4,﹣2,﹣1,0,1,2,4},B={x|x2﹣x﹣2≥0},则A∩B=()A.{﹣4,﹣2,4} B.{﹣4,﹣2,﹣1,2,4}C.{﹣4,2,4} D.{﹣4,﹣2,1,2,4}2.已知复数z=+3i,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.“cosθ<0”是“θ为第二或第三象限角”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知a>b>0,若log a b+log b a=,a b=b a,则=()A.B.2 C.2D.45.2013年5月,华人数学家张益唐的论文《素数间的有界距离》在《数学年刊》上发表,破解了困扰数学界长达一个多世纪的难题,证明了孪生素数猜想的弱化形式,即发现存在无穷多差小于7000万的素数对,这是第一次有人证明存在无穷多组间距小于定值的素数对.孪生素数猜想是希尔伯特在1900年提出的23个问题中的第8个,可以这样描述:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数.在不超过16的素数中任意取出不同的两个,则可组成孪生素数的概率为()A.B.C.D.6.函数f(x)=的图象大致为()A.B.C.D.7.设函数f(x)=sinωx+cosωx(ω>0),其图象的一条对称轴在区间()内,且f(x)的最小正周期大于π,则ω的取值范围为()A.()B.(0,2)C.(1,2)D.[1,2)8.已知点P(m,n)是函数y=图象上的动点,则|4m+3n﹣21|的最小值是()A.25 B.21 C.20 D.49.已知(x2﹣)4(1+ax)的展开式中常数项系数为4,则a=()A.﹣4 B.1 C.D.﹣110.在长方体ABCD﹣A1B1C1D1中,底面ABCD是正方形,AA1=3AB,E为CC1的中点,点F在棱DD1上,且D1F=2DF,则异面直线AE与CF所成角的余弦值是()A.B.C.D.11.已知F1,F2是椭圆C1:与双曲线C2的公共焦点,A是C1,C2在第二象限的公共点.若AF1⊥AF2,则C2的离心率为()A.B.C.D.12.设S n为数列{a n}的前n项和,S n+,则数列{S n}的前7项和为()A.﹣B.﹣C.﹣D.﹣二.填空题13.已知x,y满足约束条件则z=3x+4y的最小值为.14.已知向量,满足||=2||=4,且•,则向量,的夹角是.15.函数f(x)=xlnx﹣x3﹣x+1的图象在x=1处的切线方程是.16.如图所示,正方体ABCD﹣A1B1C1D1的棱长为4,MN是它内切球的一条弦(我们把球面上任意两点之间的线段称为球的弦),P为正方体表面上的动点,当弦MN的长度最大时,的取值范围是.三.解答题17.在△ABC中,角A,B,C的对边分别为a,b,c,已知b=,∠B=45°.(1)求边BC的长;(2)在边BC上取一点D,使得cos∠ADB=,求sin∠DAC的值.18.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)若=2,求二面角D﹣AE﹣C的余弦值.19.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,郑州市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共3分批次进行,每次支教需要同时派送2名教师,且每次派送人员均从5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.(1)求5名优秀教师中的“甲”,在这3批次活动中有且只有一次被抽选到的概率;(2)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人?请说明理由;20.已知抛物线E:x2=2py(p>0)的焦点为F,点P在抛物线E上,点P的横坐标为2,且|PF|=2.(1)求抛物线E的标准方程;(2)若A,B为抛物线E上的两个动点(异于点P),且AP⊥AB,求点B的横坐标的取值范围.21.已知函数f(x)=x•e x﹣alnx﹣ax.(1)若a=e,讨论f(x)的单调性;(2)若对任意x>0恒有不等式f(x)≥1成立,求实数a的值.选做题(请考生在22、23题中任选一题作答,如果多做,则按第一题计分)22.在平面直角坐标系中,曲线C的参数方程为(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+)=.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)射线OP的极坐标方程为θ=,若射线OP与曲线C的交点为A(异于点O),与直线l 的交点为B,求线段AB的长.23.已知a>b>0,函数f(x)=|x+|.(1)若a=1,b=,求不等式f(x)>2的解集;(2)求证:f(x)+|x﹣a2|≥4.鹤壁市高中2022届高二检测(二)理数答案一.选择题 BABBD ACCDB BB4.解:对a b=b a两边取以a为底的对数,得,即b=a log a b,同理有:a=b log b a,代入log a b+log b a=,得,因为a>b>0,所以,所以,,故选:B.8.解:由y=,得(x+1)2+y2=1(y≥0)令x+1=cosθ,y=sinθ,0≤θ≤π,得x=﹣1+cosθ,y=sinθ,∵点P(m,n)是函数y=图象上的动点,则4m+3n﹣21=4(﹣1+cosθ)+3sinθ﹣21=3sinθ+4cosθ﹣25=5sin(θ+φ)﹣25,(tanφ=).∴当5sin(θ+φ)=5时,|4m+3n﹣21|取最小值20.故选:C.12.解:当n=1时,a1=S1=﹣a1﹣,解得a1=﹣,当n≥2时,S n﹣1+=(﹣1)n﹣1a n﹣1,又S n+=(﹣1)n a n,两式相减可得a n=S n﹣S n﹣1=(﹣1)n a n﹣(﹣1)n﹣1a n﹣1+,当n为偶数时,a n﹣1=﹣;当n为奇数时,2a n+a n﹣1=,即有a n=,所以数列{a n}的奇数项和偶数项均为等比数列,且公比均为,且a1=﹣,a2=,所以数列{S n}的前7项和为S1+S2+S3+S4+S5+S6+S7=﹣+0﹣+0﹣+0﹣=﹣,故选:B.13.﹣13. 14.. 15.3x+y﹣2=0 16. [0,8].16.解:因为MN是它内切球的一条弦,所以当弦MN经过球心时,弦MN长度最大,此时MN=4,以D为原点建立空间直角坐标系如右图:根据直径的任意性,不妨设M,N分别是上下底面的中心,则M(2,2,4),N(2,2,0),设P(x,y,z),则=(2﹣x,2﹣y,4﹣z),=(2﹣x,2﹣y,﹣z),所以•=(2﹣x)2+(2﹣y)2﹣z(4﹣z)=(x﹣2)2+(y﹣2)2+(z﹣2)2﹣4,x∈[0,2],y∈[0,2],z∈[0,2],因为点P为正方体表面上动点,所以根据x,y,z的对称性可知,•的取值范围与点P在哪个面上无关,不妨设点P在底面ABCD上,即z=0时,有•=(x﹣2)2+(y﹣2)2,所以当x=y=2时,•=0,此时•最小,当P位于正方形的顶点D,即x=0,y=0,z=0时,•最大,•=8.综上所述,•的取值范围为[0,8].故答案为:[0,8].17.解:(1)在△ABC中,因为,由余弦定理知,b2=a2+c2﹣2ac cos B,所以,即a2﹣2a﹣3=0,解得a=3或a=﹣1(舍),所以BC=3.(2)在△ABC中,由正弦定理知,,所以,解得,因为cos∠ADB=,所以,即∠ADC为钝角,且sin∠ADC=,又∠ADC+∠C+∠CAD=180°,所以∠C为锐角,所以,所以sin∠DAC=sin(180°﹣∠ADC﹣∠C)=sin(∠ADC+∠C)=sin∠ADC cos∠C+cos∠ADC sin∠C=.18.(1)证明:如图所示,取AC的中点O连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC,△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD,∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°,∵DO=,∴DO2+BO2=AB2=BD2,∴∠BOD=90°,∴OB⊥OD,又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:由题知,点E是BD的三等分点,建立如图所示的空间直角坐标系.不妨取AB=2,则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,0),B(0,,0),E(0,,).=(﹣1,0,1),=(﹣1,,),=(﹣2,0,0),设平面ADE的法向量为=(x,y,z),则,取x=3,得=(3,,3).同理可得:平面ACE的法向量为=(0,1,﹣).∴cos<>==﹣,∴二面角D﹣AE﹣C的余弦值为.19.解:(1)5名优秀教师中的“甲”在每轮抽取中,被抽取到概率为,则三次抽取中,“甲”恰有一次被抽取到的概率P=C;(2)第二次抽取到的没有支教经验的教师人数最有可能是1人,设ω表示第一次抽取到的无支教经验的教师人数,ω可能的取值有 0,1,2,则P(ω=0)=,P(=,P(ω=2)=,设ξ表示第二次抽取到的无支教经验的教师人数,可能的取值有0,1,2,则P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,因为P(ξ=1)>P(ξ=0)>P(ξ=2),故第二次抽取到的无支教经验的教师人数最有可能是1人;20.解:(1)依题意得,设,又点P是E上一点,所以,得p2﹣4p+4=0,即p=2,所以抛物线E的标准方程为x2=4y.(2)由题意知P(2,1),设,则,因为x1≠﹣2,所以,AB所在直线方程为,联立x2=4y.因为x≠x1,得(x+x1)(x1+2)+16=0,即,因为△=(x+2)2﹣4(2x+16)≥0,即x2﹣4x﹣60≥0,故x≥10或x≤﹣6,经检验,当x=﹣6时,不满足题意.所以点B的横坐标的取值范围是(﹣∞,﹣6)∪[10,+∞).21.解:(1)f(x)=x•e x﹣alnx﹣ax,x>0,则f′(x)=(x+1)e x﹣a(+1)=(x+1)(e x﹣),当a=e时,令f′(x)<0,得0<x<1;令f′(x)>0,得x>1;综上,当x∈(0,1)时,f(x)单调递减;当x∈(1,+∞)时,f(x)单调递增.(2)当a<0时,f(x)单调递增,f(x)的值域为R,不符合题意;当a=0时,则f()=<1,也不符合题意.当a>0时,易知f′(x)为增函数,当x→0时,f′(x)→﹣∞,当x→+∞,f′(x)→+∞,所以f′(x)=0有唯一解x0,此时x0=a,因此f(x)min=f(x0)=x0﹣alnx0﹣ax0=a﹣alna﹣ax0=a﹣alna,故只需a﹣alna≥1.令t=,上式即转化为lnt≥t﹣1,设h(t)=lnt﹣t+1,则h′(x)=,因此h(t)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)max=h(1)=0,所以lnt≤t﹣1.因此,lnt=t﹣1,所以t=1,从而有=t=1,可得a=1.故满足条件的实数为a=1.22.解:(1)由,转换为直角坐标方程为x2+(y﹣1)2=1,由直线l的极坐标方程为ρsin(θ+)=.根据,转换为直角坐标方程为:.(2)曲线C的方程可化为x2+y2﹣2y=0,所以曲线C的极坐标方程为ρ=2sinθ,由题意设A (),B (),将代入ρ=2sinθ,得到ρ1=1.将代入ρsin(θ+)=,得到ρ2=,所以|AB|=|ρ1﹣ρ2|=1.23.解:(1)依题意,当a=1,b =时,得f(x)=|x+4|,则f(x)>2⇔|x+4|>2⇔x+4>2或x+4<﹣2,解得x>﹣2或x<﹣6.故不等式f(x)>2的解集为{x|x>﹣2或x<﹣6};证明:(2)依题意,f(x)+|x﹣a2|≥4⇔|x +|+|x﹣a2|≥4,∵|x +|+|x﹣a2|≥|x +﹣(x﹣a2)|=,又a=b+a﹣b ,∴,故.当且仅当a =,b =时,等号成立.11。

河南省鹤壁市高级中学2020_2021学年高二生物上学期尖子生联赛调研试题一2

河南省鹤壁市高级中学2020_2021学年高二生物上学期尖子生联赛调研试题一2

河南省鹤壁市高级中学2020-2021学年高二生物上学期尖子生联赛调研试题一注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题1.下列有关人体内环境稳态的叙述,不正确的是()A.内环境主要由血浆、组织液、淋巴这三种细胞外液构成B.内环境稳态失衡会导致代谢紊乱C.内环境成分中含有CO2、尿素、神经递质、血红蛋白等物质D.细胞外液的渗透压主要来源于蛋白质和无机盐离子等2.如图所示为某反射弧的部分结构示意图。

若在B、E两点的细胞膜表面安放电极,中间接电表,据图判断下列叙述错误的是()A.刺激D点时将会使电表的指针发生两次偏转B.C处发生的信号变化是电信号→化学信号→电信号C.若C处缺乏神经递质相关受体,则D处将无法得到从C处传来的信息D.刺激B点时,相应部位神经冲动的传导方向是A←B→C3.下列关于人体细胞直接生活的液体环境的叙述,错误的是()A.该液体环境是人体细胞与外界环境进行物质交换的媒介B.该液体环境的pH保持相对稳定主要与酸碱缓冲物质有关C.该液体环境中的组织液、血浆和淋巴之间均可直接相互转化D.该液体环境的稳态被打破,必将引起细胞代谢发生紊乱4.图表示人体内的细胞与外界环境之间进行物质交换的过程。

Ⅰ、Ⅱ、Ⅲ、Ⅳ表示直接与内环境进行物质交换的四种主要器官,①②是有关的生理过程,据图分析下列说法正确的是A.葡萄糖只能从内环境进入细胞,而不能从细胞进入内环境B.内环境的稳态遭到破坏时,必将引起渗透压下降C.Ⅲ器官功能异常,会导致内环境稳态被破坏D.Ⅰ是产热的主要器官,Ⅳ是散热的主要器官5.下列有关细胞外液的叙述,不正确的是A.细胞外液是组织细胞与外界环境进行物质交换的媒介B.机体大多数细胞生活在组织液中C.细胞外液的渗透压主要来源于Na+和Cl-D.细胞外液的理化性质一直处于稳定不变的状态6.下图是由甲、乙、丙三个神经元(部分)成的突触结构。

2020-2021学年河南省鹤壁市高级中学高二上学期尖子生联赛调研语文试题(解析版)

2020-2021学年河南省鹤壁市高级中学高二上学期尖子生联赛调研语文试题(解析版)

鹤壁高中2020高二年级尖子生联赛调研一语文试题本试卷共22题,共150分。

考试结束后,将本试卷和答题卡一并交回。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成下面小题。

中华文明复兴是当代中国发展的核心问题,而传承、创新和引领则是中华文明复兴的要义。

复兴的前提是传承,但传承不等于复古。

东西方文明兴衰的规律表明,文明复兴的过程必然是文明再造的过程,文明唯有再造,方可复兴。

文明的再造,是对传统文明扬弃更新的过程,既是对传统文明优秀成分的继承和升华,又须摆脱传统文明糟粕成分的禁锢和束缚。

在人类历史上,成功的文明复兴都是优化或革新传统文明而结出的甜美果实。

中华文明的复兴也不例外。

所谓“梦回唐朝”,为再现昔日荣光而回归强大的封建帝国,既不可能也不必要。

没有优秀文明传统的复现也不是复兴。

一种文明的复兴不能变成对当下强势文明的简单模仿。

舍弃自身文明的优秀传统,复制外来文明,只能让自己成为其他文明的附庸而丧失复兴的可能。

虽然在理论上很容易明白这个道理,但在实践中却极易陷入这一泥潭而不自知。

近代以来,面对西方的挑战,改良者不仅以西方文明为圭臬,而且卷入西方主导的思维模式中,在不知不觉中消解了中华文明的主体性。

一味以当下的强势文明作为模板去追赶,而不加以批判性反思和超越,根本无法实现中华文明伟大复兴。

因此,中华文明的复兴也意味着挣脱西方文明的羁绊,重建中华文明自信。

在新时代条件下,对西方文明加以创造性转化和创新性发展,也是中华文明复兴的应有之义。

文明的复兴是复现与新兴的统一。

二者相互依存,缺少任何一方都不能构成复兴。

但相比之下,后者是文明复兴更为本质的方面。

没有文明的自我创新,中华民族就不能浴火重生。

中华文明的复兴,是以文明的创新作为基本内涵的。

无论是对传统文明的再造,还是对西方文明的扬弃,指向的都是文明的创新,都是在传统文明和西方文明基础上建构新的文明。

中华文明复兴,不只是经济总量这种硬实力的复兴,也不只是硬实力加软实力的复兴,甚至也不只是文明名次跃居榜首,而更在于创造出较之现今主导文明更益于人类生存和发展的更为优越和高级的新型文明。

2020-2021学年河南省濮阳市、安阳市、鹤壁市高二10月联合调研考试理科数学试题 PDF版

2020-2021学年河南省濮阳市、安阳市、鹤壁市高二10月联合调研考试理科数学试题 PDF版

【解析】 因为
a7 b7
=22ab77
=ab11
+a13 +b13
=13(b12+b13)=BA1133
=7×1313++345=127.

5.【答案】 A
【解析】 ∵sinB=2sinC,则由正弦定理得 b=2c,又 a=2槡2,cosA=3 4,
∴由余弦定理 a2=b2+c2-2bccosA得 8=4c2+c2-2·2c·c· 3,c2=4, 4
( )-12 =13,故 AC=槡13,故 C正确.对于 D,设∠ADC=θ,则 AC2 =1+9-2×1×3×cosθ,故
四边形 ABCD的面积为
S=12×1×3×sinθ+( 10-6cosθ) ×槡43=32sinθ-32槡3cosθ+52槡3,
( ) 故 S=3sin θ-π3 +52槡3,当 θ=56π时,S有最大值 3+52槡3,故 D错误.
{10n-n2,1≤n≤5
即有 Tn=
n2
. -10n+50,n≥6

10分
18.【答案】 见解析 【解析】 (1)由题意可知,关于 x的一元二次方程 x2-( m+3) x+3m=0的两根分别为 -2,3, 则( -2) 2+2( m+3) +3m=0,整理得 5m+10=0,解得 m=-2; 4分 (2)不等式 x2-( m+3) x+3m<0即为( x-m) ( x-3) <0 5分
∴ -2Tn=3+4×32+4×33+… +4×3n-( 4n-3) ×3n+1 8分
[ ] =3+4
9(
1-3n-1) 1-3
-( 4n-3) ×3n+1=-15+( 5-4n)3n+1, 10分
所以 Tn=125+4n2-53n+1. 12分

河南省鹤壁市普通高中2020-2021学年高二年级上学期12月尖子生联赛调研考试(三)生物试题及答案

河南省鹤壁市普通高中2020-2021学年高二年级上学期12月尖子生联赛调研考试(三)生物试题及答案

绝密★启用前河南省鹤壁市普通高中2020-2021学年高二年级上学期尖子生联赛调研考试(三)生物试题2020年12月27日一、单选题1.某生物兴趣小组利用刚宰杀的家兔探究影响促甲状腺激素(TSH)分泌的因素,实验结果如图所示。

下列分析中不合理的是()A.3 号瓶、4 号瓶、5 号瓶对比说明甲状腺激素和下丘脑影响TSH 的分泌B.2 号瓶和5 号瓶对比说明下丘脑分泌的激素对垂体分泌TSH 有促进作用C.1 号瓶、2 号瓶、3 号瓶对比说明TSH 是由垂体分泌的D.3 号瓶、4 号瓶对比可知,甲状腺激素对TSH 的分泌有抑制作用2.2017年诺贝尔生理学或医学奖揭示了人体除了下丘脑视交叉上核(SCN)的主生物钟外,还有存在于肝脏、胰脏等器官和脂肪组织中的局部生物钟,它们对调节激素水平、睡眠需求、体温和新陈代谢等具有重要作用。

其中松果体细胞分泌的褪黑素俗称脑白金,它的分泌是由神经反射活动导致的。

褪黑素白天分泌少,晚上分泌多,能使人在夜间迅速入睡,睡眠时间持续延长,其调控机理如图所示,下列说法正确的是()A.个别同学熬夜玩手游,从而扰乱了生物钟,推测其原因是手机光线促进了褪黑素的分泌,从而干扰睡眠B.外界环境的光照变化刺激视网膜上感光细胞,产生兴奋并传递,最终该反射弧的效应器是松果体细胞C.褪黑素由松果体细胞分泌后,通过体液运输,抑制下丘脑视交叉上核的活动,此种调节方式属于负反馈调节D.研究表明褪黑素能抑制睾丸分泌雄性激素,从图中推测其抑制机理是促进垂体分泌促性腺激素3.下列有关内环境和稳态的表述,正确的有()①神经递质可以存在于内环境中②血浆成分稳定时机体保持稳态③人体局部组织活动增强时,组织液增加,淋巴增加④腹泻会引起体液中水和蛋白质大量丢失⑤人体对花粉等产生过敏反应时,引起毛细血管壁的通透性增加,血浆蛋白渗出,会造成局部组织液增多A.二项B.三项C.四项D.五项4.甲种群与乙种群存在生殖隔离,如图表示甲、乙个体数量比随时间变化的坐标图。

河南省鹤壁市普通高中2020-2021学年高二上学期12月尖子生联赛调研考试(三)物理试题及答案详解

河南省鹤壁市普通高中2020-2021学年高二上学期12月尖子生联赛调研考试(三)物理试题及答案详解

绝密★启用前河南省鹤壁市普通高中2020-2021学年高二年级上学期尖子生联赛调研考试(三)物理试题2020年12月一.选择题(每题5分,共40分)1.小管同学为了探究感应电流的方向与什么因素有关,他把一灵敏电流计与一个线圈相连构成闭合电路,然后将条形磁铁插入或拔出线圈,如图所示。

其中线圈中所标箭头方向为感应电流方向。

则下列判断正确的是()A.甲图磁铁正在向下运动B.乙图磁铁正在向上运动C.丙图磁铁正在向上运动D.丁图磁铁正在向上运动2.如图所示电路中,平行金属板中带电质点P处于静止状态,所有电流表和电压表均可视为理想电表。

当滑动变阻器R4的的滑片向b端移动时,则()A.电流表A的示数变小,电压表V的示数变小B.此过程中电压表V1示数的变化量ΔU1和电流表A1示数的变化量ΔI1的比值的绝对值变小C.平行金属板之间原静止的质点P将向下运动D.R3上消耗的功率逐渐增大3.如图所示,足够长的平行板电容器与电动势为E、内阻为r的电源连接,电容器两极板间的距离为d,在靠近电容器右侧极板的某点有一粒子发射源,能向各个方向发射速度大小都为v的同种粒子,粒子质量为m、带电量为q(q<0),所有粒子运动过程中始终未与左侧极板接触。

将电容器两极板间的电场看做匀强电场,不计带电粒子的重力,则粒子再次到达电容器右侧极板时与出发点的最大距离为()A.B.C.D.4.如图所示,在y>0的区域内存在方向垂直于纸面向里的匀强磁场B1,在y<0的区域内存在方向垂直于纸面向外的匀强磁场B2,磁场B2的磁感应强度大小是磁场B1的2倍。

一带负电的粒子(重力不计)从y轴上P(0,h)点以某一速度沿x轴正方向射入磁场B1,若第一次经过x轴时的横坐标为h,则粒子第三次经过x轴时的横坐标为()A.3h B.C.4h D.5.如图所示垂直纸面向里的有界匀强磁场的宽度为d,在纸面内,相同的带正电的粒子(不计重力)从左边界的A点以大小相同的初速度,沿各种方向垂直射入磁场,有些粒子从右边界射出磁场,有些粒子从左边界射出磁场。

河南省鹤壁市淇滨高级中学2020-2021学年高二数学上学期第二次周考试题【含答案】

河南省鹤壁市淇滨高级中学2020-2021学年高二数学上学期第二次周考试题【含答案】

河南省鹤壁市淇滨高级中学2020-2021学年高二数学上学期第二次周考试题考试时间:120分钟 注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每小题5分,共12题60分)1.某三角形的两个内角分别为 和,若角所对的边长是6,则角所对的边长是( ) A.B.C. D.2.在等差数列中, ,则等于( ){}n a 3756,4a a a =-=+1a A. B. C. D. 10-2-2103.在等腰 的底角 的正弦与余弦的和为 ,则它的顶角是( )A.或B.或C.D.4.若则下列命题中正确的是( ),,R,a b c ∈A.若,则 B.若 ,则ac bc >a b >22a b >a b >C.若,则 D.,则11a b <a b >>a b>5.不等式的解集是( )241290x x -+≤A.B.RC.D. ∅3|2x x ⎧≠⎫⎨⎬⎩⎭32⎧⎫⎨⎬⎩⎭6.若不等式的解集为,则的值为( )()20,R x ax b a b ++<∈{}25x x <<,a b A .B .7,10a b =-=7,10a b ==-C .D .7,10a b =-=-7,10a b ==7.在中,内角的对边分别为,且,则是( )ABC △,,A B C ,,a b c 222222c a b ab =++ABC △A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形8.在不等式表示的平面区域内的点是( )210x y +->A.B.C.D.()1,1-()0,1()1,0()2,0-9.公差不为零的等差数列的前项和为,若是与的等比中项,且,{}n a n n S 4a 3a 7a 10 60S =则 ( )20S =A.80 B.160 C.320 D.64010.已知为等差数列, ,,则等于( ){}n a 135105a a a ++=24699a a a ++=20a A.-1 B.1 C.3 D.711.已知约束条件 表示面积为1的直角三角形区域,则实数k 的值为( )1,40,0,x x y kx y ≥+⎧-≤-≤⎪⎨⎪⎩A.1B.-1C.0D.-212.已知的前项和为,且成等差数列,{}n a n 12n n S m +=+145,,2a a a -,数列的前项和为,则满足的最小正整数的值1(1)(1)n n n n a b a a +=--{}n b n n T 20172018n T >n 为( )A.8B.9C.10D.11第II 卷(非选择题)二、填空题(每题5分,共4道题20分)13.在等腰中,已知,底边,则的周长是__________ABC ∆:1:2sinA sinB =10BC =ABC ∆14.已知数列的前项和为,则数列的通项公式是_____.{}n a n 234n S n =-{}n a 15.不等式的解集是__________2902x x ->-16.已知函数的图象过点,令.记数列()af x x =()4,2()()1,1n a n N f n f n *=∈++的前项和为,则__________.{}n a n n S 2016S =三、解答题(17题10分,其余每题12分,共70分。

河南省鹤壁市高级中学2020_2021学年高二数学上学期尖子生联赛调研试题二文_2

河南省鹤壁市高级中学2020_2021学年高二数学上学期尖子生联赛调研试题二文_2

河南省鹤壁市高级中学2020-2021学年高二数学上学期尖子生联赛调研试题二文考试范围:必修五、选修1-1;考试时间:120分钟;一.选择题(共12小题,每题5分)1.,x≤sin x的否定是()A.,x≤sin x B.,x>sin xC.,x>sin x D.,x≤sin x2.已知a<0<b<1,那么下列不等式成立的是()A.a>ab>ab2B.ab>ab2>a C.ab>a>ab2D.ab2>ab>a3.已知命题p:若a>1,b>c>1,则log b a<log c a;命题q:∃x0(0,+∞),使得2log3x0”,则以下命题为真命题的是()A.p∧q B.p∧(¬q)C.(¬p)∧q D.(¬p)∧(¬q)4.若点(x,y)在不等式组表示的平面区域内,则实数的取值范围是()A.[﹣1,1] B.[﹣2,1] C.[,1] D.[﹣1,]5.已知F1,F2是椭圆(a>b>0)的左、右焦点,若满足的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,)B.(,1)C.(0,)D.(,1)6.在△ABC中,角A,B,C所对的边分别为a,b,c,若,则△ABC的面积为()A.2 B.C.3 D.7.数列{a n}满足(n∈N+),则它的前9项和S9=()A. 2 B. 2 C. 2 D. 28.某船在小岛A的南偏东75°,相距20千米的B处,该船沿东北方向行驶20千米到达C处,则此时该船与小岛A之间的距离为()A.千米B.千米C.20千米D.千米9.已知抛物线C:x2=12y上一点P,直线l:y=﹣3,过点P作PA⊥l,垂足为A,圆M:(x﹣4)2+y2=1上有一动点N,则|PA|+|PN|最小值为()A.2 B.4 C.6 D.810.设函数f(x)=6x2•e x﹣3ax+2a(e为自然对数的底数),当x∈R时f(x)≥0恒成立,则实数a的最大值为()A.e B.2e C.4e D.6e11.已知点A(0,1),而且F1是椭圆1的左焦点,点P是该椭圆上任意一点,则|PF1|+|PA|的最小值为()A.6B.6C.6D.612.设函数f(x)=e x(2x﹣1)﹣mx+m,其中m<1,若有且仅有两个不同的整数n,使得f(n)<0,则m的取值范围是()A.[,)B.[,)C.[,)D.[,1)二.填空题(共4小题,每题5分)13.若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为.14.若正数x,y满足x+5y=3xy,则5x+y的最小值是.15.在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则9a+c的最小值为.16.已知F1,F2是双曲线的左、右焦点,过点F1的直线l与双曲线E 的左支交于P,Q两点,若|PF1|=2|F1Q|,且F2Q⊥PQ,则E的离心率是.三.解答题(共6小题)17.(10分)已知p:∃x∈[0,+∞),e x﹣1≤m;q:函数y=x2﹣2mx+1有两个零点.(1)若p∨q为假命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.18.(12分)△ABC的内角A,B,C的对边分别为a,b,c,(sin B﹣sin C)2=sin2A﹣sin B sin C.(1)求A;(2)若△ABC为锐角三角形,且,求b2+c2+bc取值范围.19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若3,求|AB|.20.(12分)已知数列{a n}的前n项和为S n,满足S n=2a n﹣n,n∈N*.(1)求证:数列{a n+1}为等比数列;(2)设,记数列{b n}的前n项和为T n,求满足不等式的最小正整数n 的值.21.(12分)某公园有一矩形空地ABCD,AB=2,,市政部门欲在该空地上建造一花圃,其形状是以H为直角顶点的Rt△HEF,其中H是AB的中点,E,F分别落在线段BC和线段AD上(如图).(1)记∠BHE为θ,Rt△EHF的周长为l,求l关于θ的函数关系式;(2)如何设计才能使Rt△EHF的周长最小?22.(12分)已知函数f(x)=alnx+(x+1)2(a≠0,x>0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)对于任意x∈[1,+∞)均有f(x)0恒成立,求a的取值范围.鹤壁高中高二年级尖子生联赛调研二文数答案一.选择题 BDBCA ADDBD AA二.填空题 -1 12 16 17 31.【解答】解:命题为全称命题,则命题的否定,x>sin x,故选:B.2.【解答】解:根据a<0<b<1,取a=﹣2,b,则可排除ABC.故选:D.3.【解答】解,,因为a>1,b>c>1,所以0<log a c<log a b,所以,即命题p为真命题;画出函数y=2x和y=log3x图象,知命题q为假命题.故选:B.4.【解答】解:根据约束条件画出可行域,则实数2•表示可行域内点Q和点P(﹣1,)连线的斜率的最值的2倍,当Q点在原点C时,直线PC的斜率为,当Q点在可行域内的点B处时,直线PQ的斜率为,结合直线PQ的位置可得,当点Q在可行域内运动时,其斜率的取值范围是:[,1].故选:C.5.【解答】解:F1,F2是椭圆(a>b>0)的左、右焦点,若满足的点M 总在椭圆内部,可得b>c,即b2>c2,所以a2>2c2,所以e,所以椭圆离心率的取值范围:(0,).故选:A.6.【解答】解:∵,∴由余弦定理c2=a2+b2﹣2ab cos C,可得:26=a2+2﹣2a(),即a2+2a﹣24=0,∴解得a=4,(负值舍去),∴S△ABC ab sin C4sin2.故选:A.7.【解答】解:数列{a n}满足,可得a n,它的前9项和S92.故选:D.8.【解答】解:如图所示,∠ABC=75°+45°=120°,且AB=BC=20,所以AC2=AB2+BC2﹣2AB•BC•cos∠ABC=400+400﹣2×20×20×()=1200,所以AC=20,即该船与小岛A之间的距离为20千米.故选:D.9.【解答】解:由抛物线方程可得:焦点F(0,3),直线l是准线方程,由抛物线定义可得|PA|=|PF|,又由圆的方程可得:圆心为M(4,0),半径R=1,根据两点间距离,线段最短如图:可得:(|PA|+|PN|)min=|FM|﹣R,故选:B.10.【解答】解:f(x)=6x2•e x﹣3ax+2a(e为自然对数的底数),当x∈R时f(x)≥0恒成立,∴a(3x﹣2)≤6x2•e x,当3x﹣2>0时,即x时,a,设g(x),x,∴g′(x)=666xe x•,令g′(x)=0,解得x=1,∴当x∈(,1)时,g′(x)<0,函数g(x)单调递减,当x∈(1,+∞)时,g′(x)>0,函数g(x)单调递增,∴g(x)min=g(1)=6e,∴a≤6e,当3x﹣2<0时,即x时,a,由g′(x)=6xe x•,令g′(x)=0,解得x=0或x,当x<0时,g′(x)>0,函数g(x)单调性递增,当x或0<x时,g′(x)<0,函数g(x)单调递减,∴g(x)max=g(0)=0,∴a≥0,当x时,f()0恒成立,综上所述a的取值范围为[0,6e],故最大值为6e,故选:D.11.【解答】解:由椭圆1,得a2=9,b2=5,∴,则F1(﹣2,0),又A(0,1),∵|PF1|+|PF2|=2a=6,∴|PF1|=6﹣|PF2|,∴|PF1|+|PA|=6﹣|PF2|+|PA|=6+(|PA|﹣|PF2|),|PA|﹣|PF2|的最小值为﹣|AF2|,此时,|PF1|+|PA|也得到最小值,其值为6.故选:A.12.【解答】解:如图示:函数f(x)=e x(2x﹣1)﹣mx+m,其中m<1,设g(x)=e x(2x﹣1),y=mx﹣m,∵存在两个整数x1,x2,使得f(x1),f(x2)都小于0,∴存在两个整数x1,x2,使得g(x)在直线y=mx﹣m的下方,∵g′(x)=e x(2x+1),∴当x时,g′(x)<0,∴当x时,[g(x)]min=g()=﹣2,当x=0时,g(0)=﹣1,g(1)=e>0,直线y=mx﹣m恒过(1,0),斜率为m,故﹣m>g(0)=﹣1,且g(﹣1)=﹣3e﹣1<﹣m﹣m,解得m,g(﹣2)≥﹣2m﹣m,解得a,∴m的取值范围是:[,),故选:A.13.【解答】解:函数f(x)=(x2+ax﹣1)e x﹣1,可得f′(x)=(2x+a)e x﹣1+(x2+ax﹣1)e x﹣1,x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,可得:f′(﹣2)=(﹣4+a)e﹣3+(4﹣2a﹣1)e﹣3=0,即﹣4+a+(3﹣2a)=0.解得a=﹣1.可得f′(x)=(2x﹣1)e x﹣1+(x2﹣x﹣1)e x﹣1,=(x2+x﹣2)e x﹣1,函数的极值点为:x=﹣2,x=1,当x<﹣2或x>1时,f′(x)>0函数是增函数,x∈(﹣2,1)时,函数是减函数,x=1时,函数取得极小值:f(1)=(12﹣1﹣1)e1﹣1=﹣1.故选:A.14.【解答】解:正数x,y满足x+5y=3xy,则3,∴5x+y(5x+y)()(25+1)(26+2)=12,当且仅当x=y=2时取等号,故5x+y的最小值是12,故答案为:1215.【解答】解:S△ABC=S△ABD+S△BCD,所以ac•sin120°c•1•sin60°a•1•sin60°,可得1.所以9a+c=(9a+c)×()=1016,(当且仅当a,c=4时取等号).答案为:16.16.【解答】解:若|PF1|=2|F1Q|,且F2Q⊥PQ,可设|F1Q|=m,可得|PF1|=2m,由双曲线定义可得|PF2|﹣|PF1|=2a,|QF2|﹣|QF1|=2a,即有|PF2|=2a+2m,|QF2|=m+2a,在直角三角形PQF2中,可得|PQ|2+|QF2|2=|PF2|2,即为(3m)2+(m+2a)2=(2a+2m)2,化简可得2a=3m,即m a,再由直角三角形F1QF2中,可得|F2Q|2+|QF1|2=|F1F2|2,即为(2a+m)2+m2=(2c)2,即为a2a2=4c2,即a2=c2,由e.故答案为:.三.解答题(共6小题)17.【解答】解:p:∃x∈[0,+∞),e x﹣1≤m;若p为真,则:m≥0 (2分)若q为真,则△=4m2﹣4>0,m>1或m<﹣1.(4分)(1)若p∨q为假命题,则p,q均为假命题,则,所以实数m的取值范围为[﹣1,0).(7分)(2)若p∨q为真命题,p∧q为假命题,则p,q一真一假.若p真q假,则实数m满足,即0≤m≤1;若p假q真,则实数m满足,即m<﹣1.综上所述,实数m的取值范围为(﹣∞,﹣1)∪[0,1].(10分)18.【解答】解:(1)∵(sin B﹣sin C)2=sin2A﹣sin B sin C.∴sin2B+sin2C﹣sin2A=sin B sin C,∴b2+c2﹣a2=bc.由余弦定理,得.∵0°<A<180°,∴A=60°.(4分)(2)由正弦定理,有,∴b=2sin B,c=2sin C,∴b2+c2+bc=a2+2bc=3+2bc=8sin B sin C+3.(8分)∴,∴,∴,∴,∴b2+c2+bc∈(7,9].(12分)19.解:(1)设直线l的方程为y(x﹣t),将其代入抛物线y2=3x得:x2﹣(t+3)x t2=0,设A(x1,y1),B(x2,y2),则x1+x22t,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t4,解得t,直线l的方程为y x.(6分)(2)若3,则y1=﹣3y2,∴(x1﹣t)=﹣3(x2﹣t),化简得x1=﹣3x2+4t,③由①②③解得t=1,x1=3,x2,∴|AB|.(12分)20.【解答】解:(1)证明:因为S n=2a n﹣n,故S n+1=2a n+1﹣n﹣1,两式相减可得a n+1=2a n+1﹣n﹣1﹣2a n﹣n,即a n+1=2a n+1,所以a n+1+1=2(a n+1),(3分)由n=1时,a1=S1=2a1﹣1,即有a1=1,a1+1=2,(2分)所以2,为定值,所以数列{a n+1}为首项和公比均为2的等比数列;(6分)(2)由(1)可得a n+1=2n,a n=2n﹣1,所以,(8分)T n=()+()+…+()=1,(10分)因为T n,即1,解得n≥4,n∈N*,所以满足不等式的最小正整数n的值为4.(12分)21.解:(1)∵E在BC上,F在AD上,∴当F与D重合时,θ取最小值;当E与C重合时,θ取最大值,∴.在Rt△HBE中有,在Rt△HAF中有.在Rt△HEF中有,∴Rt△EHF的周长.(6分)(2)由(1)可设sinθ+cosθ=t,则,其中.∵,∴,∵,∴,∴.显然在上单调递减,(10分)∴当时,Rt△HEF的周长l最小,此时,AF=BE=1.(12分)22.解:(Ⅰ)f(x)=alnx+(x+1)2(x>0,a≠0),所以f′(x)(x>0,a≠0),若a≥0时,f′(x)>0,f(x)在(0,+∞)上单调递增,若a<0时,令f′(x)=0,得x或(舍去),所以此时f(x)在(0,)单调递减,在(,+∞)上单调递增,所以当a≥0时,f(x)在(0,+∞)上单调递增,(2分)当a<0时,f(x)在(0,)单调递减,在(,+∞)上单调递增.(4分)(Ⅱ)取x=1代入不等式f(x)0,得0<a.(6分)下证当0<a时,不等式f(x)0恒成立,即当0<a时,不等式alnx+(x+1)20恒成立,设h(a)=alnx+(x+1)2(0<a),则h′(a)=lnx0,(8分)所以h(a)≤h()lnx+(x+1)2﹣4x2,(10分)设g(x)lnx+(x+1)2﹣4x2(x≥1)所以g′(x)0,所以g(x)≤g(1)=0,(11分)故0<a时,不等式alnx+(x+1)20恒成立.(12分)。

河南省鹤壁市高级中学2020-2021学年高二上学期尖子生联赛调研二生物试题(解析版)

河南省鹤壁市高级中学2020-2021学年高二上学期尖子生联赛调研二生物试题(解析版)

河南省鹤壁市高级中学2020-2021学年高二上学期尖子生联赛调研二试题一、单选题(本大题共30小题,每题1.5分,共45分)1.人体的组织细胞需通过内环境才能与外界进行物质交换,下列选项所述物质不属于内环境成分的是()A.神经递质、胰岛素B.大分子蛋白质类,如呼吸酶、载体蛋白、血红蛋白等C.营养物质类,如葡萄糖、氨基酸、无机盐离子等D.代谢废物类,如尿素、尿酸、二氧化碳等2.下图表示某人从初进高原到完全适应,其体内血液中乳酸浓度的变化曲线,下列对AB 段和BC段变化原因的分析,正确的是()A.AB段上升是由人初进高原,呼吸频率加快造成的B.BC段下降的原因:一是乳酸被血液中的缓冲物质转化为其他物质;二是造血功能逐渐增强,红细胞数量增多C.AB段上升是因为此段时间内,人体只进行无氧呼吸,产生大量的乳酸进入血液D.AB段产生的乳酸,在BC段与Na2CO3反应3.给狗喂食会引起唾液分泌,但铃声刺激不会。

若每次在铃声后即给狗喂食,这样多次结合后,狗一听到铃声就会分泌唾液。

下列叙述正确的是()A.大脑皮层没有参与铃声刺激引起唾液分泌的过程B.食物引起味觉和铃声引起唾液分泌属于不同的反射C.铃声和喂食反复结合可促进相关的神经元之间形成新的联系D.铃声引起唾液分泌的反射弧和食物引起唾液分泌的反射弧相同4.乳酸中毒是糖尿病的并发症之一,医生根据患者的病情为病人补充碱制剂或者胰岛素,以降低血液中乳酸的含量及提高血液的pH,以下叙述错误的是()A.碱制剂可选用NaHCO3、Na2HPO4B.丙酮酸在细胞质基质中分解为乳酸和二氧化碳C.患者补充胰岛素的主要目的是加速血糖的氧化分解D.人体中出现乳酸中毒症状,表明人体维持稳态的调节能力是有限的5.科学家在细胞外液渗透压和钾离子浓度相同的条件下进行了含有不同钠离子浓度的细胞外液对离体枪乌贼神经纤维电位变化影响的实验,结果如图。

下列相关说法正确的是()A.Na+和K+进入神经细胞内都是主动运输方式B.由图中三条曲线a、b、c可知,细胞外液中Na+浓度高低的关系是a<b<cC.由图中三条曲线可知细胞外液中钠离子浓度可以同时影响动作电位和静息电位的峰值D.若持续降低细胞外液中钠离子的浓度,最终可能使离体枪乌贼神经纤维无法产生动作电位6.多巴胺是一种重要的神经递质,在兴奋传导中起着重要的作用,下列有关叙述,正确的是()A.突触前神经元释放多巴胺与高尔基体和线粒体有关B.突触小体可完成“电信号→化学信号→电信号”的转变C.神经递质作用于突触后膜后,将使突触后膜的电位逆转D.兴奋只能以局部电流的形式在多个神经元之间单向传递7.河豚毒素是一种Na+通道蛋白抑制剂,误食河豚中毒后致死率非常高。

河南省鹤壁市高中2020-2021学年高二年级上学期尖子生联赛调研(三)英语试题

河南省鹤壁市高中2020-2021学年高二年级上学期尖子生联赛调研(三)英语试题

鹤壁高中2022届高二年级尖子生联赛调研三英语试卷第二部分:阅读理解(共两节,满分40分)第一节(共15小题, 每小题2分,满分30 分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

ACourses & Curriculum of the College of Arts & Sciences in Cornell1. If you want to plan your courses over the long run, you can use the ______.A. Class RosterB. Courses of StudyC. Array CourseDesignerD.CareerCenter2. Forstudentsinvolvedin aninnovativeclassroomproject,they______.A.maystudy anewmodelB. areon thequickestway tobeexpertsC. will get more freedom during research projectD. have advantages of studying outside the classroom3. The article is probably taken from ______.A. a travel magazineB. a science reportC. a college websiteD. an academic journalBVijay Gupta is known to classical music lovers across the United States. He serves as first violinist for the Los Angeles Philharmonic. In that job, he often plays to large crowds, including many very ri ch people. When he is not performing, he organizes concerts for homeless people. “They have reminded me why I became a musician”, he said.Last week, Gupta was recognized for being a founder and the artistic director of Street Symphony. The group has performed at homeless shelters, jails and halfway houses for about eight years. Gupta is among the 25 winners of the 2018 MacArthur Fellowship, monly known as the “genius grant”. Each winner will receive $625,000 over five years to use as they wish. The money is ing from a private group, the John D. and Katherine T. MacArthur Foundation. It awards grants(补助金) to people whose work it considers exceptional and that “inspires hope in us all.” Gupta said he got the idea for Street Symphony while teaching Nathaniel Ayers, a trained musician whose mental illness led to homelessness.The 31-year-old grant winner said he does not know yet how he will spend the money. He has been a performer since age seven and the award will give him “space to breathe, plan and look ahead.”Another winner is Rebecca Sandefur, an associate professor of sociology and law in the University of Illinois. The Associated Press says her research actively supports new ways to involve poor munities in the U.S. justice system.47-year-old Sandefur created the first national mapping of civil legal aid providers. It shows which states had the financial resources to provide such aid and which did not. She also found that the cost of legal services is only one of the things preventing poor people from getting lawyers. Among the others are fears about unfairness in the legal system. Sandefur noted that a lot of attention has been paid to problems with the criminal justice system, but more attention must be paid to the civil side of the law, which also affects millions of people.4. Why did Gupta win the award?A. For his achievements in classical music.B. For performing for large crowds.C. For organizing a group playing for the homeless.D. For the friendship with Nathaniel Ayers.5. What do we know about Mac Arthur Fellowship?A. It is founded by the government.B. It offers $625,000 to 25 winners in 2018.C. It allows the winners to use the money freely.D. It awards people who make great contributions to society.6. What was the extraordinary thing that Sandefur did?A. She offered legal aids to the poor freely.B. She made the legal system fairer.C. She paid more attention to the criminal justice system.D. She made it easier to get legal help for the poor.7. Which can be the best title for the passage?A. Grant Winners, Inspiring the PoorB. The City Homeless, in Need of HelpC. Vijay Gupta, an Extraordinary ViolinistD. MacArthur Foundation, Awarding Exceptional workCTheir cheery song brightens many a winter’s day.But robins are in danger of wear ing themselves out by singing too much.Robins are singing all night―as well as during the day,Britishbased researchers say.David Dominoni,of Glasgow University,said that light from street lamps,takeaway signs and homes is affecting the birds’ biological c locks,leading to them being wide awake when they should be asleep.Dr Dominoni,who is putting cameras inside nesting boxes to track sleeping patterns,said lack of sleep could put the birds’ health at risk.His study shows that when robins are exposed to lig ht at night in the lab,it leads to some genes being active at the wrong time of day.And the more birds are exposed to light,the more active they are at night.He told people at a conference,“There have been a couple of studies suggesting they are increasing their song output at night and during the day they are still singing.Singing is a costly behaviour and it takes energy.So by increasing their song output,there might be some costs of energy.”And it is not just robins that are being kept awake by artificial light.Blackbirds and seagulls are also being more nocturnal.Dr Dominoni said,“In Glasgow where I live,gulls are a serious problem.I have people ing to me saying‘You are the bird expert.Can you help us kill these gulls?’.During the breeding(繁殖)season,between April and June,they are very active at night and very noisy and people can’t sleep.”Although Dr Dominoni has only studied light pollution,other research concluded that robins living in noisy cities have started to sing at night to make themselves heard over loud noise.However,some birds thrive(兴旺)in noisy environments.A study from California Polytechnic University found more hummingbirds in areas with heavy industrial machinery.It is thought that they are taking advantage of their predators(天敌) escaping to quieter areas.8.According to Dr Dominoni’s study,what causes robins to sing so much?A. The breeding season.B. The light in modern life.C. The dangerous environment.D. The noise from heavy machinery.9.What is the researchers’ concern over the increase of birds’ song output?A. The environment might be polluted.B.The people’s hearing might be affected.C. The industry cost might be increased.D. The birds’ health might be damaged.10.What does the underlined word“nocturnal”in Paragraph 5 mean?A. Active at night.B. Inactive at night.C. Active during the day.D. Inactive during the day.11.Why do some birds thrive in noisy environments?A. Because there are fewer dangers.B. Because there is more food to eat.C. Because there is less light pollution.D. Because there are more places to take shelter.DBy now, we are all aware that social media has had a tremendous influence on our culture, in business, on the worldatlarge. Social media websites revolutionized the way people municate and socialize on the Web. However, aside from seeing your friends’ new baby on Facebook, or reading about Justin Bieber’s latest conflict with the law on Twitter, what are some of the real influences?Social networks offer the opportunity for people to reconnect with their old friends and acquaintances, make new friends, share ideas and pictures, and many other activities. Users can keep pace with the latest global and local developments, and participate in campaigns and activities of their choice. Professionals use social media sites like LinkedIn to enhance their career and business development. Students can work together with their peers to improve their academic and munication skills.Unfortunately there are a few downsides too to social networking. If you are not careful, immoral people can target you for cyber bullying and disturbance on social sites. School children, young girls, and women can fall victim to online attacks which can create tension and suffering. If you are a victim of cyber bullying, do not take it lying down, but try to take appropriate legal action against the attacker.Many panies have blocked social networks as addicted employees can distract themselves on such sites, instead of focusing on work. In fact, studies show that British panies have lost billions of dollars per year in productivity because of social media addiction among employees.Also, what you carelessly post on the Net can e back to trouble you. Revealing(泄露) personal information on social sites can make users vulnerable(易受伤害的)to crimes like identity theft, stalking, etc. Many panies perform a background check on the Web before hiring an employee. If a potential employee has posted something embarrassing on social media, it can greatly affect their chances of getting the job. The same holds true for our relationships too, as our loved ones and friends may get to know if we post something undesirable on social networks.Social media has its advantages and drawbacks as each coin has two sides. It is up to each user to use social sites wisely to enhance their professional and social life, and exercise caution to ensure they do not fall victim to online dangers.12. Paragraph 2 mainly shows that social networks _________.A. help students finish their homeworkB. offer professionals good chancesC. benefit users in various waysD. guide users to make right choices13. Faced with problems caused by social media, some panies ________.A. forbid the use of social networks during work timeB. avoid posting embarrassing informationC. refuse to hire potential addicted employeesD. take legal action against the attackers14. The main purpose of this passage is to _________.A. share experiences in using social mediaB. remind people to wisely use social mediaC. provide some advice on social problemsD. raise public awareness of social problems15. Which of the following shows the development of ideas in this passage?(Ppoint; Spsubpoint;Cconclusion)A. B.C. D.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

河南省鹤壁市高中2020_2021学年高二英语上学期尖子生联赛调研试题三202101160243

河南省鹤壁市高中2020_2021学年高二英语上学期尖子生联赛调研试题三202101160243

某某省某某市高中2020-2021学年高二英语上学期尖子生联赛调研试题(三)第二部分:阅读理解(共两节,满分40分)第一节(共15小题, 每小题2分,满分30 分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

ACourses & Curriculum of the College of Arts & Sciences in Cornellyouwantto planyourcourses overthelongrun,youcanuse the______.A.Class Roster B. Courses of StudyC. Course DesignerD. Career Center2. For students involved in an innovative classroom project, they ______.A. may study a new modelB. are on the quickest way to be expertsC. will get more freedom during research projectD. have advantages of studying outside the classroom3. The article is probably taken from ______.A. a travel magazineB. a science reportC. a college websiteD. an academic journalBVijay Gupta is known to classical music lovers across the United States. He serves as first violinist for the Los Angeles Philharmonic. In that job, he often plays to large crowds, including many very rich people. When he is not performing, he organizes concerts for homeless people. “They have reminded me why I became a musician”,he said.Last week, Gupta was recognized for being a founder and the artistic director of Street Symphony. The group has performed at homeless shelters, jails and halfway houses for about eight years. Gupta is among the 25 winners of the 2018 MacArthur Fellowship, monly known as the “genius grant”. Each winner will receive $625,000 over five years to use as they wish. The money is ing from a private group, the John D. and Katherine T. MacArthur Foundation. It awards grants(补助金) to people whosework it considers exceptional and that “inspires hope in us all.”Gupta said he got the idea for Street Symphony while teaching Nathaniel Ayers, a trained musician whose mental illness led to homelessness.The 31-year-old grant winner said he does not know yet how he will spend the money. He has been a performer since age seven and the award will give him “space to breathe, plan and look ahead.”Another winner is Rebecca Sandefur, an associate professor of sociology and law in the University of Illinois. The Associated Press says her research actively supports new ways to involve poor munities in the U.S. justice system.47-year-old Sandefur created the first national mapping of civil legal aid providers. It shows which states had the financial resources to provide such aid and which did not. She also found that the cost of legal services is only one of the things preventing poor people from getting lawyers. Among the others are fears about unfairness in the legal system. Sandefur noted that a lot of attention has been paid to problems with the criminal justice system, but more attention must be paid to the civil side of the law, which also affects millions of people.4. Why did Gupta win the award?A. For his achievements in classical music.B. For performing for large crowds.C. For organizing a group playing for the homeless.D. For the friendship with Nathaniel Ayers.5. What do we know about Mac Arthur Fellowship?A. It is founded by the government.B. It offers $625,000 to 25 winners in 2018.C. It allows the winners to use the money freely.D. It awards people who make great contributions to society.6. What was the extraordinary thing that Sandefur did?A. She offered legal aids to the poor freely.B. She made the legal system fairer.C. She paid more attention to the criminal justice system.D. She made it easier to get legal help for the poor.7. Which can be the best title for the passage?A. Grant Winners, Inspiring the PoorB. The City Homeless, in Need of HelpC. Vijay Gupta, an Extraordinary ViolinistD. MacArthur Foundation, Awarding Exceptional workCTheir cheery song brightens many a winter’s day.But robins are in danger of wearing themselves out by singing too much.Robins are singing all night―as well as during the day,British-based researchers say.David Dominoni,of Glasgow University,said that light from street lamps,takeaway signs and homes is affecting the birds’biological clocks,leading to them being wide awake when they should be asleep.Dr Dominoni,who is putting cameras inside nesting boxes to track sleeping patterns,said lack of sleep could put the birds’health at risk.His study shows that when robins are exposed to light at night in the lab,it leads to some genes being active at the wrong time of day.And the more birds are exposed to light,the more active they are at night.He told people at a conference,“There have been a couple of studies suggestingthey are increasing their song output at night and during the day they are still singing.Singing is a costly behaviour and it takes energy.So by increasing their song output,there might be some costs of energy.”And it is not just robins that are being kept awake by artificial light.Blackbirds and seagulls are also being more nocturnal.Dr Dominoni said,“In Glasgow where I live,gulls are a serious problem.I have people ing to me saying‘You are the bird expert.Can you help us kill these gulls?’.During the breeding(繁殖)season,between April and June,they are very active at night and very noisy and people can’t sleep.”Although Dr Dominoni has only studied light pollution,other research concluded that robins living in noisy cities have started to sing at night to make themselves heard over loud noise.However,some birds thrive(兴旺)in noisy environments.A study from California Polytechnic University found more hummingbirds in areas with heavy industrial machinery.It is thought that they are taking advantage of their predators(天敌) escaping to quieter areas.8.According to Dr Dominoni’s study,what causes robins to sing so much?A. The breeding season.B. The light in modern life.C. The dangerous environment.D. The noise from heavy machinery.9.What is the researchers’concern over the increase of birds’song output?A. The environment might be polluted.B.The people’s hearing might be affected.C. The industry cost might be increased.D. The birds’health might be damaged.10.What does the underlined word“nocturnal”in Paragraph 5 mean?A. Active at night.B. Inactive at night.C. Active during the day.D. Inactive during the day.11.Why do some birds thrive in noisy environments?A. Because there are fewer dangers.B. Because there is more food to eat.C. Because there is less light pollution.D. Because there are more places to take shelter.DBy now, we are all aware that social media has had a tremendous influence on our culture, in business, on the world-at-large. Social media websites revolutionized the way people municate and socialize on the Web. However, aside from seeing your friends’new baby on Facebook, or reading about Justin Bieber’s latest conflict withthe law on Twitter, what are some of the real influences?Social networks offer the opportunity for people to re-connect with their old friends and acquaintances, make new friends, share ideas and pictures, and many other activities. Users can keep pace with the latest global and local developments, and participate in campaigns and activities of their choice. Professionals use social media sites like LinkedIn to enhance their career and business development. Students can work together with their peers to improve their academic and munication skills.Unfortunately there are a few downsides too to social networking. If you are not careful, immoral people can target you for cyber bullying and disturbance on social sites. School children, young girls, and women can fall victim to online attacks which can create tension and suffering. If you are a victim of cyber bullying, do not take it lying down, but try to take appropriate legal action against the attacker.Many panies have blocked social networks as addicted employees can distract themselves on such sites, instead of focusing on work. In fact, studies show that British panies have lost billions of dollars per year in productivity because of social media addiction among employees.Also, what you carelessly post on the Net can e back to trouble you. Revealing(泄露) personal information on social sites can make users vulnerable(易受伤害的)to crimes like identity theft, stalking, etc. Many panies perform a background check on the Web before hiring an employee. If a potential employee has posted something embarrassing on social media, it can greatly affect their chances of getting the job. The same holds true for our relationships too, as our loved ones and friends may getto know if we post something undesirable on social networks.Social media has its advantages and drawbacks as each coin has two sides. It is up to each user to use social sites wisely to enhance their professional and social life, and exercise caution to ensure they do not fall victim to online dangers.12. Paragraph 2 mainly shows that social networks _________.A. help students finish their homeworkB. offer professionals good chancesC. benefit users in various waysD. guide users to make right choices13. Faced with problems caused by social media, some panies ________.A. forbid the use of social networks during work timeB. avoid posting embarrassing informationC. refuse to hire potential addicted employeesD. take legal action against the attackers14. The main purpose of this passage is to _________.A. share experiences in using social mediaB. remind people to wisely use social mediaC. provide some advice on social problemsD. raise public awareness of social problems15. Which of the following shows the development of ideas in this passage?(P---point; Sp---sub-point;C---conclusion)A. B.C. D.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

2020-2021学年河南省鹤壁高级中学高二(下)月考数学试卷(理科) (解析版)

2020-2021学年河南省鹤壁高级中学高二(下)月考数学试卷(理科) (解析版)

2020-2021学年河南省鹤壁高级中学高二(下)月考数学试卷(理科)一.选择题(共12小题).1.复数z满足z(1+i)=1﹣i,则z的虚部等于()A.﹣i B.﹣1C.0D.12.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种3.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix44.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则sin∠CED =()A.B.C.D.5.设随机变量ξ~N(μ,1),函数f(x)=x2+2x﹣ξ没有零点的概率是0.5,则P(0<ξ≤1)=()附:若ξ~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)≈0.6826,P(μ﹣2σ<X≤μ+2σ)≈0.9544.A.0.1587B.0.1359C.0.2718D.0.34136.将四颗骰子各掷一次,记事件A=“四个点数互不相同”,B=“至少出现一个5点”,则概率P(B|A)等于()A.B.C.D.7.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n•1•2•3…•(2n﹣1)(n∈N*).从k (k∈N*)到k+1,若设f(k)=(k+1)(k+2)…(k+k),则f(k+1)等于()A.f(k)+[2(2k+1)]B.f(k)•[2(2k+1)]C.D.9.如图,在底面半径和高均为1的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为()A.1B.C.D.10.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个11.若n是正奇数,则7n+C7n﹣1+C7n﹣2+……+C7被9除的余数为()A.2B.5C.7D.812.已知函数,当x>0时,f(x)>0恒成立,则m的取值范围为()A.(1,+∞)B.(e,+∞)C.D.二.填空题(共4小题).13.若x,y∈R+,且+2y=3,则的最大值为.14.曲线y=lnx﹣在x=1处的切线的倾斜角为α,则sin2α=.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是.16.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.三.解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.18.数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.19.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA⊥平面PBC;(2)求二面角B﹣PC﹣E的余弦值.20.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.21.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.22.已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.参考答案一.选择题(共12小题).1.复数z满足z(1+i)=1﹣i,则z的虚部等于()A.﹣i B.﹣1C.0D.1解:∵复数z满足z(1+i)=1﹣i,∴z====﹣i,∴z的虚部为﹣1.故选:B.2.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种解:要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有:=6.故选:C.3.设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix4解:(x+i)6的展开式中含x4的项为x4•i2=﹣15x4,故选:A.4.如图,正方形ABCD的边长为1,延长BA至E,使AE=1,连接EC、ED,则sin∠CED =()A.B.C.D.解:法一:利用余弦定理在△CED中,根据图形可求得ED=,CE=,由余弦定理得cos∠CED=,∴sin∠CED==.故选B.法二:在△CED中,根据图形可求得ED=,CE=,∠CDE=135°,由正弦定理得,即.故选:B.5.设随机变量ξ~N(μ,1),函数f(x)=x2+2x﹣ξ没有零点的概率是0.5,则P(0<ξ≤1)=()附:若ξ~N(μ,σ2),则P(μ﹣σ<X≤μ+σ)≈0.6826,P(μ﹣2σ<X≤μ+2σ)≈0.9544.A.0.1587B.0.1359C.0.2718D.0.3413解:由题意得,P(0<ξ≤1)=,故选:B.6.将四颗骰子各掷一次,记事件A=“四个点数互不相同”,B=“至少出现一个5点”,则概率P(B|A)等于()A.B.C.D.解:根据题意,记事件A=“四个点数互不相同”,B=“至少出现一个5点”,则P(AB)=,P(A)=,则P(B|A)===,故选:A.7.数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为首项,以2为公比的等比数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n•1•2•3…•(2n﹣1)(n∈N*).从k (k∈N*)到k+1,若设f(k)=(k+1)(k+2)…(k+k),则f(k+1)等于()A.f(k)+[2(2k+1)]B.f(k)•[2(2k+1)]C.D.解:由数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n﹣1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是=2(2k+1),则f(k+1)=f(k)•[2(2k+1)],故选:B.9.如图,在底面半径和高均为1的圆锥中,AB、CD是底面圆O的两条互相垂直的直径,E是母线PB的中点,已知过CD与E的平面与圆锥侧面的交线是以E为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P的距离为()A.1B.C.D.解:如图所示,过点E作EF⊥AB,垂足为F.∵E是母线PB的中点,圆锥的底面半径和高均为1,∴OF=EF=.∴.在平面CED内建立直角坐标系.设抛物线的方程为y2=2px(p>0),F为抛物线的焦点.C,∴1=,解得p=.F.即点F为OE的中点,∴该抛物线的焦点到圆锥顶点P的距离为=,故选:D.10.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.11.若n是正奇数,则7n+C7n﹣1+C7n﹣2+……+C7被9除的余数为()A.2B.5C.7D.8解:∵n是正奇数,则7n+C7n﹣1+C7n﹣2+……+C7+﹣1=(7+1)n﹣1=(9﹣1)n﹣1=9n﹣C9n﹣1+C9n﹣2﹣…+C9﹣﹣1,∴它被9除的余数为﹣﹣1=﹣2,即它被9除的余数为7,故选:C.12.已知函数,当x>0时,f(x)>0恒成立,则m的取值范围为()A.(1,+∞)B.(e,+∞)C.D.解:由题意,若m≤0显然f(x)不是恒大于零,故m>0.(由4个选项也是显然,可得m>0),则显然在(0,1]上恒成立;当x>1时,⇔,令g(t)=te t(t>0),g′(t)=(1+t)e t>0,g(t)在(0,+∞)上单调递增.因为mx>0,lnx>0(x>1),所以mx⋅e mx>lnx⋅e lnx⇔mx>lnx,即,再设,令h′(x)=0,则x=e,易得h(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,故,所以m的取值范围为.故选:D.二.填空题(共4小题,每小题5分,共20分)13.若x,y∈R+,且+2y=3,则的最大值为.解:3=+2y≥2,∴≤()2=;故答案为:14.曲线y=lnx﹣在x=1处的切线的倾斜角为α,则sin2α=.解:由y=lnx﹣,得y'=,∴曲线y=lnx﹣在x=1处的切线斜率k=2,∵曲线y=lnx﹣在x=1处的切线的倾斜角为α,∴tanα=2,∴sin2α=2sinαcosα=.故答案为:.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是0.18.解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.16.设双曲线x2﹣=1的左、右焦点分别为F1、F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是.解:如图,由双曲线x2﹣=1,得a2=1,b2=3,∴.不妨以P在双曲线右支为例,当PF2⊥x轴时,把x=2代入x2﹣=1,得y=±3,即|PF2|=3,此时|PF1|=|PF2|+2=5,则|PF1|+|PF2|=8;由PF1⊥PF2,得,又|PF1|﹣|PF2|=2,①两边平方得:,∴|PF1||PF2|=6,②联立①②解得:,此时|PF1|+|PF2|=.∴使△F1PF2为锐角三角形的|PF1|+|PF2|的取值范围是().故答案为:().三.解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.解:(1)△ABC的内角A,B,C的对边分别为a,b,c.∵(sin B﹣sin C)2=sin2A﹣sin B sin C.∴sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A===,∵0<A<π,∴A=.(2)∵a+b=2c,A=,∴由正弦定理得,∴解得sin(C﹣)=,∴C﹣=,C=,∴sin C=sin()=sin cos+cos sin=+=.18.数列{a n}中,a1=,2a n+1a n+a n+1﹣a n=0.(1)求{a n}的通项公式;(2)求满足a1a2+a2a3+…+a n﹣1a n<的n的最大值.解:(1)∵2a n+1a n+a n+1﹣a n=0.∴,又,∴数列{}是以3为首项,2为公差的等差数列,∴,∴;(2)由(1)知,=,∴a1a2+a2a3+…+a n﹣1a n==,∵a1a2+a2a3+…+a n﹣1a n<,∴<,∴4n+2<42,∴n<10,∵n∈N*,∴n的最大值为9.19.如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA⊥平面PBC;(2)求二面角B﹣PC﹣E的余弦值.解:(1)不妨设圆O的半径为1,OA=OB=OC=1,AE=AD=2,,,,在△PAC中,PA2+PC2=AC2,故PA⊥PC,同理可得PA⊥PB,又PB∩PC=P,故PA⊥平面PBC;(2)建立如图所示的空间直角坐标系,则有,E(0,1,0),故,设平面PCE的法向量为,则由,得,取x=1,则,z=,所以平面PCE的法向量为,由(1)可知PA⊥平面PBC,不妨取平面PBC的法向量为,故,即二面角B﹣PC﹣E的余弦值为.20.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.解:(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(3,),从而P(X=k)=,k=0,1,2,3.所以,随机变量X的分布列为:X0123P随机变量X的期望E(X)=3×=2.(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X=3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,由(I)知,P(M)=P({X=3,Y=1}∪{X=2,Y=0}=P({X=3,Y=1}+P{X=2,Y =0}=P(X=3)P(Y=1)+P(X=2)P(Y=0)==21.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(Ⅰ)求椭圆E的离心率;(Ⅱ)如图,AB是圆M:(x+2)2+(y﹣1)2=的一条直径,若椭圆E经过A、B两点,求椭圆E的方程.解:(Ⅰ)经过点(0,b)和(c,0)的直线方程为bx+cy﹣bc=0,则原点到直线的距离为d==c,即为a=2b,e===;(Ⅱ)由(Ⅰ)知,椭圆E的方程为x2+4y2=4b2,①由题意可得圆心M(﹣2,1)是线段AB的中点,则|AB|=,易知AB与x轴不垂直,记其方程为y=k(x+2)+1,代入①可得(1+4k2)x2+8k(1+2k)x+4(1+2k)2﹣4b2=0,设A(x1,y1),B(x2,y2),则x1+x2=.x1x2=,由M为AB的中点,可得x1+x2=﹣4,得=﹣4,解得k=,从而x1x2=8﹣2b2,于是|AB|=•|x1﹣x2|=•==,解得b2=3,则有椭圆E的方程为+=1.22.已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.。

河南省鹤壁市高中2020_2021学年高二英语上学期尖子生联赛调研试题三 (1)

河南省鹤壁市高中2020_2021学年高二英语上学期尖子生联赛调研试题三 (1)

河南省鹤壁市高中2020-2021学年高二英语上学期尖子生联赛调研试题(三)第二部分:阅读理解(共两节,满分40分)第一节(共15小题, 每小题2分,满分30 分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。

ACourses & Curriculum of the College of Arts & Sciences in Cornellyouwant toplanyourcoursesoverthelongrun,you canuse the______.A.ClassB.CoursesofStudyC.CourseDesigneD.CareerCenter2. Forstudentsinvolved in an innovative classroom project, they ______.A. may study a new modelB. are on the quickest way to be expertsC. will get more freedom during research projectD. have advantages of studying outside the classroom3. The article is probably taken from ______.A. a travel magazineB. a science reportC. a college websiteD. an academic journalBVijay Gupta is known to classical music lovers across the United States. He serves as first violinist for the Los Angeles Philharmonic. In that job, he often plays to large crowds, including many very rich people. When he is not performing, he organizes concerts for homeless people. “They have reminded me why I became a musician”,he said.Last week, Gupta was recognized for being a founder and the artistic director of Street Symphony. The group has performed at homeless shelters, jails and halfway houses for about eight years. Gupta is among the 25 winners of the 2018 MacArthur Fellowship, commonly known as the “genius grant”. Each winner will receive $625,000 over five years to use as they wish. The money is coming from a private group, the John D. and Katherine T. MacArthur Foundation. It awards grants(补助金) to people whose work it considers exceptional and that “inspires hope in us all.” Gupta said he got the idea for Street Symphony while teaching Nathaniel Ayers, a trained musician whose mental illness led to homelessness.The 31-year-old grant winner said he does not know yet how he will spend the money. He has been a performer since age seven and the award will give him “space t o breathe, plan and look ahead.”Another winner is Rebecca Sandefur, an associate professor of sociology and law in the University of Illinois. The Associated Press says her research actively supports new ways to involve poor communities in the U.S. justice system.47-year-old Sandefur created the first national mapping of civil legal aid providers. It shows which states had the financial resources to provide such aid and which did not. She also found that the cost of legal services is only one of the things preventing poor people from getting lawyers. Among the others are fears about unfairness in the legal system. Sandefur noted that a lot of attention has been paid to problems with the criminal justice system, but more attention must be paid to the civil side of the law, which also affects millions of people.4. Why did Gupta win the award?A. For his achievements in classical music.B. For performing for large crowds.C. For organizing a group playing for the homeless.D. For the friendship with Nathaniel Ayers.5. What do we know about Mac Arthur Fellowship?A. It is founded by the government.B. It offers $625,000 to 25 winners in 2018.C. It allows the winners to use the money freely.D. It awards people who make great contributions to society.6. What was the extraordinary thing that Sandefur did?A. She offered legal aids to the poor freely.B. She made the legal system fairer.C. She paid more attention to the criminal justice system.D. She made it easier to get legal help for the poor.7. Which can be the best title for the passage?A. Grant Winners, Inspiring the PoorB. The City Homeless, in Need of HelpC. Vijay Gupta, an Extraordinary ViolinistD. MacArthur Foundation, Awarding Exceptional workCTheir cheery song brightens many a winter’s day.But robins are in danger of wearing themselves out by singing too much.Robins are singing all night―as well as during the day,British-based researchers say.David Dominoni,of Glasgow University,said that light from street lamps,takeaway signs and homes is affecting the birds’ biological clocks,leading to them being wide awake when they should be asleep.Dr Dominoni,who is putting cameras inside nesting boxes to track sleeping patterns,said lack of sleep could put the birds’ health at risk.His study shows th at when robins are exposed to light at night in the lab,it leads to some genes being active at the wrong time of day.And the more birds are exposed to light,the more active they are at night.He told people at a conference,“There have been a couple of stud ies suggesting they are increasing their song output at night and during the day they are still singing.Singing is a costly behaviour and it takes energy.So by increasing their song output,there might be some costs of energy.”And it is not just robins that are being kept awake by artificial light.Blackbirds and seagulls are also being more nocturnal.Dr Dominoni said,“In Glasgow where I live,gulls are a serious problem.I have people coming to me saying‘You are the bird expert.Can you help us kill these gull s?’.During the breeding(繁殖)season,between April and June,they are very active at night and very noisy and people can’t sleep.”Although Dr Dominoni has only studied light pollution,other research concluded that robins living in noisy cities have started to sing at night to make themselves heard over loud noise.However,some birds thrive(兴旺)in noisy environments.A study from California Polytechnic University found more hummingbirds in areas with heavy industrial machinery.It is thought that they are taking advantage of their predators(天敌) escaping to quieter areas.8.According to Dr Dominoni’s study,what causes robins to sing so much?A. The breeding season.B. The light in modern life.C. The dangerous environment.D. The noise from heavy machinery.9.What is the researchers’ concern over the increase of birds’ song output?A. The environment might be polluted.B.The people’s hearing might be affected.C. The industry cost might be increased.D. The birds’ health might be damaged.10.What does the underlined word“nocturnal”in Paragraph 5 mean?A. Active at night.B. Inactive at night.C. Active during the day.D. Inactive during the day.11.Why do some birds thrive in noisy environments?A. Because there are fewer dangers.B. Because there is more food to eat.C. Because there is less light pollution.D. Because there are more places to takeshelter.DBy now, we are all aware that social media has had a tremendous influence on our culture, in business, on the world-at-large. Social media websites revolutionized the way people communicate and socialize on the Web. However, aside from seeing your friends’ new baby on Facebook, or reading about Justin Bieber’s latest conflict with the law on Twitter, what are some of the real influences?Social networks offer the opportunity for people to re-connect with their old friends and acquaintances, make new friends, share ideas and pictures, and many other activities. Users can keep pace with the latest global and local developments, and participate in campaigns and activities of their choice. Professionals use social media sites like LinkedIn to enhance their career and business development. Students can work together with their peers to improve their academic and communication skills.Unfortunately there are a few downsides too to social networking. If you are not careful, immoral people can target you for cyber bullying and disturbance on social sites. School children, young girls, and women can fall victim to online attacks which can create tension and suffering. If you are a victim of cyber bullying, do not take it lying down, but try to take appropriate legal action against the attacker.Many companies have blocked social networks as addicted employees can distract themselves on such sites, instead of focusing on work. In fact, studies show that British companies have lost billions of dollars per year in productivity because of social media addiction among employees.Also, what you carelessly post on the Net can come back to trouble you. Revealing(泄露) personal information on social sites can make users vulnerable(易受伤害的)to crimes like identity theft, stalking, etc. Many companies perform a background check on the Web before hiring an employee. If a potential employee has posted something embarrassing on social media, it can greatly affect their chances of getting the job. The same holds true for our relationships too, as our loved ones and friends may get to know if we post something undesirable on social networks.Social media has its advantages and drawbacks as each coin has two sides. It isup to each user to use social sites wisely to enhance their professional and social life, and exercise caution to ensure they do not fall victim to online dangers.12. Paragraph 2 mainly shows that social networks _________.A. help students finish their homeworkB. offer professionals good chancesC. benefit users in various waysD. guide users to make right choices13. Faced with problems caused by social media, some companies ________.A. forbid the use of social networks during work timeB. avoid posting embarrassing informationC. refuse to hire potential addicted employeesD. take legal action against the attackers14. The main purpose of this passage is to _________.A. share experiences in using social mediaB. remind people to wisely use social mediaC. provide some advice on social problemsD. raise public awareness of social problems15. Which of the following shows the development of ideas in this passage?(P---point; Sp---sub-point;C---conclusion)A. B.C. D.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。

河南省鹤壁市高级中学2020_2021学年高一数学上学期精英对抗赛试题二

河南省鹤壁市高级中学2020_2021学年高一数学上学期精英对抗赛试题二

河南省鹤壁市高级中学2020-2021学年高一数学上学期精英对抗赛试题二一.选择题(共12小题,第1-6题每题5分,第7-12题每题6分)1..已知函数f(x)=ln(|x|+1)+,则使得f(x)>f(2x﹣1)的x的取值范围是()A .B .C.(1,+∞)D .2.若实数x,y,z 满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x3.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x24.正数a,b满足1+log2a=2+log3b=3+log6(a+b ),则的值是()A .B .C .D .5.若函数f(x )=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m ()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关6.已知a>b>1,则下列不等式一定成立的是()A.log a(log a b)•log b(log b a)>0B.log a(log a b)+log b(log b a)>0C.log a(log b a)•log b(log a b)>0D.log a(log b a)+log b(log a b)>07.已知函数f(x )=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]8.已知f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,且f(a)>f(b)>e,若log a b+log b a =,则a与b的关系是()A.a=b3B.b=a3C.a=b4D.b=a49.关于x 的方程有四个不同的实数根,且x1<x2<x3<x4,则(x4﹣x1)+(x3﹣x2)的取值范围()A .B .C .D .10.已知函数f(x)=x2﹣2x﹣1,若函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k(其中a>1)有三个不同的零点,则实数k的取值范围为()A .(,]B .()C .(]D .()11.已知函数f (x )=|log 2x |,⎪⎩⎪⎨⎧>--<<=1,21210,0)(x x x x g ,则方程|f (x )﹣g (x )|=1的实根个数为( )A .2个B .3个C .4个D .5个12.把函数f (x )=log 2(x +1)的图象向右平移一个单位,所得图象与函数g (x )的图象关于直线y =x 对称:已知偶函数h (x )满足h (x ﹣1)=h (﹣x ﹣1),当x ∈[0,1]时,h (x )=g (x )﹣1,若函数y =kf (x )﹣h (x )有五个零点,则k 的取值范围是( )A .(log 62,)B .(log 62,]C .(log 32,1)D .[log 32,1)二.填空题(共2小题,每题5分)13.若函数f (x )=lg (ax ﹣1)﹣lg (x ﹣1)在区间[2,+∞)上是增函数,则a 的取值范围是 . 14.已知f (x )=m (x ﹣2m )(x +m +3),g (x )=2x﹣2,若满足对于任意x ∈R ,f (x )<0和g (x )<0至少有一个成立.则m 的取值范围是 . 三.解答题(共2小题,每题12分)15.已知二次函数f (x )=ax 2+bx +c 的图象经过点(﹣2,0),且不等式2x +2对一切实数x 都成立(Ⅰ)求函数f (x )的解析式;(Ⅱ)若对任意x ∈[﹣1,1],不等式f (x +t )恒成立,求实数t 的取值范围.16.对于函数f (x ),若在定义域内存在实数x ,满足f (﹣x )=﹣f (x ),则称f (x )为“局部奇函数”.(Ⅰ)已知函数f (x )=ax 2+2x ﹣4a (a ∈R ,a ≠0),试判断f (x )是否为“局部奇函数”?并说明理由;(Ⅱ)若f (x )=4x﹣m •2x +1+m 2﹣3为定义域R 上的“局部奇函数”,求实数m 的取值范围.高一数学精英对抗赛二参考答案与试题解析一.选择题(共12小题)1-6 ACBAAB 7-12CCBCCA7.解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x )=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.8.解:∵f(x)是定义在R上的单调函数,满足f[f(x)﹣e x]=1,∴f(x)﹣e x是一个常数,设a=f(x)﹣e x,则f(a)=1,由a=f(x)﹣e x,得f(x)=a+e x,令x=a,得f(a)=a+e a=1,解得a=0,∵f(a)>f(b)>e=f(1),∴a>b>1,∴log b a>1,∵log a b+log b a =,∴+log b a =,解得log b a=4或log b a =﹣.(舍去),∴a=b4.故选:C.9.解:依题意可知,|x2﹣4x+1|=t2+1,由方程有四个根,所以函数y=t2+1与y=|x2﹣4x+1|的图象有四个交点,由图可知,x1+x4=4,x2+x3=4,1≤t2+1<3,解得t2∈(0,2),由x2﹣4x+1=t2+1解得x1=2﹣;由﹣(x2﹣4x+1)=t2+1解得x2=2﹣;所以(x4﹣x1)+(x3﹣x2)=8﹣2(x1+x2)=2(+)设m=t2∈(0,2),n =+,n2=m+4+2﹣m +2=6+2∈(6,6+4),即m ∈(,2+),所以(x4﹣x1)+(x3﹣x2)的取值范围是(2,4+2).故选:B.10.解:令t=|a x﹣1|,t≥0,则函数g(x)=f(|a x﹣1|)+k|a x﹣1|+4k可换元为:h(t)=t2+(k﹣2)t+4k﹣1.若g(x)有三个不同的零点,则方程h(t)=0有两个不同的实数根t 1,t2,且解的情况有如下三种:①t1∈(1,+∞),t2∈(0,1),此时,解得;②t1=0,t2∈(0,1),此时由h(0)=0,求得k =,∴h(t )=,即,不合题意;③t1=1,t2∈(0,1),此时由h(1)=0,得k =,∴h(t )=,解得,符合题意.综上,实数k 的取值范围为(].故选:C.11.解:方程|f(x)﹣g(x)|=1⇔f(x)=g(x)±1,分别画出y=f(x),y=g(x)+1的图象.由图象(1)可得:0<x≤1时,两图象有一个交点;1<x≤2时,两图象有一个交点;x>2时,两图象有一个交点.分别画出y=f(x),y=g(x)﹣1的图象.由图象(2)可知:x >时,两图象有一个交点.综上可知:方程|f(x)﹣g(x)|=1实数根的个数为4.故选:C.12.解:f(x)=log2(x+1)的图象向右平移一个单位,得到y=log2x与g(x)关于直线y=x对称,所以g(x)=2x,偶函数h(x)满足h(x﹣1)=h(﹣x﹣1),所以h(x)的对称轴是x=﹣1,h(x)是周期为2的周期函数,当x∈[0,1]时,h(x)=g(x)﹣1=2x﹣1,函数y=kf(x)﹣h(x)有五个零点,可得方程kf(x)=h(x),即k log2(x+1)=h(x)有5个解,在坐标系中画出y=k log2(x+1)与y=h(x)的图象,如图:显然k>0,当x=3时函数的交点个数是4;当x=5时,两个函数的图象交点个数是6个,由题意可得:解得k∈(log62,),故选:A.二.填空题(共2小题)13.解:有题意可得:f(x)=lg,∵y=lgx在定义域上是单调增函数,且函数f(x)=lg(ax﹣1)﹣lg(x﹣1)在区间[2,+∞)上是增函数,∴y =在[2,+∞)上是增函数,∴a﹣1<0,∴a<1,当0<a<1时,函数的定义域为(),∴,∴a >,当a≤0时,定义域为∅,∴<a<1,故答案为:<a<114.解:∵g(x)=2x﹣2,当x≥1时,g(x)≥0,又∵∀x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥1时恒成立,即m(x﹣2m)(x+m+3)<0在x≥1时恒成立,则二次函数y=m(x﹣2m)(x+m+3)图象开口只能向下,且与x轴交点都在(1,0)的左侧,∴,即,解得﹣4<m<0,∴实数m的取值范围是:(﹣4,0).故答案为:(﹣4,0).三.解答题(共2小题)15.解:(I)由题意得:f(﹣2)=4a﹣2b+c=0①,因为不等式对一切实数x都成立,令x=2,得:4≤f(x)≤4,所以f(2)=4,即4a+2b+c=4②由①②解得:b=1,且c=2﹣4a,所以f(x)=ax2+x+2﹣4a,由题意得:f(x)﹣2x≥0且对x∈R恒成立,即对x∈R恒成立,对③而言,由a>0且△=1﹣4a(2﹣4a)≤0,得到(4a﹣1)2≤0,所以,经检验满足,故函数f(x )的解析式为.(Ⅱ)法一:二次函数法,由题意,对x∈[﹣1,1]恒成立,可转化为对x∈[﹣1,1]恒成立,整理为8x2+(18t+24)x+9t2+36t<0对x∈[﹣1,1]恒成立,令g(x)=8x2+(18t+24)x+9t2+36t,则有,即,解得,所以t 的取值范围为.16.解:(Ⅰ)若f(x)为“局部奇函数”等价于关于x的方程f(﹣x)+f(x)=0有解.当f(x)=ax2+2x﹣4a时,由f(﹣x)+f(x)=0得2a(x2﹣4)=0解得x=±2,所以方程f(﹣x)+f(x)=0有解,因此f(x)为“局部奇函数”.(Ⅱ)当f(x)=4x﹣m•2x+1+m2﹣3时,f(﹣x)+f(x)=0可化为4x+4﹣x﹣2m(2x+2﹣x)+2m2﹣6=0.令t=2x+2﹣x,则t≥2,则4x+4﹣x=t2﹣2,从而t2﹣2mt+2m2﹣8=0在t≥2有解即可保证f(x)为“局部奇函数”.令F(t)=t2﹣2mt+2m2﹣8,1°当F(2)≤0,t2﹣2mt+2m2﹣8=0在x≥2有解,由F(2)≤0,即2m2﹣4m﹣4≤0,解得1﹣,2°当F(2)>0时,t2﹣2mt+2m2﹣8=0在x≥2有解,等价于,解得1+.(说明:也可转化为t2﹣2mt+2m2﹣8=0的大根大于等于2求解)综上,所求实数m的取值范围为1﹣.。

鹤壁市高级中学2020_2021学年高二化学上学期尖子生联赛调研试题一

鹤壁市高级中学2020_2021学年高二化学上学期尖子生联赛调研试题一

河南省鹤壁市高级中学2020—2021学年高二化学上学期尖子生联赛调研试题一可能用到的相对原子质量:H 1 C 12 O 16 Na 23 S 32 Cl35。

5 Ca 40 Cu 64 Zn 65一、选择题(每题只有一项符合题意,每题3分,共48分) 1.《化学反应原理》选修模块从不同的视角对化学反应进行了探究、分析.以下观点不正确的是()①放热反应在常温下均能自发进行;②电解过程中,化学能转化为电能而“储存”起来;③原电池工作时所发生的反应一定有氧化还原反应;④加热时,化学反应只向吸热反应方向进行;⑤盐类均能发生水解反应;⑥化学平衡常数的表达式与化学反应方程式的书写无关A.①②④⑤B.①③⑤⑥C.②③⑤⑥D.①②④⑤⑥2.N A为阿伏加德罗常数的值,下列说法正确的是()A.常温下pH=2的CH3COOH溶液中,H+的数目为0.01N AB.常温常压下,18 g D2O含有的质子数为10N AC.标准状况下,11.2 L乙烯和环丙烷(C3H6)的混合气体中,共用电子对数目为3N AD.0。

1 mol Cu溶于足量稀硝酸中,转移的电子数为0.2N A 3.下列热化学方程式或离子方程式中,正确的是()A.由热化学方程式CH3OH(g)+错误!O2(g)===CO2(g)+2H2(g);ΔH=-192.9 kJ·mol-1,可推知CH3OH(g)的燃烧热ΔH=-192。

9 kJ·mol-1B.已知H2(g)的燃烧热ΔH=-285。

8 kJ·mol-1,则2H2O (l)===2H2(g)+O2(g);ΔH=+571。

6 kJ·mol-1C.HCl(aq)和NaOH(aq)反应的中和热ΔH=-57.3 kJ·mol -1,则稀H2SO4(aq)和Ba(OH)2 (aq)反应生成2molH2O(l)的反应热ΔH=2×(-57.3 kJ·mol-1)D.一定条件下,将0.5 mol N2和1.5 mol H2置于密闭的容器中充分反应生成NH3(g),放热19.3 kJ,其热化学方程式为N2(g)+3H2(g)2NH3(g);ΔH=-38。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省鹤壁市高级中学2020-2021学年高二数学上学期尖子生联赛调研试题二 理一、单选题1.设命题2:,2nP n N n ∃∈>,则P ⌝为( ) A .2,2nn N n ∀∈> B .2,2nn N n ∃∈≤ C .2,2nn N n ∀∈≤D .2,2nn N n ∃∈=2.数列{}n a 满足11221n n n n a a ++=-,且11a =,若15n a <,则n 的最小值为 ( ) A .3 B .4 C .5D .63.已知F 为抛物线2y x =的焦点,,A B 是该抛物线上的两点,3AF BF +=,则线段AB 的中点到y 轴的距离为 ( ) A .34B .1C .54D .744.由曲线y =直线2y x =-及y 轴所围成的平面图形的面积为 ( )A .6B .4C .103D .1635.若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是( )A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)6.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为( ) A .108里B .96里C .64里D .48里7.已知函数()()()()2102ln 10x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()y f x kx =-有3个零点,则实数k 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭B .()1,2C .1,12⎛⎫ ⎪⎝⎭D .()2,+∞8.正四棱锥S -ABCD 底面边长为2,高为1,E 是棱BC 的中点,动点P 在四棱锥表面上运动,并且总保持0PE AC ⋅=,则动点P 的轨迹的周长为( )A .B +C .D .9.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B =,且2b ac =,则a cb+的值为 ( )A .2BC .2D .410.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是( )A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=11.若函数()ln f x ax x =-在区间(]0,e 上的最小值为3,则实数a 的值为( ) A .2eB .-2eC .2e D .-1e12.已知椭圆1C :()222210x y a b a b +=>>,其焦距为2,且过点12⎛⎫ ⎪ ⎪⎝⎭,.点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD ∆面积的最小值为( )A .2BC D .2二、填空题13.已知在三棱锥P ABC -中,1PA AB BC ===,AC PB ==PC =,则异面直线PC 与AB 所成角的余弦值是__________.14.若钝角三角形ABC 的三边长a ,8,b ()a b <成等差数列,则该等差数列的公差d 的取值范围是________.15.椭圆22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点(P 在x 轴上方),1PF PQ =.若1PQ PF ⊥,则椭圆的离心率e =______. 16.已知函数()3x f x e -=,()1ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为______. 三、解答题17.设命题p :函数f (x )=lg (ax 2-x +16a )的定义域为R ;命题q :不等式3x-9x<a 对任意x ∈R 恒成立.(1)如果p 是真命题,求实数a 的取值范围;(2)如果命题“p 或q ”为真命题且“p 且q ”为假命题,求实数a 的取值范围. 18.设数列{}n a 的前n 项和为n S ,且()22n S n n n N*=+∈,数列{}nb 是等比数列,且111b a =-,4425a b +=.(1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .19.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.20.如图,在三棱柱111ABC A B C -中,底面ABC 是边长为4的等边三角形,11A AB A AC ∠=∠,D 为BC 的中点.(1)证明:BC ⊥平面1A AD .(2)若1A AD ∆是等边三角形,求二面角1D AA C --的正弦值. 21.已知函数()ln 1f x x ax =++.(1)若函数()f x 有两个零点,求a 的取值范围; (2)()xf x xe ≤恒成立,求a 的取值范围.22.已知椭圆E :()222210x y a b a b+=>>的焦距为,点A 在椭圆E 上,且OA (O 为坐标原点). (1)求椭圆E 的标准方程.(2)已知动直线l 与圆O :()2220x y tt +=>相切,且与椭圆E 交于P ,Q 两点.是否存在实数t ,使得OP OQ ⊥?若存在,求出t 的值;若不存在,请说明理由.鹤壁高中高二年级尖子生联赛调研二数学(理)答案1.【答案】C【解析】特称命题的否定为全称命题,所以命题的否命题应该为2,2nn N n ∀∈≤,即本题的正确选项为C. 2.【答案】C【解析】∵11221n n n n a a ++=-,即11221n nn n a a ++-=,∴数列{2n a n }为公差是1的等差数列, 又a 1=1,∴21a 1=2,即其首项为2,∴2n a n =2+(n ﹣1)×1=n+1,∴a n =12nn +. ∴a 1=1,a 2=34,a 3=12,a 4=516>15,a 5=632=316<315=15,∴若15n a <,则n 的最小值为5,故选C .【点睛】本题考查数列递推式,判断出数列{2na n }为公差是1的等差数列,并求得a n =12nn +是关键,考查分析应用能力.属于中档题. 3.【答案】C【解析】抛物线的准线为1:4l x =-,过,A B 作准线的垂线,垂足为,E G ,AB 的中点为M ,过M 作准线的垂线,垂足为MH ,因为,A B 是该抛物线上的两点,故,AE AF BG BF ==, 所以3AE BG AF BF +=+=, 又MH 为梯形的中位线,所以32MH =,故M 到y 轴的距离为315244-=,故选C. 【点睛】本题考查抛物线的几何性质,属于基础题. 4.【答案】D 【解析】由y x =2y x =-得交点为(4,2), 所以所求面积为322440016(2)(2)3232x x x x dx x +=-+=⎰,选D.【点睛】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题. 5.【答案】D【解析】x 、y 满足约束条件,表示的可行域如图:目标函数z=x+2y 经过C 点时,函数取得最小值, 由解得C (2,1),目标函数的最小值为4,目标函数的范围是[4,+∞).故选D .6.【答案】B【解析】根据题意,记该人每天走的路程里数为{}n a ,则数列{}n a 是以12的为公比的等比数列,又由这个人走了6天后到达目的地,即6189S =,则有166112189112a S ⎛⎫- ⎪⎝⎭==-,解可得:196a =,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前n 项和公式的运用,注意等比数列的性质的合理运用. 7.【答案】C【解析】当0x ≥时,()()ln 1f x x =+,则()1'1f x x =+,()'01f =; 当0x <时,()212f x x x =-+,则()1'22f x x =-+,当0x →时,()1'2f x →; 画出()f x 和y kx =函数图像,如图所示:函数有3个交点,根据图像知112k <<.故选:C .【点睛】本题考查了根据函数零点个数求参数,意在考查学生的计算能力和应用能力,画出函数图像是解题的关键. 8.【答案】B【解析】由0PE AC ⋅=,即满足PE AC ⊥.设,F G 分别为,DC SC 的中点,连接,,,,AC BD EF FG GE . 设,AC BD 交于点O ,,AC EF 交于点1O . 所以在正四棱锥S -ABCD 中,SO ⊥平面ABCD . 所以SO AC ⊥,且AC BD ⊥, 由,,E F G 分别为,,BC DC SC 的中点.所以1//,//BD EF SO GO ,则有,1GO AC ⊥,AC EF ⊥,且11EF GO O =所以AC ⊥平面EFG .故当点P 在平面EFG 内时,有PE AC ⊥成立.所以动点P 的轨迹为平面EFG 截正四棱锥S -ABCD 的截面,即EFG . 由,,E F G 分别为,,BC DC SC 的中点. 所以111,,222EF BD GE SB FG SD === 又正四棱锥S -ABCD 底面边长为2,高为1,所以22BD =,()21+2=3SB =.所以23EF FG GE ++=故选:B【点睛】本题考查轨迹问题,考查线面的垂直的证明,属于中档题. 9.【答案】A【解析】在ABC ∆中,因为sin 3cos 0b A a B =,且2b ac =, 由正弦定理得sin sin 3cos 0B A A B -=,因为(0,)A π∈,则sin 0A >,所以sin 30B B =,即tan 3B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解. 10.【答案】D【解析】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=()2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D .【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题. 11.【答案】A【解析】()1f x a x'=-. (1)当0a ≤时,0f x,所以()f x 在(]0,e 上单调递减,()()min 13f x f e ae ==-=,4a e=(舍去).(2)当0a >时,()1a x a f x x⎛⎫- ⎪⎝⎭'=.①当10a e <≤时,1e a≥,此时0f x在(]0,e 上恒成立,所以()f x 在(]0,e 上单调递减,()()min 13f x f e ae ==-=,解得4a e=(舍去); ②当1a e >时,10e a <<.当10x a<<时,0f x,所以()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,当1x e a<<时,0f x,所以()f x 在1,e a ⎛⎫⎪⎝⎭上单调递增,于是()min 11ln 3f x f a a ⎛⎫==+=⎪⎝⎭,解得2a e =. 综上,2a e =. 故选:A【点睛】本题考查函数的最值,利用导数是解题的关键,考查分类讨论思想,如何合理确定分类标准是难点,属于中档题. 12.【答案】B【解析】由题意可得22c =,即221,1c a b =-=,代入点21,2⎛⎫ ⎪ ⎪⎝⎭,可得221112a b +=,解得2,1a b ==,即有椭圆的方程为2212x y +=,设()22,B x y ,则椭圆1C 在点B 处的切线方程为2212x x y y += 令210,D x y y ==,令0y =,可得22C x x =,所以222211212OCD S y x x y ∆=⋅⋅=,又点B 在椭圆的第一象限上,所以222222,0,12xx y y>+=,即有2222222212xyx y x y+=22222x yy x=+222222x yy x≥⋅2=,所以2OCDS∆≥,当且仅当2222122xy==,所以当21,2B⎛⎫⎪⎪⎝⎭时,则OCD∆的面积的最小值为2.故选:B【点睛】本题考查椭圆中的最值问题,考查基本不等式求最值问题,考查类比推理,综合性较强,属于中等题型.13.【答案】33【解析】在三棱锥P ABC-中,1,PA AB BC===2AC PB==,3PC=.222222222,,AB BC AC PA AB PB PA AC PC∴+=+=+=,,AB BC PA AB PA AC∴⊥⊥⊥AB AC A⋂=,∴PA⊥平面ABC以A为原点,在平面ABC中,过A作AC的垂线为x轴,AC为y轴,AP为z轴,建立空间直角坐标系如图:则22(0,0,0),22A B⎛⎫⎪⎪⎝⎭,2,0),(0,0,1)C P.∴22,,0,(0,2,1)22AB PC⎛⎫==-⎪⎪⎝⎭,设异面直线PC 与AB 所成角为θ,∴cos ||||AB PCAB PC θ⋅=⨯==∴异面直线PC 与AB所成角的余弦值为3. 故答案为:3.【点睛】本题主要考查了由向量法求异面直线夹角的余弦值,解题关键是掌握向量法求异面直线夹角的解法和向量数量积公式,考查了分析能力和计算能力,属于中档题. 14.【答案】24d <<【解析】由题意得16a b +=且8a b <<,三角形ABC 为钝角三角形,∴222cos 02a c bB ac+-=<即22640a b +-<,∴2264b a ->即()1664b a ->,∴4b a ->,又由三角形三边关系可得8b a -<,∴48b a <-<即428d <<,∴24d <<.故答案为:24d <<.【点睛】本题考查了余弦定理的应用和等差数列性质的应用,属于中档题. 15.1 【解析】设2PF m =,则12PF a m =-,因为1PF PQ =,所以2222QF a m m a m =--=-, 由椭圆的定义可得()12222QF a a m m =--=,因为1PQ PF ⊥,在1PFQ 中,22112QF PF =,即()22422m a m =-①, 在12PF F △中,2221212F F PF PF =+,即()22242c a m m =-+②,由①-②2⨯可得222484m c m -=-,可得m c =,③,将③代入②可得()222420c a c c =-+=,整理可得:2220e e +-=,()0,1e ∈,解得1e =. 1.【点睛】本题考查椭圆离心率的求法,属于中档题. 16.【答案】ln21-【解析】不妨设()()f m g n t ==,∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >), 令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>,所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>,当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值,此时1123ln ln 2122h ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-,故答案为:ln21-.【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【答案】(1)18a >.(2)11 84a <≤. 【解析】(1)命题p 是真命题,则ax 2-x +16a >0恒成立,得到a >0,△=1-64a 2<0, 即a >18,或a 18<(舍去),所以a 的取值范围为18a >.(2)命题q 是真命题,不等式3x-9x<a 对一切x ∈R 均成立,设y =3x-9x,令t =3x>0,则y =t -t 2,t >0,当12t =时,111244max y =-=,所以14a >.命题“p ∨q ”为真命题,“p ∧q ”为假命题,则p ,q 一真一假.即有1184a ≤<或a ∈∅,综上,实数a 的取值范围1184a <≤.【点睛】本题考查命题的真假的判断与应用,换元法以及二次函数的性质的应用,是基本知识的考查.18.【答案】(1)21n a n =+,2nn b =(2)()12122n n T n +=-⋅+【解析】(1)当1n =时,113a S ==,当2n ≥时,()()2211211n S n n n -=-+-=-,则121n n n a S S n -=-=+. 当1n =时,13a =满足上式,则21n a n =+.因为111b a =-,4425a b +=,所以12b =,4925b +=,所以416b =.设等比数列{}n b 的公比为q ,则34116b b q ==,解得2q,故112n nn b b q -==.(2)由(1)可得()212nn n a b n =+⋅,则23325272n T =⨯+⨯+⨯()212n n +++⋅, ① 2342325272n T =⨯+⨯+⨯()()1212212n n n n +++-⋅++⋅,② ①-②得()34116222212n n n T n ++-=++++-+⋅()11222n n +=-⋅-,故()12122n n T n +=-⋅+.【点睛】本题考查由数列的前n 项和求通项公式,考查等比数列通项公式的基本量计算,考查用错位相减法求数列的前n 项和,属于中档题. 19.【答案】(1) 3B π=; (2)(82. 【解析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=. 0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=. (2)因为ABC 是锐角三角形,由(1)知3B π=,A BC π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =, 由三角形面积公式有:222sin()111sin 3sin sin sin 222sin sin ABCC a A Sac B c B c B c C Cπ-=⋅=⋅=⋅=22sin cos cos sin 2123133(sin cos )sin 3tan 38tan C C C C C ππππ-==-=.又因,tan 623C C ππ<<>,故3188tan 82C <+<ABCS <<. 故ABCS的取值范围是 【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题. 20.【答案】(1)证明见解析,(2【解析】(1)证明:连接1A B ,因为11A AB A AC ∠=∠,AB AC =,11AA AA =, 所以11A AB A AC ∆≅∆,所以11A B A C =. 因为D 为BC 的中点,所以1BC A D ⊥.因为D 为BC 的中点,且AB AC =,所以BC AD ⊥. 因为1A DAD D =,所以BC ⊥平面1A AD .(2)解:取AD 的中点O ,连接1A O ,因为1A AD ∆是等边三角形,所以1A O AD ⊥.由(1)可知BC ⊥平面1A AD ,则BC ,AD ,1A O 两两垂直,故以O 为原点,OA 所在直线为x 轴,过O 作BC 的平行线为y 轴,1OA 所在直线为z 轴建立空间直角坐标系O xyz -.因为底面ABC 是边长为4的等边三角形,所以23AD =因为1A AD ∆是等边三角形,所以13AO =. 所以)3,0,0A,()10,0,3A ,()3,2,0B -,()3,2,0C --,则()13,0,3AA =-,()23,2,0AC =--.设平面1AA C 的法向量(),,n x y z =,则13302320n AA z n AC x y ⎧⋅=-+=⎪⎨⋅=--=⎪⎩,令1z =,得()3,3,1n =-.易知平面1A AD 的一个法向量为()0,4,0BC =-,记二面角1D AA C --为θ,则cos 13413n BC n BCθ⋅===⨯, 故2213sin 1cos θθ=-=【点睛】此题考查线面垂直的证明和建立空间直角坐标系利用向量求解二面角的大小. 21.【答案】(1)(-1,0) (2)(-∞,1]. 【解析】(1)f(x)的定义域是(0,+∞),f'(x)=1x+a. ①当a ≥0时,f'(x)>0,f(x)在定义域上单调递增,不可能有两个零点; ②当a <0时,由f'(x)=1x +a =0,得x=-1a>0, 当x 10,a ⎛⎫∈-⎪⎝⎭时,f'(x)>0,f(x)在定义域上单调递增,当x 1,a ⎛⎫∈-+∞ ⎪⎝⎭时,f'(x)<0,f(x)在定义域上单调递减, ∴x=-1a时,f(x)取得极大值. ∵f(x)有两个零点,∴f 1a ⎛⎫-⎪⎝⎭>0,解得-1<a <0. ∵f 1a e e ⎛⎫=⎪⎝⎭<0,∴f(x)在10,a ⎛⎫- ⎪⎝⎭有唯一的零点; 取x 0=()2ea ->1a -,则f(x 0)=1+2ln 11e a a ⎛⎫-++ ⎪⎝⎭<2+21210e e a aa -⎛⎫--+=< ⎪⎝⎭, ∴f(x)在1,a ⎛⎫-+∞ ⎪⎝⎭有唯一的零点,∴a 的取值范围是(-1,0). (2)f(x)≤xe x恒成立,即xe x≥lnx+a x+1在(0,+∞)恒成立. 也就是a ≤ln 1xx e x x--在(0,+∞)恒成立. 令g(x)=ln 1xx e x x--,则g'(x)=e x +222ln ln x x x e x x x +=, 令h(x)=x 2e x+lnx,则h'(x)=2xe x+x 2e x+1x>0, ∴h(x)在(0,+∞)上单调递增,而h(1)=e>0,h 12110eee e⎛⎫=-< ⎪⎝⎭, ∴∃x 01,1e ⎛⎫∈ ⎪⎝⎭使得h(x 0)=0,即020xx e +ln x 0=0,∴020x x e =-001ln x x =01ln 00011lnln x e x x x =,令φ(x)=xe x , 在(0,+∞)上,φ'(x)=(x+1)e x>0,∴φ(x)在(0,+∞)上单调递增,∴x 0=ln1x , 而在(0,x 0)上,h(x)<0,即g'(x)<0,∴g (x)在(0,x 0)上单调递减, 在(x 0,+∞)上,h(x)>0,即g'(x)>0,∴g(x)在(x 0,+∞)上单调递增,∴g(x)min =g(x 0)=001ln 000000ln 111x x x x e e x x x x ---=--=,∴a ≤1.∴a 的取值范围是(-∞,1].22.【答案】(1)22142x y +=;(2)存在3t = 【解析】(1)因为OA,所以b = 因为椭圆E的焦距为2c =,即c =所以2224a b c =+=,故椭圆E 的标准方程是22142x y +=;(2)①当直线l 的斜率不存在时,因为直线l 与圆O 相切,所以直线l 的方程为x t =±,则直线l 与椭圆E的交点为,2t ⎛±⎪⎝⎭或,2t ⎛-± ⎪⎝⎭, 因为OP OQ ⊥,所以2212128204t x x y y t -+=-=,所以243t =,即3t =, ②当直线l 的斜率存在时,可设直线l 的方程为y kx m =+,()11,P x y ,()22,Q x y .联立22142x y y kx m ⎧+=⎪⎨⎪=+⎩,整理得()222214240k x kmx m +++-=, 则122421km x x k +=-+,21222421-=+m x x k , 因为()11,P x y ,()22,Q x y 在直线l 上,所以()()()2212121212y y kx m kx m k x x km x x m =++=+++,将122421km x x k +=-+,21222421-=+m x x k 代入上式,得 ()2222212222442121k m k m y y m k k -=-+++222421m k k -=+,因为OP OQ ⊥,所以22212122224402121m m k x x y y k k --+=+=++,即()22341m k =+, 因为动直线l 与圆Ot =,所以222413m t k ==+,即t =,综上,存在3t =,使得OP OQ ⊥. 【点睛】此题考查根据椭圆的几何意义求解椭圆方程,根据直线与曲线的位置关系结合韦达定理解决探索性问题.。

相关文档
最新文档