专题二 机械能守恒与能量守恒

合集下载

湖南省2015届高三物理 专题二 第一节 第6课时 功能关系 机械能守恒定律能量守恒定律课件

湖南省2015届高三物理 专题二 第一节 第6课时 功能关系 机械能守恒定律能量守恒定律课件

【分析与解答】(1)物体从开始位置 A 点到最后 D 点的过程中,弹性势能没有发生变化,动能和重力势能 减少,机械能的减少量为 1 2 ΔE=ΔEk+ΔEp= vm0+mglADsin37° ① 2 物体克服摩擦力产生的热量为 Q=Fx ② 其中 x 为物体的路程,即 x=5.4 m F=μmgcos37° ④ ⑤ 由能量守恒定律可得ΔE=Q 由①②③④⑤式解得 μ=0.52. ③
专题二第6课时功能关系_机械能守恒 定律能量守恒定律
3. 机械能瞬时损失问题
例 4.质量为 m 的质点,系于长为 R 的轻绳的一端,绳的另一端固定在 空间的 O 点,假定绳是不可伸长的、 柔软且无弹性的.今把质点从 O 点的 8 正上方离 O 点的距离为 R 的 O1 点以 9 3 水平的速度 v0= gR抛出,如图所示.试求: 4 (1)轻绳即将伸直时,绳与竖直方向的夹角为多少? (2)当质点到达 O 点的正下方时,绳对质点的拉力 为多大?
(2)由 A 到 C 的过程中,动能减少 1 2 ΔE′k= mv0 2 ⑥
重力势能减少ΔE′p=mglACsin37° 摩擦生热 Q=FxAC=μmgcos37°xAC ΔEpm=ΔE′k+ΔE′p-Q 联立⑥⑦⑧⑨解得ΔEpm=24.4 J. ⑨
⑦ ⑧
由能量守恒定律得弹簧的最大弹性势能为
• 6、 如图所示,斜面轨道AB与水平面之间的夹角θ= 53°,BD为半径R=4 m的圆弧形轨道,且B点与D点 在同一水平面上,在B点,斜面轨道AB与圆弧形轨道 BD相切,整个轨道处于竖直平面内且处处光滑,在A 点处有一质量m=1 kg的小球由静止滑下,经过B、C 两点后从D点斜抛出去,最后落在地面上的S点时的速 度大小vS=8 m/s,已知A点距地面的高度H=10 m, B点距地面的高度h=5 m,设以MDN为分界线,其左 边为一阻力场区域,右边为真空区域,g取10 m/s2, cos53°=0.6,求: • (1)小球经过B点时的速度为多大? • (2)小球经过圆弧轨道最低处C点时对轨道的压力多大? • (3)小球从D点抛出后,受到的阻力Ff与其瞬时速度方向 始终相反,求小球从D点至S点的过程中阻力Ff所做的 功。

高中物理复习:机械能守恒定律和能量守恒定律

高中物理复习:机械能守恒定律和能量守恒定律

高中物理复习:机械能守恒定律和能量守恒定律【知识点的认识】1.机械能:势能和动能统称为机械能,即E=E k+E p,其中势能包括重力势能和弹性势能.2.机械能守恒定律(1)内容:在只有重力(或弹簧弹力)做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.(2)表达式:观点表达式守恒观点 E1=E2,E k1+E p1=E k2+E p2(要选零势能参考平面)转化观点△E K=﹣△E P(不用选零势能参考平面)转移观点△E A=﹣△E B(不用选零势能参考平面)【命题方向】题型一:机械能是否守恒的判断例1:关于机械能是否守恒的叙述中正确的是()A.只要重力对物体做了功,物体的机械能一定守恒B.做匀速直线运动的物体,机械能一定守恒C.外力对物体做的功为零时,物体的机械能一定守恒D.只有重力对物体做功时,物体的机械能一定守恒分析:机械能守恒的条件:只有重力或弹力做功的物体系统,其他力不做功,理解如下:①只受重力作用,例如各种抛体运动.②受到其它外力,但是这些力是不做功的.例如:绳子的一端固定在天花板上,另一端系一个小球,让它从某一高度静止释放,下摆过程中受到绳子的拉力,但是拉力的方向始终与速度方向垂直,拉力不做功,只有重力做功,小球的机械能是守恒的.③受到其它外力,且都在做功,但是它们的代数和为0,此时只有重力做功,机械能也是守恒的.解:A、机械能守恒条件是只有重力做功,故A错误;B、匀速运动,动能不变,但重力势能可能变化,故B错误;C、外力对物体做的功为零时,不一定只有重力做功,当其它力与重力做的功的和为0时,机械能不守恒,故C错误;D、机械能守恒的条件是只有重力或弹力做功,故D正确.故选:D.点评:本题关键是如何判断机械能守恒,可以看能量的转化情况,也可以看是否只有重力做功.题型二:机械能守恒定律的应用例2:如图,竖直放置的斜面下端与光滑的圆弧轨道BCD的B端相切,圆弧半径为R,∠COB =θ,斜面倾角也为θ,现有一质量为m的小物体从斜面上的A点无初速滑下,且恰能通过光滑圆形轨道的最高点D.已知小物体与斜面间的动摩擦因数为μ,求:(1)AB长度l应该多大.(2)小物体第一次通过C点时对轨道的压力多大.分析:(1)根据牛顿第二定律列出重力提供向心力的表达式,再由动能定理结合几何关系即可求解;(2)由机械能守恒定律与牛顿第二定律联合即可求解.解:(1)因恰能过最高点D,则有又因f=μN=μmgcosθ,物体从A运动到D全程,由动能定理可得:mg(lsinθ﹣R﹣Rcosθ)﹣fl=联立求得:(2)物体从C运动到D的过程,设C点速度为v c,由机械能守恒定律:物体在C点时:联合求得:N=6mg答:(1)AB长度得:.(2)小物体第一次通过C点时对轨道的压力6mg.点评:本题是动能定理与牛顿运动定律的综合应用,关键是分析物体的运动过程,抓住滑动摩擦力做功与路程有关这一特点.题型三:多物体组成的系统机械能守恒问题例3:如图所示,A、B两小球由绕过轻质定滑轮的细线相连,A放在固定的光滑斜面上,B、C两小球在竖直方向上通过劲度系数为k的轻质弹簧相连,C球放在水平地面上.现用手控制住A,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知A的质量为4m,B、C的质量均为m,重力加速度为g,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放A后,A沿斜面下滑至速度最大时C恰好离开地面.下列说法正确的是()A.斜面倾角α=30°B.A获得最大速度为2gC.C刚离开地面时,B的加速度最大D.从释放A到C刚离开地面的过程中,A、B两小球组成的系统机械能守恒分析:C球刚离开地面时,弹簧的弹力等于C的重力,根据牛顿第二定律知B的加速度为零,B、C加速度相同,分别对B、A受力分析,列出平衡方程,求出斜面的倾角.A、B、C组成的系统机械能守恒,初始位置弹簧处于压缩状态,当B具有最大速度时,弹簧处于伸长状态,根据受力知,压缩量与伸长量相等.在整个过程中弹性势能变化为零,根据系统机械能守恒求出B的最大速度,A的最大速度与B相等;解:A、C刚离开地面时,对C有:kx2=mg此时B有最大速度,即a B=a C=0则对B有:T﹣kx2﹣mg=0对A有:4mgsinα﹣T=0以上方程联立可解得:sinα=,α=30°,故A正确;B、初始系统静止,且线上无拉力,对B有:kx1=mg由上问知x1=x2=,则从释放至C刚离开地面过程中,弹性势能变化量为零;此过程中A、B、C组成的系统机械能守恒,即:4mg(x1+x2)sinα=mg(x1+x2)+(4m+m)v Bm2以上方程联立可解得:v Bm=2g所以A获得最大速度为2g,故B正确;C、对B球进行受力分析可知,C刚离开地面时,B的速度最大,加速度为零.故C错误;D、从释放A到C刚离开地面的过程中,A、B、C及弹簧组成的系统机械能守恒,故D错误.故选:AB.点评:本题关键是对三个小球进行受力分析,确定出它们的运动状态,再结合平衡条件和系统的机械能守恒进行分析.【解题方法点拨】1.判断机械能是否守恒的方法(1)利用机械能的定义判断:分析动能与势能的和是否变化.如:匀速下落的物体动能不变,重力势能减少,物体的机械能必减少.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,机械能守恒.(3)用能量转化来判断:若系统中只有动能和势能的相互转化,而无机械能与其他形式的能的转化,则系统的机械能守恒.(4)对一些绳子突然绷紧、物体间非弹性碰撞等问题机械能一般不守恒,除非题中有特别说明或暗示.2.应用机械能守恒定律解题的基本思路(1)选取研究对象﹣﹣物体或系统.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒.(3)恰当地选取参考平面,确定研究对象在过程的初、末态时的机械能.(4)选取方便的机械能守恒定律的方程形式(E k1+E p1=E k2+E p2、△E k=﹣△E p或△E A=﹣△E B)进行求解.注:机械能守恒定律的应用往往与曲线运动综合起来,其联系点主要在初末状态的速度与圆周运动的动力学问题有关、与平抛运动的初速度有关.3.对于系统机械能守恒问题,应抓住以下几个关键:(1)分析清楚运动过程中各物体的能量变化;(2)哪几个物体构成的系统机械能守恒;(3)各物体的速度之间的联系.13.能量守恒定律【知识点的认识】能量守恒定律1.内容:能量即不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变,叫能量守恒定律.2.公式:E=恒量;△E增=△E减;E初=E末;3.说明:①能量形式是多种的;②各种形式的能都可以相互转化.4.第一类永动机不可制成①定义:不消耗能量的机器,叫第一类永动机.②原因:违背了能量守恒定律.。

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理和机械能守恒定律复习

高中物理必修2动能定理、机械能守恒定律复习考纲要求1、动能定理 (Ⅱ)2、做功与动能改变的关系 (Ⅱ)3、机械能守恒定律 (Ⅱ)知识归纳1、动能定理(1)推导:设一个物体的质量为m ,初速度为V 1,在与运动方向相同的恒力F 作用下,发生了一段位移S ,速度增加到V 2,如图所示。

在这一过程中,力F 所做的功W=F ·S ,根据牛顿第二定律有F=ma ;根据匀加速直线运动的规律,有:V 22-V 13=2aS ,即aV V S 22122-=。

可得:W=F ·S=ma ·2122212221212mV mV a V V -=- (2)定理:①表达式 W=E K2-E K1 或 W 1+W 2+……W n =21222121mV mV - ②意义 做功可以改变物体的能量—所有外力对物体所做的总功等于物体动能的变化。

ⅰ、如果合外力对物体做正功,则E K2>E K1 ,物体的动能增加;ⅱ、如果合外力对物体做负功,则E K2<E K1 ,物体的动能减少;ⅱ、如果合外力对物体不做功,则物体的动能不发生变化。

(3)理解:①外力对物体做的总功等于物体动能的变化。

W 总=△E K =E K2-E K1 。

它反映了物体动能变化与引起变化的原因——力对物体做功的因果关系。

可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能减少。

外力可以是重力、弹力、摩擦力,也可以是任何其他力,但物体动能的变化对应合外力的功,而不是某一个力的功。

②注意的动能的变化,指末动能减初动能。

用△E K 表示动能的变化,△E K >0,表示动能增加;△E K <0,表示动能减少。

③动能定理是标量式,功和动能都是标量,不能利用矢量法则分解,故动能定理无分量式。

(4)应用:①动能定理的表达式是在恒力作用且做匀加速直线运动的情况下得出的,但它也适用于减速运动、曲线运动和变力对物体做功的情况。

②动能定理对应的是一个过程,并且它只涉及到物体初末态的动能和整个过程中合外力的功,它不涉及物体运动过程中的加速度、时间和中间状态的速度、动能,因此用它处理问题比较方便。

(机械能守恒定律、能量守恒定律、动能定理的区别)

(机械能守恒定律、能量守恒定律、动能定理的区别)

-μmgL-mgR=-E,
解得 CD 圆弧半径至少为 R=3mEg.
答案
2E (1)3mgL
E (2)3mg
解析 (1)设小车在轨道 CD 上加速的距离为 s,由动能定理得
Fs-μMgs2=12Mv2①
设小车在轨道 CD 上做加速运动时的加速度为 a,由牛顿运动定律得
F-μMg=Ma②
7
s=12at2③ 联立①②③式,代入数据得 t=1 s.④ (2)设小车在轨道 CD 上做加速运动的末速度为 v′,撤去力 F 后小车做减速运动时的加速度为 a′, 减速时间为 t′,由牛顿运动定律得 v′=at⑤ -μMg=Ma′⑥ v=v′+a′t′⑦ 设滑块的质量为 m,运动到 A 点的速度为 vA,由动能定理得 mgR=12mvA2 ⑧ 设滑块由 A 点运动到 B 点的时间为 t1,由运动学公式得 s1=vAt1⑨ 设滑块做平抛运动的时间为 t1′,则 t1′=t+t′-t1⑩ 由平抛规律得 h=12gt1t2⑪ 联立②④⑤⑥⑦⑧⑨⑩⑪式,代入数据得 h=0.8 m.
A.mgLcos θ
B.FLsin θ
C.mgL(1-cos θ)
D.FL(1-cos θ)
图 5-2-9 图 5-2-10 4.如图 5-2-10 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0 沿水平 方向射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前 进距离 L,子弹进入木块的深度为 s,若木块对子弹的阻力 F 视为恒定,则下列关系式中正确的是 A.FL=12Mv2 B.-Fs=12mv2-12mv20 C.-F(L+s)=12mv2-12mv20 D.F(L+s)=12Mv2 5.一质量为 m 的物体在水平恒力 F 的作用下沿水平面运动,在 t0 时刻撤去力 F, 其 v-t 图象如图 5-2-11 所示.已知物体与水平面间的动摩擦因数为 μ,则下列关于力 F 的大小和 力 F 做的功 W 的大小关系式,正确的是

物体的机械能和能量守恒定律

物体的机械能和能量守恒定律

物体的机械能和能量守恒定律能量是物理学中一个重要的概念,它存在于各种不同形式的物体和现象中。

在经典力学中,机械能是一种常见的能量形式,它包括了物体的动能和势能。

本文将探讨物体的机械能以及能量守恒定律的基本原理。

一、机械能的定义与运动的特点机械能是指物体由于运动而具有的能量,包括了物体的动能和势能。

动能是由于物体运动而产生的能量,它与物体的质量和速度有关。

动能的表达式为:E_k = 1/2mv^2,其中E_k为动能,m为物体的质量,v 为物体的速度。

势能是由于物体所处的位置而具有的能量,它与物体的位置和形状有关。

常见的势能形式有重力势能、弹性势能和化学势能等。

重力势能的表达式为:E_p = mgh,其中E_p为重力势能,m为物体的质量,g为重力加速度,h为物体的高度。

在运动中,机械能可以相互转换,但总机械能守恒。

这意味着,在没有外力和非保守力的情况下,系统的机械能保持不变。

当物体受到外力或非保守力的作用时,机械能会发生转换,并且转换的总量等于外力对物体做功或非保守力对物体所做的负功。

二、能量守恒定律的基本原理能量守恒定律是指在一个封闭系统中,能量的总量保持不变。

即使能量在不同形式之间转换,总能量仍保持不变。

根据能量守恒定律,机械能的转换可以用下式表示:ΔE_k + ΔE_p + ΔW = 0,其中ΔE_k和ΔE_p分别表示动能和势能的变化量,ΔW为外力对物体所做的功。

根据能量守恒定律,当一个物体从一个位置移动到另一个位置时,其动能和势能会发生相应的变化。

例如,当一个物体从高处下落时,它失去了一部分的势能,同时增加了相应的动能。

这个过程中,重力对物体做了负功,使得机械能保持不变。

当物体受到其他非保守力的作用时,能量转换的情况更加复杂。

非保守力对物体的功既可以正值也可以负值,取决于力的方向和物体的运动方向。

然而,总能量仍然守恒,只是能量在不同形式之间进行转换。

三、应用举例能量守恒定律在日常生活中有许多应用。

湖南省2015届高三物理 专题二 第6课时 功能关系 机械能守恒定律能量守恒定律课件

湖南省2015届高三物理 专题二 第6课时 功能关系 机械能守恒定律能量守恒定律课件

2.用功能关系分析解答相关问题
例 3 .(2012 安徽)如图所示,在竖直平面内有一个 半径为 R 的圆弧轨道.半径 OA 水平、OB 竖直,一个 质量为 m 的小球自 A 正上方 P 点由静止开始自由下落, 小球沿轨道到达最高点 B 时恰好对轨道没有压力,已 知 AP=2R,重力加速度为 g,则小球从 P 到 B 的运动 过程中( ) A.重力做功 2mgR B.机械能减少 mgR C.合外力做功 mgR 1 D.克服摩擦力做功 mgR 2
• 3、(2013年山东)如图,楔形木块abc固定在水 平面上,粗糙斜面ab和光滑斜面bc与水平面的 夹角相同,顶角b处安装一定滑轮。质量分别为 M、m(M>m)的滑块,通过不可伸长的轻绳跨 过定滑轮连接,轻绳与斜面平行。两滑块由静 止释放后,沿斜面做匀加速运动。若不计滑轮 的质量和摩擦,在两滑块沿斜面运动的过程中 • A.两滑块组成系统的机械能守恒 • B.重力对M做的功等于M动能的增加 • C.轻绳对m做的功等于m机械能的增加 • D.两滑块组成系统的机械能损失等于M克服摩 擦力做的功
重点知识诠释 一、功能关系
1. 功
功是__________ 能量转化 的量度。做功的过程就是 ___________ 能量转化 的过程。做了多少功,就有多少能 量发生转化。 2. 具体情况 (1)重力做功:___________ 重力势能 和其他能相互转化。 (2)弹簧弹力做功:____________ 弹性势能 和其他能相互 转化。 (3)滑动摩擦力做功:机械能转化为_______ 内能 。
【分析与解答】(1)该系统在自由转动过程中,只有 重力做功,机械能守恒.设 A 球转到最低点时的线速度 为 vA,B 球的速度为 vB,则据机械能守恒定律可得: mgr mvA mvB mgr- = + 2 2 2 据圆周运动的知识可知:vA=2vB 由上述二式可求得:vA= 4gr 5

第十一讲:机械能守恒和能量守恒

第十一讲:机械能守恒和能量守恒

第十一讲:机械能守恒和能量守恒一、重力做功与重力势能的关系1.重力做功的特点(1)重力做功与路径无关,只与始末位置的高度差有关.(2)重力做功不引起物体机械能的变化.2.重力势能(1)表达式:E p=mgh.(2)重力势能的特点重力势能是物体和地球所共有的,重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关.3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大;(2)定量关系:重力对物体做的功等于物体重力势能的减小量.即W G=-(E p2-E p1)=-ΔE p.二、弹性势能1.定义:发生弹性形变的物体之间,由于有弹力的相互作用而具有的势能.2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加.即W=-ΔE p.三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能例题、关于重力势能,下列说法中正确的是()A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5 J变化到-3 J,重力势能减少了D.重力势能的减少量等于重力对物体例题、关于弹性势能,下列说法中正确的是()A.任何发生弹性形变的物体,都具有弹性势能B.任何具有弹性势能的物体,一定发生了弹性形变C.物体只要发生形变,就一定具有弹性势能D.弹簧的弹性势能只跟弹簧被拉伸或可以互相转化,而总的机械能保持不变. 2.表达式:mgh 1+12m v 12=mgh 2+12m v 22.3.机械能守恒的条件(1)系统只受重力或弹簧弹力的作用,不受其他外力. (2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.(4)系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化.四、单个物体机械能守恒问题1.表达式2.一般步骤例题、下列几种运动中,机械能一定守恒的是( )A .做匀速直线运动的物体B .做匀变速直线运动的物体C .做平抛运动的物体例题、如图所示,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比; (2)通过计算判断小球能否沿轨道运动到C 点.3.选用技巧在处理单个物体机械能守恒问题时通常应用守恒观点和转化观点,转化观点不用选取零势能面.五、系统机械能守恒问题1.对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒.2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系.3.列机械能守恒方程时,一般选用ΔE k=-ΔE p或ΔE A=-ΔE B的形式.六、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式ΔE减=ΔE增.3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.针对训练题型1:机械能守恒的判断A.A、C间距离为4 mB.小环最终静止在C点C.小环下落过程中减少的重力势能始终等于物块增加的机械能D.当小环下滑至绳与杆的夹角为60°时,小环与物块的动能之比为2∶11.下列说法正确的是()A.如果物体受到的合力为零,则其机械能一定守恒B.如果物体受到的合力做功为零,则其机械能一定守恒C.物体沿光滑曲面自由下滑的过程中,其机械能不一定守恒D.做匀加速运动的物体,其机械能可能守恒2.蹦极是一项非常刺激的户外休闲活动.北京青龙峡蹦极跳塔高度为68米,身系弹性蹦极绳的蹦极运动员从高台跳下,下落高度大约为50米.假定空气阻力可忽略,运动员可视为质点.下列说法正确的是()A.运动员到达最低点前加速度先不变后增大B.蹦极过程中,运动员的机械能守恒C.蹦极绳张紧后的下落过程中,动能一直减小D.蹦极绳张紧后的下落过程中,弹力一直增大3.如图所示,将一个内、外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁。

第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第一篇 专题二 第6讲 动能定理 机械能守恒定律 能量守恒定律

第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。

高三二轮复习《第2讲 功能关系、机械能守恒定律和能量守恒定律》教案

高三二轮复习《第2讲 功能关系、机械能守恒定律和能量守恒定律》教案

专题五功和能第2讲功能关系机械能守恒定律和能量守恒定律一、核心知识、方法回扣:1.机械能守恒定律:(1)内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.(2)机械能守恒的条件①对某一物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.②对某一系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.(3)三种表达式:①守恒的观点:____ ____ _____。

②转化的观点:_____ _____。

③转移的观点:_____ ___。

2.几个重要的功能关系(1)重力的功等于的变化,即W G=.(2)弹力的功等于的变化,即W弹=.(3)合力的功等于的变化,即W=.(4)重力之外(除弹簧弹力)的其他力的功等于的变化.W其他=ΔE.(5)一对滑动摩擦力做的功等于的变化.Q=F·s相对.3.静电力做功与无关.若电场为匀强电场,则W=Fs cos α=Eqs cos α;若是非匀强电场,则一般利用W=来求.4.磁场力又可分为洛伦兹力和安培力.洛伦兹力在任何情况下对运动的电荷都;安培力可以做正功、负功,还可以不做功.5.电流做功的实质是电场对做功.即W=UIt=.6.导体棒在磁场中切割磁感线时,棒中感应电流受到的安培力对导体棒做功,使机械能转化为能.7.静电力做功等于的变化,即W AB=-ΔE p.二、方法、规律:1.机械能守恒定律的应用(1)机械能是否守恒的判断①用做功来判断,看重力(或弹簧弹力)以外的其他力做功代数和是否.②用能量转化来判断,看是否有机械能转化为其他形式的能.③对一些“绳子突然绷紧”、“”等问题,机械能一般不守恒,除非题目中有特别说明及暗示.(2)应用机械能守恒定律解题的基本思路①选取研究对象——物体系.②根据研究对象所经历的物理过程,进行、分析,判断机械能是否守恒.③恰当地选取参考平面,确定研究对象在运动过程的始末状态时的机械能.④根据机械能守恒定律列方程,进行求解.2.功能关系在电学中应用的题目,一般过程复杂且涉及多种性质不同的力,因此,通过审题,抓住和运动过程分析是关键,然后根据不同的运动过程各力做功的特点来选择规律求解. 3.力学中的动能定理和能量守恒定律在处理电学中能量问题仍然是首选的方法.三、错题集:1、如图所示,桌面高地面高H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A.mgh B.mgH C.mg(H+h) D.mg(H-h)2、以下过程中机械能守恒的是()A.以8m/s2的加速度在空中下落的石块B.沿固定的光滑斜面自由下滑的滑块C.正在升空的火箭D.吊在轻质弹簧下端正在自由振动的小球3、如图所示,质量分别为2m和m的A、B两物体用不可伸长的轻绳绕过轻质定滑轮相连,开始两物体处于同一高度,绳处于绷紧状态,轻绳足够长,不计一切摩擦。

能量守恒定律与机械能

能量守恒定律与机械能

能量守恒定律与机械能能量守恒定律是物理学中的基本定律之一,它表明在一个系统内,能量的总量是恒定的,在各种转化过程中不会增加也不会减少。

这个定律对于我们理解物体的运动以及各种力学问题的解决具有重要的意义。

机械能是能量的一种形式,在物体的运动中起到至关重要的作用。

本文将详细阐述能量守恒定律与机械能之间的关系及应用。

一、能量守恒定律能量守恒定律是指一个孤立系统中的能量总量在各个过程中保持不变。

这意味着能量既不能自行产生也不能自行消失,只能在不同形式之间相互转化。

根据能量守恒定律,一个封闭系统中的能量转换过程可以被表示为:初始能量 = 最终能量。

在一个机械系统中,能量可以以势能和动能的形式存在。

二、机械能机械能是指物体在机械运动中所具有的能量。

它是动能和势能的总和,可以表示为机械能= 动能 +势能。

动能是指物体由于运动而具有的能量,它与物体的质量和速度有关。

势能指的是物体由于位置或形状而具有的能量,如重力势能和弹性势能等。

机械能在机械系统中是守恒的,即机械能在过程中不会发生改变,只会从一种形式转化为另一种形式。

三、能量守恒定律与机械能的关系能量守恒定律与机械能之间存在着密切的关系。

在一个封闭的机械系统中,当只有重力和弹性力在作用时,能量守恒定律可以简化为机械能守恒定律。

也就是说,机械能在系统内的所有过程中保持不变。

这个定律给我们提供了一个非常有用的工具,可以用来解决各种机械问题,如机械运动的速度、位移、力等。

在实际问题中,我们可以利用能量守恒定律与机械能的概念来分析和解决物体的运动问题。

例如,在一个自由落体过程中,物体在下落的过程中会不断转化为动能,而在上升的过程中会逐渐转化为势能。

根据能量守恒定律,物体的总机械能在整个过程中保持不变。

四、应用举例1. 弹簧振子:在一个弹簧振子中,当弹簧收缩时,势能增加,动能减小;而在弹簧伸长时,势能减小,动能增加。

弹簧振子的机械能在振动过程中保持不变。

2. 钢球下落:当一个钢球从一定高度自由下落时,由于重力的作用,钢球的势能逐渐减小,而动能逐渐增加。

机械能守恒定律能量守恒定律

机械能守恒定律能量守恒定律

机械能守恒定律与能量守恒定律的重要性
理论意义
机械能守恒定律和能量守恒定律是物 理学中的基本定律,对于理解自然界 的运动规律和物质性质具有重要意义 。
实践应用
这两个定律在工程、技术、经济和社 会等领域中有着广泛的应用,例如在 能源利用、机械设计、经济分析等方 面提供重要的理论支持和实践指导。
02 机械能守恒定律
能量守恒定律是许多其他物理定律的基础,如牛顿运动定律、动量守恒定律、 角动量守恒定律等。
能量守恒定律的适用范围
能量守恒定律适用于宇宙中的一切物理现象,无论是宏观的天体运动还是微观的粒子运动,无论是经 典力学还是相对论力学。
能量守恒定律适用于各种类型的能量,包括动能、势能、内能、电磁能等,以及它们的组合和转化。
需要注意的是,在量子力学中,能量守恒定律有时会受到一些限制,如能量量子化、不确定性原理等。
能量守恒定律的实例
摩擦生热
当两个物体相互摩擦时, 机械能转化为内能,总的 能量保持不变。
水力发电
水从高处流到低处时,重 力势能转化为动能,然后 动能转化为电能,总的能 量保持不变。
核反应
在核反应过程中,原子核 的结合能转化为热能和光 能等其他形式的能量,但 总的能量保持不变。
机械能守恒定律的定义
01
机械能守恒定律是指在只有重力 或弹力做功的情况下,物体的动 能和势能相互转化,且总机械能 保持不变的规律。
02
机械能守恒定律是经典力学中的 基本定律之一,它反映了能量在 机械运动中的守恒性质。
机械能守恒定律的适用范围
适用于只有重力或弹力做功,没有其 他力(如摩擦力、电磁力等)做功或 外力做功为零的情况。
04 机械能守恒定律与能量守 恒定律的应用

机械能守恒定律和能量守恒定律

机械能守恒定律和能量守恒定律

机械能守恒定律和能量守恒定律
机械能守恒定律和能量守恒定律是物理学中的两个基本定律,它们对证明物体传递能量的规律有重要意义。

机械能守恒定律即“历史力学定律”,指系统内总机械能不变。

该定律表明:当系统处于静止或单一恒定速度状态时,其机械能保持不变。

而能量守恒定律即“动能定理”,它建立在机械能守恒定律的基础上,在机械运动中,总机械能的变化等于全系统接收到或释放出的量子能量。

机械能守恒定律和能量守恒定律是建立物理学的基本定律,它们对于我们了解物体传递能量有着重要的意义。

只有完全遵循机械能守恒定律和能量守恒定律,我们才能正确地解释动能变化的原因,才能探讨解释动能变化后物体之间的变化。

让我们更加清楚的认识两个定律,把它们用到实践当中,实际开展分析物理学相关问题,深入理解物理学之美。

能量守恒定律与机械能守恒定律的区别

能量守恒定律与机械能守恒定律的区别

能量守恒定律与机械能守恒定律的区别能量守恒定律和机械能守恒定律都是物理学中重要的基本定律,它们在研究物理现象和解决实际问题中具有广泛的应用。

虽然这两个定律都涉及能量的守恒,但它们之间还存在着一些本质的区别。

本文将从物理学的角度,详细探讨这两个定律的区别。

一、能量守恒定律能量守恒定律是物理学中最基本的定律之一,它指出在物理系统中,能量总量是不变的。

也就是说,能量可以由一种形式转化为另一种形式,但总能量的数值是不变的。

这个定律适用于所有物理系统,包括机械系统、电磁系统、热力学系统等。

能量守恒定律可以用数学公式表示为:E1 + E2 + … + En = C,其中E1、E2、…、En分别表示系统中各种能量的数值,C表示系统总能量的数值。

这个公式表明,无论系统中发生什么样的变化,系统的总能量是不变的。

二、机械能守恒定律机械能守恒定律是能量守恒定律的一个特例,它只适用于机械系统。

机械系统是指只包含物体的运动能量和势能的物理系统。

机械能守恒定律指出,在机械系统中,机械能总量是不变的。

也就是说,机械能可以由一种形式转化为另一种形式,但总机械能的数值是不变的。

机械能守恒定律可以用数学公式表示为:Em1 = Em2,其中Em1表示系统的初始机械能,Em2表示系统的末状态机械能。

这个公式表明,机械系统中,机械能在系统内部的转化是受限制的,机械能的总量是不变的。

三、能量守恒定律与机械能守恒定律的区别1. 定律适用范围不同能量守恒定律适用于所有物理系统,包括机械系统、电磁系统、热力学系统等。

机械能守恒定律只适用于机械系统,而不能推广到其他类型的物理系统。

2. 能量形式不同能量守恒定律涉及到所有形式的能量,包括机械能、热能、电能、化学能等。

机械能守恒定律仅涉及机械能,不包括其他形式的能量。

3. 能量转化方式不同能量守恒定律中,能量可以由一种形式转化为另一种形式,但总能量的数值是不变的。

机械能守恒定律中,机械能可以由一种形式转化为另一种形式,但总机械能的数值是不变的。

专题复习:动能定理、机械能守恒、能量守恒

专题复习:动能定理、机械能守恒、能量守恒

机械能中物理规律的应用本章解决计算题常用的方法:动能定理和机械能守恒定律、能量守恒定律、四个功能关系,很多同学可能在遇到问题的时候,不知道用哪个求解,或者在运用规律列方程时把有关规律混淆。

尤其是机械能能守恒和动能定理。

因此,有必要将机械能守恒定律的应用和动能定理的应用的异同性介绍清楚。

1、思想方法相同:机械能守恒定律和动能定理都是从做功和能量变化角度来研究物体在力的作用下状态的变化,表达这两个规律的方程都是标量式。

2、适用条件不同:机械能守恒定律适用只有重力和弹力做功的情形;而动能定理则没有条件限制,它不但允许重力做功还允许其它力做功。

3、分析思路不同:用机械能守恒定律解题只要分析研究对象的初、末状态的动能和势能,而用动能定理解题不但要分析研究对象初、末状态的动能,还要分析所有外力所做的功,并求出这些外力所做的总功。

4、书写方式不同:在解题的书写表达式上机械能守恒定律的等号两边都是动能与势能的和,而用动能定理解题时等号一边一定是外力的总功,而另一边一定是动能的变化。

5、mgh的意义不同:在动能定理中,mgh是重力做的功,写在等号的一边。

在机械能守恒定律中,mgh表示某个状态的重力势能或者重力势能改变量。

如果某一边没有, 说明在那个状态的重力势能为零。

不管用什么公式,等号两边决不能既有重力做功,又有重力势能。

解题思路:一首先考虑机械能守恒定律一般来说,优先考虑是否符合机械能守恒条件,尤其是两个以上物体组成的系统,比如一杆带两球,一绳拴两个物体。

因为动能定理的研究对象在高中阶段通常是单个的物体。

相关的习题有:《讲义》P15410、11、13及P156典例容易混淆的题目:1如图所示,两个光滑的小球用不可伸长的细软线连接,并跨过半径为R的光滑圆柱,与圆柱轴心一样高的A球的质量为2m正好着地的B球质量是m,释放A球后,B球上升,则A球着地时的速度为多少?2如图所示是一个横截面为半圆,半径为R的光滑柱面,一根不可伸长的细线两端分别系着可视为质点的物体A、B,且m=2m=2m由图示位置从静止开始释放A物体,当物体B 达到半圆顶点时,求此过程中绳的张力对物体B所做的功。

机械能守恒定律和能量转化与守恒定律课件

机械能守恒定律和能量转化与守恒定律课件

物体沿斜面下滑时既沿斜面向下运动,又随斜面向
右运动,其合速度方向与弹力方向不垂直,弹力方向垂直 于接触面,但与速度方向之间的夹角大于90°,所以斜面
对物体的作用力对物体做负功,选项C错误,对物体与斜
面组成的系统,仅有重力做功,因此,系统机械能守恒, 选项D正确. 综上所述,该题的正确答案为A、D.
[答案] AD [总结评述] 判断机械能守恒时,对单个物体就看是 否只有重力做功,并非只受重力,虽受其他力,但其他力
守恒.
命题规律
利用机械能守恒定律,计算物体的动能、
势能的变化,及物体在某一位置的速度大小.
命题规律
多个物体组成的系统机械能守恒,由于
系统的内力做功,单个物体机械能不守恒,利用系统机械
能守恒,求系统或某物体在某一时刻的速度大小或位置.
如图所示,光滑半圆上有两个小球,质量分别为m和 M,由细绳挂着,今由静止开始释放,求小球m至C点时 的速度.(m未离开半圆轨道)
动能变化
重力势能变化
弹簧弹力的功 弹性势能变化
只有重力、弹 不引起机械能 簧弹力的功 变化
机械能守恒 ΔE=0
考点精析 能的转化和守恒定律的理解和应用 1.对定律的理解
(1)某种形式的能量减少,一定存在另外形式的能量
增加,且减少量和增加量相等. (2)某个物体的能量减少,一定存在别的物体的能量 增加,且减少量和增加量相等.
[解析] 以两球和地球组成的系统为研究对象. 在运 动过程中,系统的机械能守恒. 选初态位置 m、M 所在平面为零势能面: 1 2πR 1 2 mgR+ mvC -Mg + MvC2=0 2 4 2 解得:vC= π2mgR M+m
“没有摩擦力和介质阻力”来判定机械能是否守恒.

机械能与能量守恒

机械能与能量守恒

机械能与能量守恒能量守恒定律是物理学中非常重要的一个原理,它指出在一个封闭系统中,能量总是保持不变的。

在机械系统中,机械能是一个常用的能量形式,它由势能和动能组成。

本文将详细介绍机械能的概念以及能量守恒在机械系统中的应用。

一、机械能的概念机械能是指物体在机械运动过程中所具有的能量。

它包括势能和动能两部分。

1. 势能:势能是物体由于其位置、形态或静止状态而具有的能量。

常见的势能形式有重力势能、弹性势能和化学能等。

重力势能是指物体在地球表面或高度h处由于重力而具有的能量,它可以表示为Ep=mgh,其中m为物体的质量,g为重力加速度,h为物体的高度。

2. 动能:动能是物体由于其运动状态而具有的能量。

动能的大小与物体的质量和速度平方成正比,可以表示为Ek=1/2mv^2,其中m为物体的质量,v为物体的速度。

机械能可以表示为Em=Ep+Ek,即机械能等于势能与动能之和。

在一个封闭系统中,机械能始终保持不变,即Em=常数。

二、能量守恒在机械系统中的应用能量守恒定律在机械系统中有着广泛而重要的应用。

下面我们从实际案例中来具体说明。

1. 自由落体运动考虑一个光滑的斜面上放置一个小球,开始时小球处于静止状态。

当小球沿斜面滑动时,从初始位置下滑到最低点时,势能逐渐减小,而动能逐渐增加。

最低点处,小球的动能达到最大值,势能为零。

根据能量守恒定律,机械能恒定,因此小球在滑动过程中势能的减少必然等于动能的增加。

2. 弹簧振子弹簧振子是一种常见的机械振动系统。

当弹簧振子处于平衡位置时,势能最大,而动能为零。

当弹簧振子发生振动时,势能和动能不断转化。

当弹簧振子通过平衡位置时,动能达到最大值,势能为零。

根据能量守恒定律,机械能恒定,因此弹簧振子在振动过程中势能和动能之间互相转化。

3. 力学工作在力学中,做功是由力对物体的作用而引起的能量转化。

根据能量守恒定律,做功的能量转化必然满足能量守恒的要求。

例如,当我们用力推动一个物体时,我们所做的功将被转化为物体的动能,而物体的势能则保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1机械能守恒与能量守恒(一)利用机械能守恒定律求解抛体运动问题案例1、从离水平地面高为H 的A 点以速度v 0斜向上抛出一个质量为m 的石块,已知v 0与水平方向的夹角为θ,不计空气阻力,求:(1)石块所能达到的最大高度?H +h =H +gv 2sin 0θ (2)石块落地时的速度?大小为:v C =gHv 220+(二)利用机械能守恒定律解决弹力做功与弹性势能问题案例2、 如图所示,一个质量为m 的物体自高h 处自由下落,落在一个劲度系数为k 的轻质弹簧上。

求:当物体速度达到最大值v 时,弹簧对物体做的功为多少?变式训练:变式1、如图所示的弹性系统中,接触面光滑,O 为弹簧自由伸长状态。

第一次将物体从O 点拉到A 点释放,第二次将物体从O 点拉到B 点释放,物体返回到O 点时,下列说法正确的是:( )A 、弹力做功一定相同B 、到达O 点时动能期一定相同C 、物体在B 点的弹性势能大D 、系统的机械能不守恒 正确答案选C 。

(三)利用机械能守恒定律求多个物体组成系统的运动速度问题案例1、如图所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细线相连,置于高为h 的光滑水平桌面上,l >h ,A 球刚跨过桌边.若A 球、B 球相继下落着地后均不再反跳,则C 球离开桌边时的速度大小是多少? 2132123mv mgh mgh += 解得:321gh v =当B 球刚要落地时,B 、C 机械能守恒。

B 、C 有共同速度,设v 222212212212mvmgh mvmgh +=+解得:352gh v =可见:C 球离开桌边时的速度大小是352gh v =变式训练:变式1、半径为R 的光滑圆柱体固定在地面上,两质量分别是M 和m 的小球用细线连接,正好处于水平直径的两端,从此位置释放小球,当m 运动到最高点时,对球的压力恰好为零,求此时M 的速度和两小球的质量之比。

解析:对系统运用机械能守恒定律2)(2141vm M mgR R Mg+=-πM 在最高点时,Rvmmg 2=、联立解得:31-=πmM图2图1图图变式2、如图所示,一辆小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上由图中位置释放(无初速度),则小球在下摆过程中( )A .绳对小车的拉力不做功B .绳对小球的拉力做正功C .小球的合外力不做功D .绳对小球的拉力做负功正确答案:D(四)利用机械能守恒定律求解质量分布均匀的绳子、链子问题 案例3 如图3所示,在光滑水平桌面上,用手拉住长为L质量为M的铁链,使其1/3垂在桌边。

松手后,铁链从桌边滑下,求铁链末端经过桌边时运动速度是过少?322gL v =(五)利用机械能守恒定律求解连通器水流速问题案例5、粗细均匀的U 型管两端开口,左端用活塞压着液体,此时两液面的高度差为h ,液体的总长度为L ,U 型管的截面积为s ,液体的密度为ρ。

现在突然抽去活塞,(1)不计阻力影响,当两端液面相平时,液体运动的速度是多少?(2)若最终液体静止不动,则系统产生的内能是多少?变式训练:如图所示,容器A 、B 各有一个可以自由移动的活塞,活塞截面积分别为S A 、S B ,活塞下面是水,上面是空气,大气压恒为P 0,A 、B 底部与带有阀门K 的管道相连,整个装置与外界绝热原先,A 中水面比B 中高h ,打开阀门,使A 中水逐渐流向B 中,最后达平衡,在这个过程中,大气压对水做功为______,水的内能增加为______(设水的密度为ρ)解:(1)0 (2)水的内能增加=∆E BA B A 2S S S S gh21+ρ(六)利用机械能守恒定律解决圆周运动的问题案例6、如图所示,半径为r ,质量不计的圆盘与地面垂直,圆心处有一个垂直盘面的光滑水平固定轴O ,在盘的最右边缘固定一个质量为m 的小球A ,在O 点的正下方离O 点r/2处固定一个质量也为m 的小球B 。

放开盘让其自由转动,问:(1)A 球转到最低点时的线速度是多少?222121)(21BAmvmvmgr mgr +=---据圆周运动的知识可知:v A =2v B 由上述二式可求得v A =5/4gr(2)在转动过程中半径OA 向左偏离竖直方向的最大角度是多少?θθcos sin 2121mgr mgr mgr -=-解得θ=sin -153=370图16(七)用能量守恒相对滑S F Q =解相对运动问题案例7、如图所示,小车的质量为M ,后端放一质量为m 的铁块,铁块与小车之间的动摩擦系数为μ,它们一起以速度v 沿光滑地面向右运动,小车与右侧的墙壁发生碰撞且无能量损失,设小车足够长,则小车被弹回向左运动多远与铁块停止相对滑动?铁块在小车上相对于小车滑动多远的距离?命题解读:本题考查动能定理、能量守恒定律、动量守恒定律。

两个物体相互摩擦而产生的热量Q (或说系统内能的增加量)等于物体之间滑动摩擦力F f 与这两个物体间相对滑动的路程的乘积,即相对滑S F Q =。

利用这结论可以简便地解答高考试题中的“摩擦生热”问题。

分析与解:小车反弹后与物体组成一个系统满足动量守恒,规定小车反弹后的方向作向左为正方向,设共同速度为x v ,则: x v m M mv Mv )(+=-解得: v mM m M v x +-=以车为对象,摩擦力始终做负功,设小车对地的位移为S 车 则: -车222121Mv MvmgSx-=μ即:222)(2m M g vM S +μ=车系统损耗机械能为: 相fS Q E ==∆22)(21)(21xv m M v m M mgS+-+=相μgm M MvS )(22+μ=相;变式训练:变式1、如图4-4所示,质量为M ,长为L 的木板(端点为A 、B ,中点为O )在光滑水平面上以v 0的水平速度向右运动,把质量为m 、长度可忽略的小木块置于B 端(对地初速度为0),它与木板间的动摩擦因数为μ,问v 0在什么范围内才能使小木块停在O 、A 之间?解析:木块与木板相互作用过程中合外力为零,动量守恒。

设木块、木板相对静止时速度为 v , 则 (M +m )v = Mv 0能量守恒定律得:QmvMvMv ++=2220212121滑动摩擦力做功转化为内能:mgs Q μ=相对位移的范围是:Ls L ≤≤2解得v 0 的范围应是:MgLm M )(+μ≤v 0≤MgLm M )(2+μ变式2、在光滑水平面上停放着一辆质量为M 的小车,质量为m 的物体与劲度系数为k 的轻弹簧牢固连接,弹簧的另一端与小车左端连接。

将弹簧压缩x 0后用细线把物体与小车拴住,使物体静止于车上A 点,如图4所示。

物体m 与小车间的动摩擦因素为μ,O 为弹簧原长时物体右端所在位置。

然后将细线烧断,物体和小车都要开始运动。

求: (1)当物体在车上运动到距O 点多远处,小车获得的速度最大? (2)若小车的最大速度是v 1,则此过程中弹簧释放的弹性势能是多少? 解析:(1)物块m 和小车M 组成的系统动量守恒。

当物块速度最大时,小车的速度也最大。

对物块m ,速度最大时,加速度为零。

则有kx=μmg ,所以x=μmg/k 。

(2)由系统动量守恒,得Mv 1-mv 2=0,V 2=Mv 1/m由能量守恒定律可知,,弹簧释放的弹性势能转化为动能和内能,有△E p =E kM +E km +Q而Q=fs 相对=μmg(x 0-μmg/k),△Ep=Mv 12(M+m)/2m+μmg(x 0-μmg/k) (八)用能量守恒解决传送带的运动问题案例8、如图7所示,传送带与地面的倾角θ=37°,从A 端到B 端的长度为16m ,传送带以v 0=10m/s 的速度沿逆时针方向转动。

在传送带上端A 处无初速地放置一个质量为0.5kg 的物体,它与传送带之间的动摩擦因数为μ=0.5,求(1)物体从A 端运动到B 端所需的时间是多少?(2)这个过程中系统产生的内能。

(sin37°=0.6,cos37°=0.8)命题解读:该题目的关键就是要分析好各阶段物体所受摩擦力的大小和方向,若μ>0.75,第二阶段物体将和传送带相对静止一起向下匀速运动;若L <5m ,物体将一直加速运动。

因此,在解答此类题目的过程中,对这些可能出现两种结果的特殊过程都要进行判断。

分析与解:物体放在传送带上后,开始阶段,传送带的速度大于物体的速度,传送带施加给物体一沿斜面向下的滑动摩擦力,物体由静止开始加速下滑,受力分析如图(a )所示;当物体加速至与传送带速度相等时,由于μ<tanθ,物体在重力作用下将继续加速,此后物体的速度大于传送带的速度,传送带给物体沿传送带向上的滑动摩擦力,但合力沿传送带向下,物体继续加速下滑,受力分析如图(b)所示。

综上可知,滑动摩擦力的方向在获得共同速度的瞬间发生了“突变”。

图7开始阶段由牛顿第二定律 mgsinθ+μmgcosθ=ma 1 解得a 1=gsinθ+μgcosθ=10m/s 2 物体加速至与传送带速度相等时需要的时间t 1=v/a 1=1s发生的位移为s =21a 1t12=5m <16m 可知物体加速到10m/s 时仍未到达B 点第二阶段的受力分析如图(b)所示,应用牛顿第二定律 有mgsinθ-μmgcosθ=ma 2 所以a 2=2m/s 2设第二阶段物体滑动到B 端的时间为t 2 则L AB -s =v t2+21a 2t22解得t 2=1s t2′=-11s (舍去) 故物体经历的总时间t=t 1+t 2=2s (2)W 1=fs 1=μmgcos θ·s 1=10J W 2=-fs 2=-μmgcos θ·s 2= -22J 所以,W=W 1+W 2=10-22=-12J 故知系统发热产生的内能是12J 变式训练:如图12所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2m/s 的速率运行。

现把一质量m=10kg 的工件(可看为质点)轻轻放在皮带的底端,经时间t=1.9s ,工件被传送到h=1.5m 的高处,取g=10m/s 2。

求(1)工件与皮带间的动摩擦因数。

(2)电动机由于传送工件多消耗的电能。

解析:由题意可知皮带长s=h/sin30°=3m. 201t v s工件速度达到v 0前,做匀加速运动的位移为 达到v 0后做匀速运动的位移s-s 1=v 0(t-t 1) 加速运动的加速度为a=v 0/t 1=2.5m/s 2 工件受的支持力F N = mgcosθ,对工件据牛顿第二定律得:μmgcosθ-mgsinθ=ma图8解出动摩擦因数为23=μ在时间t 1内,皮带运动位移s 2=v 0t 1=1.6m 工件相对皮带的位移△s=s 2-s 1=0.8m 在时间t 1内,摩擦生热Q=μmgcosθ△s=60J 工件获得的动能E k =mv 02/2=20J 工件增加的势能E p =mgh=150J电动机多消耗的电能W=Q+E k +E p =230J[误区分析]误区一、误认为弹力对物体所做的功等于系统机械能的变化,忽视功能关系的概念。

相关文档
最新文档