(完整版)一元二次方程的解法大全,推荐文档
(完整版)一元二次方程归纳总结
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
(完整版)一元二次方程归纳总结
一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
专题:一元二次方程的八种解法(后附答案)【精品】
专题:一元二次方程的八种解法方法1 形如x2=p或(mx+n)2=p(p≥0)时,用直接开平方法求解用直接开平方法解一元二次方程的三个步骤:(1)看:看是否符合x2=p或(mx+n)2=p(p≥0)的形式;(2)化:对于不符合x2=p或(mx+n)2=p(p≥0)形式的方程先化为符合的形式;(3)求:应用平方根的意义,将一元二次方程化为两个一元一次方程求解.1.用直接开平方法解下列方程:(1)x2-25=0; (2)4x2=1;(3)81x2-25=0; (4)(2y-3)2-64=0;(5)3(x+1)2=13; (6)(3x+2)2=25;(7)(x+1)2-4=0; (8)(2-x)2-9=0.方法2 当二次项系数为1,且一次项系数为偶数时,用配方法求解用配方法解一元二次方程的“五步法”(1)移项:使方程的左边为二次项和一次项,右边为常数项.(2)化1:当方程的二次项系数不为1时,在方程的两边同除以二次项系数,把二次项系数化为1.(3)配方:在方程的两边同时加上一次项系数一半的平方,把原方程化成(x+n)2=p的形式.(4)开方:若p≥0,则两边直接开平方得到一元一次方程;若p<0,则原方程无解.(5)求解:解所得到的一元一次方程,求出原方程的解.2.用配方法解下列方程:(1)x2-2x-2=0; (2)x2-10x+29=0;(3)x2+2x=2; (4)x2-6x+1=2x-15;3.用配方法解下列方程:(1)3x 2+6x -5=0; (2)12x 2-6x -7=0.(3)x 2+16x -13=0; (4)2x 2-3x -6=0;方法3 能化成形如(x+a )(x+b )=0时,用因式分解法求解用因式分解法解一元二次方程的“四步法”(“右化零,左分解,两因式,各求解”)4.用因式分解法解下列方程:(1)x 2-8x =0; (2)5x 2+20x +20=0;。
解一元二次方程及不等式的解法
适用能因式分解的方程解一元二次方程 解法一元二次方程:因式分解法;公式法1、因式分解法移项:使方程右边为0因式分解:将方程左边因式分解;方法:一提,二套,三十字,四分组 由A?B=0,则A=0或B=0,解两个一元一次方程2、公式法将方程化为一般式写出a 、b 、c求出ac b 42-,若<0,则无实数解若>0,则代入公式求解解下列方程:1、)4(5)4(2+=+x x2、x x 4)1(2=+3、22)21()3(x x -=+4、31022=-x x5、(x+5)2=166、2(2x -1)-x (1-2x )=07、x 2=648、5x 2-52=09、8(3-x )2–72=0 10、3x(x+2)=5(x+2)11、(1-3y )2+2(3y -1)=012、x 2+2x+3=013、x 2+6x -5=014、x 2-4x+3=015、x 2-2x -1=016、2x 2+3x+1=017、3x 2+2x -1=018、5x 2-3x+2=019、7x 2-4x -3=020、-x 2-x+12=021、x 2-6x+9=022、22(32)(23)x x -=-23、x 2-2x-4=024、x 2-3=4x25、3x 2+8x -3=026、(3x +2)(x +3)=x +1427、(x+1)(x+8)=-1228、2(x -3)2=x 2-929、-3x 2+22x -24=030、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=032、3(x-5)2=x(5-x)33、(x +2)2=8x 34、(x -2)2=(2x +3)235、2720x x +=36、24410t t -+=37、()()24330x x x -+-=38、2631350x x -+=39、()2231210x --=40、2223650x x -+=41、()()2116x x ---=42、()()323212x x -+=44、22510x x +-=45、46、21302x x ++=、 二.利用因式分解法解下列方程(x -2)2=(2x-3)2042=-x x 3(1)33x x x +=+x 2-23x+3=0()()0165852=+---x x 三.利用开平方法解下列方程51)12(212=-y 4(x-3)2=2524)23(2=+x四. 利用配方法解下列方程7x=4x 2+201072=+-x x五. 利用公式法解下列方程-3x 2+22x -24=02x (x -3)=x -3.3x2+5(2x+1)=0 六. 选用适当的方法解下列方程(x +1)2-3(x +1)+2=022(21)9(3)x x +=-2230x x --= 2)2)(113(=--x x x (x +1)-5x =0.3x (x -3)=2(x -1)(x +1).一元二次不等式及其解法知识点一:一元二次不等式的定义(标准式)任意的一元二次不等式,总可以化为一般形式:或. 知识点二:一般的一元二次不等式的解法一元二次不等式或的解集可以联系二次函数的图象,图象在轴上方部分对应的横坐标值的集合为不等式的解集,图象在轴下方部分对应的横坐标值的集合为不等式的解集.设一元二次方程的两根为且,,则相应的不等式的解集的各种情况如下表:二次函数()的图象039922=--x x有两相异实根有两相等实根无实根知识点三:解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数;(2)写出相应的方程,计算判别式:①时,求出两根,且(注意灵活运用因式分解和配方法);②时,求根;③时,方程无解(3)根据不等式,写出解集.规律方法指导1.解一元二次不等式首先要看二次项系数a是否为正;若为负,则将其变为正数;2.若相应方程有实数根,求根时注意灵活运用因式分解和配方法;3.写不等式的解集时首先应判断两根的大小,若不能判断两根的大小应分类讨论;4.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系;5.若所给不等式最高项系数含有字母,还需要讨论最高项的系数例1.解下列一元二次不等式(1);(2);(3)(1)解:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.(1)练习:解下列不等式(2) ; ;02732<+-x x ;0262≤+--x x ;01442<++x x ;0532>+-x x062=--x x 01522=--x x ;01662=++x x ;08232≥+--x x ;0542≥+-x x ;31≥-x x ;。
一元二次方程及其解法
一元二次方程及其解法一元二次方程是数学中常见的一类方程,形式为ax^2 + bx + c = 0,其中a、b、c是已知常数,且a ≠ 0。
解一元二次方程的方法有多种,包括因式分解法、配方法、公式法和完成平方法等。
本文将逐一介绍这些解法,并通过例子加深理解。
一、因式分解法当一元二次方程可以因式分解时,可以利用因式分解的形式将方程解出。
具体步骤如下:1. 将方程ax^2 + bx + c = 0进行因式分解,得到(ax + m)(x + n) = 0的形式;2. 根据分解得到的(x + m)(x + n) = 0,可得到两个线性方程x + m = 0和x + n = 0;3. 解两个线性方程,即可得到方程的解x = -m和x = -n。
例如,解方程2x^2 + 5x + 3 = 0:1. 将方程因式分解为(2x + 1)(x + 3) = 0;2. 得到两个线性方程2x + 1 = 0和x + 3 = 0;3. 解得x = -1/2和x = -3。
二、配方法当一元二次方程无法直接因式分解时,可以利用配方法将其转化为可因式分解的形式。
具体步骤如下:1. 对方程ax^2 + bx + c = 0,将b项的系数b拆分成两个数p和q,使得p + q = b且pq = ac;2. 将方程重写为ax^2 + px + qx + c = 0,并进行合并得到ax^2 +(p+q)x + c = 0;3. 将方程的前两项进行因式分解,并重写为a[x^2 + (p+q)x] + c = 0;4. 提取公因式,得到a[x(x + (p+q))] + c = 0;5. 将方程重新整理为a(x + p)(x + q) = 0的形式;6. 根据分解得到的(x + p)(x + q) = 0,可得到两个线性方程x + p = 0和x + q = 0;7. 解两个线性方程,即可得到方程的解x = -p和x = -q。
例如,解方程2x^2 + 7x + 3 = 0:1. 将方程配成2x^2 + 6x + x + 3 = 0;2. 可以选择p = 3和q = 1,满足p + q = 7且pq = 6;3. 将方程重写为2x(x + 3) + (x + 3) = 0,并合并得到2x(x + 3) + (x +3) = 0;4. 提取公因式,得到(x + 3)(2x + 1) = 0;5. 因式分解后得到(x + 3)(2x + 1) = 0;6. 得到两个线性方程x + 3 = 0和2x + 1 = 0;7. 解两个线性方程,即可得到方程的解x = -3和x = -1/2。
(完整版)一元二次方程的解法大全
一元二次方程的解法大全【直接开平方法解一元二次方程】=0(a≠0),把方程ax2+c例:用直接开平方法解方程:1.9x2-25=0;;2.(3x+2)2-4=04.(2x+3)2=3(4x+3).解:1.9x2-25=0259x2=2.(3x+2)2-4=0(3x+2)2=43x+2=±22±23x=-4.(2x+3)2=3(4x+3)4x2+12x+9=12x+94x2=0∴x1=x=0.【配方法解一元二次方程】将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除+以二次项系数,使二次项系数为1,如x21.x2-4x-3=0; 2.6x2+x=35;3.4x2+4x+1=7; 4.2x2-3x-3=0.解:1.x2-4x-3=0x2-4x=3x2-4x+4=3+47(x-2)2=3.4x2+4x+1=7一元二次方程ax2+bx+c=0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c 的值代入两根公式中直接解出,所以把这种方法=0(a≠0)的求根公式。
例:用公式法解一元二次方程:2.2x2+7x-4=0;.4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x)2.2x2+7x-4=0∵a=2,b=7,c=-4.81b2-4ac=72-4×2×(-4)=49+32=4.x2-a(3x-2a+b)-b2=0(a-2b≥0)x2-3ax+2a2-ab-b2=0∵a=1,b=-3a,c=2a2-ab-b2b2-4ac=(-3a)2-4×1×(2a2+ab-b2)=9a2-8a2-4ab+4b2=a2-4ab+4b2=(a-2b)22b≥0)时,得当(a-【不完全的一元二次方程的解法】在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:例:解下列一元二次方法:.3.(m2+1)x2=0;其中m2+1>0,x2=0.∴ x1=x2=0.4.16x2-25=06x2=25。
-一元二次方程的解法(全)
2
此方程无解。
方程
ax c 0 a 0 一定有解吗?
2
2
c a0 x a ;
1当
c a
0时,方程的根是 x ;
c a
2当
c a
0时,原方程无实数根。
2 2
提问:下列方程有解吗?
(1) x 4 3; (2) 3x 1 3;
2
可见,上面的 2 x 4 实际 上就是求4的平 方根。
x 4 x 2 x1 2 ; x2 2
以上解某些一元二次方程的方法叫 做直接开平方法。
初试锋芒
用直接开平方法解下列方程:
(1) y 121 0 ;
2
将方程化成
(2) x 2 0 (3)
2
x b
2
(b≥0)的形 式,再求解
归纳 小结
用直接开平方法可解下列类型 的一元二次方程:
x b b 0 或
2
x a
2
b b 0 .
根据平方根的定义,要特别注意: 由于负数没有平方根, 所以,当b<0时,原方程无解。
(第2课时)
知识回顾
用直接开平方法可解下列类型的一元二次方程:
x b b 0 或
共同回顾:一元二次方程
只含有一个未知数,并且未知数的最 高次数是2的整式方程叫做一元二次方程。
一元二次方程的解法合辑
一元二次方程的解法合辑【初中数学】一元二次方程的解法合辑_高校资讯_资讯_中招网_中招考生服务平台_非官方报名平台1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3) 能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程的解法
一元二次方程的解法一、定义及一般形式1.1 一元二次方程:含有一个未知数,未知数的最高次数为2的方程。
1.2 一般形式:ax^2 + bx + c = 0(a、b、c为常数,且a≠0)二、解一元二次方程的常用方法2.1 因式分解法2.1.1 提取公因式法2.1.2 十字相乘法2.1.3 公式法(完全平方公式、平方差公式)2.2 公式法2.2.1 求根公式:x = (-b ± √(b^2 - 4ac)) / (2a)2.2.2 判别式:Δ = b^2 - 4ac2.2.3 根与系数的关系:•两根之和:x1 + x2 = -b/a•两根之积:x1 * x2 = c/a2.3 图像法2.3.1 抛物线的开口方向与a的符号有关:a > 0,开口向上;a < 0,开口向下。
2.3.2 抛物线与x轴的交点即为方程的解。
三、特殊类型的一元二次方程3.1 含绝对值的一元二次方程3.2 含平方根的一元二次方程3.3 含分式的一元二次方程四、一元二次方程的应用4.1 实际问题与一元二次方程4.2 几何问题与一元二次方程4.3 函数问题与一元二次方程五、练习与提高5.1 巩固题型:基本的一元二次方程求解。
5.2 提高题型:复杂的一元二次方程求解,如含绝对值、平方根、分式的方程。
5.3 综合题型:结合实际问题、几何问题、函数问题等,运用一元二次方程解决实际问题。
习题及方法:1.习题:解方程 x^2 - 5x + 6 = 0。
答案:x1 = 2,x2 = 3。
解题思路:利用因式分解法,将方程左边进行因式分解,得到 (x -2)(x - 3) = 0,从而得到两个一元一次方程 x - 2 = 0 和 x - 3 = 0,解得 x1 = 2,x2 = 3。
2.习题:解方程 2x^2 - 9x + 12 = 0。
答案:x1 = 2/3,x2 = 6。
解题思路:利用因式分解法,将方程左边进行因式分解,得到 (2x -3)(x - 4) = 0,从而得到两个一元一次方程 2x - 3 = 0 和 x - 4 = 0,解得 x1 = 2/3,x2 = 6。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
一元二次方程全部解法
一元二次方程全部解法一元二次方程是高中数学中常见的一个概念,它由形如ax^2+bx+c=0的方程组成,其中a、b、c为已知常数,x为未知数。
解一元二次方程的方法有多种,包括公式法、配方法、因式分解法等。
本文将以一元二次方程的全部解法为题,详细介绍这些解法的原理和步骤。
一、公式法解一元二次方程公式法是解一元二次方程最常用的方法之一。
对于方程ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数,可以使用以下公式求解:x=(-b±√(b^2-4ac))/(2a)该公式中的±表示两个解,分别对应方程的两个根。
当b^2-4ac大于0时,方程有两个不相等的实数根;当b^2-4ac等于0时,方程有两个相等的实数根;当b^2-4ac小于0时,方程没有实数根,但可以有两个共轭复数根。
解一元二次方程的步骤如下:1. 根据方程的系数a、b、c,计算出b^2-4ac的值;2. 判断b^2-4ac的正负情况,确定方程的解的性质;3. 使用上述公式计算方程的解。
二、配方法解一元二次方程配方法也是解一元二次方程常用的方法之一。
对于方程ax^2+bx+c=0,其中a、b、c为已知常数,x为未知数,可以通过配方法将方程转化为完全平方的形式,从而求解方程。
配方法的步骤如下:1. 将方程的常数项c拆分成两个数的乘积,使得这两个数的和等于方程的一次项系数b;2. 将方程的二次项系数a移到方程的一边,并在另一边配方;3. 将配方后的表达式转化为完全平方;4. 对方程两边同时开根号,得到方程的解。
三、因式分解法解一元二次方程对于一些特殊的一元二次方程,可以通过因式分解的方法来求解。
这种方法适用于方程的二次项系数为1的情况。
因式分解法的步骤如下:1. 将方程移项,使方程等于0;2. 将方程分解为两个一次因式的乘积;3. 令每个一次因式等于0,解出方程的根。
四、其他方法解一元二次方程除了公式法、配方法和因式分解法外,还有一些其他的方法可以用来解一元二次方程。
(完整版)含参一元二次方程解法
(完整版)含参一元二次方程解法完整版一元二次方程解法
一元二次方程是具有形如ax^2 + bx + c = 0的方程,其中a、b 和c是已知的实数且a不等于0。
解一元二次方程的常用方法是使用公式法和因式分解法。
公式法解一元二次方程需要使用二次方程公式:
x = (-b ± √(b^2 - 4ac)) / 2a
步骤如下:
1. 将方程的系数代入公式中的a、b和c。
2. 计算(b^2 - 4ac)的值。
3. 如果(b^2 - 4ac)大于等于0,则继续计算。
4. 计算√(b^2 - 4ac)。
5. 根据二次方程公式得到方程的两个解,即x = (-b ± √(b^2 - 4ac)) / 2a。
因式分解法是将二次方程写成两个一次因式相乘的形式进行解法。
具体步骤如下:
1. 将方程移到一边,使方程右边为0。
2. 将二次项和一次项分别提取出来,得到形如(x + p)(x + q) = 0
的方程。
3. 使用因式分解的方法得到两个括号中的参数p和q。
4. 将(x + p)(x + q) = 0转化为两个一次方程x + p = 0和x + q = 0。
5. 解两个一次方程,得到方程的解。
在解一元二次方程时,需要注意以下几点:
1. 当(b^2 - 4ac)大于0时,方程有两个不相等的实数解。
2. 当(b^2 - 4ac)等于0时,方程有两个相等的实数解。
3. 当(b^2 - 4ac)小于0时,方程没有实数解,只有复数解。
以上是一元二次方程解法的完整版,希望能对您有所帮助!。
(完整版)一元二次方程的解法总结,推荐文档
一元二次方程的解法(直接开平方法、配方法、公式法和分解法)一元二次方程定义:只含有一个未知数,并且未知数的最高次数为2的整式方程叫做一元二次方程。
一般形式:ax²+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。
顶点式:y=a(x-h)²+k(a≠0,a、h、k为常数)交点式:y=a(x-x₁)(x-x₂) (a≠0)[有交点A(x₁,0)和B(x₂,0)的抛物线,即b²-4ac≥0] .直接开平方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)²=n(n≥0)的方程,其解为x=m±配方法 :1.将此一元二次方程化为ax²+bx+c=0的形式(此一元二次方程满足有实根) 2.将二次项系数化为1 3.将常数项移到等号右侧 4.等号左右两边同时加上一次项系数一半的平方 5.将等号左边的代数式写成完全平方形式 6.左右同时开平方 7.整理即可得到原方程的根公式法:1.化方程为一般式:ax²+bx+c=0 (a≠0)2.确定判别式,计算Δ(=b²-4ac);3.若Δ>0,该方程在实数域内有两个不相等的实数根:x=若Δ=0,该方程在实数域内有两个相等的实数根:x₁=x₂=若Δ<0,该方程在实数域内无实数根因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
用因式分解法解一元二次方程的步骤1.将方程右边化为0;2.将方程左边分解为两个一次式的积;3.令这两个一次式分别为0,得到两个一元一次方程;4.解这两个一元一次方程,它们的解就是原方程的解.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax²+bx+c(a≠0)。
一元二次方程解法(全)
x 4x 1
2
移项
x 4x 2 1 2
2 2
两边加上22,使左边配 成完全平方式
2
左边写成完全平方的形式
变成了(x+h)2=k 的 形式
( x 2) 5
2
开平方
x2 5
得 : x1 2 5, x2 2 5
把一元二次方程的左边配成一个 完全平方式,然后用直接开平方法求 解,这种解一元二次方程的方法叫做 配方法.
解:原方程可变形为
(x+3)(x-3)=0 X+3=0 或 x-3=0 ∴ x1=-3 ,x2=3
X2-9= (x+3)(x-3)
AB=0A=0或B=0
9 x 25 0
2
解法一 (直接开平方法):
5 x , 3 5 5 即x1 , x 2 . 3 3
2 9x -25=0
运用直接开平方法解形如 ax c 0 (a≠0)的一元二次方程的解法: 2 移项ax c
2
c 二次项系数化为 x a
2
c c 当ac<0时 , x1 , x2 a a
当ac>0时 ,此方程无实数解
2
2
它们之间有什么关系?
x
2
p 2 p ( ) 2 px ____ ( x ____) 2 2
2
对于x +px,再添上一次项系数一 半的平方,就能配出一个含未知数的 一次式的完全平方式. 体现了从特殊到一般的数学思想方法
体 现 了 转 化 的 数 学 思 想
x 4x 1 0
( 5)
3 x 12 x 12 __ 3 x 2 _
(完整版)一元二次方程知识点总结和例题——复习,推荐文档
配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项 系数为 1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使 左边配成一个完全平方式;变形为(x+p)2=q 的形式,如果 q≥0,方程的根是 x=-p±√q;如果 q<0,方程无实根. (3)公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一 般方法。
一个一元二次方程经过整理化成 ax2+bx+c=0(a≠0)后,其中 ax2 是二次项,
程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两 根之积等于常数项除以二次项系数所得的商。
a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。
7.分式方程
分母里含有未知数的方程叫做分式方程。
c a
。
温馨提示:利用根与系数的关系解题时,一元二次方程必须有实数根。
例题:
1、关于 x 的一元二次方程 x2 kx 4k 2 3 0 的两个实数根分别是 x1, x2 ,
且满足 x1 x2 x1x2 ,则 k 的值为:
()
(A) 1或 3 4
(B) 1
3
(C)
4
(D)不存在
2、已知 , 是关于 x 的一元二次方程 x2 2m 3x m2 0 的两个不相
12、当 x =
时,代数式 x2 3x 比代数式 2x2 x 1的值大 2 .
13、某商品原价每件 25 元,在圣诞节期间连续两次降价,现在商品每件 16
A.2 B.3 C.-2 或 3 D.2 或-3
建议收藏下载本文,以便随时学习! 一元二次方程综合复习
10、若(m+1) xm(m2)1 +2mx-1=0 是关于 x 的一元二次方程,则 m 的值是
一元二次方程的解法
一元二次方程的解法一元二次方程是代数学中非常重要的一种方程形式,它的一般形式是ax^2 + bx + c = 0,其中a、b、c为实数且a ≠ 0。
解一元二次方程主要有四种方法:因式分解法、配方法、求根公式法和完成平方法。
本文将详细介绍这四种解法,并给出解题示例。
一、因式分解法当一元二次方程可以因式分解时,我们可以利用因式分解法求解。
即将方程两边进行因式分解,使得等式左右两边之积等于零,从而得到方程的解。
例如,我们有一个一元二次方程x^2 + 5x + 6 = 0。
通过因式分解,我们可以将该方程转化为(x + 2)(x + 3) = 0。
由于两个因式的乘积等于零,所以可以得到x + 2 = 0或x + 3 = 0。
进一步求解可得x = -2或x = -3,这就是方程的解。
二、配方法有些一元二次方程无法直接进行因式分解,此时可以利用配方法将方程转化为可进行因式分解的形式。
配方法的具体步骤如下:1. 将方程的常数项c进行负号提取:ax^2 + bx - c = 0;2. 将方程中的b项进行二次项的一半的平方操作,得到(b/2)^2,然后加减到方程的两边;3. 将方程进行因式分解。
例如,我们有一个一元二次方程2x^2 + 5x - 3 = 0。
按照配方法进行求解:1. 提取常数项的负号,得到2x^2 + 5x + 3 = 0;2. 二次项的一半是5/2,其平方是(5/2)^2 = 6.25。
加减到方程两边得到2x^2 + 5x + 6.25 - 6.25 + 3 = 0;3. 将方程进行因式分解,得到(2x + 3.5)^2 - 2.25 = 0。
再进行开方,得到2x + 3.5 = ±√2.25。
最后解得x = -3.5 ± √2.25的解。
三、求根公式法求根公式法也是一元二次方程解法的一种常用方法,它是利用一元二次方程的根与方程系数之间的关系来求解方程。
根据求根公式,一元二次方程ax^2 + bx + c = 0的根可以表示为:x = (-b ± √(b^2 - 4ac)) / (2a)例如,我们有一个一元二次方程x^2 - 4x + 3 = 0。
一元二次方程解题技巧与方法
一元二次方程解题技巧与方法一、直接开平方法。
1. 解方程(x - 3)^2=16- 解析:- 对于方程(x - 3)^2=16,根据直接开平方法,可得x - 3=±4。
- 当x - 3 = 4时,解得x=4 + 3=7。
- 当x - 3=-4时,解得x=-4 + 3=-1。
- 所以方程的解为x_1=7,x_2=-1。
2. 解方程2(x + 1)^2-8 = 0- 解析:- 首先对原方程进行化简,2(x + 1)^2=8,则(x + 1)^2=4。
- 然后根据直接开平方法,x+1=±2。
- 当x + 1 = 2时,x=2 - 1=1。
- 当x + 1=-2时,x=-2 - 1=-3。
- 所以方程的解为x_1=1,x_2=-3。
二、配方法。
3. 解方程x^2+6x - 7 = 0- 解析:- 对于方程x^2+6x - 7 = 0,首先进行配方。
- 在x^2+6x中加上一次项系数一半的平方,即((6)/(2))^2=9。
- 原方程变形为x^2+6x + 9-9 - 7 = 0,即(x + 3)^2-16 = 0。
- 移项得(x + 3)^2=16。
- 根据直接开平方法,x + 3=±4。
- 当x+3 = 4时,x = 1;当x + 3=-4时,x=-7。
- 所以方程的解为x_1=1,x_2=-7。
4. 解方程2x^2-5x+2 = 0- 解析:- 先将二次项系数化为1,方程两边同时除以2,得到x^2-(5)/(2)x + 1 = 0。
- 配方:x^2-(5)/(2)x+((5)/(4))^2-((5)/(4))^2+1 = 0。
- 即(x-(5)/(4))^2-(25)/(16)+1 = 0,(x-(5)/(4))^2=(9)/(16)。
- 根据直接开平方法,x-(5)/(4)=±(3)/(4)。
- 当x-(5)/(4)=(3)/(4)时,x = 2;当x-(5)/(4)=-(3)/(4)时,x=(1)/(2)。
一元二次方程的解法
一元二次方程的解法方法一:因式分解利用因式分解的方法解一元二次方程的一般步骤如下:Step 1:将方程化为一般形式ax^2+bx+c=0。
Step 2:观察方程是否可以因式分解,即是否存在两个数m和n,使得a(x-m)(x-n)=0。
Step 3:根据展开合并得到的方程,将系数与一般形式进行对比,进而确定m和n的值。
Step 4:根据得到的m和n的值,列出两个因式为零的方程,解方程得到x的值。
方法二:配方法配方法是利用一定的代数运算将方程变换成平方的形式,从而求得方程的解。
它的一般步骤如下:Step 1:将方程化为一般形式ax^2+bx+c=0。
Step 2:观察方程的形式,判断是否可以通过变量的替换来将方程变为平方的形式。
Step 3:根据变量的替换,将方程转化为平方的形式。
Step 4:将平方的方程进行求解,得到平方变量的解。
方法三:求根公式求根公式是解一元二次方程的一种常用方法,它可以通过一次运算直接求得一元二次方程的根。
求根公式的一般形式如下:x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}其中,a、b、c为方程ax^2+bx+c=0的系数,±表示两种可能的根。
求根公式的步骤如下:Step 1:将方程化为一般形式ax^2+bx+c=0。
Step 2:根据求根公式,将a、b、c的值代入公式中。
Step 3:计算公式中的各个项的值。
Step 4:根据计算结果,得到方程的根。
需要注意的是,根的数量和性质与判别式Δ=b^2-4ac的值有关。
若Δ>0,则方程有两个不相等的实根;若Δ=0,则方程有两个相等的实根;若Δ<0,则方程没有实根,但有两个共轭的复根。
总结:通过因式分解、配方法和求根公式等不同的解法,我们可以解一元二次方程。
不同的解法适用于不同的方程形式和求解要求,但它们都可以帮助我们求得一元二次方程的解。
选择合适的解法,可以使求解过程更加简便和高效。
在实际问题中,我们可以根据具体情况选择最适合的解法来解决一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法大全【直接开平方法解一元二次方程】
把方程ax2+c=0(a≠0),
这解一元二次方程的方法叫做直接开平方法。
例:用直接开平方法解方程:
1.9x2-25=0;
2.(3x+2)2-4=0;
4.(2x+3)2=3(4x+3).
解:1.9x2-25=0
9x2=25
2.(3x+2)2-4=0
(3x+2)2=4
3x+2=±2
3x=-2±2
∴x1=x2=3.
4.(2x+3)2=3(4x+3)
4x2+12x+9=12x+9
4x2=0
∴x1=x=0.
【配方法解一元二次方程】
将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如x2+
例:用配方法解下列方程:
1.x2-4x-3=0; 2.6x2+x=35;
3.4x2+4x+1=7; 4.2x2-3x-3=0.
解:1.x2-4x-3=0
x2-4x=3
x2-4x+4=3+4
(x-2)2=7
2.6x2+x=35
3.4x2+4x+1=7
4.2x2-3x-3=0
【公式法解一元二次方程】
一元二次方程ax2+bx+c=0(a
广泛的代换意义,只要是有实数根的一元二次方程,均可将a,b,c的值代入两根公式中直接解出,所以把这种方法
=0(a≠0)的求根公式。
例:用公式法解一元二次方程:
2.2x2+7x-4=0;
4.x2-a(3x-2a+b)-b2=0(a-2b≥0,求x).
2.2x2+7x-4=0
∵a=2,b=7,c=-4.
b2-4ac=72-4×2×(-4)=49+32=81
4.x2-a(3x-2a+b)-b2=0(a-2b≥0)
x2-3ax+2a2-ab-b2=0
∵a=1,b=-3a,c=2a2-ab-b2
b2-4ac=(-3a)2-4×1×(2a2+ab-b2)
=9a2-8a2-4ab+4b2
=a2-4ab+4b2
=(a-2b)2
当(a-2b≥0)时,得
【不完全的一元二次方程的解法】
在不完全的一元二次方程中,一次项与常数至少缺一项。
即b与c至少一个等于零,这类项方程从形式与解法上比一般一元二次方程要简单,因此要研究这类方程最简捷的解法,从规律上看有两种方法:一是因式分解,二是直接开平方法:
例:解下列一元二次方法:
3.(m2+1)x2=0; 4.16x2-25=0.
3.(m2+1)x2=0;其中m2+1>0,
x2=0.
∴ x1=x2=0.4.16x2-25=0
6x2=25。