原子物理学 褚圣麟 第二章习题解答

合集下载

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答薛家盈编信阳师范学院应用物理学班第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9)米 4πε K 0 α 式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学习题答案褚圣麟很详细

原子物理学习题答案褚圣麟很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理学习题答案(褚圣麟)很详细

原子物理学习题答案(褚圣麟)很详细

1.原子的基本状况1.1解:根据卢瑟福散射公式: 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米 1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.7能量为3.5兆电子伏特的细α粒子束射到单位面积上质量为22/1005.1米公斤-⨯的银箔上,α粒解:设靶厚度为't 。

非垂直入射时引起α粒子在靶物质中通过的距离不再是靶物质的厚度't ,而是ο60sin /'t t =,如图1-1所示。

因为散射到θ与θθd +之间Ωd 立体角内的粒子数dn 与总入射粒子数n 的比为:dnNtd nσ= (1) 而σd 为:2sin )()41(422220θπεσΩ=d Mvze d (2)把(2)式代入(1)式,得:2sin )()41(422220θπεΩ=d Mvze Nt n dn (3)式中立体角元0'0'220,3/260sin /,/====Ωθt t t L ds dN 为原子密度。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

原子物理学习题解答刘富义编临沂师范学院物理系理论物理教研室第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭C '放射的,其动能为 7.68 ⨯106 电子伏特。

散射物质是原子序数 Z = 79 的金箔。

试问散射角θ = 150ο所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:M v 2θ K αc o t = 4 π ε 0b = 4 π ε 0b2 Z e 2Z e 22得到:Z e 2ct g θ 7 9 ⨯ (1 .6 0 ⨯ 1 01 9 ) 2 ct g 1 5 0ο- 1 5 b = 2 2= = 3 .9 7 ⨯ 1 0 ( 4π ⨯ 8 .8 5 ⨯ 1 0 - 1 2 ) ⨯ (7 .6 8 ⨯ 1 06 ⨯ 1 0- 1 9) 米 4πε K 0 α式中 K =1 Mv 2是α 粒子的功能。

α 21.2 已知散射角为θ 的α粒子与散射核的最短距离为2 Z e 21 1 r m = (4 π ε)( 1 + ) ,试问上题α粒子与散射的金原子核M v 2 s i nθ2之间的最短距离r m 多大?解:将 1.1 题中各量代入r m 的表达式,得:1 2 Z e 21 = (1 + r m i n( 4π ε Mv 2 ) ) s i n θ0 2 - 1 9 24 ⨯ 79 ⨯ (1 .6 0 ⨯ 1 0 ) 1 = 9 ⨯ 1 0 9⨯⨯ (1 + ) 7 .6 8 ⨯ 1 0 6 ⨯ 1 .6 0 ⨯ 1 0 - 1 9sin 7 5ο = 3 .0 2 ⨯ 1 0 - 1 4 米1.3 若用动能为 1 兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个 +e 电荷而质量是质子的 两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

原子物理学习题标准答案(褚圣麟)很详细

原子物理学习题标准答案(褚圣麟)很详细
E
hcRH(12
12)
其中hcRH13.6电子伏特
1
n
E1
13.6
(1
1) 10.2
电子伏特
22
E2
13.6
(1
12) 12.1
电子伏特
3
E3
13.6
(1
12)
12.8
电子伏特
4
其中E1和E2小于12.5电子伏特,E3大于12.5电子伏特。可见,具有
12.5电子伏特能量的
电子不足以把基态氢原子激发到n4的能级上去,所以只能出现n3的能级间的跃迁。
A,漫线系第一条的波长为
8193A,
基线系第一条的波长为
18459A,主线系的系限波长为
2413
A。试求



4F

3S
3P
3D
谱项的项值。
解:将上述波长依次记为
p max,d max,f max,p,
即p max5893 A,d max8193 A,f max18459 A,p2413 A
容易看出:
(1.60
10
19)2
1.14 1013

106
1.60
10
19
由上式看出:rmin与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核
代替质子时,其与靶核的作用的最小距离仍为
1.14 1013米。
1/14
1.7能量为3.5兆电子伏特的细粒子束射到单位面积上质量为1.05 102公斤/米2的银
箔上,粒
解:设靶厚度为t'。非垂直入射时引起粒子在靶物质中通过的距离不再是靶物质的
厚度t',而是t

原子物理学 褚圣麟 第二章

原子物理学 褚圣麟 第二章

~ RZ 2 ( 1 1 ) v 2 2 n n
2
当 Z=1 时即为里德伯方程。试验中 R 的经 验值为
RH 109677.58cm1
比较 R 与 RH ,我们发现两者符合的很好, 但仍存在微小的差别。
back next 目录 结束
几个问题
#系限之外还有连续变化的谱线
我们已经知道,所有的光谱线分为一系列线 系,每个线系的谱线都从最大波长到最小波 长(系线);可是试验中观察到在系限之外 还有连续变化的谱线。这是怎么回事呢? 如果定义距核无穷远处的势能为0,那么位 于r=∞处的电子势能为0,但可具有任意的 动能 1
back next

hc
目录
结束
#能级与光谱项之间的关系
我们曾经定义光谱项
RH Tn 2 , n
前面已由
波尔理论得出 :

1 1 v R 2 '2 n n
'
~ '
T (n) T (n )
'
考虑到
hv En En
En En v hc hc
back next 目录 结束
back next 目录 结束
光谱的观测
光谱发出的光谱线可通过光谱议进行观测和
记录,它既可把λ 射线按不同波长展开分析,
记录不同光谱线的波长(λ )和强度(I)。
光源:一切能发出电磁辐射的物体。
back
next
目录
结束
四、光谱的分类
不同的光源有不同的光谱,发出机制也不 尽相同,根据波长的变化情况,大致可分为三 类: 线光谱:波长不连续变化,此种为原子光谱; 带光谱:波长在各区域内连续变化,此为分子光谱; 连续谱:固体的高温辐射。

原子物理学习题答案(褚圣麟)

原子物理学习题答案(褚圣麟)

1.原子的基本状况1.1解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε== 得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米 式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min04pZe r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

1.4 钋放射的一种α粒子的速度为71.59710⨯米/秒,正面垂直入射于厚度为710-米、密度为41.93210⨯3/公斤米的金箔。

试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。

原子物理褚圣麟课后习题答案和解析

原子物理褚圣麟课后习题答案和解析

原子物理学习题第一章作业教材 20页 3题:若用动能为 1 MeV 的质子射向金箔,问质子和金箔原子核(Z=79)可以达到的最小距离多大?又问如用同样能量的氕核代替质子,最小距离为多大?解:r m =Z 1*Z 2*e 2/4*π*ε0*E = …… = 1.14 ⨯ 10-13 m氕核情况结论相同-----------------------------------------------------------------------------------------------21页 4题:α粒子的速度为 1.597 ⨯ 107 m/s ,正面垂直入射于厚度为 10-7米、密度为1.932 ⨯104 kg/m 3 的金箔。

试求所有散射在 θ ≥ 90︒ 的α粒子占全部入射粒子的百分比。

金的原子量为197。

解:金原子质量 M Au = 197 ⨯ 1.66 ⨯ 10-27 kg = 3.27 ⨯ 10-25 kg箔中金原子密度 N = ρ/M Au = …… = 5.91 ⨯ 1028 个/m 3入射粒子能量 E = 1/2 MV 2 = 1/2 ⨯ 4 ⨯ 1.66 ⨯ 10-27 kg ⨯ (1.597 ⨯ 107 m/s)2 = 8.47 ⨯ 10-13 J若做相对论修正 E = E 0/(1-V 2/C 2)1/2 = 8.50 ⨯ 10-13 J对心碰撞最短距离 a=Z 1⨯Z 2⨯e 2/4⨯π⨯ε0⨯E = …. = 4.28 ⨯ 10-14 m 百分比d n/n(90︒→180︒)=⎪⎭⎫ ⎝⎛︒-︒⨯90sin 145sin 14222Nta π= … = 8.50 ⨯ 10-4%-----------------------------------------------------------------------------------------------------------21页7题:3.5 MeV α粒子细束射到质量厚度为 0.01 kg/m2 的银箔上(图1-1)。

《原子物理学》(褚圣麟)第二章 原子的能级和辐射

《原子物理学》(褚圣麟)第二章  原子的能级和辐射

第2章 原子的能级和辐射 十九世纪中期,物理学理论在当时看来已经发展到了相当完善的阶段,那 时,一般的物理现象都可以用相应的理论加以解释。物体的宏观机械运动,准 确地遵从牛顿力学规律;电磁现象被总结为麦克斯韦方程;热现象有完整的热 力学及统计物理学;……;物理学的上空可谓晴空万里,在这种情况下,有许 多人认为物理学的基本规律已完全被揭示,剩下的工作只是把已有的规律应用 到各种具体的问题上,进行一些计算而已。 到了十九世纪末期,物理学晴朗的天空出现了几朵令人不安的“乌云”, 在物理学中出现了一系列令人费解的实验现象。物理学遇到了严重的困难,其 中两朵最黑的云分别是:麦克尔逊--莫雷实验和黑体辐射实验;前者导致了相 对论的诞生后,后者导致了量子论的诞生。
第2章 原子的能级和辐射
• 重 点
• • • • • • 玻尔氢原子理论、类氢离子光谱 夫兰克—赫兹实验 量子化通则 空间量子化 旧量子数的取值范围和所表征的物理量表达式 玻尔的对应原理
难 点
• 量子理论的建立
• 空间量子化
第2章 原子的能级和辐射
2.1
玻尔理论的实验基础
1. 黑体辐射 普朗克能量子 2. 光电效应 爱因斯坦光量子 3. 氢原子光谱
第2章 原子的能级和辐射 (2)经典物理在解释光电效应所遇到的困难 经典物理认为光是一种波动,其能量连续分布在波前上;当光照射在电子上 时,电子得到并不断积聚能量,当电子积聚的能量达到一定程度时,它就能脱离原 子核的束缚而逸出,但能量的积聚是需要时间的。例如,用光强为1µw/m2 的 光照到钠金属表面,根据经典理论的推算,至少要107 秒(约合120天)的时间来 积聚能量,才会有光电子产生;事实上,只要ν>ν0,就立即有光电子产生,可见理论 与实验产生了严重的偏离。 此外,按照经典理论,决定电子能量的是光强,而不是频率。但实验事实却 是:暗淡的蓝光照出的电子能量居然比强烈的红光照出的电子能量大。

《原子物理》(褚圣麟)习题解答

《原子物理》(褚圣麟)习题解答

1
3
=RH [
4.试估算一次电离的氦离子 He 、二次电离的锂离子 Li


的第一玻尔轨道半径、电离电
势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。 解: He 、 Li

都是类氢粒子,由玻尔理论可列表如下:
r1 ( A)
H 0.529 0.265 0.176
0
V (V )
4 0 h 2 v2 e2 m 0.529 10 10 (m) ,其中 a1 2 2 a1 4 0 a1 4 me
由此求得电子的线速度: v 2.18核转动的频率: f
v 6.56 1015 ( s 1 ) 。 2a1
电子的加速度: a
v2 8.98 10 22 (ms 2 ) 。 a1
2. 试用氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。
第 4 页
~ =RH 〔 解:∵
1 1 ~ =RH 。∴ U hcR H 13.6(V ) 2 〕,电离情况对应于 n=∞,即 2 1 n e 3 RH , 4
4 2 me 4 2n 当 n 1 时, n cR 2 2 = n n 4 0 2 n 3 h 3
第 7 页
9. Li 原子序数 Z=3,其光谱的主线系可用下式表示:
~=
R R 2 (1 0.5951) (n 0.0401) 2
+++ + ++
已知 Li 原子电离成 Li 离子需要 203.44ev 的功。问如果把 Li 离子电离成 Li 离子, 需要多少 ev 的功? 解:第一步,由已知公式求出 Li Li 所需的功:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 原子的能级和辐射2.1 试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。

解:电子在第一玻尔轨道上即n=1。

根据量子化条件,πφ2hnmvrp == 1010.52910r a m −==×可得:频率 21211222ma hma nh a v πππν===1516.5610s −=×速度:m/s 61110188.2/2×===ma h a v νπ加速度:221/8.9810w v a ==×2m /s 22.2 试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

解:电离能为,把氢原子的能级公式代入,得:1E E E i −=∞2/n Rhc E n −=Rhc hc R E H i =∞−=111(2=13.60eV。

电离电势:60.13==eE V ii V 第一激发能为将电子从n=1的能级激发到n=2的能级上所需要的能量:20.1060.134343)2111(22=×==−=Rhc hc R E H i eV 第一激发电势:20.1011==eE V V 2.3 用能量为12.5电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线?解:由氢原子能级公式:2/H E hcR n =−得:113.6E eV =−2 3.4E e =−3 1.51E e ,,V V −40.85E eV ,==−可见,具有12.5电子伏特能量的电子只能激发H 原子至3≤n 的能级。

跃迁时可能发出的光谱线的波长为:1221111(5/36656323H H R R A ολλ=−=⇒=222232231113()12151241118()1025.7139H H H H R R R R οAAολλλλ=−=⇒==−=⇒=2.4 试估算一次电离的氦离子、二次电离的锂离子的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

+e H +i L 解:估算时,不考虑原子核的运动所产生的影响。

a) 氢原子和类氢离子的轨道半径:22201224,1,2,34h n n r a n mZe Z πεπ===…… =对于 ,1,23e H Z H Z Li Z +++==;对于;对于,;11,23eHe Li H H H HH L r r Z Z r Z r Z +++++====i +; b) 氢和类氢离子的能量公式:……=⋅=−=3,2,1,)4(22212220242n n Z E h n Z me E πεπ电离能之比:2222004,900H e H e L i L i H HH HZ E Z E E Z E Z +++++−−====−− c) 第一激发能之比:22222121111122222222212111112222223321************He He Li Li H H H H E E E E E E E E E E E E E E E E −−−−===−−−−= d) 氢原子和类氢离子的赖曼系第一条谱线的波数为:2122111()12vZ R λ=−=因此, 111111,49H e L i HH λλλλ+++==2.5 试问二次电离的锂离子从其第一激发态向基态跃迁时发出的光子,是否有可能使处于基态的一次电离的氦粒子的电子电离掉?++i L +e H 解:由第一激发态向基态跃迁时发出的光子的能量为:++i L227119()14hcR hcR ∞∞−=∞+e H 的电离能量为:2114()41He v hcR hc +R ∞∞=−=∞所以能将的基态电子电离掉。

+e H 2.6 氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。

试问其巴耳末系的第一条()光谱线之间的波长差αH λΔ有多大?已知氢里德伯常数,氘的里德伯常数。

71.096775810H R −=×m 1711.097074210D R −=×m 解:)3121(122−=H HR λ,H H R 5/36=λ )3121(122−=D DR λ,D D R 5/36=λ 3611( 1.795H D H DA R R ολλλΔ=−=−=2.7 已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。

试计算“正电子素”由第一激发态向基态跃迁发射光谱的波长λ为多少?οA 解:先计算电子偶的R:R=1/21R R m m∞∞=+由 221113()124R R λ∞=−=得: ολA R 2430109737313138=×==∞米2.8 试证明氢原子中的电子从n+1轨道跃迁到n 轨道,发射光子的频率n ν。

当n>>1时光子频率即为电子绕第n 玻尔轨道转动的频率。

证明:在氢原子中电子从n+1轨道跃迁到n 轨道所发光子的波数为:])1(11[1~22+−==n n R v n n λ频率为:Rc n n n n n Rc cv n 2222)1(12])1(11[++=+−==λ当n>>1时,有,所以在n>>1时,氢原子中电子从n+1轨道跃迁到n 轨道所发光子的频率为:。

3422/2/2)1(/)12(n n n n n n =≈++3/2n Rc v n=设电子在第n 轨道上的转动频率为,则n f 24233042(4)n vm f r n πππε==e h 2423022(4)v m R r c πππε==e h因此,在n>>1时,有。

在n 很大时,玻尔理论过渡到经典理论,这就是对应原理。

n n f v =2.9 原子序数Z=3,其光谱的主线系可用下式表示:Li 22)0401.0()5951.01(~−−+=n RR v。

已知锂原子电离成离子需要203.44电子伏特的功。

问如把离子电离成离子,需要多少电子伏特的功?+++Li +Li ++Li 解:第一步,计算原子电离成Li Li +离子所需要的能量:1225.35(10.5951)(10.5951)R hc Rhc RhcE ∞=−≈=+∞+eV 第二步,时所需要的能量,此时是类氢离子,可用氢原子的能量公式,电离能为:+++++→Li Li ++Li 3E 2232913.6122.41Z Rhc E Z R hc ∞=≈=×=eV 。

第三步,设的电离能为。

需要的总能量是E=203.44eV,所以有 。

+++→Li Li 2E +++→Li Li 21375.6E E E E =−−=eV 2.10 具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时有什么不同?解:设原子的磁矩为μ,磁场沿Z 方向,则原子磁矩在磁场方向的分量记为Z μ,于是具有磁矩的原子在磁场中所受的力为Z B F Z∂∂=μ,其中ZB∂∂是磁场沿Z 方向的梯度。

对均匀磁场,0=∂∂ZB,原子在磁场中不受力,原子受力矩作用绕磁场方向做拉摩进动,而原子的运动路径不改变。

对于非均磁场,0≠∂∂ZB,原子在磁场中不仅受到力矩作用,还受到力的作用,原子束的路径要发生改变。

2.11 史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横向磁场,磁场的梯度为310=∂∂Z B特斯拉/米,磁极纵向范围=0.04米(见图2-2),从磁极到屏距离=0.10米,原子的速度米/秒。

在屏上两束分开的距离米。

试确定原子磁矩在磁场方向上投影1L 2L 2105×=v 002.0=d μ的大小(设磁场边缘的影响可忽略不计)。

解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用,其轨道为抛物线;在区域粒子不受力作惯性运动。

2L 原子通过 L 1 和L 2 的时间 t 1 = L 1/v,t 2 = L 2/v通过L 1段时原子受力 f z = μz × ∂B/∂z,方向因μz 方向的不同而不同,或者向上或者向下。

Z 方向原子的加速度 a z = f z /m刚脱离磁场时原子Z方向的瞬时速度 v z = a z × t 1原子在 Z 方向的偏转位移 d/2 = 1/2 × a z × t 12 + v z × t 2代入数值计算得 μz = 0.93 × 10-23 J/T= 1.007 μB ,相当于一个玻尔磁子。

2.12 观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射线束的减弱情况,可以测定各激发态的平均寿命。

若已知原子束中原子速度,在沿粒子束方向上相距1.5毫米其共振光谱线强度减少到1/3.32。

试计算这种原子在共振激发态的平均寿命。

310v =m/s解:光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正比。

设发射共振谱线的跃迁几率为,则有21A 202202122101N N N A N A I I =∝ 适当选取单位,使32.3/120201==N NI I ,并注意到 ,则有:/220,t N N e t S τ−==而/v /2201/3.32t N e N τ−==,由此求得: 332206 1.510ln(/)ln 3.3210ln 3.321.2510t s N N v τ−−−×===×=×s。

相关文档
最新文档