全等三角形SAS练习题(基础).docx
《用“SAS”证三角形全等》练习题
解: ∵C 是线段 AB 的中点, ∴AC=CB, ∵CD∥BE, ∴∠ACD=∠B, AC=CB, 在△ACD 和△CBE 中,∠ACD=∠B,∴△ACD≌△CBE(SAS),∴∠D= CD=BE, ∠E
6.如图,AB=AD,AC=AE,∠1=∠2,求证:
(1)△ABC≌△ADE; (2)CB=ED. 解:(1)∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE, 又∵AB=AD,AC=AE,∴△ABC≌△ADE(SAS) (2)∵△ABC≌△ADE,∴CB=ED
) D
不一定 2.有两边和其中一边的对角分别相等的两个三角形_____________ 全等.
知识点1:用“SAS”判定两个三角形全等 1.下图中全等的三角形有( D ) A.图1和图2 B.图2和图3
C.图2和图4 D.图1和图3
2.(易错题) 的条件是( D
如图,AB=DB,BC=BE,欲使△ABC≌△DBE,需要增加 )
13.某大学计划为新生配备如图1所示的折叠凳.图2是折叠凳撑开后的侧 面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们 的中cm,则由以上信息可推得CB的长度是多少?
解: ∵O 是 AB, CD 的中点, ∴OA=OB, OD=OC, 在△AOD 和△BOC OA=OB, 中, ∴CB=AD.∵AD=30 cm, ∠AOD=∠BOC,∴△AOD≌△BOC(SAS), OD=OC, ∴CB=30 cm
9.如图,AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加 一个条件,则下列所添条件不成立的是( B )
A.BD=CE B.∠ABD=∠ACE C.∠BAD=∠CAE D.∠BAC=∠DAE
三角形全等的判定SAS
03
三角形全等的其他判定方 法
SSS判定定理
总结词
三边对应相等的两个三角形全等。
详细描述
SSS判定定理,即边边边全等定理,是 三角形全等判定的一种方法。如果两 个三角形的三组对应边分别相等,则 这两个三角形全等。
ASA判定定理
总结词
两角及夹角对应相等的两个定理, 也是三角形全等判定的一种方法。如 果两个三角形的两组对应角分别相等, 并且这两组对应角的夹边相等,则这 两个三角形全等。
每种判定定理都有其特定的适用范围和条件,使用时需要根据实际情况选择合适 的判定方法。
02
SAS判定定理
什么是SAS判定定理
总结词
SAS判定定理是三角形全等判定的一种重要方法,它基于三角形的两边和夹角 来判断两个三角形是否全等。
详细描述
SAS判定定理,即Side-Angle-Side判定定理,是指在两个三角形中,如果一个 三角形的两边与另一个三角形的两边相等,并且这两个相等的边所夹的角也相 等,那么这两个三角形就是全等的。
3. 根据一组复杂的边角条件,构 造一个全等的三角形,并解决相 关的几何问题。
感谢您的观看
THANKS
三角形全等的重要性
01
三角形全等是几何学中的基本概 念之一,是研究几何图形性质的 基础。
02
在解决实际问题中,如测量、绘 图、建筑等领域,三角形全等定 理的应用十分广泛。
三角形全等的分类
根据不同的判定条件,三角形全等可以分为SSS(三边全等)、SAS(两边及夹角全 等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)和HL(直角边斜边全 等)等五种类型。
2. 利用SAS判定定理证明 两个三角形全等,并找出 对应边和对应角。
SAS,ASA,AAS习题全等三角形练习题
全等三角形练习题第1课时边角边(SAS)一、选择题1. 如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2. 能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. A C=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3. 如图,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A. AB∥CDB. AD∥BCC. ∠A=∠CD. ∠ABC=∠CDA4.(2013•铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.AC=DC,∠A=∠D二、填空题5. 如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是 .6. 如图,AC与BD相交于点O,若AO=BO,AC=BD,∠DBA=30°,∠DAB=50°,则∠CBO= 度.第1题第9题图第3题图第4题图第5题图第10题图第11题图7.(2011黑龙江鸡西)如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AB ∥DE ,BF =CE ,请添加一个适当的条件: ,使得AC =DF .8.(2009·怀化中考)如图,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是 (写出一个即可).9.(2005•天津)如图,OA=OB ,OC=OD ,∠O=60°,∠C=25°,则∠BED= 度.10. 如图,若AO=DO ,只需补充 就可以根据SAS 判定△AOB ≌△DOC.三、解答题11. 如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:BC ∥EF .12. 已知:如图,点A 、B 、C 、D 在同一条直线上,EA ⊥AD ,FD ⊥AD ,AE =DF ,AB =DC .求证:∠ACE =∠DBF .13. 如图CE=CB ,CD=CA ,∠DCA=∠ECB ,求证:DE=AB .ACE B 0第13题图第14题图第12题图D14. 如图,AB=AC,点E、F分别是AB、AC的中点,求证:△AFB≌△AEC.15、如图,点A、B、C、D在同一条直线上,AB=DC,AE//DF,16、如图,在ABC∆中,AB BC=,90ABC∠=。
三角形全等的判定(SAS)对应练习
三角形全等的判定 (SAS )一.选择题1.在△ABC 和△A /B /C /中,AB= A /B /,AC= A /C /,若还需要加一个角的条件使△ABC ≌ A /B /C /, 则应添加的条件是( )A. ∠A=∠A /B. ∠B=∠B /C. ∠C=∠C /D. ∠D=∠D /2.如图AC 与BD 相交于点O ,且OA=OD,如果用“SAS ”来判断△ABO 和△DCO 全等,还应添加的条件是( )A .AB=DC B. OB=OC C. ∠A=∠D D. ∠AOB=∠DOC 二.填空题3.全等三角形判定方法1——“边角边” (即______)指的是__________________4.如图,AB =AC ,如果根据“SAS”使△ABE ≌△ACD,那么需添加条件5.下列描述:①腰和顶角对应相等的两个等腰三角形全等;②两条直角边对应相等的两个直角三角形全等;③有两边和一角对应相等的两个三角形全等;④等腰三角形顶角平分线把这个等腰三角形分成两个全等的三角形.其中正确的有_____________.三、解答题6.已知:如图,C 是AB 的中点,AD ∥CE ,AD=CE .求证:△ADC ≌△CEB .7.已知:如图,AB 、CD 相交于O 点,AO =CO ,OD =OB .求证:∠D =∠B .AABCED8.已知:如图,AB ∥CD ,AB =CD . 求证:AD ∥BC .9. 如图, A ,C ,D ,B 在同一条直线上,AE=BF ,AD=BC ,AE ∥BF . 求证:FD ∥EC .10.已知:如图,AC ⊥BD ,BC=CE ,AC=DC . 求证:∠B+∠D=90°;11.小明在练习本上画一个三角形,不小心将墨迹污染到这块三角形的图形上(如图),你能帮他画一个完全一样的三角形吗?DCFBA。
全等三角形判定一(SSS,SAS)(基础)巩固练习
【巩固练习】-、选择题2.如图,已知AB= CD AD- BC,则下列结论中错误的是()A.AB // DCB. / B=Z DC. / A=Z CD.AB = BC3. 下列判断正确的是()A. 两个等边三角形全等B. 三个对应角相等的两个三角形全等C. 腰长对应相等的两个等腰三角形全等D. 直角三角形与锐角三角形不全等4. 如图,AB CD EF相交于O,且被O点平分,DF= CE BF= AE则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对B.角边角C.边边边AB丄BD于B, ED± BD于D, AB= CD1. (2015?莆田)女口图,AE// DF, AE=DF 要使△ EA3A FDB 需要添加下列选项中的B. EC=BFC. / A=ZDD. AB=BC5. 如图,将两根钢条AA' , BB'的中点O连在一起,就做成了一个测量工件,则A'B'的长等于内槽宽使AA', BB'可以绕着点O自由转动,AB,那么判定厶OAB^A OA'B'的理A.边角边6.如图,已知A.EC 丄ACA. AB=CDB.EC = ACC.ED + AB = DBD.角角边BC= ED,以下结论不正确的是(D.DC = CB12.、填空题如图,AB= CD AC= DB,Z ABD= 25°,/ AOB= 82°,则/ DCB=点D在AB上,点E在AC上, CD与BE相交于点0,且AD= AE, AB= AC,若/ B = 贝y C= .,△ AD®7.AC BD互相平分,则图中全等三角形共有(2015?虎林市校级二模)如图,已知BD=AC,那么添加一个条件后,能得11.8.9.,/ 3= 26°,则/ CBBAC= ABC^如图,20°,12.三、解答题13. (2014春?章丘市校级期中)如图A B两点分别位于一座小山脚的两端,小明想要测量A、B两点间的距离,请你帮他设计一个测量方案,测出AB的距离.并说明其中的道理.14•已知:如图,AB // CD , AB = CD .求证:AD // BC .分析:要证AD// BC只要证/ ________ =Z __________ ,又需证______ 也_______ .证明:••• AB // CD ( ),二 / ________ =/ _________ ( ),在厶 ______ 和厶_____ 中,_____ 二____ ( ),< _____ = _____ (),、---- = -------- ()‘•••△_______ A___________ ( ).二 / ________ =/ ______ ( ).•- _____ // ______ ( ).15.如图,已知AB= DC AC= DB, BE= CE求证:AE= DE.【答案与解析】一. 选择题1. 【答案】A;【解析】解:••• AE// FD,•••/ A=Z D,•/ AB=CD•AC=BD在厶AEC和厶DFB中,f AE=DF-ZA=ZD,AC=DBk•△EAC^A FDB( SAS ,故选:A.2. 【答案】D;【解析】连接AC或BD证全等.3. 【答案】D;4. 【答案】C;【解析】△ DOF^A COE △ BOF^A AOE △ DOB^A COA.5. 【答案】A;【解析】将两根钢条AA' , BB'的中点O连在一起,说明OA= OA', OB= OB',再由对顶角相等可证•6. 【答案】D;【解析】△ ABC^^ EDC Z ECD^Z ACB=Z CA聊/ ACB= 90°,所以ECL AC, ED + AB = BC+ CD= DB.二. 填空题7. 【答案】66°;82 °【解析】可由SSS证明厶ABC^A DCB Z OBC=Z OCB= 41 , 所以Z DCB=2Z ABC= 25°+ 41 °= 66°8. 【答案】4;【解析】△ AOD^A COB △ AOB^A COD △ ABD^A CDB △ ABC^A CDA.9. 【答案】BC=AD ;【解析】解:添加BC=AD ,r AC=BD•••在△ ABC 和厶BAD 中」BC=AD ,i AB 二AB•△ ABC ◎△ BAD ( SSS),故答案为:BC=AD .10. 【答案】56°;【解析】Z CBE= 26°+ 30°= 56° .11. 【答案】20°;【解析】△ ABE^A ACD( SAS12. 【答案】△ DCB △ DAB【解析】注意对应顶点写在相应的位置上.三. 解答题13. 【解析】解:如图所示:在AB下方找一点O,连接BO并延长使BO=B O,连接AQ并延长使AO=A O,在厶AOB和厶A OB中:f AO=OA?“ ZAOB=ZA V0B y,QB 二OB'•••△AOB2A A OB ( SAS, ••• AB=A B ,量出A B'的长即可.14. 【解析】3, 4;ABD CDB已知;1, 2;两直线平行,内错角相等;ABD CDBAB, CD已知;/ 1 = 7 2,已证;BD= DB公共边;ABD CDB SAS3 , 4,全等三角形对应角相等;AD, BC内错角相等,两直线平行15. 【解析】证明:在厶ABC^n^ DCB中AB = DCAC = DBBC =CB• △ABC^A DCB(SSS•••7 ABC=7 DCB 在厶ABE和△ DCE中AB = DCABC = DCBBE =CE•••△ ABE^A DCE( SAS ••• AE= DE.。
三角形全等SAS课后练习
O D C B AP E D C BA 11.2三角形全等的判定(二)课后练习设计:吉裕艳 夏晓芳 审核:冒光明 班级______姓名_________学号____得分_______1.△ABC 和△A′B ′C ′中若AB=A′B ′,B C = B ′C ′ ,则补充条件 ________________可得到△ABC ≌△A′B ′C ′. 2.如图,AB 、CD 相交于O ,且AO =OB 观察图形,图中已具备的另一个相等的条件是 , 联想SAS 公理,只需补充条件 ,则有△AOC ≌△BOD 。
第2题图3.下列条件中,能让△ABC ≌△DFE 的条件是( )A. AB=DE ,∠A=∠D , BC=EFB. AB=BC ,∠B=∠E , BE=EFC. AB=EF ,∠A=∠D , AC=DFD. BC=EF ,∠C=∠F , AC=DF4.下面命题错误的是( )A .边长相等的两个等边三角形全等B .两条直角边对应相等的两个直角三角形全等C .有两条边对应相等的两个等腰三角形全等D .形状和大小完全相同的两个三角形全等5.如图所示,△ABD 和△CBD 都是等边三角形,AC 与BD 交于点O ,图中全等三角形的对数有( ) A.2对 B.4对 C.6对 D.8对第5题图 第6题图6.如图所示,已知AB=AC ,PB=PC ,下面结论:(1)EB=EC ;(1)AD ⊥BC ;(3)AE 平分∠BEC ;(4)∠PBC =∠PCB ,其中正确的是( )A.1个B.2个C.3个D.4个7.如图,∠DAB =∠CAE ,AB =AE ,AD =AC ,求证:BC =DE.ODC B A ED CB A21C B AE DF E D C B A 8.已知,如图所示,BE=DF ,AE=CF ,AE ∥CF ,求证:AD ∥BC9.已知如图所示,AB=AD ,BC=DE ∠1=∠2,求证:(1)AC=AE (2)∠CAE =∠CDE10.如图,△ABC 为等边三角形,点M 、N 分别在BC 、AC 上,且BM=CN ,AM 与BN 交于Q 点,当点M 在BC 上移动时,∠AQN 的的大小是否变化?证明你的结论。
11.2全等三角形的判定(SAS)同步练习
DC B A 12.2全等三角形的判定(SAS )同步练习1、在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△C B A ''',那么你加的条件是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B '2、如果△ABC ≌△DEF ,且△ABC 的周长95cm ,A 、B 分别与D 、E 对应并且AB=30cm ,DF=25 cm ,那么BC的长等于( )A .40cmB .35cmC .30cmD .25cm3、如右图,AB ∥DE ,CD=BF ,若△ABC ≌△DEF ,还需要补充的条件可以是( ) A .AC=EF B .AB=DE C .∠B=∠E D .不用补充4、如右图,∠CAB =∠DBA ,AC=BD ,则下列结论中,不正确的是( )A 、BC=ADB 、CO=DOC 、∠C =∠D D 、∠AOB=∠C +∠D5、如图1,AB ∥CD ,AB=CD ,BE=DF ,则图中有多少对全等三角形( )A.3B.4C.5D.6 6、如图2,AB=AC ,AD=AE ,欲证△ABD ≌△ACE ,可补充条件( ) A.∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD7、如图3,AD=BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( )A.AB ∥CDB.AD ∥BCC.∠A=∠CD.∠ABC=∠CDA8、如图4,AB 与CD 交于点O ,OA=OC ,OD=OB ,∠AOD=________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.9、如图5,已知△ABC 中,AB=AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由. ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 10、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.11、已知:如图,AB=AC ,AD=AE ,求证:BE=CD.12、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?DAC FBEC D A BO A D B E C13、如图,AB=AC ,若AD 平分 BAC ,试判断AD 与BC 的位置关系是什么?并证明.14、如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。
13.2三角形全等的判定(SAS)练习
例1
已知:如图, AB=CB ,∠ ABD= ∠ CBD △ ABD 和△ CBD 全等吗?
A
分析: △ ABD ≌△ CBD
边: AB=CB(已知) (SAS)
B
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改 变成:
问AD=CD,BD平分∠ADC吗?
例题 推广
C
D
BC=EF
E
F
如图AC与BD相交于点O,已知 OA=OC,OB=OD,说明 △AOB≌△COD的理由。
A
B
O
D C
解:在△AOB和△COD中 ∵ OA=OC(已知) ∠AOB=∠COD(对顶角) OB=OD(已知) ∴ △AOB≌△COD(SAS)
例1
已知:如图,AB=CB,∠1=∠2 ,
△ABD 和△CBD 全等吗?为什么? A
2.如图,已知AB=AC,AD=AE。
求证:△ABD≌△ACE 证明:在△ABD和△ACE中 E AB=AC(已知) B A=A(公共角) AD=AE(已知) A ∴△ABD≌△ACE(SAS)
DE B A
D
C A
C
已知:如图,AB=AC,AD=AE. 求证: △ABE≌△ACD 证明:在△ABE和△ACD中∵ AB=AC(已知)
证明的书写步骤:
1.准备条件:证全等时要用的条件 要先证好; 2.三角形全等书写三步骤: ①写出在哪两个三角形中 ②摆出三个条件(注意:按定理 名称的顺序书写) ③写出全等结论
巩 固 练 习
若∠BAD= ∠CAD,则添加什么条件 可使ΔABD≌ΔACD?
A
ΔABD≌ΔACD S A S
全等三角形判定SAS练习
用符号语言表达为:
在△ABC和△DEF中 AB=DE
B C
D
“SAቤተ መጻሕፍቲ ባይዱ”)
A
∠A=∠D AC=DF
E
F
∴△ABC≌△DEF(SAS)
知识梳理:
A
B SSA不能 判定全等
A
C A
B
D
C
B
D
1.在下列图中找出全等三角形
30º
1
2
3 Ⅲ
Ⅳ 4
5 cm
30º
6
5
30º
7
8
知识应 用
例1、如图,有一池塘,要测池塘两端A、B的距 离,可先在平地上取一个可以直接到达A和B 的点C,连结AC并延长到D, 使CD=CA.连结 BC并延长到E,使CE=CB. 连结DE,那么量出 DE的长,就是A、B的距离.为什么?
知识应 用
证明:在△ABC 和△DEC中
CA CD ACB DCE CB CE
A B
C D
∴△ABC ≌△DEC(SAS)
∴ AB=DE(全等三
E
角形的对应边相等)
例2.如图,已知AB=AC,AD=AE。
求证:∠B=∠C 证明:在△ABD和△ACE中 E AB =AC(已知) B A=A(公共角) AD=AE (已知) A ∴△ABD≌△ACE(SAS) ∴∠B=∠C(全等三角形
DE C A
D
C A
对应角相等)
B
例3 如图,AC=BD,∠CAB= ∠DBA,你 能判断BC=AD吗?说明理由。 C D 证明:在△ABC与△BAD中
AC=BD
∠CAB=∠DBA (已知) A (已知) (公共边) B
全等三角形SAS专题练习知识分享
全等三角形S A S专题练习全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。
5.如图,AD=BC,要根据“SAS”判定△ABD≌△BAC,则还需添加的条件是6.如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.解:∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD和△ACD中,∵∴△ABD≌△ACD()7.如图,AC与BD相交于点O,已知OA=OC,OB=OD,第1题第3题第4题第6题第5题求证:△AOB≌△COD证明:在△AOB和△COD中∵∴△AOB≌△COD( )8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE 。
10.已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。
求∠ EBD的度数。
第7题【经典练习】1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△C B A ''',那么你加的条件是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B '2.下列各组条件中,能判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ;CA=CD B.CA=CD ;∠C=∠F ;AC=EFC .CA=CD ;∠B=∠E D.AB=DE ;BC=EF ,两个三角形周长相等 3.已知△ABC 的6个元素,则下面甲乙丙三个三角形中,和△ABC 全等的图形是( )A.甲和乙B. 乙和丙C. 没有乙D. 没有甲4.如图工作师傅做门时,常用木条EF 固定矩形门框ABCD ,使其不变形这种做法根据是( ).A 、两点之间线段最短B 、矩形的对称性C 、矩形的四个角都是直角D 、三角形的稳定性5.如果△ABC ≌△DEF ,且△ABC 的周长95cm ,A 、B 分别与D 、E 对应并且AB=30cm ,DF=25 cm ,那么BC 的长等于( )A .40cmB .35cmC .30cmD .25cm 6.如图,AB ∥DE ,CD=BF ,若△ABC ≌△DEF ,还需要补充的条件可以是( )A .AC=EFB .AB=DEC .∠B=∠ED .不用补充 7.如图,∠CAB =∠DBA ,AC=BD ,则下列结论中,不正确的是( )A 、BC=ADB 、CO=DOC 、∠C =∠D D 、∠AOB=∠C +∠DAC B 50°50°72° a bcab c 甲D A C A D FE8.如图,AB=AC ,若AD 平分∠BAC ,则AD 与BC9.阅读理解题:如图:已知AC ,BD 相交于O,OA=OB ,OC=OD. 那么△ABC 与△BAD 全等吗?请说明理由.△ABC 与△BAD 全等吗?请说明理由.小明的解答: 21∠=∠AOD ≌△BOC而BAD=△AOD+△ADB △ABC=△BOC+△AOB所以△ABC ≌△BAD(1)你认为小明的解答有无错误;(2)如有错误给出正确解答;10.如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究11.如图,AE 是,BAC 的平分线∠AB=AC(1)若D 是AE 上任意一点,则△ABD ≌△ACD (2)若D 是AEBCDOA=OOD=OD12.如图,已知AB=AC ,EB=EC ,请说明BD=CD 的理由13. 如图,△ABC ,△BDF 为等腰直角三角形。
全等三角形SAS、ASA、AAS练习题
全等三角形的判定办法SAS 专题练习之邯郸勺丸创作1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可弥补条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD2.能判定△ABC≌△A′B′C′的条件是( )A .AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′, ∠A=∠A′,BC=B′C′C. AC=A′C′, ∠A=∠A′,BC=B′CD. AC=A′C′, ∠C=∠C′,BC=B′C3.如图,AB 与CD 交于点O,OA=OC,OD=OB,∠AOD=,按照_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要按照“SAS”判定△ABD≌△ACD,则还需添加的条件是.5.如图,AD=BC,要按照“SAS”判定△ABD≌△BAC,则还需添加的条件是6.如图,已知△ABC 中,AB=AC,AD 平分∠BAC,请弥补完整过程说明△ABD≌△ACD 的理由. 解:∵AD 平分∠BAC,∴∠________=∠_________(角平分线的定义).在△ABD 和△ACD 中,∵∴△ABD≌△ACD( )7.如图,AC 与BD 相交于点O,已知OA=OC,OB=OD, 第3题第4题第6题第5题求证:△AOB≌△COD证明:在△AOB和△COD中∵∴△AOB≌△COD( )第7题8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 .试说明:△ABD ≌△ACE .10.已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°.求∠ EBD的度数.全等三角形的判定办法AAS、ASA专题练习1. 已知:如图, FB=CE , AB∥ED ,AC∥FD.F、C在直线BE上.求证:AB=DE , AC=DF.2.已知:如图, AB⊥BC于B , EF⊥AC于G ,DF⊥BC于D , BC=DF.求证:AC=EF.3. 已知:如图AC⊥CD于C , BD⊥CD于D , M是AB的中点 , 连结CM并延长交BD于点F.求证:AC=BF.4. 已知:如图 , E、D、B、F在同一条直线上 ,AD∥CB , ∠BAD=∠BCD , DE=BF.求证:AE∥CF.5.如图在△ABC和△DBC中, ∠1=∠2 , ∠3=∠4 ,P是BC上任意一点.求证:PA=PD.6.已知:如图, AE=BF , AD∥BC , AD=BC.AB、CD 交于O点.求证:OE=OF7.已知:如图AC∥BD , AE和BE辨别平分∠CAB∠DBA ,CD过点E.求证AB=AC+BD时间:二O二一年七月二十九日。
人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)巩固练习
【巩固练习】一、选择题1. (2015•莆田)如图,AE∥DF,AE=DF ,要使△EAC≌△FDB,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC2. 如图,已知AB =CD ,AD =BC ,则下列结论中错误的是( )A.AB ∥DCB.∠B =∠DC.∠A =∠CD.AB =BC3. (2016春•成安县期末)如图,由∠1=∠2,BC =DC ,AC=EC ,得△ABC ≌△EDC 的根据是( )A.SASB.ASAC.AASD.SSS4. 如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB ≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9.(2016•牡丹江)如图,AD和CB相交于点E,BE=DE,请添加一个条件,使△ABE≌△CDE(只添一个即可),你所添加的条件是.10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB =CD ,AC =BD ,则△ABC ≌ ,△ADC ≌ .三、解答题13. (2014春•章丘市校级期中)如图A 、B 两点分别位于一座小山脚的两端,小明想要测量A 、B 两点间的距离,请你帮他设计一个测量方案,测出AB 的距离.并说明其中的道理.14. 已知:如图,AB ∥CD ,AB =CD .求证:AD ∥BC .分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ( ).∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】一.选择题1. 【答案】A ;【解析】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC 和△DFB 中,,∴△EAC≌△FDB(SAS ),故选:A .2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】A ;【解析】通过等量加等量得到∠BCA=∠DCE, 从而由SAS 定理判定全等.4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB =90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB = ∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】AE=CE ;【解析】由题意得,BE=DE ,∠AEB=∠CED (对顶角),可选择利用SAS 进行全等的判定,答案不唯一.10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:如图所示:在AB 下方找一点O ,连接BO ,并延长使BO=B′O,连接AO ,并延长使AO=A′O,在△AOB 和△A′OB′中:,∴△AOB≌△A′OB′(SAS ),∴AB=A′B′,量出A′B′的长即可.14. 【解析】3,4;ABD ,CDB ;已知;1,2;两直线平行,内错角相等;ABD ,CDB ;AB ,CD ,已知;∠1=∠2,已证;BD =DB ,公共边;ABD ,CDB ,SAS ;3,4,全等三角形对应角相等;AD ,BC ,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,在△ABE 和△DCE 中ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS )∴AE=DE.附录资料:【巩固练习】一、选择题1. (2016•长沙模拟)如图所示,△ABC≌△DEC,则不能得到的结论是()A. AB=DEB. ∠A=∠DC. BC=CDD. ∠ACD=∠BCE2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC≌△A′B′C,∠ACB=90°,∠A′CB=20°,则∠BCB′的度数为()A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. (2016•成都)如图,△ABC ≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A和D、B和E是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E为线段BC上一点,AB⊥BC,△ABE≌△ECD.判断AE与DE的关系,并证明你的结论.【答案与解析】一.选择题1. 【答案】C;【解析】因为△ABC≌△DEC,可得:AB=DE,∠A=∠D,BC=EC,∠ACD=∠BCE,故选C.2. 【答案】B;【解析】AD与BC是对应边,全等三角形对应边相等.3. 【答案】C;【解析】③和④是正确的;4. 【答案】C;【解析】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∴∠BCB′=∠A′CB′﹣∠A′CB=70°.故选C.5. 【答案】A;【解析】EF边上的高=1826 6⨯=;6. 【答案】C;【解析】折叠所成的两个三角形全等,找到对应角可解.二.填空题7. 【答案】∠OBA,OA=OC、OB=OD、AB=CD;【解析】解:∵△AOB≌△COD,∠AOB=∠COD,∠A=∠C,∴∠D=∠OBA,OA=OC、OB=OD、AB=CD,故答案为:∠OBA,OA=OC、OB=OD、AB=CD.8. 【答案】120°;【解析】∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°.9. 【答案】4cm或9.5cm;【解析】DE=DF=9.5cm,EF=4cm;10.【答案】AB=DE、AC=DF、BC=EF、BE=CF, 46°;11.【答案】10,16;【解析】全等三角形面积相等,周长相等;12.【答案】40°;【解析】见“比例”设k,用三角形内角和为180°求解.三.解答题13.【解析】解:在△ABC中,∠ACB=180°-∠A-∠B,又∠A=30°,∠B=50°,所以∠ACB=100°.又因为△ABC≌△DEF,所以∠ACB=∠DFE,BC=EF(全等三角形对应角相等,对应边相等)所以∠DFE=100°EC=EF-FC=BC-FC=BF=2.14. 【解析】解:(1)△ABC≌△DEF;(2)AB=DE,BC=EF,AC=DF;∠A=∠D,∠B=∠E,∠ACB=∠DFE;(3)BC∥EF,AB∥DE,理由是:∵△ABC≌△DEF,∴∠A=∠D,∠ACB=∠DFE,∴AB∥DE,BC∥EF.15. 【解析】 AE=DE ,且AE⊥DE证明:∵△ABE≌△ECD,∴∠B=∠C,∠A=∠DEC,∠AEB=∠D,AE=DE又∵AB⊥BC∴∠A+∠AEB=90°,即∠DEC+∠AEB=90°∴AE⊥DE∴AE与DE垂直且相等.。
全等三角形判定SAS专题练习
全等三角形的判定方法SAS专题练习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A。
∠1=∠2 B.∠B=∠C C.∠D=∠E D.∠BAE=∠CAD 2.能判定△ABC≌△A′B′C′的条件是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD。
AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD= ,根据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要根据“SAS”判定△ABD≌△ACD,则还需添加的条件是。
5.如图,AD=BC,要根据“SAS”判定△ABD≌△BAC,则还需添加的条件是6。
如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.解:∵AD平分∠BAC,∴∠________=∠_________(角平分线的定义)。
在△ABD和△ACD中,∵∴△ABD≌△ACD()7。
如图,AC与BD相交于点O,已知OA=OC,OB=OD,求证:△AOB≌△COD证明:在△AOB和△COD中∵第1题第3题第4题第6题第7题第5题∴△AOB≌△COD( )8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9。
已知:如图,AB=AC,AD=AE ,∠1 =∠2 。
试说明:△ABD ≌△ACE .10。
已知:如图,△ABC中, AD⊥BC 于D,AD=BD, DC=DE,∠C=50°。
求∠ EBD的度数。
全等三角形判定一(SSS,SAS)(基础)巩固练习(精编文档).doc
【最新整理,下载后即可编辑】【巩固练习】一、选择题1. (2015•莆田)如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC2. 如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3. 下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条'BB可AA,'AA,'BB的中点O连在一起,使'以绕着点O自由转动,就做成了一个测量工件,则''A B的长等于内槽宽AB,那么判定△OAB≌△''OA B的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9.(2015•虎林市校级二模)如图,已知BD=AC,那么添加一个条件后,能得到△ABC≌△BAD(只填一个即可).10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌.三、解答题13. (2014春•章丘市校级期中)如图A、B两点分别位于一座小山脚的两端,小明想要测量A、B两点间的距离,请你帮他设计一个测量方案,测出AB的距离.并说明其中的道理.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD ∥BC ,只要证∠______=∠______,又需证______≌______.证明:∵ AB ∥CD ( ),∴ ∠______=∠______ ( ),在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______∴ Δ______≌Δ______ ( ).∴ ∠______=∠______ ().∴ ______∥______( ).15. 如图,已知AB =DC ,AC =DB ,BE =CE 求证:AE =DE.【答案与解析】 一.选择题1. 【答案】A ;【解析】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC 和△DFB 中,,∴△EAC≌△FDB(SAS ),故选:A .2. 【答案】D ;【解析】连接AC 或BD 证全等.3. 【答案】D ;4. 【答案】C ;【解析】△DOF ≌△COE ,△BOF ≌△AOE ,△DOB ≌△COA.5. 【答案】A ;【解析】将两根钢条'AA ,'BB 的中点O 连在一起,说明OA ='OA ,OB ='OB ,再由对顶角相等可证.6. 【答案】D ;【解析】△ABC ≌△EDC ,∠ECD +∠ACB =∠CAB +∠ACB=90°,所以EC ⊥AC ,ED +AB =BC +CD =DB.二.填空题7. 【答案】66°;【解析】可由SSS 证明△ABC ≌△DCB ,∠OBC =∠OCB =82412︒=︒, 所以∠DCB =∠ABC =25°+41°=66°8. 【答案】4;【解析】△AOD ≌△COB ,△AOB ≌△COD ,△ABD ≌△CDB ,△ABC ≌△CDA.9. 【答案】BC=AD ;【解析】解:添加BC=AD ,∵在△ABC 和△BAD 中,∴△ABC≌△BAD(SSS ),故答案为:BC=AD .10.【答案】56°;【解析】∠CBE =26°+30°=56°.11.【答案】20°;【解析】△ABE ≌△ACD (SAS )12.【答案】△DCB ,△DAB ;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】解:如图所示:在AB下方找一点O,连接BO,并延长使BO=B′O,连接AO,并延长使AO=A′O,在△AOB和△A′OB′中:,∴△AOB≌△A′OB′(SAS),∴AB=A′B′,量出A′B′的长即可.14. 【解析】3,4;ABD,CDB;已知;1,2;两直线平行,内错角相等;ABD,CDB;AB,CD,已知;∠1=∠2,已证;BD=DB,公共边;ABD,CDB,SAS;3,4,全等三角形对应角相等;AD,BC,内错角相等,两直线平行.15.【解析】证明:在△ABC 和△DCB 中AB DC AC DB BC =CB ⎧⎪⎨⎪⎩==∴△ABC ≌△DCB (SSS ) ∴∠ABC =∠DCB , 在△ABE 和△DCE 中 ABC DCB AB DC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△DCE (SAS ) ∴AE =DE.。
全等三角形SAS专题练习
全等三角形的剖断办法SAS专题演习1.如图,AB=AC,AD=AE,欲证△ABD≌△ACE,可填补前提( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD△ABC≌△A′B′C′的前提是()A.AB=A′B′,AC=A′C′,∠C=∠C′B. AB=A′B′,∠A=∠A′,BC=B′C′C. AC=A′C′,∠A=∠A′,BC=B′CD. AC=A′C′,∠C=∠C′,BC=B′C3.如图,AB与CD交于点O,OA=OC,OD=OB,∠AOD=,依据_________可得到△AOD≌△COB,从而可以得到AD=_________.4.如图,已知BD=CD,要依据“SAS”剖断△ABD≌△ACD,则还需添加的前提是.5.如图,AD=BC,要依据“SAS”剖断△ABD≌△BAC,则还需添加的前提是6.如图,已知△ABC中,AB=AC,AD等分∠BAC,请填补完全进程解释△ABD≌△ACD的来由.解:∵AD等分∠BAC,∴∠________=∠_________(角等分线的界说).在△ABD和△ACD中,∵∴△ABD≌△ACD()7.如图,AC与BD订交于点O,已知OA=OC,OB=OD,第1题第3题第4题第6题第5题求证:△AOB ≌△COD 证实:在△AOB 和△COD 中 ∵∴△AOB ≌△COD( )8.已知:如图,AB=CB,∠1=∠2 △ABD 和△CBD 全等吗?9.已知:如图,AB=AC,AD=AE ,∠1 =∠2 .试解释:△ABD ≌△ACE .10.已知:如图,△ABC 中, AD ⊥BC 于D,AD=BD, DC=DE,∠C=50°. 求∠ EBD 的度数.【经典演习】1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的前提,使△ABC ≌△C B A ''',那么你加的前提是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B '2.下列各组前提中,能断定△ABC ≌△DEF 的是( ) A .AB=DE,BC=EF;CA=CD B.CA=CD;∠C=∠F;AC=EFC .CA=CD;∠B=∠E D.AB=DE;BC=EF,两个三角形周长相等3.已知△ABC 的6个元素,则下面甲乙丙三个三角形中,和△ABC全等的图形是( )A.甲和乙B. 乙和丙C. 没有乙D. 没有甲 4.如图工作师傅做门时,经常应用木条EF 固定矩形门框ABCD,使其不变形这种做法依据是( ).A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳固性第7题AC B 505072abcab cab乙 505072丙甲5.假如△ABC ≌△DEF,且△ABC 的周长95cm,A.B 分离与D.E 对应并且AB=30cm,DF=25 cm,那么BC 的长等于( ) A .40cm B .35cm C .30cm D .25cm6.如图,AB ∥DE,CD=BF,若△ABC ≌△DEF,还须要填补的前提可所以( )A .AC=EFB .AB=DEC .∠B=∠ED .不必填补 7.如图,∠CAB =∠DBA,AC=BD,则下列结论中,不准确的是( ) A.BC=AD B.CO=DO C.∠C =∠D D.∠AOB=∠C +∠D8.如图,AB=AC,若AD 等分∠BAC,则AD 与BC 的地位关系是9.浏览懂得题:如图:已知AC,BD 订交于O,OA=OB,OC=OD.那么△ABC 与△BAD 全等吗?请解释来由.△ABC 与△BAD 全等吗?请解释来由. 小明的解答: 21∠=∠△AOD ≌△BOC而BAD=△AOD+△△BOC+△AOB所以△ABC ≌△BAD (1)你以为小明的解答有无错误;(2)若有错误给出准确解答;10.如图,点C 是AB 中点,CD ∥BE,且CD=BE,系.11.如图,AE 是,BAC 的平分线∠AB=AC(1)若D 是AE 上随意率性一点,则△ABD (2)若D 是AE 反向延伸线上一点,12.如图,已知AB=AC,EB=EC,请解释BD=CD 13. 如图,△ABC,△BDF OA=OBOD=OCDDACFB EAD BCFEB(2)CE ⊥AD.【典范例题】例1已知:如图,AB=AC,AD=AE,求证:BE=CD.例2 如图,已知:点D.E 在BC 上,且证:△ADB ≌△AEC例3 如图已知:AE=AF,AB=AC,∠A=60°,∠数.例4 如图,已知等腰△ABC 与△ADE 中∠DAE,试解释△ABD ≌△ACE.例5 如图,已知AB ⊥AC,AD ⊥AE,AB=AC,AD=AE,(2)BE ⊥DC.ABQCPE。
12.2三角形全等的判定(二)(“SAS”)练习题人教版八年级数学上册
第2课时三角形全等的判定(二)(“SAS”)【基础练习】知识点 1 判定两个三角形全等的基本事实——“边角边”1.如图1所示,点D在AB上,点E在AC上,AB=AC,AD=AE,则≌△AEB,理由是.图12.图2中全等的三角形是 ()图2A.①和②B.②和③C.②和④D.①和③3.如图3,AB平分∠DAC,要用“SAS”判定△ABC≌△ABD,还需添加条件 ( )图3A.CB=DBB.AB=ABC.AC=ADD.∠C=∠D4.已知:如图4,AC与BD相交于点O,且OA=OC,OB=OD.求证:△AOB≌△COD.图45.如图5所示,CD=CA,∠1=∠2,EC=BC.求证:△ABC≌△DEC.图56.如图6所示,AD=BE,AC=DF,AC∥DF.求证:△ABC≌△DEF.图6知识点 2 全等三角形的判定(SAS)的简单应用7.如图7所示,AA',BB'表示两根长度相同的木条.若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为 ( )图7A.8 cmB.9 cmC.10 cmD.11 cm8.[2020·镇江]如图8,AC是四边形ABCD的对角线,∠1=∠B,点E,F分别在AB,BC 上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数.图8【能力提升】9.如图9所示,在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中的两个论断作为条件,另一个论断作为结论写出一个真命题为.(写成“如果 ,那么 ”的形式,写一个即可)图910.[2020·江西]如图10,CA平分∠DCB,CB=CD,DA的延长线交BC于点E.若∠EAC=49°,则∠BAE的度数为.图1011.如图11,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.有下列说法:①CE=BF;②△ABD≌△ACD;③BF∥CE;④△BDF和△CDE的面积相等.其中正确的是.(填序号)图1112.:[2020·宜宾]如图12,在△ABC中,D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD;(2)若△ABD的面积为5,求△ACE的面积.图12 变式:在△ABC中,AB=7,AC=3,AD是中线,求AD的取值范围.第2课时 三角形全等的判定(二)(“SAS ”)1.△ADC SAS2.D [解析] 从图中可以看到①和③符合“SAS ”.3.C [解析] 由题意可得,在△ABC 和△ABD 中,{AC =AD,∠CAB =∠DAB,AB =AB,∴△ABC ≌△ABD (SAS).选项C 正确,其余选项都不正确. 4.证明:在△AOB 和△COD 中,{OA =OC,∠AOB =∠COD,OB =OD,∴△AOB ≌△COD (SAS).5.证明:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA ,即∠ACB=∠DCE.在△ABC 和△DEC 中,{CA =CD,∠ACB =∠DCE,BC =EC,∴△ABC ≌△DEC (SAS).6.证明:∵AD=BE ,∴AB+BD=DE+BD ,即AB=DE.∵AC ∥DF ,∴∠A=∠FDE.在△ABC 和△DEF 中,{AB =DE,∠A =∠FDE,AC =DF,∴△ABC ≌△DEF (SAS).7.B8.解:(1)证明:在△BEF 和△CDA 中,{BE =CD,∠B =∠1,BF =CA,∴△BEF ≌△CDA (SAS).∴∠D=∠2.(2)∵∠D=∠2,∴∠2=78°.∵EF∥AC,∴∠BAC=∠2=78°.9.答案不唯一,如:如果①②,那么③(或如果①③,那么②)[解析] (1)已知AB=AD,∠BAC=∠DAC,AC=AC,可得△ABC≌△ADC(SAS),所以BC=DC;(2)已知AB=AD,BC=DC,AC=AC,可得△ABC≌△ADC(SSS),所以∠BAC=∠DAC.10.82°[解析] ∵CA平分∠DCB,∴∠BCA=∠DCA.又∵CB=CD,AC=AC,∴△ABC≌△ADC(SAS).∴∠B=∠D.∴∠B+∠ACB=∠D+∠ACD.∵∠CAE=∠D+∠ACD=49°,∴∠B+∠ACB=49°.∴∠BAE=180°-∠B-∠ACB-∠CAE=82°.故答案为82°.11.①③④[解析] ∵AD是△ABC的中线,∴BD=CD.又∠CDE=∠BDF,DE=DF,∴△BDF≌△CDE,故④正确;由△BDF≌△CDE,可知CE=BF,故①正确;∵AD是△ABC的中线,∴△ABD和△ACD等底同高,∴△ABD和△ACD的面积相等,但不一定全等,故②错误;由△BDF≌△CDE,可知∠FBD=∠ECD,∴BF∥CE,故③正确.故答案为①③④.12.解:(1)证明:∵D是边BC的中点,∴BD=CD.在△ABD 和△ECD 中,{BD =CD,∠ADB =∠EDC,AD =ED,∴△ABD ≌△ECD (SAS).(2)∵在△ABC 中,D 是边BC 的中点,∴S △ABD =S △ACD .∵△ABD ≌△ECD ,∴S △ABD =S △ECD . ∵S △ABD =5,∴S △ACE =S △ACD +S △ECD =5+5=10,即△ACE 的面积为10.变式:解:如图,延长AD 到点E ,使ED=AD ,连接BE.∵AD 是△ABC 的中线,∴BD=CD.又ED=AD ,∠ADC=∠EDB ,∴△BED ≌△CAD (SAS). ∴BE=AC=3. ∵DE=AD ,∴AE=2AD.在△ABE 中,AB-BE<AE<AB+BE , 即AB-BE<2AD<AB+BE ,∴7-3<2AD<7+3. ∴2<AD<5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、已知: 如图 , B A AB, C A AC, A B = AB, A C = AC.
求证:△ ABC≌△ AB’C‘
4、已知:如图 , AB=DC ,AD=BC ,∠DAB=∠BCD,求证:△ ABD≌△ CDB
第1 题
第 4 题
2、已知 : 如图 , △ABC中 , 点 E、 F分别在 AB、 AC边上 , 点 D是 BC边中点 , 且
DF∥AB,BE=DF.求证 :△BED≌△ DFC
5、已知 : 如图 ,AB=AC,AE平分∠ BAC.求证 : ∠ DBE=∠ DCE.
第2 题
第 5 题
3、已知 : 如图 ,AC=AB,AE=AD,∠1=∠2. 求证 : ∠ 3=∠4
6、已知:如图,AB=CD , AE=DF , AB∥CD.D、E、F、A在同一条直线上。
第 3 题求证:△ ABE≌△ DCF
9、已知 : 如图 , AC=DF,AC∥ FD,AB=DE,求证 : △ABC≌△ DEF
7、已知 : 如图 , ∠1=∠2,BD=CD,求证 :AD是∠ BAC的平分线.第9题
10、已知 : 如图 , 点B,E,C,F 在同一直线上 ,AB∥DE,且AB=DE,BE=CF.
求证 :AC∥DF
第7 题
第 10 题8、已知 : 如图 ,AD是 BC上的中线 , 且DF=DE.求证 :BE∥ CF.
11、已知:如图,四边形ABCD中, AB∥ CD , AD∥ BC.求证:△ ABD≌△ CDB
第8 题
第11 题
12、如图,点C是 AB中点, CD∥BE,且 CD=BE,试探究A D与 CE的关系。
A
C D
E
B
第 12 题。