中考专题:锐角三角函数

合集下载

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)-2022-2023学年九年级

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)-2022-2023学年九年级

专题28.17 锐角三角函数(中考常考考点专题)(基础篇)(专项练习)一、单选题【类型一】锐角三角函数【考点一】(正弦✮✮余弦✮✮正切)概念➽➸辨析1.(2022·吉林长春·中考真题)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A ,变幅索的底端记为点B ,AD 垂直地面,垂足为点D ,BC AD ⊥,垂足为点C .设ABC α∠=,下列关系式正确的是( )A .sin AB BC α= B .sin BC AB α= C .sin AB AC α=D .sin AC AB α= 2.(2022·湖北湖北·模拟预测)如图,在Rt ABC △中,BD 是斜边AC 上的高,AB BC ≠,则下列比值中等于sin A 的是( ).A .AD AB B .BD ADC .BD BC D .DC BC【考点二】角➽➸(正弦✮✮余弦✮✮正切)函数值3.(2022·浙江宁波·三模)如图,将ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan A 的值是( )A B C .2 D .124.(2022·福建省厦门第二中学模拟预测)如图,在Rt ABC 中,90,2C BC AC ∠=︒=,则sin B =( )A .12 B .2 C D 【考点三】(正弦✮✮余弦✮✮正切)函数值➽➸求边长5.(2020·四川雅安·中考真题)如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为( )A .8B .12C .D .6.(2022·吉林·长春市赫行实验学校一模)如图要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得50PC =米,44PCA ∠=︒,则小河宽PA 为( )米A .50sin44︒B .50cos44︒C .50tan 44︒D .50tan46︒【类型二】特殊锐角三角函数【考点一】特殊锐角➽➸函数值7.(2016·江苏无锡·中考真题)sin30°的值为( )A .12 B C .2 D 8.(2021·广东深圳·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1【考点二】函数值➽➸特殊锐角9.(2022·河南焦作·()101α+︒=,则锐角α的度数为( )A .40°B .30°C .20°D .10°10.(2021·江苏无锡·一模)已知cos A A =∠是锐角,则A ∠的度数为( ) A .30︒ B .45︒ C .60︒ D .90︒【考点三】混合运算➽➸特殊锐角✮✮二次根式11.(2021·山东泰安·模拟预测)计算:202122sin 60|1(1)2-︒----的结果是( )A .74B .4C .14D .1412.(2021·山东省日照市实验中学二模)计算(tan30°)﹣1﹣2|)0的结果是( )A .6B .12C .2D .2+【考点四】特殊锐角值➽➸判断三角形形状13.(2021·贵州黔西·模拟预测)在ABC 中,若A ∠,B ∠都是锐角,且1sin 2A =,1cos 2B =,则ABC 的形状是( ) A .钝角三角形 B .等腰三角形C .锐角三角形D .直角三角形14.(2020·山东德州·二模)如果△ABC 中,sin A =cos B 2,则下列最确切的结论是( ) A .△ABC 是直角三角形B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形D .△ABC 是锐角三角形【类型三】解直角三角形【考点一】解直角三角形➽➸直接解直角三角形15.(2022·陕西·中考真题)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )A .B .C .D .16.(2022·四川广元·中考真题)如图,在△ABC 中,BC =6,AC =8,△C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .D .103【考点二】解非直角三角形➽➸转化为直角三角形并解之17.(2019·河北石家庄·二模)在东西方向的海岸线上有A ,B 两个港口,甲货船从A 港沿东北方向以5海里/时的速度出发,同时乙货船从B 港口沿北偏西60︒方向出发,2h 后相遇在点P 处,如图所示.问A 港与B 港相距( )海里.A.B . C .10+D .2018.(2019·重庆·一模)缙云山是国家级自然风景名胜区,上周周末,小明和妈妈到缙云山游玩,登上了香炉峰观景塔,从观景塔底中心D 处水平向前走14米到A 点处,再沿着坡度为0.75的斜坡AB 走一段距离到达B 点,此时回望观景塔,更显气势宏伟,在B 点观察到观景塔顶端的仰角为45︒再往前沿水平方向走27米到C 处,观察到观景塔顶端的仰角是22︒,则观景塔的高度DE 为( )(tan22°≈0.4)A .21米B .24米C .36米D .45米【考点三】解不规则图形➽➸构造直角三角形并解之19.(2019·重庆九龙坡·模拟预测)如图是重庆轻轨10号线龙头寺公园站入口扶梯建设示意图.起初工程师计划修建一段坡度为3:2的扶梯AB ,扶梯总长为度大陡,扶梯太长容易引发安全事故.工程师修改方案:修建AC 、DE 两段扶梯,并减缓各扶梯的坡度,其中扶梯AC 和平台CD 形成的ACD ∠为135°,从E 点看D 点的仰角为36.5°,AC 段扶梯长则DE 段扶梯长度约为( )米(参考数据:3sin 36.55︒≈,4cos36.55︒≈,3tan 36.54︒≈)A .43B .45C .47D .4920.(2018·河北·模拟预测)如图(1)是一个六角星的纸板,其中六个锐角都为60°,六个钝角都为120°,每条边都相等,现将该纸板按图(2)切割,并无缝隙无重叠地拼成矩形ABCD .若六角星纸板的面积为2,则矩形ABCD 的周长为( )A .18cmB .C .()cmD .()cm【类型四】解直角三角形的应用【考点一】解直角三角形➽➸仰角✮✮俯角21.(2022·广西贵港·中考真题)如图,某数学兴趣小组测量一棵树CD 的高度,在点A 处测得树顶C 的仰角为45︒,在点B 处测得树顶C 的仰角为60︒,且A ,B ,D 三点在同一直线上,若16m AB =,则这棵树CD 的高度是( )A .8(3B .8(3+C .6(3D .6(3+22.(2021·山东济南·中考真题)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m 的A 处测得试验田右侧出界N 处俯角为43︒,无人机垂直下降40m 至B 处,又测得试验田左侧边界M 处俯角为35︒,则M ,N 之间的距离为(参考数据:tan 430.9︒≈,sin 430.7︒≈,cos350.8︒≈,tan350.7︒≈,结果保留整数)( )A .188mB .269mC .286mD .312m【考点二】解直角三角形➽➸方位角23.(2022·河北·模拟预测)从观测点A 测得海岛B 在其北偏东60°方向上,测得海岛C 在其北偏东80°方向上,若一艘小船从海岛B 出发沿南偏西40°方向以每小时40海里的速度,行驶2小时到C 海岛,则C 海岛到观测点A 的距离是( )A.20海里B.40海里C.60海里D.80海里24.(2022·山东·济南市市中区泉秀学校一模)如图,一艘测量船在A处测得灯塔S在它的南偏东60°方向,测量船继续向正东航行30海里后到达B处,这时测得灯塔S在它的南偏西75°方向,则灯塔S离观测点A的距离是()B.(15)海里A.C.()海里D.【考点三】解直角三角形➽➸坡度坡比25.(2022·贵州毕节·中考真题)如图,某地修建一座高5mBC=的天桥,已知天桥斜面AB的坡度为AB的长度为()A.10m B.C.5m D.26.(2021·湖南衡阳·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为︒≈︒≈︒≈)().(sin370.6,cos370.8,tan370.75A .7.5米B .8米C .9米D .10米【考点四】解直角三角形➽➸其他问题27.(2022·广西·中考真题)如图,某博物馆大厅电梯的截面图中,AB 的长为12米,AB 与AC 的夹角为α,则高BC 是( )A .12sin α米B .12cos α米C .12sin α米D .12cos α米 28.(2022·湖北十堰·中考真题)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB ,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC 长为m ,则大树AB 的高为( )A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m m αα- 二、填空题 【类型一】锐角三角函数【考点一】(正弦✮✮余弦✮✮正切)概念➽➸辨析29.(2022·上海市青浦区教育局二模)小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A 点测得古树顶的仰角为α,向前走了100米到B 点,测得古树顶的仰角为β,则古树的高度为________米.30.(2021·福建厦门·一模)在Rt△ABC中,△C=90°,AC=AB=10,则△B=_____.【考点二】角➽➸(正弦✮✮余弦✮✮正切)函数值31.(2021·四川乐山·三模)如图,在3×3的正方形网格中,A、B均为格点,以点A为圆心,AB长为半径画弧,图中的点C是该弧与网格线的交点.则sin△BAC的值等于_____.32.(2022·湖南益阳·中考真题)如图,在Rt△ABC中,△C=90°,若sin A=45,则cos B=_____.【考点三】(正弦✮✮余弦✮✮正切)函数值➽➸求边长33.(2022·广东深圳·二模)如图,直角ABC中,90C∠=︒,根据作图痕迹,若3cmCA=,3tan4B=,则DE=________cm.34.(2021·湖南邵阳·中考真题)如图,在矩形ABCD 中,DE AC ⊥,垂足为点E .若4sin 5ADE ∠=,4=AD ,则AB 的长为______.【类型二】特殊锐角三角函数【考点一】特殊锐角➽➸函数值35.(2021·西藏·中考真题)计算:(π﹣3)0+(﹣12)﹣2﹣4sin30°=___. 36.(2020·湖南湘潭·中考真题)计算:sin 45︒=________. 【考点二】函数值➽➸特殊锐角37.(2022·陕西·西安辅轮中学三模)若sin(α+15°)=1,则△α等于_____________度. 38.(2020·湖北·武汉二中广雅中学三模)若sin A =12,则tan A =_____. 【考点三】混合运算➽➸特殊锐角✮✮二次根式39.(2022·重庆·模拟预测)计算:sin45°+212-⎛⎫- ⎪⎝⎭=_____.40.(2022·湖北荆门·一模)计算:)02112sin 45()2-+-︒--=________. 【考点四】特殊锐角值➽➸判断三角形形状41.(2020·江苏淮安·三模)在ABC ∆中,若21 02sinA tanB -+⎛ ⎝⎭= ,则ABC ∆是_____三角形.42.(2019·四川自贡·一模)在△ABC 中,(cos A ﹣12)2+|tan B ﹣1|=0,则△C =_____. 【类型三】解直角三角形【考点一】解直角三角形➽➸直接解直角三角形43.(2019·辽宁大连·中考真题)如图,ABC ∆是等边三角形,延长BC 到点D ,使CD AC =,连接AD.若2AB=,则AD的长为_____.44.(2015·广西玉林·中考真题)如图,等腰直角△ABC中,AC=BC,△ACB=90°,点△BOC绕C点顺时针方向旋转到△AQC的位置,则O分斜边AB为BO:OA=1△AQC=___________.【考点二】解非直角三角形➽➸转化为直角三角形并解之45.(2021·湖北武汉·模拟预测)如图是某商场自动扶梯的示意图,自动扶梯AB的倾斜角是30°,在自动扶梯下方地面C处测得扶梯顶端B的仰角是60°,则自动扶梯的垂直高度BD=___________m. 1.732,结果精确到0.1米)46.(2020·安徽阜阳·二模)如图,在一条东西方向笔直的沿湖道路l上有A、B两个游船码头,观光岛屿C在码头A的北偏东60°方向、在码头B的北偏西45°方向,AC=4千米.那么码头A、B之间的距离等于_____千米.(结果保留根号)【考点三】解不规则图形➽➸构造直角三角形并解之47.(2021·湖北湖北·中考真题)如图,某活动小组利用无人机航拍校园,已知无人机的飞行速度为3m/s,从A处沿水平方向飞行至B处需10s,同时在地面C处分别测得A处的仰角为75︒,B处的仰角为30︒.则这架无人机的飞行高度大约是_______m 1.732≈,结果保留整数)48.(2019·辽宁辽阳·中考真题)某数学小组三名同学运用自己所学的知识检测车速,他们将观测点设在一段笔直的公路旁且距公路100米的点A处,如图所示,直线l表示公路,一辆小汽车由公路上的B处向C处匀速行驶,用时5秒,经测量,点B在点A北偏东45°方向上,点C在点A北偏东60°方向上,这段公路最高限速60千米/小时,此车_____(填“超速”或“没有超速”) 1.732)【类型四】解直角三角形的应用【考点一】解直角三角形➽➸仰角✮✮俯角49.(2021·山东烟台·中考真题)数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为______________米.(结果精确到1米, 1.41≈ 1.73)50.(2021·四川乐山·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30︒,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)【考点二】解直角三角形➽➸方位角51.(2022·四川·巴中市教育科学研究所中考真题)一艘轮船位于灯塔P 的南偏东60︒方向,距离灯塔30海里的A 处,它沿北偏东30︒方向航行一段时间后,到达位于灯塔P 的北偏东67︒方向上的B 处,此时与灯塔P 的距离约为________海里.(参考数据:3sin 375︒≈,4cos375≈︒,3tan 374︒≈)52.(2022·辽宁沈阳·二模)如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C 点,此时钓鱼岛A 在船的北偏东30°方向.请问船继续航行______海里与钓鱼岛A 的距离最近.【考点三】解直角三角形➽➸坡度坡比53.(2022·广西柳州·中考真题)如图,某水库堤坝横断面迎水坡的坡角为α,sin α=35,堤坝高BC =30m ,则迎水坡面AB 的长度为 ____m .54.(2021·江苏无锡·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.【考点四】解直角三角形➽➸其他问题55.(2022·山东泰安·中考真题)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).56.(2021·广西梧州·中考真题)某市跨江大桥即将竣工,某学生做了一个平面示意图(如图),点A 到桥的距离是40米,测得△A =83°,则大桥BC 的长度是 ___米.(结果精确到1米)(参考数据:sin83°≈0.99,cos83°≈0.12,tan83°≈8.14)参考答案1.D【分析】根据正弦三角函数的定义判断即可.解:△BC△AC,△△ABC 是直角三角形, △△ABC =α, △sin ACABα=, 故选:D .【点拨】本题考查了正弦三角函数的定义.在直角三角形中任意锐角△A 的对边与斜边之比叫做△A 的正弦,记作sin△A .掌握正弦三角函数的定义是解答本题的关键.2.D【分析】由同角的余角相等求得△A =△DBC ,根据正弦三角函数的定义判断即可; 解:△△ABD +△A =90°,△ABD +△DBC =90°, △△A =△DBC , A .ADAB=cos A ,不符合题意; B .BDAD=tan A ,不符合题意; C .BDBC=cos△DBC =cos A ,不符合题意; D .DCBC=sin△DBC =sin A ,符合题意; 故选: D .【点拨】本题考查了三角函数的概念,掌握直角三角形中锐角的正弦为对边比斜边是解题关键.3.D【分析】首先构造以△A 为锐角的直角三角形,然后利用正切的定义即可求解. 解:连接BD ,如图所示:根据网格特点可知,BD AC ⊥, △90ADB ∠=︒,△BD AD =△在Rt△ABD 中,tan A =BD AD 12=,故D 正确. 故选:D .【点拨】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键.4.C【分析】根据勾股定理,可得AB 与BC 的关系,根据正弦函数的定义,可得答案. 解:△△C =90°,2BC AC =,△AB ,sinAC B AB ==C 正确. 故选:C .【点拨】本题考查了锐角三角函数的定义,先利用勾股定理得出AB 与AC 的关系,再利用正弦函数的定义.5.C【分析】利用正弦的定义得出AB 的长,再用勾股定理求出BC. 解:△sinB=ACAB=0.5, △AB=2AC , △AC=6, △AB=12,故选C.【点拨】本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长. 6.C【分析】在直角三角形APC 中根据△PCA 的正切函数可求小河宽P A 的长度. 解:△P A △PB , △△APC =90°,△PC =50米,△PCA =44°,△tan44°=PA PC,△小河宽P A=PCtan△PCA=50•tan44°米.故选:C.【点拨】本题考查了解直角三角形的应用,解直角三角形的一般过程是:△将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).△根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.7.A【分析】根据特殊角的三角函数值求解即可.解:sin30°=12故答案为:A.【点拨】本题考查了锐角三角函数的问题,掌握特殊角的三角函数值是解题的关键.8.C【分析】直接利用特殊角的三角函数值、绝对值的性质分别化简得出答案.解:|1tan60||11-︒==故选C.【点拨】此题主要考查了特殊角的三角函数值,绝对值的性质等知识,正确化简各数是解题关键.9.C【分析】根据特殊角的三角函数值求解即可.解:(α+10°)=1,△tan(α+10°)△α为锐角,△α+10°=30°,α=20°.故选C.【点拨】熟记特殊角的三角函数值是解答此题的关键.10.A【分析】根据特殊角的三角函数值以及三角函数的定义,即可得到答案.解:△cos A A =∠是锐角, △A ∠=30°, 故选A .【点拨】本题主要考查锐角三角函数,掌握特殊角三角函数值是解题的关键. 11.A【分析】原式利用特殊角的三角函数值,绝对值的代数意义,乘方的意义,以及负整数指数幂法则计算即可得到结果.解:原式121)(1)4=--- 1114=+-74=. 故选:A .【点拨】本题考查实数的运算,掌握运算顺序是解决为题的关键,先乘方、再乘除、最后加减,注意牢记特殊角的三角函数值.12.D【分析】原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则,绝对值的代数意义,以及立方根定义计算即可求出值.解:原式=1-⎝⎭﹣(2+3+1=. 故选:D .【点拨】本题考查实数的运算,掌握正确的运算顺序是解决问题的关键. 13.D【分析】根据特殊角的三角函数值可判断30A ∠=︒,=60B ∠︒,从而可求出90C ∠=︒,即证明ABC 的形状是直角三角形.解:△A ∠,B ∠都是锐角,且1sin 2A =,1cos 2B =, △30A ∠=︒,=60B ∠︒,△180180306090C A B ∠=︒-∠-∠=︒-︒-︒=︒,△ABC 的形状是直角三角形. 故选D .【点拨】本题考查由特殊角的三角函数值判断三角形形状,三角形内角和定理.熟记特殊角的三角函数值是解题关键.14.C解:△sin A =cos B , △△A =△B =45°,△△ABC 是等腰直角三角形. 故选:C . 15.D【分析】先解直角ABC 求出AD ,再在直角ABD △中应用勾股定理即可求出AB . 解:△26BD CD ==, △3CD =,△直角ADC 中,tan 2C ∠=, △tan 326AD CD C =⋅∠=⨯=,△直角ABD △中,由勾股定理可得,AB = 故选D .【点拨】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.16.A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.解:由题意得:MN 垂直平分AD ,6BD BC ==, △1,902AF AD AFE =∠=︒, △BC =6,AC =8,△C =90°,△10AB =,△AD =4,AF =2,4cos 5AC AF A AB AE ∠===, △5cos 2AF AE A ==∠; 故选A .【点拨】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.17.B【分析】先作PC AB ⊥于点C ,根据甲货船从A 港沿东北的方向以5海里/小时的速度出发,求出PAC ∠和AP ,从而得出PC 的值,得出BC 的值,即可求出答案.解:作PC AB ⊥于点C ,甲货船从A 港沿东北的方向以5海里/小时的速度出发,45PAC ∴∠=︒,5210AP =⨯=,PC AC ∴==乙货船从B 港沿西北方向出发,60PBC ∴∠=︒,BC ∴=AB AC BC ∴=+=,答:A 港与B 港相距海里,故选:B .【点拨】本题考查了解直角三角形的应用-方向角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识求解.本题要注意关键词:在东西方向的海岸线上有A ,B 两个港口.18.A【分析】作BN DA ⊥交DA 的延长线于N ,延长CB 交DE 于M ,则四边形DMBN 是矩形,根据AB 的坡度,设3,4,BN k AN k ==表示出144,3,MB DN k DM BN k ==+==414,CM k =+在Rt EBM 中,144,EM BM k ==+ 在Rt ECM 中, 根据tan 0.4,EM C CM == 列出式子,求出k 的值,即可求解.解:如图,作BN DA ⊥交DA 的延长线于N ,延长CB 交DE 于M ,则四边形DMBN 是矩形,:3:4,BN AN =可以假设3,4,BN k AN k ==则,144,3,MB DN k DM BN k ==+== 414,CM k =+在Rt EBM 中, 90,45,EMB EBM ∠=∠=144,EM BM k ∴==+在Rt ECM 中, tan 0.4,EM C CM== 1440.4,414k k +∴=+ 解得:1,k =3,18,DM EM ∴==21.DE DM EM =+=答:观景塔的高度DE 为21米.故选A.【点拨】考查解直角三角形,坡度问题,熟练掌握锐角三角函数是解题的关键.19.B【分析】首先构建直角三角形,然后利用三角函数值得出DG ,即可得解.解:作AH△EB 于H ,延长DC 交AH 于N ,作DG△EB 于G ,如图所示:△△ACD=135°△△ACN=45°在Rt△ACN 中,AC=△ACN=45°△AN=CN=18在Rt△ABH 中,AB=AH :BH=3:2,设3,2AH k BH k ==△()()(22232k k +=解得15k =或15k =-(不符合题意,舍去)△AH=45△HN=AH -AN=45-18=27△四边形DGHN 是矩形△DG=HN=27在Rt△DEG 中,sin sin 36.5DG DEB DE ︒==∠ △274535DE ≈≈故选:B.【点拨】此题主要考查锐角三角函数的实际应用,熟练掌握,即可解题.20.D【分析】过点E 作EF△AB 于点F ,设AE=x cm ,则AD=3x ,则=AB ,然后利用AB•AD=x 的值,即可得到AD,AB 的长度,则周长可求.解:如图,过点E 作EF△AB 于点F ,△六个锐角都为60°,六个钝角都为120°,△设AE=x cm ,则AD=3x ,△△AEB=120°,△△EAB=30°,△AB=2AF=2cos30x︒,△六角星纸板的面积为2,△AB•AD=3393x x=解得x△AD=AB=3,△矩形ABCD的周长=3)26)⨯=cm.故选:D.【点拨】本题主要考查解直角三角形和一元二次方程的应用,掌握特殊角的三角函数值,利用方程的思想是解题的关键.21.A【分析】设CD=x,在Rt△ADC中,△A=45°,可得CD=AD=x,BD=16-x,在Rt△BCD 中,用△B的正切函数值即可求解.解:设CD=x,在Rt△ADC中,△A=45°,△CD=AD=x,△BD=16-x,在Rt△BCD中,△B=60°,△tanCDBBD =,即:16xx= -解得8(3x=,故选A.【点拨】本题考查三角函数,根据直角三角形的边的关系,建立三角函数模型是解题的关键.22.C【分析】根据题意易得OA△MN,△N=43°,△M=35°,OA=135m,AB=40m,然后根据三角函数可进行求解.解:由题意得:OA△MN,△N=43°,△M=35°,OA=135m,AB=40m,△95mOB OA AB=-=,△135==150mtan0.9OAONN=∠,95=136mtan0.7OBOMM=≈∠,△286mMN OM ON=+=;故选C.【点拨】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.23.D【分析】利用平行线性质得出:△ABD=△EAB=60°,进而得出△ABC=△BAC=20°,得出BC=AC,进而得出答案.解:由题意可得出:△EAC=80°,△EAB=60°,△DBC=40°,BC=40×2=80(海里),△△BAC=80°-60°=20°,△BCA=60°,△AE△BD,△△ABD=△EAB=60°,△△DBC=40°,△△ABC=60°-40°=20°,△△ABC=△BAC=20°,△BC=AC=80(海里).△C海岛到观测点A的距离是80海里.故选D.【点拨】本题主要考查了解直角三角形的应用,利用方向角得出BC=AC是解题的关键.24.B【分析】题中利用特殊角度,做辅助线过S作SC△AB于C,在AB上截取CD=AC,设CS=x+2x=AB,可得:x,可知AS=(15)海里.解:过S作SC△AB于C,在AB上截取CD=AC,△AS =DS ,△△CDS =△CAS =30°,△△ABS =15°,△△DSB =15°,△SD =BD ,设CS =x 海里,在Rt △ASC 中,△CAS =30°,△AC(海里),AS =DS =BD =2x (海里),△AB =30海里,+2x =30,解得:x △AS =(15)海里.故选:B .【点拨】本题主要考查方位角问题,熟练运用特殊角三角函数是解题的关键.25.A【分析】直接利用坡度的定义得出AC 的长,再利用勾股定理得出AB 的长.解:△i =5BC m =, △5BC AC AC ==解得:AC =,则10AB m =.故选:A .【点拨】本题考查解直角三角形和勾股定理的实际应用.由坡度的定义得出AC 的长是解答本题的关键. 26.D【分析】结合题意,根据三角函数的性质计算,即可得到答案.解:根据题意,得:sin 370.6BC AB ︒=≈ △6BC =米 △6100.60.6BC AB ===米 故选:D .【点拨】本题考查了三角函数的知识;解题的关键是熟练掌握三角函数的性质,从而完成求解.27.A【分析】在Rt △ACB 中,利用正弦定义,sin α=BC AB ,代入AB 值即可求解. 解:在Rt △ACB 中,△ACB =90°,△sin α=BC AB, △BC = sin α⋅AB =12 sin α(米),故选:A .【点拨】本题考查解直角三角形的应用,熟练掌握直角三角形边角关系是解题的关键.28.A【分析】应充分利用所给的α和45°在树的位置构造直角三角形,进而利用三角函数求解.解:如图,过点C 作水平线与AB 的延长线交于点D ,则AD △CD ,△△BCD =α,△ACD =45°.在Rt △CDB 中,CD =m cos α,BD =m sin α,在Rt △CDA 中,AD =CD ×tan45°=m ×cos α×tan45°=m cos α,△AB =AD -BD=(m cos α-m sin α)=m (cosα-sin α).故选:A .【点拨】本题考查锐角三角函数的应用.需注意构造直角三角形是常用的辅助线方法,另外,利用三角函数时要注意各边相对.29.100tan tan tan tan αββα- 【分析】由正切的定义分别确定tan ,tan αβ的表达式,进而联立成方程组,求解方程组即可得到答案.解:如图,CD 为树高,点C 为树顶,则,CAD CBD αβ∠=∠=,BD =AD -100△依题意,有tan tan 100CD AD CD AD αβ⎧=⎪⎪⎨⎪=⎪-⎩①② 由△得tan CDAD α=③将△代入△,解得100tan tan =tan tan CD αββα- 故答案为:100tan tan tan tan αββα-. 【点拨】本题考查正切的定义,二元一次方程组得应用,能依题意根据正切的定义列出方程组是解题的关键.30.60°【分析】利用正弦定义计算即可.解:如图,△sinB =AC AB == △△B =60°,故答案为:60°.【点拨】此题主要考查了解直角三角形,关键是掌握正弦定义.31.23【分析】利用CD ∥AB ,得到△BAC =△DCA ,根据同圆的半径相等,AC =AB =3,可得sin△ACD =AD AC =23,从而可得答案. 解:如图:△CD ∥AB ,△△BAC =△DCA .△同圆的半径相等,△AC =AB =3.在Rt ACD △中,sin△ACD =23AD AC . △sin△BAC =sin△ACD =23.故答案为:23.【点拨】此题考查了解直角三角形的应用,解题的关键是利用图形的性质进行角的等量代换.32.45【分析】根据三角函数的定义即可得到cos B =sin A =45. 解:在Rt△ABC 中,△C =90°,△sin A =BC AB =45, △cos B =BC AB =45. 故答案为:45. 【点拨】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若△A +△B =90°,则sin A =cos B ,cos A =sin B .熟知相关定义是解题关键.33.158【分析】先解直角三角形ABC 求出BC 的长,从而求出AB 的长,再由作图方法可知DE 是线段AB 的垂直平分线,即可得到BE 的长,再解直角△BED 即可得到答案.解:△△C =90°,AC =3cm ,3tan =4B , △3tan ==4AC B BC , △BC =4cm ,△AB ,由作图方法可知DE 是线段AB 的垂直平分线,△DE △AB ,522AB AE BE cm ===, △3tan =4DE B BE =, △31548DE BE cm ==, 故答案为:158. 【点拨】本题主要考查了锐角三角函数,勾股定理,线段垂直平分线的性质,线段垂直平分线的尺规作图,正确理解DE 是线段AB 的垂直平分线是解题的关键.34.3【分析】在Rt ADE △中,由正弦定义解得165AE =,再由勾股定理解得DE 的长,根据同角的余角相等,得到sin sin ADE ECD ∠=∠,最后根据正弦定义解得CD 的长即可解题.解:在Rt ADE △中,4sin 5AE ADE AD ∠==165AE ∴=125DE ∴=== DE AC ⊥90ADE EDC EDC ECD ∴∠+∠=∠+∠=︒ADE ECD ∴∠=∠4sin sin 5DE ADE ECD CD ∴∠=∠== 534CD DE ∴=⋅= 在矩形ABCD 中,3AB CD ==故答案为:3.【点拨】本题考查矩形的性质、正弦、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.35.3【分析】直接利用零指数幂的性质以及负整数指数幂的性质、特殊角的三角函数值分别化简得出答案.解:原式=1+4﹣4×12=1+4﹣2=3.故答案为:3.【点拨】此题主要考查了负整数指数幂的性质、特殊角的三角函数值、零指数幂的性质,正确化简各数是解题关键.36【分析】根据特殊角的三角函数值直接书写即可.解:sin 45︒=. 【点拨】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.【分析】直接利用特殊角的三角函数值即可求解.解:△sin (α+15°)=1,△α+15°=90°,△α=75°,故答案为:75.【点拨】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.38 【分析】先根据特殊角的三角函数值求出△A 的度数,然后求出tanA 的值.解:△sinA =12,△△A =30°,则tanA【点拨】本题考查了对特殊角的三角函数值的应用,解题的关键是检查学生能否熟练地运用进行计算.394##42+ 【分析】根据特殊角的三角函数值和负整数指数幂的运算法则进行计算即可.解:sin45°+2142-⎛⎫-= ⎪⎝⎭,+4.【点拨】本题考查了特殊角的三角函数值和负整数指数幂,相关公式有:sin 452=°,()10p pa a a -=≠. 403【分析】根据绝对值的性质、零指数幂的性质、特殊角的三角函数值、负指数幂的性质即可求解.解:原式124=-14=3=.3.【点拨】本题主要考查了绝对值的性质、零指数幂的性质、特殊角的三角函数值、负指数幂的性质.41.等腰【分析】根据绝对值和平方的非负性求出sinA和tanB的值,再根据锐角三角函数的特殊值求出△A和△B的角度,即可得出答案.解:△210 2sinA tanB-+⎛⎝⎭=△12sinA=,tanB=△△A=30°,△B=30°△△ABC是等腰三角形故答案为等腰.【点拨】本题考查的是特殊三角函数值,比较简单,需要牢记特殊三角函数值. 42.75°.【分析】先根据非负数的性质确定cosA=12,tanB=1,再根据特殊角的三角函数解答.解:△(cos A﹣12)2+|tan B﹣1|=0,△cos A﹣12=0,tan B﹣1=0,则cos A=12,tan B=1,△△A=60°,△B=45°,△△C=180°﹣60°﹣45°=75°.故答案为75°.【点拨】熟记特殊角的三角函数值是解题的关键,同时还考查了三角形内角和定理43.【分析】AB=AC=BC=CD,即可求出△BAD=90°,△D=30°,解直角三角形即可求得.解:△ABC∆是等边三角形,△60B BAC ACB︒∠=∠=∠=,△CD AC=,。

中考数学-锐角三角函数(解析版)

中考数学-锐角三角函数(解析版)
专题 28 锐角三角函数
知识点一:锐角三角函数 1.三角函数定义 在 Rt△ABC 中,若∠C=90°
sin A A的对边 a
斜边
c
A的邻边
b
cos A
斜边
c
A的对边
a
tan A A的邻边 b
A的邻边
b
cot A A的对边 a
2.同角三角函数的关系
(1)平方关系: sin2 Acos2 A1
(1)三边之间的关系为 a2 b2 c2 (勾股定理)
(2)锐角之间的关系为∠A+∠B=90°
(3)30°角所对直角边等于斜边的一半。
(4)直角三角形斜边上的中线等于斜边的一半。
(5)边角之间的关系为:(三角函数定义)
2.其他有关公式
(1)
S
1 2
ab sin C
=
1 2
bc sin
A
=
1 2
ac sin
B
(2)Rt△面积公式:
S
1 2
ab
1 2
ch
(3)直角三角形外接圆的半径
R c 2
,内切圆半径
r abc 2
结论:直角三角形斜边上的高 h ab c
3.实际问题中术语的含义
(1)仰角与俯角
在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角。
(2)坡度:如图,我们通常把坡面的铅直高度和水平宽度的比叫做坡度(或坡比),用字母 i 表示,即 i h . l
见问题,这也是以后中考命题的趋势。 5.解决实际问题的关键在于建立数学模型,要善于把实际问题的数量关系转化为解直角三角形的问题.在 解直角三角形的过程中,常会遇到近似计算,应根据题目要求的精确度定答案.

知识必备09 锐角三角函数(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备09 锐角三角函数(公式、定理、结论图表)-2023年中考数学知识梳理+思维导图

知识必备09锐角三角函数(公式、定理、结论图表)考点一、锐角三角函数的概念如图所示,在Rt△ABC中,∠C=90°,∠A所对的边BC记为a,叫做∠A的对边,也叫做∠B的邻边,∠B所对的边AC记为b,叫做∠B的对边,也是∠A的邻边,直角C所对的边AB记为c,叫做斜边. 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即;锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即.同理;;.要点诠释: (1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化. (2)sinA,cosA,tanA分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin与∠A,cos与∠A,tan与∠A的乘积.书写时习惯上省略∠A的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan∠AEF”,不能写成“tanAEF”;另外,、、常写成、、. (3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在. (4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA>0.典例1:(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.【点评】本题主要考查了锐角三角函数,熟练掌握勾股定理和锐角三角函数的定义是解答本题的关键.考点二、特殊角的三角函数值 利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下:要点诠释: (1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角. (2)仔细研究表中数值的规律会发现: 、、、、的值依次为0、、、、1,而、、、、的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时, ①正弦、正切值随锐角度数的增大(或减小)而增大(或减小) ②余弦值随锐角度数的增大(或减小)而减小(或增大).典例2:(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.【点评】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,; (2)平方关系:; (3)倒数关系:或; (4)商数关系:. 要点诠释: 锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有: ①三边之间的关系:a2+b2=c2(勾股定理). ②锐角之间的关系:∠A+∠B=90°. ③边角之间的关系: ,,, ,,. ④,h 为斜边上的高.要点诠释: (1)直角三角形中有一个元素为定值(直角为90°),是已知的值. (2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤两直角边(a ,b)由求∠A ,∠B=90°-∠A ,两边斜边,一直角边(如c,a)由求∠A ,∠B=90°-∠A ,锐角、邻边(如∠A ,b)∠B=90°-∠A ,,一直角边和一锐角锐角、对边(如∠A ,a)∠B=90°-∠A ,,Rt △ABC一边一角斜边、锐角(如c ,∠A)∠B=90°-∠A ,,要点诠释: 1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算. 2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.典例3:(2022•丹东)如图,AB是⊙O的直径,点E在⊙O上,连接AE和BE,BC平分∠ABE交⊙O于点C,过点C作CD⊥BE,交BE的延长线于点D,连接CE.(1)请判断直线CD与⊙O的位置关系,并说明理由;(2)若sin∠ECD=,CE=5,求⊙O的半径.【分析】(1)结论:CD是⊙O的切线,证明OC⊥CD即可;(2)设OA=OC=r,设AE交OC于点J.证明四边形CDEJ是矩形,推出CD=EJ=4,CJ=DE=3,再利用勾股定理构建方程求解.【解答】解:(1)结论:CD是⊙O的切线.理由:连接OC.∵OC=OB,∴∠OCB=∠OBC,∵BC平分∠ABD,∴∠OBC=∠CBE,∴∠OCB=∠CBE,∴OC∥BD,∵CD⊥BD,∴CD⊥OC,∵OC是半径,∴CD是⊙O的切线;(2)设OA=OC=r,设AE交OC于点J.∵AB是直径,∴∠AEB=90°,∵OC⊥DC,CD⊥DB,∴∠D=∠DCJ=∠DEJ=90°,∴四边形CDEJ是矩形,∴∠CJE=90°,CD=EJ,CJ=DE,∴OC⊥AE,∴AJ=EJ,∵sin∠ECD==,CE=5,∴DE=3,CD=4,∴AJ=EJ=CD=4,CJ=DE=3,在Rt△AJO中,r2=(r﹣3)2+42,∴r=,∴⊙O的半径为.【点评】本题考查解直角三角形,切线的判定,垂径定理,矩形的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型. (2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念: (1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°. (4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释: 1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如: 3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 典例4:(2022•黑龙江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,山高为( )米A.600﹣250B.600﹣250C.350+350D.500【分析】设EF=5x米,根据坡度的概念用x表示出BF,根据勾股定理求出x,根据正切的定义列出方程,解方程得到答案.【解答】解:设EF=5x米,∵斜坡BE的坡度为5:12,∴BF=12x米,由勾股定理得:(5x)2+(12x)2=(1300)2,解得:x=100,则EF=500米,BF=1200米,由题意可知,四边形DCFE为矩形,∴DC=EF=500米,DE=CF,在Rt△ADE中,tan∠AED=,则DE==AD,在Rt△ACB中,tan∠ABC=,∴=,解得:AD=600﹣750,∴山高AC=AD+DC=600﹣750+500=(600﹣250)米,故选:B.【点评】本题考查的是解直角三角形的应用—坡度坡角问题,掌握坡度是坡面的铅直高典例5:(2022•湖北)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C 点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).【分析】过点D作DE⊥AB于点E,则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,进而可得出答案.【解答】解:过点D作DE⊥AB于点E,如图.则BE=CD=6m,∠ADE=45°,∠ACB=58°,在Rt△ADE中,∠ADE=45°,设AE=xm,则DE=xm,∴BC=xm,AB=AE+BE=(6+x)m,在Rt△ABC中,tan∠ACB=tan58°=≈1.60,解得x=10,∴AB=16m.故答案为:16.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数的定义是解答本题的关键典例6:(2022•资阳)小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15°方向上,他沿西北方向前进100米后到达点D,此时测得点A在他的东北方向上,端点B在他的北偏西60°方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)【分析】(1)根据方位角图,易知∠ACD=60°,∠ADC=90°,解Rt△ADC即可求解;(2)过点D作DE⊥AB于点E.分别解Rt△ADE,Rt△BDE求出AE和BE,即可求出隧道AB的长.【解答】解;(1)由题意可知:∠ACD=15°+45°=60°,∠ADC=180°﹣45°﹣45°=90°,在Rt△ADC中,∴(米),答:点D与点A的距离为300米.(2)过点D作DE⊥AB于点E,∵AB是东西走向,∴∠ADE=45°,∠BDE=60°,在Rt△ADE中,∴(米),在Rt△BDE中,∴(米),∴(米),答:隧道AB的长为米.【点评】本题考查了解直角三角形的应用﹣方向角问题,掌握方向角的概念,掌握特殊角的三角函数值是解题的关键.考点七、解直角三角形相关的知识如图所示,在Rt△ABC中,∠C=90°,(1)三边之间的关系:;(2)两锐角之间的关系:∠A+∠B=90°;(3)边与角之间的关系:,,,.(4)如图,若直角三角形ABC中,CD⊥AB于点D,设CD=h,AD=q,DB=p,则由△CBD∽△ABC,得a2=pc;由△CAD∽△BAC,得b2=qc;由△ACD∽△CBD,得h2=pq;由△ACD∽△ABC或由△ABC面积,得ab=ch.(5)如图所示,若CD是直角三角形ABC中斜边上的中线,则①CD=AD=BD=AB;②点D是Rt△ABC的外心,外接圆半径R=AB.(6)如图所示,若r是直角三角形ABC的内切圆半径,则.直角三角形的面积:①如图所示,.(h为斜边上的高)②如图所示,.典例7:(2022•黄石)我国魏晋时期的数学家刘徽首创“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”,即通过圆内接正多边形割圆,从正六边形开始,每次边数成倍增加,依次可得圆内接正十二边形,内接正二十四边形,….边数越多割得越细,正多边形的周长就越接近圆的周长.再根据“圆周率等于圆周长与该圆直径的比”来计算圆周率.设圆的半径为R,图1中圆内接正六边形的周长l6=6R,则π≈=3.再利用圆的内接正十二边形来计算圆周率,则圆周率π约为( )A.12sin15°B.12cos15°C.12sin30°D.12cos30°【分析】利用圆内接正十二边形的性质求出A6A7=2A6M=2R×sin15°,再根据“圆周率等于圆周长与该圆直径的比”,即可解决问题.【解答】解:在正十二边形中,∠A6OM=360°÷24=15°,∴A6M=sin15°×OA6=R×sin15°,∵OA6=OA7,OM⊥A6A7,∴A6A7=2A6M=2R×sin15°,∴π≈=12sin15°,故选:A.【点评】本题主要考查了圆内接多边形的性质,解直角三角形等知识,读懂题意,计算出正十二边形的周长是解题的关键.。

中考复习: 锐角三角函数

中考复习: 锐角三角函数

中考复习:锐角三角函数知识梳理一、锐角三角函数(正弦、余弦、正切)1、定义:在Rt △ABC 中,∠C =90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sinc ), 记作sin A ,即sin A aA c∠==的对边斜边。

把∠A 的邻边与斜边的比叫做∠A 的余弦(cosine ),记作cos A ,即;把∠A 的对边与邻边的比叫做∠A 的正切(tangent ),记作tan A ,即。

锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数(trigonometric function of acute angle )。

当锐角A 的大小确定时,∠A 的对边与斜边的比(正弦)、∠A 的邻边与斜边的比(余弦)、∠A 的对边与邻边的比(正切)分别是确定的。

2、增减性:在0°到90°之间,正弦值、正切值随着角度的增大而增大,余弦随着角度的增大而减小。

3、取值范围:当∠A 为锐角时,三角函数的取值范围是:0<sin A <1,0<cos A <1,tan A >0。

4、互余两角的函数关系:如果两角互余,则其中一有的正弦等于另一角的余弦,即:若α是一个锐角,则sin α=cos (90°-α),cos α=sin (90°-α)。

5、正、余弦的平方关系:sin 2α+ cos 2α=1。

二、300、450、600的正弦值、余弦值和正切值如下表:三、解直角三角形bcos c A A ∠==的邻边斜边atan bA A A ∠=∠的对边=的邻边C ∠A 的邻边b∠A 的对边a在直角三角形中,由已知元素求未知元素的过程就是解直角三角形。

1、在Rt△ABC 中,∠C=90°,设三个内角A 、B 、C 所对的边分别为a 、b 、c (以下字母同),则解直角三角形的主要依据是:(1)边角之间的关系: sinA =cosB =a c , cosA =sinB =bc,tanA =cotB =a b ,cotA =tanB =b a。

中考数学锐角三角函数(共56张PPT)

中考数学锐角三角函数(共56张PPT)

二、填空题
(1)求旋转木马E处到出口B处的距离; (2)求海洋球D处到出口B处的距离.(结果保留整数)
解:(1) ∵AE=80,∠BAE=30°,∠ABE =90°, ∴BE=AEsin30°=80× =40(m). 答:旋转木马E处到出口B处的距离为40 m.
(2) ∵∠CED=∠AEB,∠DCE=∠ABE =90°,
∴∠D=∠BAE=30°.
∵CD=34 m,
∴DE=
=
=
(m).
∴DB=BE+DE=
≈40+
≈79(m).
答:海洋球D处到出口B处的距离为79 m.
二、填空题
11. 小明在某次作业中得到如下结果: sin27°+ sin283°≈0.122+0.992=0.9945; sin222°+ sin268°≈0.372+0932=1.0018; sin229°+ sin261°≈0.482+0.872=0.9873; sin237°+ sin253°≈0.602+0.802=1.0000;
二、填空题
9. (2017北京)计算:4cos30°+
原式=4× +1-
+2
=
+1- +2=3.
-
+
.
10.(2017湘潭)某游乐场部分平面图如图Z2816所示,点C,E,A在同一直线上,点D,E,B在 同一直线上,测得A处与E处的距离为80 m, C处与D处的距离为34 m,∠C=90°,∠ABE =90°,∠BAE=30°. (2≈1.4,3≈1.7)
图Z28-7
A.
m
B.
m

(完整版)中考专题锐角三角函数

(完整版)中考专题锐角三角函数

中考专题锐角三角函1。

如图,数学活动小组来到校园内的一盏路灯下测量路灯的高度,测角仪AB 的高度为1。

5米,测得仰角α为30,点B 到电灯杆底端N 的距离BN 为10米,求路灯的高度MN 是多少米?(取2=1.414,3=1。

732,结果保留两位小数)2。

某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C 测得教学楼AB 的顶点A 的仰角为30°,然后向教学楼前进60米到达点D ,又测得点A 的仰角为45°.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)3.三楚第一山——东方山是黄石地区的佛教圣地,也是国家AAA 级游览景区.它的主峰海拔约为600米,主峰AB 上建有一座电信信号发射架BC ,现在山脚P 处测得峰顶的仰角为α,发射架顶端的仰角为β,其中35tan tan 58αβ==,,求发射架高BC .4.如图,小芸在自家楼房的窗户A 处,测量楼前的一棵树CD 的高. 现测得树顶C 处的俯角为45°,树底D 处的俯角为60°,楼底到大树的距离BD 为20米。

请你帮助小芸计算树的高度(精确到0。

1米).αNBA P MCB Pα β米山顶 发射架 ABCD5.在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰角37CGE ∠=°,已知测倾器高1.5米,请你根据以上数据计算出古塔CD 的高度.(参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈)6。

如,在边长为1的小正方形组成的网格中,ABC △的三个顶点均在格点上,请按要求完成下列各题: (1)用签字笔...画AD ∥BC (D 为格点),连接CD ; (2)线段CD 的长为 ;(3)请你在ACD △的三个内角中任选一个锐角..,若你所选的 锐角是 ,则它所对应的正弦函数值是 . (4) 若E 为BC 中点,则tan ∠CAE 的值是 。

2024年中考数学考点必备知识必备13 锐角三角函数及其应用(原卷版)

2024年中考数学考点必备知识必备13 锐角三角函数及其应用(原卷版)

知识必备13锐角三角函数及其应用易错点1.涉及锐角三角函数的概念时,是否明确“对边”“邻边”“斜边”都是在“直角三角形”中.一.选择题(共3小题)1.(2023•青岛三模)如图,在正方形网格中,每个小正方形的边长均是1,ABC 的顶点均在小正方形的顶点上,则sin BAC 的值为()A .34B .45C .35D .432.(2023•泉港区模拟)已知A 是锐角ABC 的内角,3sin 5A,则cos A 的值是()A .25B .35C .45D .533.(2023•宿城区校级模拟)如图,点A 、B 、C 均在44 的正方形网格的格点上,则tan (BAC )A .13B .14C .15D 5二.填空题(共5小题)4.(2023•茂南区校级模拟)如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则OAB 的正弦值是.5.(2023•西城区校级模拟)在正方形网格中,ABC 的位置如图所示,则sin ABC 为.6.(2023•广陵区校级一模)如图,在ABC 中,1sin 4B ,1tan 2C ,4AB ,则AC 的长为.7.(2023•鼓楼区校级二模)我们给出定义:如果两个锐角的和为45 ,那么称这两个角互为半余角.如图,在ABC 中,A ,B 互为半余角,且223BC AC ,则tan A .8.(2023•富锦市校级一模)等边ABC 中,点D 在射线CA 上,且2AB AD ,则tan DBC 的值为.易错点2.实际问题中对坡角、俯角、仰角与方位角等找不准无法准确理解题意易出错.一.选择题(共3小题)1.(2023•石狮市模拟)如图,线段AB 、CD 分别表示甲、乙建筑物的高,AB MN 于点B ,CD MN 于点D ,两座建筑物间的距离BD 为40m .若甲建筑物的高AB 为20m ,在点A 处测得点C 的仰角 为25 ,则乙建筑物的高CD 约为()(参考数据:sin 250.42 ,cos 250.91 ,tan 250.47)A .36.8mB .38.8mC .40.8mD .56.4m2.(2023•龙岗区二模)港珠澳大桥是世界上最长的跨海大桥,被誉为“现代世界七大奇迹”的超级工程,它是我国从桥梁大国走向桥梁强国的里程碑之作.港珠澳大桥主桥为三座大跨度钢结构斜拉桥,其中九洲航道桥主塔造型取自“风帆”,寓意“扬帆起航”,某校九年级学生为了测量该主塔的高度,站在B 处看塔顶A ,仰角为60 ,然后向后走160米(160BC 米),到达C 处,此时看塔顶A ,仰角为30 ,则该主塔的高度是()A .80米B .3C .160米D .8023.(2023•任丘市模拟)如图,一艘海轮位于灯塔P 的北偏东55 方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 的长是()A .2sin 55 海里B .2sin 55 海里C .2cos55 海里D .2cos55 海里二.填空题(共4小题)4.(2023•香洲区校级三模)如图,无人机A 的探测器显示,从无人机看树顶B 的仰角为30 ,看树底部C 的俯角为60 ,无人机与树的水平距离为6m ,则树高BC 为m (结果保留根号).5.(2023•江汉区校级模拟)如图载人飞船从地面O 处成功发射,当飞船到达点A 时,地面D 处的雷达站测得4000AD 米,仰角为30 ,3秒后,飞船直线上升到达点B 处,此时地面C 处的雷达站测得B 处的仰角为45 .点O ,C ,D 在同一直线上,已知C ,D 两处相距460米,则飞船从A 到B 处的平均速度为米/秒.(结果精确到1米;参考数据:3 1.732 ,2 1.414)6.(2023•石峰区二模)如图,为了测量河宽CD ,先在A 处测得对岸C 点在其北偏东30 方向,然后沿河岸直行到点B ,在B 点测得对岸C 点在其北偏西45 方向,经过计算河宽CD 是30米,则从A 点到B 点的距离为米.(结果保留根号)7.(2023•肇东市模拟)如图,轮船B在码头A的正东方向,与码头A的距离为100海里,轮船B向北航行40海里到达C处时,接到D处一艘渔船发来的求救信号,于是沿北偏西45 方向航行到D处,解救渔船后轮船沿南偏西32 返回到码头A,那么码头A与D的距离为海里.(结果保留整数,参考数据:sin320.5,,cos320.8 .)tan320.6三.解答题(共5小题)8.(2023•扶余市二模)如图,利用板子往卡车里装货,板子与地面成20 ,车高 1.5AB 米.在装货时,突然板子的D处折了,板子的端点D落在地面上的D 处,与地面成32 .(1)求AD 的长度;(2)求被折断的板子CD的长度.(精确到0.1米,参考数据:sin200.34,,cos200.94,tan200.36sin320.53,tan320.62),cos320.859.(2023•仁寿县模拟)为增强体质,小明和小强相约周末去登山,小明同学从北坡山脚C处出发,小强同学同时从南坡山脚B处出发,如图所示.已知小山北坡长为240米,坡度3i 45 .(出发点B和C在同一水平高度,将山路AB、AC看成线段)(1)求小山南坡AB的长;(2)如果小明以每分钟24米的速度攀登,小强若要和小明同时到达山顶A,求小强攀登的速度.(结果保留根号)10.(2023•武陟县三模)金水区开展了“安全行车,方便大家”的活动,某大型连锁超市为了购物者行车安全,对地下车库进行改造.如图,AB BCADCBC 米,现将斜坡的坡角改为15 ,即15(此AB 米,12,测得5时点B、C、D在同一直线上),求斜坡改进后的起点D与原起点C的距离.(参考数据:sin150.26,,cos150.97 ,结果精确到0.1)mtan150.2711.(2023•许昌二模)如图所示,一梯子AC斜靠着墙OD,梯子与地面夹角为45 .若梯子底端A向右水平移动1m 至点B,梯子顶端随之向上移动至点D,此时DBO,2OB m,求CD的长度.(用含 的式子表示)12.(2023•东阿县一模)如图,某巡逻艇在海上例行巡逻,上午10时在C处接到海上搜救中心从B处发来的救援任务,此时事故船位于B处的南偏东25 方向上的A处,巡逻艇位于B处的南偏西28 方向上1260米处,事故船位于巡逻艇的北偏东58 方向上,巡逻艇立刻前往A处救援,已知巡逻艇每分钟行驶120米,请估计几分钟可以到达事故船A处. 1.73,4sin535,3cos535,4tan533.一.解直角三角形(共7小题)1.(2023•陕西)如图,在67 的网格中,每个小正方形的边长均为1.若点A,B,C都在格点上,则sin B的值为()A .21313B .31313C .23D .542.(2023•常州)如图,在Rt ABC 中,90A ,点D 在边AB 上,连接CD .若BD CD ,13AD BD ,则tan B .3.(2023•攀枝花)ABC 中,A 、B 、C 的对边分别为a 、b 、c .已知6a ,8b ,10c ,则cos A 的值为()A .35B .34C .45D .434.(2023•武汉)如图,将45 的AOB 按下面的方式放置在一把刻度尺上,顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数为2cm ,若按相同的方式将37 的AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数是cm (结果精确到0.1cm ,参考数据sin 370.60 ,cos 370.80 ,tan 370.75) .5.(2023•牡丹江)如图,将45 的AOB 按下面的方式放置在一把刻度尺上;顶点O 与尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在尺上的读数恰为2cm ,若按相同的方式将22.5 的AOC 放置在该刻度尺上,则OC 与尺上沿的交点C 在尺上的读数为cm .6.(2023•丹东)如图,在平面直角坐标系中,点O 是坐标原点,已知点(3,0)A ,(0,4)B ,点C 在x 轴负半轴上,连接AB ,BC ,若tan 2ABC ,以BC 为边作等边三角形BCD ,则点C 的坐标为;点D 的坐标为.7.(2023•广元)如图,在平面直角坐标系中,已知点(1,0)A ,点(0,3)B ,点C 在x 轴上,且点C 在点A 右方,连接AB ,BC ,若1tan 3ABC ,则点C 的坐标为.二.解直角三角形的应用(共16小题)8.(2023•内蒙古)如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形.若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为 ,则cos 的值为()A .34B .43C .35D .459.(2023•南充)如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知BAC ,则A ,C 两处相距()A .sin x 米B .cos x 米C .sin x 米D .cos x 米10.(2023•达州)莲花湖湿地公园是当地人民喜爱的休闲景区之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m ,当摆角BOC 恰为26 时,座板离地面的高度BM 为0.9m ,当摆动至最高位置时,摆角AOC 为50 ,求座板距地面的最大高度为多少m ?(结果精确到0.1m ;参考数据:sin 260.44 ,cos 260.9 ,tan 260.49 ,sin 500.77 ,cos500.64 ,tan 50 1.2)11.(2023•湘潭)问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保.明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r的O.如图②,OM始终垂直于水平面,设筒车半径为2米.当0t 时,某盛水筒恰好位于水面A处,此时30,经过95秒后该盛水筒运动到点B处.AOM问题解决:(1)求该盛水筒从A处逆时针旋转到B处时,BOM的度数;(2)求该盛水筒旋转至B处时,它到水面的距离.(结果精确到0.1米)(参考数据2 1.414,3 1.732)12.(2023•成都)为建设美好公园社区,增强民众生活幸福感,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.如图,在侧面示意图中,遮阳篷AB长为5米,与水平面的夹角为16 ,且靠墙端离地高BC为4米,当太阳光线AD 与地面CE的夹角为45 时,求阴影CD的长.(结果精确到0.1米;参考数据:sin160.28,,cos160.96tan160.29)13.(2023•呼和浩特)如图所示,小明上学途中要经过A,B两地,由于A,B两地之间有一片草坪,所以需要走路线AC,CB.小明想知道A,B两地间的距离,测得50B,请帮小明求出两地间,40A,45AC m距离AB的长.(结果用含非特殊角的三角函数和根式表示即可)14.(2023•河南)综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD为正方形,30,AB cm 顶点A处挂了一个铅锤M.如图是测量树高的示意图,测高仪上的点D,A与树顶E在一条直线上,铅垂线AM交.求树EG的高度(结果精确到0.1)m.BH cm,20BC于点H.经测量,点A距地面1.8m,到树EG的距离11AF m15.(2023•绍兴)图1是某款篮球架,图2是其示意图,立柱OA垂直地面OB,支架CD与OA交于点A,支架CG CD交OA于点G,支架DE平行地面OB,篮筐EF与支架DE在同一直线上, 2.5.AGCOA 米,0.8AD 米.32(1)求GAC的度数;(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin320.53,tan320.62),cos320.8516.(2023•贵州)贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB、CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15 ,CD与水平线夹角为45 ,A、B两处的水平距离AE为576m,DF AF,垂足为点F.(图中所有点都在同一平面内,点A、E、F在同一水平线上)(1)求索道AB的长(结果精确到1)m;(2)求水平距离AF的长(结果精确到1)m.(参考数据:sin150.25,2 1.41),cos150.96,tan150.2617.(2023•大连)图1是小明家在利用车载云梯搬运装修垃圾,将其抽象成如图2所示的示意图.已知AB BE,,10.4AC m.求云梯顶端A到地面的CE m, 1.25,垂足分别为B,E,//CD EB,测得70ACDCE BE距离AB的长.(结果取整数.参考数据:sin700.94,tan70 2.75),cos700.3418.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为)H,在B,C处与篮板连接(BC所在直线垂直于)MN,EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD BCGAE,208,测得60DH cm时,点C离地面的高度为288cm.调节伸缩臂EF,将GAE由60 调节为54 ,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6)19.(2023•鞍山)某商店窗前计划安装如图1所示的遮阳棚,其截面图如图2所示,在截面图中,墙面BC 垂直于地面CE ,遮阳棚与墙面连接处点B 距地面高3m ,即3BC m ,遮阳棚AB 与窗户所在墙面BC 垂直,即90ABC BCE ,假设此地正午时太阳光与地面的夹角恰为60 (若经过点A 的光线恰好照射在地面点D 处,则60)ADE ,为使正午时窗前地面上能有1m 宽的阴影区域,即1CD m ,求遮阳棚的宽度AB .(结果精确到0.1m ,参考数据:3 1.73) 20.(2023•锦州)如图1,是某校教学楼正厅一角处摆放的“教学楼平面示意图”展板,数学学习小组想要测量此展板的最高点到地面的高度.他们绘制了图2所示的展板侧面的截面图,并测得120AB cm ,80BD cm ,105ABD ,60BDQ ,底座四边形EFPQ 为矩形,5EF cm .请帮助该数学学习小组求出展板最高点A 到地面PF 的距离.(结果精确到1cm .参考数据:2 1.41 ,3 1.73)21.(2023•威海)如图,某育苗基地为了能够最大限度地遮挡夏季炎热的阳光和充分利用冬天的光照,计划在苗圃正上方搭建一个平行于地面的遮阳篷.已知苗圃的(南北)宽 6.5AB 米,该地区一年中正午时刻太阳光与地平面的最大夹角是76.5DAE,最小夹角是29.5DBE.求遮阳蓬的宽CD和到地面的距离CB.参考数据:49sin29.5100,87cos29.5100,14tan29.525,97sin76.5100,23cos76.5100,21tan76.55.22.(2023•兰州)如图1是我国第一个以“龙”为主题的主题公园——“兰州龙源”,“兰州龙源”的“龙”字主题雕塑以紫铜铸造,如巨龙腾空,气势如虹,屹立在黄河北岸.某数学兴趣小组开展了测量“龙”字雕塑CD高度的实践活动,具体过程如下.如图2,“龙”字雕塑CD位于垂直地面的基座BC上,在平行于水平地面的A处测得38BAC,53BAD,18AB m,求“龙”字雕塑CD的高度.B,C,D三点共线,BD AB,结果精确到0.1)m(参考数据:sin380.62,cos380.79,tan380.78,sin530.80,cos530.60,tan53 1.33)23.(2023•常德)今年“五一”长假期间,小陈、小余同学和家长去沙滩公园游玩,坐在如图的椅子上休息时,小陈感觉很舒服,激发了她对这把椅子的好奇心,就想出个问题考考同学小余,小陈同学先测量,根据测量结果画出了图1的示意图(图2).在图2中,已知四边形ABCD是平行四边形,座板CD与地面MN平行,EBC是等腰三角形且BC CE,114.2FBA,靠背57FC cm,支架43AN cm,扶手的一部分16.4BE cm.这时她问小余同学,你能算出靠背顶端F点距地面()MN的高度是多少吗?请你帮小余同学算出结果(最后结果保留一位小数).(参考数据:sin65.80.91,cos65.80.41,tan65.8 2.23)三.解直角三角形的应用-坡度坡角问题(共4小题)24.(2023•威海)如图,某商场有一自动扶梯,其倾斜角为28 ,高为7米.用计算器求AB 的长,下列按键顺序正确的是()A .B .C .D .25.(2023•深圳)爬坡时坡面与水平面夹角为 ,则每爬1m 耗能(1.025cos )J ,若某人爬了1000m ,该坡角为30 ,则他耗能()(参考数据:3 1.732 ,2 1.414)A .58JB .159JC .1025JD .1732J26.(2023•济南)图1是某越野车的侧面示意图,折线段ABC 表示车后盖,已知1AB m ,0.6BC m ,123ABC ,该车的高度 1.7AO m .如图2,打开后备箱,车后盖ABC 落在AB C 处,AB 与水平面的夹角27B AD .(1)求打开后备箱后,车后盖最高点B 到地面l 的距离;(2)若小琳爸爸的身高为1.8m ,他从打开的车后盖C 处经过,有没有碰头的危险?请说明理由.(结果精确到0.01m ,参考数据:sin 270.454 ,cos 270.891 ,tan 270.510 ,3 1.732)27.(2023•宁夏)如图,粮库用传送带传送粮袋,大转动轮的半径为10cm ,传送带与水平面成30 角.假设传送带与转动轮之间无滑动,当大转动轮转140 时,传送带上点A 处的粮袋上升的高度是多少?(传送带厚度忽略不计)四.解直角三角形的应用-仰角俯角问题(共20小题)28.(2023•湖北)综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面CD的中点A处竖直上升30米到达B处,测得博雅楼顶部E的俯角为45 ,尚美楼顶部F的俯角为30 ,已知博雅楼高度CE为15米,则尚美楼高度DF为米.(结果保留根号)29.(2023•岳阳)2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A处用仪器测得赛场一宣传气球顶部E处的仰角为21.8 ,仪器与气球的水平距离BC为20米,且距地面高度AB为1.5米,则气球顶部离地面的高度EC是米(结果精确到0.1米,sin21.80.3714.,cos21.80.9285,tan21.80.4000)30.(2023•宁波)某综合实践研究小组为了测量观察目标时的仰角和俯角,利用量角器和铅锤自制了一个简易测角仪,如图1所示.(1)如图2,在P点观察所测物体最高点C,当量角器零刻度线上A,B两点均在视线PC上时,测得视线与铅垂线所夹的锐角为 ,设仰角为 ,请直接用含 的代数式表示 .(2)如图3,为了测量广场上空气球A离地面的高度,该小组利用自制简易测角仪在点B,C分别测得气球A的仰角ABD为37 ,ACD,求气球A离地面的高 为45 ,地面上点B,C,D在同一水平直线上,20BC m 度AD.(参考数据:sin370.60,cos370.80,tan370.75)31.(2023•新疆)烽燧即烽火台,是古代军情报警的一种措施,史册记载,夜间举火称“烽”,白天放烟称“燧”.克孜尔尕哈烽燧是古丝绸之路北道上新疆境内时代最早、保存最完好、规模最大的古代烽燧(如图1).某数学兴趣小组利用无人机测量该烽燧的高度,如图2,无人机飞至距地面高度31.5米的A 处,测得烽燧BC 的顶部C 处的俯角为50 ,测得烽燧BC 的底部B 处的俯角为65 ,试根据提供的数据计算烽燧BC 的高度.(参考数据:sin 500.8 ,cos500.6 ,tan 50 1.2 ,sin 650.9 ,cos 650.4 ,tan 65 2.1)32.(2023•长沙)2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把景海鹏、桂海潮、朱杨柱三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O 处发射,当飞船到达A 点时,从位于地面C 处的雷达站测得AC 的距离是8km ,仰角为30 ;10s 后飞船到达B 处,此时测得仰角为45 .(1)求点A 离地面的高度AO ;(2)求飞船从A 处到B 处的平均速度.(结果精确到0.1/km s 3 1.73)33.(2023•菏泽)无人机在实际生活中的应用越来越广泛.如图所示,某人利用无人机测量大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处的俯角为60 ,楼顶C 点处的俯角为30 ,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号).34.(2023•德州)如图,某校综合实践小组在两栋楼之间的水平地面E 处放置一个测角仪,经测量,53AEB ,45CED ,已知60BE 米,20ED 米.求两栋楼楼顶A ,C 之间的距离(参考数据:4sin 535 ,3cos535,4tan 533 ,测角仪的高度忽略不计).35.(2023•襄阳)在襄阳市诸葛亮广场上矗立着一尊诸葛亮铜像.某校数学兴趣小组利用热气球开展综合实践活动,测量诸葛亮铜像的高度.如图,在点C 处,探测器显示,热气球到铜像底座底部所在水平面的距离CE 为32m ,从热气球C 看铜像顶部A 的俯角为45 ,看铜像底部B 的俯角为63.4 .已知底座BD 的高度为4m ,求铜像AB 的高度.(结果保留整数.参考数据:sin 63.40.89 ,cos63.40.45 ,tan 63.4 2.00 2 1.41) .36.(2023•张家界)“游张家界山水,逛七十二奇楼”成为今年旅游新特色.某数学兴趣小组用无人机测量奇楼AB 的高度,测量方案如图:先将无人机垂直上升至距水平地面225m 的P 点,测得奇楼顶端A 的俯角为15 ,再将无人机沿水平方向飞行200m 到达点Q ,测得奇楼底端B 的俯角为45 ,求奇楼AB 的高度.(结果精确到1m ,参考数据:sin150.26 ,cos150.97 ,tan150.27)37.(2023•陕西)小华想利用所学知识测量自家对面的两栋楼AB 与CD 的高度差.如图所示,她站在自家阳台上发现,在阳台的点E 处恰好可经过楼CD 的顶端C 看到楼AB 的底端B ,即点E ,C ,B 在同一直线上.此时,测得点B 的俯角22 ,点A 的仰角16.7 ,并测得48EF m ,50FD m .已知,EF FB ,CD FB ,AB FB ,点F ,D ,B 在同一水平直线上.求楼AB 与CD 的高度差.(参考数据:sin16.70.29 ,cos16.70.96 ,tan16.70.30 ,sin 220.37 ,cos 220.93 ,tan 220.40)38.(2023•青岛)太阳能路灯的使用,既方便了人们夜间出行,又有利于节能减排.某校组织学生进行综合实践活动——测量太阳能路灯电池板的宽度.如图,太阳能电池板宽为AB ,点O 是AB 的中点,OC 是灯杆.地面上三点D ,E 与C 在一条直线上, 1.5DE m ,5EC m .该校学生在D 处测得电池板边缘点B 的仰角为37 ,在E 处测得电池板边缘点B 的仰角为45 .此时点A 、B 与E 在一条直线上.求太阳能电池板宽AB 的长度.(结果精确到0.1m .参考数据:3sin 375 ,4cos375 ,3tan 374 2 1.41)39.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为 ,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30 ,.求河流的宽度CD 线段243AM 米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tan2(结果精确到1米,参考数据:3 1.7).40.(2023•盘锦)如图,一人在道路上骑行,BD段是坡路,其余为平路,当他路过A,B两点时,一架无人机从空中的C点处测得A,B两点的俯角分别为30 和45 ,40BDF,159,点A,B,C,D,AB m,20BD mE,F在同一平面内,CE是无人机到平路DF的距离,求CE的长.(结果精确到整数,参考数据:3 1.73,,tan210.38),cos210.93sin210.3641.(2023•南京)如图,为了测量无人机的飞行高度,在水平地面上选择观测点A,B.无人机悬停在C处,此时在A处测得C的仰角为3652AB m, ;无人机垂直上升5m悬停在D处,此时在B处测得D的仰角为6326.10点A,B,C,D在同一平面内,A,B两点在CD的同侧.求无人机在C处时离地面的高度.(参考数据:tan36520.75.),tan6326 2.0042.(2023•永州)永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示).寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB代表陈树湘雕像,一参观者在水平地面BN上D处为陈树湘雕像拍照,相机支架CD高0.9米,在相机C处观测雕像顶端A的仰角为45 ,然后将相机支架移到MN处拍照,在相机M处观测雕像顶端A的仰角为30 ,求D、N两点间的距离(结果精确到0.1米,参考数据:3 1.732).43.(2023•阜新)如图,小颖家所在居民楼高AB为46m.从楼顶A处测得另一座大厦顶部C的仰角 是45 ,而大厦底部D的俯角 是37 .(1)求两楼之间的距离BD.(2)求大厦的高度CD.(结果精确到0.1m,参考数据:sin370.60,tan370.75),cos370.8044.(2023•恩施州)小王同学学习了锐角三角函数后,通过观察广场的台阶与信号塔之间的相对位置,他认为利用台阶的可测数据与在点A,B处测出点D的仰角度数,可以求出信号塔DE的高.如图,AB的长为5m,高BC为3m.他在点A处测得点D的仰角为45 ,在点B处测得点D的仰角为38.7 .A,B,C,D,E在同一平面内.你认为小王同学能求出信号塔DE的高吗?若能,请求出信号塔DE的高;若不能,请说明理由.(参考数据:,结果保留整数),tan38.70.80,cos38.70.780sin38.70.62545.(2023•鄂州)鄂州市莲花山是国家4A 级风景区,元明塔造型独特,是莲花山风景区的核心景点,深受全国各地旅游爱好者的青睐.今年端午节,景区将举行大型包粽子等节日庆祝活动.如图2,景区工作人员小明准备从元明塔的点G 处挂一条大型竖直条幅到点E 处,挂好后,小明进行实地测量,从元明塔底部F 点沿水平方向步行30米到达自动扶梯底端A 点,在A 点用仪器测得条幅下端E 的仰角为30 ;接着他沿自动扶梯AD 到达扶梯顶端D 点,测得点A 和点D 的水平距离为15米,且4tan 3DAB ;然后他从D 点又沿水平方向行走了45米到达C 点,在C 点测得条幅上端G 的仰角为45 .(图上各点均在同一个平面内,且G ,C ,B 共线,F ,A ,B 共线,G 、E 、F 共线,//CD AB ,)GF FB .(1)求自动扶梯AD 的长度;(2)求大型条幅GE 的长度.(结果保留根号)46.(2023•吉林)某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵综合实践活动报告时间:2023年4月20日活动任务:测量古树高度活动过程自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示.准备皮尺.【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角 .测出眼睛到地面的距离AB.测出所站地方到古树底部的距离BD.40 ..1.54AB mBD m10.请结合图①、图④和相关数据写出 的度数并完成【步骤四】.47.(2023•徐州)徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C处,用测角仪测得塔顶A的仰角36,他在平地上沿正对电视塔的方向后退至点D处,测得塔顶A的仰角AFECD m,求电视塔的高度AB(精确到0.1)m.(参考数FC GD m,7030AGE.若测角仪距地面的高度 1.6据:sin360.59,tan300.58),cos300.87,cos360.81,tan360.73,sin300.50五.解直角三角形的应用-方向角问题(共6小题)48.(2023•郴州)某次军事演习中,一艘船以40/km h的速度向正东航行,在出发地A测得小岛C在它的北偏东60 方向,2小时后到达B处,测得小岛C在它的北偏西45 方向,求该船在航行过程中与小岛C的最近距离(参考数 .结果精确到0.1)3 1.732 1.41km.49.(2023•西藏)如图,轮船甲和轮船乙同时离开海港O,轮船甲沿北偏东60 的方向航行,轮船乙沿东南方向航行,2小时后,轮船甲到达A处,轮船乙到达B处,此时轮船甲正好在轮船乙的正北方向.已知轮船甲的速度为每小时25海里,求轮船乙的速度.(结果保留根号)50.(2023•海南)如图,一艘轮船在A处测得灯塔M位于A的北偏东30 方向上,轮船沿着正北方向航行20海里到达B处,测得灯塔M位于B的北偏东60 方向上,测得港口C位于B的北偏东45 方向上.已知港口C在灯塔M 的正北方向上.(1)填空:AMB度,BCM度;(2)求灯塔M到轮船航线AB的距离(结果保留根号);(3)求港口C与灯塔M的距离(结果保留根号).51.(2023•重庆)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60 方向,B在灯塔C的南偏东45 方向,且在A的正东方向,3600AC 米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:2 1.414,3 1.732)52.(2023•株洲)如图所示,在某交叉路口,一货车在道路①上点A处等候“绿灯”,一辆轿车从被山峰POQ遮挡的道路②的点B处由南向北行驶.已知30POQ,//BC OQ,OC OQ,AO OP,线段AO的延长线交直线BC于点D.(1)求COD的大小;(2)若在点B处测得点O在北偏西 方向上,其中3tan5,12OD 米.问该轿车至少行驶多少米才能发现点A处的货车?(当该轿车行驶至点D处时,正好发现点A处的货车)。

2024年中考数学一轮复习:锐角三角函数+课件

2024年中考数学一轮复习:锐角三角函数+课件

D.90°
5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若
AC=2,BC=1,则sin∠ACD=
.
tanα.tan(90°-α)=1
sin2α+cos2α=1
自学自练展素养
B
c a
A
b
C
随堂练习
Hale Waihona Puke 研学随练展收获1.已知在△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为( )
A. 3tanα B. 3cotα C.
D.
2.△ABC中,∠B=90°,BC=2AB,则cosA的值为( )
A.
B.
C.
D.
知识点2 特殊角的三角函数值
自学自练展素养
随堂练习
1.△ABC中,∠A、∠B是锐角,
则∠C=
度。
2.在△ABC中,若 三角形。
3.
研学随练展收获

,则△ABC是
知识点3 解直角三角形
自学自练展素养
1.定义:在直角三角形中,由已知元素求未知元素的过程,叫做解直角三角形.
2.常用关系:在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b,则:
2024年中考数学一轮复习
一、素养展示
自学自练展素养
二、教学目标
1.掌握锐角三角函数的定义及特殊角的三角函数值。 2.会用锐角三角函数解直角三角形。
知识梳理
自学自练展素养
知识点1 锐角三角函数
1.定义:
2.重要变形: 设α是一个锐角,则
sinα=cos(90°-α)
cosα=sin(90°-α)
B
a2+b2=
c a
c2∠A+∠B= 90°

专题4.5锐角三角函数中考数学第一轮总复习课件

专题4.5锐角三角函数中考数学第一轮总复习课件
锐角α的正切值随着α的增大而增大.
(3)sinA+cosA_>___1;sin2A+cos2A_=___1, sinα=cos(_9_0_º_-_α_);cosα=sin(_9_0_º_-_α_);
典例精讲
锐角三角函数
知识点一
【例1】(1)式子2cos30º-tan45º- (1 tan 60 )2 的值是__0__.
5.已知△ABC中,AB=10,AC= 2 7,∠B=30º,则△ABC的面积等于_1_5__3_或__1_0__3_.
6.四边形ABCD中,BD是对角线,∠ABC=90º,tan∠ABD=
3 4
,AB=20,
BC=10,AD=13,则线段CD=1_7__或___8_9__.
A
A A
E F
B
DC
B

02
解直角三角形
精讲精练
03 解直角三角形应用
考点聚焦
解直角三角形的应用
知识点三
1.视角,2.方向角(方位角),3.坡度(坡比),坡角:i=tanα=h:l.
在测量高度,宽度,距离等问题中,常见的构造的基本图形如下:
③利用反射构造相似. ②同一地点看不同点 ①不同地点看同一点
典例精讲
直角三角形应用
A
K
I
H
N
M
D
A
K
I
NH M
D
A
K
I
H N
M
D
E
O
B 图1 G
FE O
CB 图2 G
FE
O
C B 图3 G
F C
B. 1
c os2
1
C.sin2α+1 D.cos2α+1

2025年广西九年级中考数学一轮复习课件 第18讲锐角三角函数

2025年广西九年级中考数学一轮复习课件 第18讲锐角三角函数



tan A =




对点训练
1. (1)(2024·云南)如图,在△ ABC 中,若∠ B =90°, AB =3,
BC =4,则tan A =( C

A.


B.

)

C.


D.

(2)(2024·长春)2024年5月29日16时12分,“长春净月一号”卫星
搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点 A
cos 75°≈0.26,tan 75°≈3.73).
m.
5
35 3
∴ PQ = AP + AQ =
≈6.1(m).
10
(2)该充电站有20个停车位,求 PN 的长.

解:在Rt△ BCE 中, BE =
=3.2
sin∠CBE
m.
在Rt△ ABQ 中, BQ = AB ·cos ∠ ABQ =2.7 m.
∵该充电站有20个停车位,
∴ QM = BQ +20 BE =66.7 m.
为120 m,则这栋楼的高度为(
B )
A. 140 m
B. 160 m
C. 180 坡度(坡比)、 坡角
(1)如图,坡面的铅直高度 h 和水平宽度 l 的比叫作坡度(坡比).用
字母 i 表示,即 i = h ∶ l .如 i =1∶5等.

(2)把坡面与水平面的夹角记作α(叫作坡角),那么 i = =tan
10
∵四边形 ABCD 是矩形,
∴ AD = BC ,∠ BAD =∠ ABC =∠ BCD =∠ BCE =90°.
∴∠ CBE =30°.

中考专项复习锐角三角函数

中考专项复习锐角三角函数

与几何图形有关的锐角三角函数问题
总结词
理解几何图形中的角度关系与边长关 系,掌握三角函数的定义及使用。
详细描述
在几何图形中,锐角三角函数通常被 用于求解角度、边长等问题。例如, 在直角三角形中,可以用正弦、余弦 、正切等函数来描述各边与斜边的关 系。
与实际生活有关的锐角三角函数问题
总结词
将实际问题转化为数学问题,通过锐 角三角函数求解。
余弦函数的图像与性质
图像描述
余弦函数图像也是周期性的,但其波形与正弦函数相反,波 峰和波谷随着x的增大而交替出现,且函数值先正后负,周期 为2π。
性质总结
余弦函数具有对称性和周期性,其对称轴为y轴,对称中心为 (kπ+π/2,0),其中k为整数。此外,余弦函数在区间[0,π/2] 上为增函数,在区间[π/2,π]上为减函数。
中考专项复习锐角三角函

汇报人:
2023-12-11
• 锐角三角函数概述 • 锐角三角函数的图像与性质 • 锐角三角函数的应用题解析 • 锐角三角函数的实际应用 • 中考中锐角三角函数的常见考点与题
型 • 中考真题解析与备考策略01锐角三角函数概述
锐角三角函数的定义
正弦函数(sine function): 锐角α的正弦值与直角三角形 斜边长度的比值,记作sin α。
总结
中考中锐角三角函数一般以填空题和选择题 的形式出现,主要考察的是锐角三角函数的 定义以及运用。题目会设定一个或者几个锐 角,然后利用锐角三角函数的定义,求出这 个锐角的三角函数值。
例子
例如,如果一个锐角A的对边长度为4,邻 边长度为3,那么我们可以使用锐角三角函 数的定义来求出这个锐角的正弦值和余弦值 。根据定义,正弦值=对边长度/斜边长度

中考数学专题复习10锐角三角函数及其运用(解析版)

中考数学专题复习10锐角三角函数及其运用(解析版)

锐角三角函数及其运用复习考点攻略考点一 锐角三角函数1. 锐角三角函数的定义:在Rt △ABC 中.∠C =90°.AB =c .BC =a .AC =b .正弦:sin A =∠的对边=斜边A ac ;余弦:cos A =∠的邻边=斜边A bc;正切:tanA =∠的对边=邻边A ab.【注意】根据定义求三角函数值时.一定要根据题目图形来理解.严格按照三角函数的定义求解.有时需要通过辅助线来构造直角三角形.2【例2】A .BCD .1【答案】C 【解析】把sin45°=代入原式得:原式=2×.故选C . 考点三 解直角三角形1.在直角三角形中.求直角三角形所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系: 在Rt △ABC 中.∠C =90°.则: (1)三边关系:a 2+b 2=c 2; (2)两锐角关系:∠A +∠B =90°; (3)边与角关系:sin A =cos B =a c .cos A =sin B =b c .tan A =ab; (4)sin 2A +cos 2A =1.3.科学选择解直角三角形的方法口诀: 已知斜边求直边.正弦、余弦很方便; 已知直边求直边.理所当然用正切; 已知两边求一边.勾股定理最方便; 已知两边求一角.函数关系要记牢; 已知锐角求锐角.互余关系不能少; 已知直边求斜边.用除还需正余弦.【例3】如图.我市在建高铁的某段路基横断面为梯形ABCD .DC ∥AB ,BC 长为6米.坡角β为45°.AD 的坡角α为30°.则AD 的长为 ________ 米 (结果保留根号)2sin 222【答案】62【解析】解:过C 作CE ⊥AB 于E.DF ⊥AB 于F.可得矩形CEFD 和Rt △CEB 与Rt △DFA. ∵BC=6.∴CE=2sin 456322BC ︒=⨯=.∴DF=CE=32.∴62sin 30DF AD ==︒.故答案为:62.【例4】如图.大海中有A 和B 两个岛屿.为测量它们之间的距离.在海岸线PQ 上点E 处测得74AEP =︒∠.30BEQ =︒∠;在点F 处测得60AFP =︒∠.60BFQ =︒∠.1km EF =.⑴ 判断AB 、AE 的数量关系.并说明理由⑵ 求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3 1.73≈. sin740.96︒≈.cos740.28︒≈.tan74 3.49︒≈.sin760.97︒≈.cos760.24︒≈)【答案】(1)见解析;(2)3.6km【解析】(1)相等.证明:∵30BEQ =︒∠.60BFQ =︒∠.∴30EBF =︒∠.EF BF =.又∵60AFP =︒∠.∴60BFA =︒∠.在AEF △与ABF △中.EF BF =.AFE AFB =∠∠.AF AF =. ∴AEF ABF △≌∠.∴AB AE =. (2)作AH PQ ⊥.垂足为H .设AE x =.则sin74AH x =︒.cos74HE x =︒.cos741HF x =︒+.Rt AHF △中.tan60AH HF =⋅︒.∴()cos74cos741tan 60x x ︒=︒+⋅︒.即()0.960.281 1.73x x =+⨯. ∴ 3.6x ≈.即 3.6km AB ≈.考点四 锐角三角函数的应用1.仰角和俯角:仰角:在视线与水平线所成的角中.视线在水平线上方的角叫做仰角. 俯角:在视线与水平线所成的角中.视线在水平线下方的角叫做俯角. 2.坡度和坡角坡度:坡面的铅直高度h 和水平宽度l 的比叫做坡面的坡度(或坡比).记作i =h l. 坡角:坡面与水平面的夹角叫做坡角.记作α.i =tan α. 坡度越大.α角越大.坡面越陡. 3.方向角(或方位角)指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角.4.解直角三角形中“双直角三角形”的基本模型:5.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语.根据题意画出图形.建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系.把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式.使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义.从而得到问题的解.6.解直角三角形应用题应注意的问题:(1)分析题意.根据已知条件画出它的平面或截面示意图.分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形.但可添加适当的辅助线.把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件.选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算.检验是否符合实际.并按题目要求的精确度取近似值.注明单位.【例5】如图.一名滑雪爱好者先从山脚下A处沿登山步道走到点B处.再沿索道乘坐缆车到达顶部C.已知在点A处观测点C.得仰角为35°.且A.B的水平距离AE=1000米.索道BC 的坡度i=1:1.长度为2600米.求山的高度(即点C到AE的距离)(参考数据:sin35°≈0.57.cos35°≈0.82.tan35°≈0.70.≈1.41.结果保留整数)【答案】1983米【解析】:如图.作CD⊥AE于点D.BF⊥CD于点F.又∵BE⊥AD.∴四边形BEDF是矩形.在Rt△BCF中.∵BC的坡度i=1:1.∴∠CBF=45°.∵BC=2600米.∴米.∴米.∵A.B的水平距离AE=1000米.∴米.∵∠CAD=35°.∴(米).答:山高CD约为1983米.【例6】如图.一艘海轮位于灯塔P的南偏东30°方向.距离灯塔100海里的A处.它计划沿正北方向航行.去往位于灯塔P的北偏东45°方向上的B处.(1)问B处距离灯塔P有多远?(结果精确到0.1海里)(2)假设有一圆形暗礁区域.它的圆心位于射线PB上.距离灯塔150海里的点O处.圆形暗礁区域的半径为60海里.进入这个区域.就有触礁的危险.请判断海轮到达B处是否有触礁的危险?如果海伦从B处继续向正北方向航行.是否有触礁的危险?并说明理由.(参考数据:≈1.414.≈1.732)【答案】(1)71海里;(2)见解析【解析】解:(1)过点P作PD⊥AB于点D.依题意可知.P A=100.∠APD=60°.∠BPD=45°.∴∠A=30°.∴PD=50.在△PBD中.BD=PD=50.∴PB =50≈71.答:B 处距离灯塔P 约71海里.(2)依题意知:OP =150.OB =150﹣71=79>60. ∴海轮到达B 处没有触礁的危险.海伦从B 处继续向正北方向航行.有触礁的危险.第一部分 选择题一、选择题(本题有10小题.每题3分.共30分)1. 比萨斜塔是意大利的著名建筑.其示意图如图所示.设塔顶中心点为点B .塔身中心线AB 与垂直中心线AC 的夹角为A ∠.过点B 向垂直中心线AC 引垂线.垂足为点D .通过测量可得AB 、BD 、AD 的长度.利用测量所得的数据计算A ∠的三角函数值.进而可求A ∠的大小.下列关系式正确的是( )A .sin BDA AB= B .cos ABA AD=C .tan ADA BD=D .sin ADA AB=【答案】A【解析】由题可知.△ABD 是直角三角形.90BDA ∠=︒.sin BD A AB ∴=.cos AD A AB=,tan BDA AD =.∴选项B 、C 、D 都是错误的.故答案选A . 2. 如图.在ABC 中.∠C =90°.设∠A .∠B .∠C 所对的边分别为a .b .c .则( )A .c =b sinB B .b =c sin BC .a =b tan BD .b =c tan B【答案】B【解析】∵Rt ABC 中.90C ∠=︒.A ∠、B 、C ∠所对的边分别为a 、b 、c ∴sin bB c=.即sin b c B =.则A 选项不成立.B 选项成立 tan bB a=.即tan b a B =.则C 、D 选项均不成立故选:B . 3. 已知α是锐角.sin α=cos60°.则α等于( ) A .30° B .45°C .60°D .不能确定4. 若∠A 是锐角.且sinA= 3.则( )A. 0°<∠A<30°B. 30°<∠A<45°C. 45°<∠A<60°D. 60°<∠A<90° 【答案】 A【解析】∵sin0°=0.sinα= 13.sin30°= 12.又0< 13< 12.∴0°<α<30°. 故答案为:A .5. 点(-sin60°.cos60°)关于y 轴对称的点的坐标是( )A. (√32.12) B. (-√32.12) C. (-√32.-12) D. (- 12.- 32)【答案】 A 【解析】∵sin60°=√32.cos60°=12.∴(-sin60°.cos60°)=(-√32. 12).关于y 轴对称点的坐标是( √32.12).故答案为:A .6. 在Rt △ABC 中.∠C =90°.BC =5.AC =12.则sinB 的值是( )A .512B .125C .513D .1213【答案】D【解析】解:如图所示:∵∠C =90°.BC =5.AC =12.∴13AB =. ∴12sin 13AC B AB ==.故选:D .7. 如图.某停车场入口的栏杆AB.从水平位置绕点O 旋转到A′B′的位置.已知AO 的长为4米.若栏杆的旋转角∠AOA′=α.则栏杆A 端升高的高度为( ) A .米 B .4sinα米 C .米 D .4cosα米【答案】B【解析】 解:如答图.过点A′作A′C ⊥AB 于点C .在Rt △OCA′.sinα=.所以A′C =A′O ·sinα.由题意得A′O =AO =4.所以A′C =4sinα.因此本题选B .8. 菱形ABCD 的对角线AC =10cm.BD =6cm.那么tan为( )【解析】如图.由题意得.AO ⊥BO .AO =AC =5cm.BO =BD =3cm. 4sin α4cos αA CA O''2B1212则tan=tan ∠OBA .故选A.9. 如图.AB 是圆锥的母线.BC 为底面直径.已知BC =6 cm.圆锥的侧面积为15π cm 2 . 则sin∠ABC 的值为 ( )A.34B.35C.45 D. 53【答案】 C【解析】解:设圆锥的母线长为R.由题意得: 15π=π6R.解得:R=5. ∴圆锥的高为4. ∴.故答案为:C.10. 如图.四边形ABCD 是一张平行四边形纸片.其高2cm AG =.底边6cm BC .45B ∠=︒.沿虚线EF 将纸片剪成两个全等的梯形.若30BEF ∠=︒.则AF 的长为( )2B53AO BO ==A .1cm B.cm 3C.3)cm - D.(2-【答案】D【解析】如图所示.过点F 作FM BC ⊥交BC 于点M.∵AG BC ⊥.45B ∠=︒.AG=2.∴BG=FM=2.AF=GM.令AF=x. ∵两个梯形全等.∴AF=GM=EC=x.又∵30BEF ∠=︒.∴2=tan 30FMME =︒.∴ME =.又∵BC=6.∴26BC BG GM ME EC x x =+++=+++=.∴2x =-D .第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11..若tan (α–15°)= .则锐角α的度数是________.【答案】 75°【解析】【解答】由tan(α−15°)= √3.得 α−15°=60°. 解得α=75°. 故答案为:75°12.如图.在Rt △ABC 中.∠C =90°.BC =12.tan A =.则sin B =___________.125【答案】【解析】在Rt △ABC 中.∠C =90°.BC =12.tan A =.得.即. ∴AC =5.由勾股定理.得AB.所以sin B =. 故答案为:.13. 如图.A.B.C 是O上的三点.若OBC ∆是等边三角形.则cos A ∠=___________.【解析】解:∵△OBC 是等边三角形∴∠COB=60° ∴∠A=12COB ∠=30°∴cos cos30A ∠= 14. 如图是某商场营业大厅自动扶梯示意图.自动扶梯AB 的倾斜角为30.在自动扶梯下方地面C 处测得扶梯顶端B 的仰角为60︒.A 、C 之间的距离为4m . 则自动扶梯的垂直高度BD =_________m .(结果保留根号)【答案】【解析】∵∠BAC+∠ABC=∠BCD=60°.∠BAC=30°. ∴∠ABC=30°.∴∠ABC=∠BAC.∴BC=AC=4. 在Rt △BCD 中.BD=BCsin60°=4×2=故答案为: 513125125BC AC =12125AC =513AC AB =51315. 如图所示.在四边形ABCD 中.90B ∠=︒.2AB =.8CD =.连接AC .AC CD ⊥.若1sin 3ACB ∠=.则AD 长度是_________.【答案】10【解析】解:在Rt ABC 中.∵12,sin 3AB AB ACB AC =∠==.∴1263AC =÷=.在Rt ADC 中.AD ==10=.故答案为:10.16. 如图.某校教学楼后面紧邻着一个山坡.坡上面是一块平地.//,BC AD BE AD ⊥.斜坡AB 长26m .斜坡AB 的坡比为12∶5.为了减缓坡面.防止山体滑坡.学校决定对该斜坡进行改造.经地质人员勘测.当坡角不超过50°时.可确保山体不滑坡.如果改造时保持坡脚A 不动.则坡顶B 沿BC 至少向右移________m 时.才能确保山体不滑坡.(取tan50 1.2︒=)【答案】10【解析】解:如图.设点B 沿BC 向右移动至点H.使得∠HAD=50°.过点H 作HF ⊥AD 于点F.∵AB=26.斜坡AB 的坡比为12∶5.则设BE=12a.AE=5a.∴()()22212526a a +=.解得:a=2.∴BE=24.AE=10.∴HF=BE=24.∵∠HAF=50°.则24tan50 1.2HFAF AF︒===.解得:AF=20.∴BH=EF=20-10=10.故坡顶B沿BC至少向右移10m时.才能确保山体不滑坡.故答案为:10.第三部分解答题二、解答题(本题有7小题.共46分)17. 如图.在ABC中.90,tanC A ABC∠==∠的平分线BD交AC于点.D CD=AB的长?【答案】6【解析】解:在Rt ABC中.90,3C tanA∠==30,60,A ABC∴∠=∠=BD是ABC∠的平分线.30,CBD ABD∴∠=∠=︒又3,CD=330CDBCtan∴==.在Rt ABC中.90,30∠=︒∠=︒C A.630BCABsin∴==︒.故答案为:6.18. 已知:如图.在菱形ABCD中.AE⊥BC.垂足为E.对角线BD=8.tan∠CBD=.(1)求边AB的长;(2)求cos∠BAE的值.12【答案】(1)2√5 ;(2)35【解析】(1)连接AC .AC 与BD 相交于点O .∵四边形ABCD 是菱形.∴AC ⊥BD .BO =BD =4. ∵Rt △BOC 中.tan ∠CBD ==.∴OC =2. ∴AB =BC(2)∵AE ⊥BC.∴S 菱形ABCD =BC ·AE=BD ·AC . ∵AC=2OC =4.∴=×8×4.∴AE =.∴BE. ∴cos ∠ABE ==.19. 如图.小明利用学到的数学知识测量大桥主架在水面以上的高度AB .在观测点C 处测得大桥主架顶端A 的仰角为30°.测得大桥主架与水面交汇点B 的俯角为14°.观测点与大桥主架的水平距离CM 为60米.且AB 垂直于桥面.(点,,,A B C M 在同一平面内)12OC OB 1212125BE AB 35(1)求大桥主架在桥面以上的高度AM ;(结果保留根号)(2)求大桥主架在水面以上的高度AB .(结果精确到1米)(参考数据sin140.24,cos140.97,tan14 1.73︒︒︒≈≈≈≈)【答案】(1)大桥主架在桥面以上的高度AM 为(2)大桥主架在水面以上的高度AB 约为50米.【解析】解:(1)AB 垂直于桥面90︒∴∠=∠=AMC BMC在Rt AMC △中.60,30︒=∠=CM ACMtan ∠=AM ACM CM tan 30603︒∴=⋅=⨯=AM CM (米)答:大桥主架在桥面以上的高度AM 为(2)在Rt BMC △中.60,14︒=∠=CM BCMtan ∠=MBBCM CMtan14600.2515︒∴=⋅=⨯≈MB CM=+AB AM MB 1550∴≈+≈AB (米)答:大桥主架在水面以上的高度AB 约为50米.20. 如图.某船向正东航行.在A 处望见海岛C 在北偏东60°.前进6海里到B 点.此时测得海岛C 在北偏东45°.已知在该岛周围6海里内有暗礁.问船继续向正东航行.有触礁的危险吗?【答案】见解析【解析】 解:如图.过点C 作CD ⊥AB 于点D.∵∠CAD=90°-60°=30°.∠CBD=90°-45°=45°.∴BD=CD.设CD=x.∴AD=AB+6=6+x.在Rt△CAD中.tan∠CAD=CD AD.∴√33= xx+6.3x=6 √3+ √3x.(3-√3)x=6 √3.解得x=3 √3+3>6.答:若船继续向东航行.无触礁危险。

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)

中考数学复习《锐角三角函数和解直角三角形》经典题型及测试题(含答案)知识点一:锐角三角函数的定义 1.锐角三角函数 正弦: sin A =∠A 的对边斜边=ac余弦: cos A =∠A 的邻边斜边=bc正切: tan A =∠A 的对边∠A 的邻边=ab.来源:学&科&网]2.特殊角的三角函数值[来 度数三角函数[来源:Z 。

xx 。

]30°[来源:学#科#网] 45° 60°sinA1222 32 cosA32 2212tanA 331 33、锐角三角函数的增减性当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小) (2)余弦值随着角度的增大(或减小)而减小(或增大) (3)正切值随着角度的增大(或减小)而增大(或减小) 变式练习1:如图,在平面直角坐标系中,点A 的坐标为注意:根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.[(4,3),那么cos α的值是( ) A. 34 B. 43 C. 35 D. 45【解析】D 如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.变式练习2:在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,则sinA =________. 【解析】∵在Rt △ABC 中,由勾股定理得AC =22AB BC +=32+42=5,∴sin A =BC AC =45. 变式练习3:在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( D )A .4B .6C .8D .10变式练习4:如图,若点A 的坐标为(1,3),则sin ∠1=__32__. ,知识点二 :解直角三角形 1.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形. 2.解直角三角形的常用关系在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:a 2+b 2=c 2;(2)锐角之间的关系:∠A +∠B =90°; (3)边角之间的关系:,tan ,cos ,sin ;,tan ,cos ,sin abB c a B c b B b a A c b A c a A ======(sinA==cosB=ac,c osA=sinB=bc,tanA=ab.)变式练习1:在Rt△ABC中,已知a=5,sinA=30°,则c=10,b=5.变式练习2:如图,Rt△ACB中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D.以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI =90°.若AC=a,求CI的长.解:在Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB,∴∠A=60°,∵AC=a,∴CD=AC·sin60°=32a,依此类推CH=(32)3a=338a,在Rt△CHI中,∵∠CHI=60°,∴CI=CH·tan60°=338a×3=98a.变式练习3:如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是( D )A.433B.4 C.8 3 D.4 3,灵活选择解直角三角形的方法顺口溜:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.变式练习4:如图,一山坡的坡度为i=1∶3,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了__100__米., ,变式练习5:一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为___40+4033___海里/小时.知识点三:解直角三角形的应用1.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα.(如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)2.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.注意:解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解变式练习1:如图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10 m ,到达B 点,点B 处测得树顶C 的仰角为60°(A 、B 、D 三点在同一直线上).请你根据他们的测量数据计算这棵树CD 的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈ 1.732)解:如解图,由题意可知∠CAB =30°,∠CBD =60°,AB =10 m ,∵∠CBD =∠CAB +∠BCA ,∴∠BCA =∠CBD -∠CAB =60°-30°=30°=∠CAB , ∴BC =AB =10 m . 在Rt △BCD 中,∵sin ∠CBD =CDBC,∴CD =BC ·sin ∠CBD =10×sin60°=10×32=53≈5×1.732≈8.7 m . 答:这棵树CD 的高度大约是8.7 m .变式练习2:如图,小山岗的斜坡AC 的坡度是tan α=34,在与山脚C 距离200米的D 处,测得山顶A 的仰角为26.6°,求小山岗的高AB (结果取整数;参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50).解:设AB =x 米,在Rt △ABD 中,∠D =26.6°,∴BD =tan 26.6x≈2x ,在Rt △ABC 中,tan α=AB BC =34,∴BC =43x ,∵BD -BC =CD ,CD =200,∴2x-43x=200,解得x=300.答:小山岗的高AB约为300米.变式练习3:如图,小明所在教学楼的每层高度为3.5 m,为了测量旗杆MN的高度,他在教学楼一楼的窗台A处测得旗杆顶部M的仰角为45°,他在二楼窗台B 处测得M的仰角为30°,已知每层楼的窗台离该层的地面高度均为1 m,求旗杆MN的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)解:如解图,过点M的水平线交直线AB于点H,由题意,得∠AMH=∠MAH=45°,∠BMH=30°,AB=3.5 m,设MH=x m,则AH=x m,BH=x·tan30°=33x≈0.58x m,∴AB=AH-BH=x-0.58x=0.42x=3.5 m,解得x≈8.3,则MN=x+1=9.3 m.答:旗杆MN的高度约为9.3 m.变式练习4:小明去爬山,如图,在山脚看山顶的角度为30°,小明在坡比为5∶12的山坡上走了1300米,此时小明看山顶的角度为60°,则山高为( )A. (600-2505)米B. (6003-250)米C. (350+3503)米D. 500 3 米【解析】B如解图,∵BE∶AE=5∶12,∴设BE=5k,AE=12k,∴AB=2()5K+(12k)2=13k,∴BE∶AE∶AB=5∶12∶13,∵AB=1300米,∴AE=1200米,BE =500米,设EC=FB=x米,∵∠DBF=60°,∴DF=3x米,则DC=(3x+500)米,又∵∠DAC=30°,∴AC=3CD,即1200+x=3(3x+500),解得x=600-2503,∴DF=3x=(6003-750)米,∴CD=DF+CF=(6003-250)米,即山高CD为(6003-250)米.变式练习5:某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)解:如解图,过点A作AD⊥BC交BC于点D,过点B作BH⊥水平线交水平线于点H,由题意∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=4×8=32米,∴CD=AD=AB·sin30°=16米,BD=AB·cos30°=32×32=163米,∴BC=CD+BD=(16+163)米,∴BH=BC·sin30°=(16+163)×12=(8+83)米.答:这架无人飞机的飞行高度为(8+83)米.变式练习6:如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中3≈1.732) 解:∵CD∥BE,∴∠EBC+∠DCB=180°.∵∠ABE=60°,∠DCB=30°,∴∠ABC=90°.…………(4分)由题知,BC=80×12=40(海里),∠ACB=60°.在Rt△ABC中,AB=BC·tan60°=403≈40×1.732≈69.3(海里).答:此时渔政船距钓鱼岛A的距离AB的长约为69.3海里.。

中考数学复习《锐角三角函数》专题训练-附带有答案

中考数学复习《锐角三角函数》专题训练-附带有答案

中考数学复习《锐角三角函数》专题训练-附带有答案一、选择题1.已知α是锐角,若sinα= 12,则α的度数是()A.30°B.45°C.60°D.75°2.如图,在Rt△ABC中,BC=3,斜边AC=5,则下列等式正确的是()A.sinC=35B.cosC=43C.tanA=34D.sinA=453.在Rt△ABC中,∠C=90°,sinA= 513,则tanB的值为()A.1213B.512C.1312D.1254.如图所示,河堤横断面迎水坡AB的坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8 B.16 C.4√5D.4√35.如图,在正方形网格中.每个小正方形的边长都是1,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的正切值是()A.√55B.15C.2√55D.126.如图,河堤的横断面迎水坡AB的坡比是1:√2,堤高BC=6m,则坡面AB的长度是()A.10m B.12√2m C.6√3m D.6√2m7.如图,在菱形ABCD中,延长AB于E并且CE⊥AE,AC=2CE,则∠CBE的度数为()A.50°B.40°C.30°D.60°8.如图,在▱ABCD中AB=8,∠ABC=60°,BE平分∠ABC,交边AD于点E,连接CE,若AE=2ED,则CE的长为()A.6 B.4 C.4√3D.2√6二、填空题9.计算:2sin30°−tan45°=.10.如图,在平面直角坐标系内有一点P(5,12),那么OP与x轴正半轴的夹角α的正弦值.11.如图,Rt△ABC中,∠C=90°,BC=15,tanA= 15,则AB= .812.如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面20√3米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC之间的水平距离为80米,教学楼BC的高度米.(注:点A、B、C、D都在同一平面上,参考数据:√3≈1.7结果保留整数).13.如图,在△ABC中AB=AC,D是△ABC外一点,连接BD和DC,BD=AB,∠BDC+12∠BAC=180°,DC=1,tan∠ABC=2√33则线段BC的长为.三、解答题14.计算:2sin45°+tan30°·cos30°−√2.15.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,4sin5B=求:(1)线段DC的长;(2)tan∠EDC的值.16.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)17.如图1,在等腰三角形ABC中AB=AC,O为底边BC的中点,AB切⊙O于点D,连接OD,⊙O交BC于点M,N.(1)求证:AC是⊙O的切线;(2)∠B=42°,①若OD=4,求劣弧DM的长;②如图2,连接DM,若DM=4,直接写出OD的长.(参考数据:sin24°取0.4,cos24°取0.9,tan24°取0.45)18.如图,在边长为9的正方形ABCD中,等腰Rt△CEF的直角顶点与正方形ABCD的顶点C重合,斜边EF与正方形ABCD的对角线交于点E,射线FE与AD交于点P,与BC交于点Q且BQCQ =45.(1)求证:△CDE≌△CBF;(2)求CF的长;(3)求tan∠BCF的值.参考答案1.A2.C3.D4.C5.D6.C7.D8.C9.010.121311.1712.1413.2√314.解:原式=2×√22+√33×√32-√2 =√2+12-√2=1215.(1)解:在△ABC 中,∵AD 是边BC 上的高∴AD ⊥BC .∴sin B =45AD AB =. ∵AD =12 ∴5154AB AD ==. 在Rt △ABD 中,∵222215129BD AB AD --∴CD =BC ﹣BD =14﹣9=5.(2)解:在Rt △ADC 中,E 是AC 的中点∴DE =EC∴∠EDC =∠C .∴tan EDC ∠=tan C ∠=125AD CD =.16.(1)由题意可知:154560ACD ∠=︒+︒=︒ 180454590ADC ∠=︒-︒-︒=︒ 在Rt ADC 中 ∴tan 1003tan 6010033300AD DC ACD =⨯∠=︒==(米)答:点D 与点A 的距离为300米.(2)过点D 作DE AB ⊥于点E .∵AB 是东西走向∴45,60ADE BDE ∠=︒∠=︒在Rt ADE △中 ∴2sin 300sin 453001502DE AE AD ADE ==⨯∠=⨯︒==在Rt BDE 中 ∴tan 1502tan 60231506BE DE BDE =⨯∠=︒==∴26AB AE BE =+=答:隧道AB 的长为(15021506)米17.(1)证明:过点 O 作 OE ⊥AC 于点 E ,连接 OA ,如图∵AB =AC , O 为底边 BC 的中点∴AO 为 ∠BAC 的平分线∵OD ⊥AB∴OD =OE∵OD 为 ⊙O 的半径∴OE为⊙O的半径∴直线AC到圆心O的距离等于圆的半径∴AC是⊙O的切线(2)解:①∵AB切⊙O于点D∴∠ODB=90°∵∠B=42°∴∠BOD=48°∵OD=4∴劣弧DM的长为48×π×4180=16π15;②过点O作OF⊥DM于点F,如图∵OF⊥DM∴DF=MF=12DM=2∵OD=OM∴OF为∠DOM的平分线∴∠DOF=12∠BOD=24° .在Rt△ODF中∵sin∠DOF=DFOD∴sin24°=2OD∴OD=2sin24°≈20.4=5 .18.(1)证明:∵四边形ABCD是正方形,△CEF是等腰直角三角形∴∠BCD=∠ECF=90°,CD=CB,CE=CF∴∠DCE=∠BCF在△CDE与△CBF中∵{CD=CB∠DCE=∠BCFCE=CF∴△CDE≌△CBF;(2)解:∵∠CEQ=∠CBE=45°,∠ECQ=∠BCE∴△CEQ∽△CBE∴CECB=CQCE∵BQCQ=45,BC=9∴BQ=4,CQ=5∴CE=3√5∵CF=CE∴CF=3√5;(3)解:过点F作FR⊥BC于R∵△CDE≌△CBF∴∠FBR=∠EDC=45°∴△BRF是等腰直角三角形∴RF=RB在Rt△CRF中∵CF2=CR2+FR2∴(3√5)2=RF2+(9−RF)2∴RF=3∴BR=3∴CR=6∴tan∠BCF=RFCR =12.。

中考数学压轴题专题锐角三角函数的经典综合题及答案

中考数学压轴题专题锐角三角函数的经典综合题及答案

中考数学压轴题专题锐角三角函数的经典综合题及答案一、锐角三角函数1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】6.4米【解析】解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.∴DC=BC•cos30°=3==米,639∵CF=1米,∴DC=9+1=10米,∴GE=10米,∵∠AEG=45°,∴AG=EG=10米,在直角三角形BGF中,BG=GF•tan20°=10×0.36=3.6米,∴AB=AG-BG=10-3.6=6.4米,答:树高约为6.4米首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高2.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.3.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=3,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=3,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.【解析】分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△FAE ∽△ACD ,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF 是平行四边形,得出BD=AF ,BF=AD ,进而判断出△ACD ∽△HEA ,再判断出∠EFB=90°,即可得出结论;详解:(1)如图1,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵AC=BD ,CD=AE , ∴AF=AC . ∵∠FAC=∠C=90°, ∴△FAE ≌△ACD ,∴EF=AD=BF ,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°, ∴∠FEA+∠CAD=90°=∠EHD . ∵AD ∥BF , ∴∠EFB=90°. ∵EF=BF , ∴∠FBE=45°, ∴∠APE=45°.(2)(1)中结论不成立,理由如下:如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形, ∴BD=AF ,BF=AD . ∵3BD ,3AE , ∴3AC CDBD AE==.∵BD=AF ,∴3AC CDAF AE==. ∵∠FAC=∠C=90°, ∴△FAE ∽△ACD ,∴3AC AD BFAF EF EF ===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD . ∵AD ∥BF , ∴∠EFB=90°.在Rt △EFB 中,tan ∠FBE=3EF BF =, ∴∠FBE=30°, ∴∠APE=30°,(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形, ∴BE=DH ,EH=BD . ∵3BD ,3AE ,∴3AC CDBD AE==. ∵∠HEA=∠C=90°, ∴△ACD ∽△HEA ,∴3AD ACAH EH==∠ADC=∠HAE . ∵∠CAD+∠ADC=90°, ∴∠HAE+∠CAD=90°, ∴∠HAD=90°.在Rt △DAH 中,tan ∠ADH=3AHAD= ∴∠ADH=30°, ∴∠APE=30°.点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.4.如图,PB为☉O的切线,B为切点,过B作OP的垂线BA,垂足为C,交☉O于点A,连接PA,AO.并延长AO交☉O于点E,与PB的延长线交于点D.(1)求证:PA是☉O的切线;(2)若=,且OC=4,求PA的长和tan D的值.【答案】(1)证明见解析;(2)PA =3,tan D=.【解析】试题分析: (1)连接OB,先由等腰三角形的三线合一的性质可得:OP是线段AB的垂直平分线,进而可得:PA=PB,然后证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)连接BE,由,且OC=4,可求AC,OA的值,然后根据射影定理可求PC的值,从而可求OP的值,然后根据勾股定理可求AP的值.试题解析:(1)连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)连接BE,∵,且OC=4,∴AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO=,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3.易证,所以,解得,则,在中,.考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.解直角三角形.5.水库大坝截面的迎水坡坡比(DE与AE的长度之比)为1:0.6,背水坡坡比为1:2,大坝高DE=30米,坝顶宽CD=10米,求大坝的截面的周长和面积.【答案】故大坝的截面的周长是(345)米,面积是1470平方米.【解析】试题分析:先根据两个坡比求出AE和BF的长,然后利用勾股定理求出AD和BC,再由大坝的截面的周长=DC+AD+AE+EF+BF+BC,梯形的面积公式可得出答案.试题解析:∵迎水坡坡比(DE与AE的长度之比)为1:0.6,DE=30m,∴AE=18米,在RT△ADE中,22+34DE AE∵背水坡坡比为1:2,∴BF=60米,在RT△BCF中,22CF BF+5∴周长345(345)米,面积=(10+18+10+60)×30÷2=1470(平方米).故大坝的截面的周长是(634+305+98)米,面积是1470平方米.6.如图,AB是⊙O的直径,E是⊙O上一点,C在AB的延长线上,AD⊥CE交CE的延长线于点D,且AE平分∠DAC.(1)求证:CD是⊙O的切线;(2)若AB=6,∠ABE=60°,求AD的长.【答案】(1)详见解析;(2)9 2【解析】【分析】(1)利用角平分线的性质得到∠OAE=∠DAE,再利用半径相等得∠AEO=∠OAE,等量代换即可推出OE∥AD,即可解题,(2)根据30°的三角函数值分别在Rt△ABE中,AE=AB·cos30°,在Rt△ADE中,AD=cos30°×AE即可解题.【详解】证明:如图,连接OE,∵AE平分∠DAC,∴∠OAE=∠DAE.∵OA=OE,∴∠AEO=∠OAE.∴∠AEO=∠DAE.∴OE∥AD.∵DC⊥AC,∴OE⊥DC.∴CD是⊙O的切线.(2)解:∵AB是直径,∴∠AEB=90°,∠ABE=60°.∴∠EAB=30°,在Rt△ABE中,AE=AB·cos30°=6×32=33,在Rt△ADE中,∠DAE=∠BAE=30°,∴AD=cos30°×AE=3×33=9 2 .【点睛】本题考查了特殊的三角函数值的应用,切线的证明,中等难度,利用特殊的三角函数表示出所求线段是解题关键.7.在△ABC中,∠B=45°,∠C=30°,点D是边BC上一点,连接AD,将线段AD绕点A 逆时针旋转90°,得到线段AE,连接DE.(1)如图①,当点E落在边BA的延长线上时,∠EDC=度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP3,EH=2PH=2x,由此FH=31,CF=33,由△BAD≌△PAE,得BD=EP3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=3tan∠EAF=23tan∠EAC=6-33【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=3∴tan∠EAF=EFAF 331+=23根据对称性可知当点E在AC的上方时,同法可得tan∠EAC 6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.【答案】(1)证明见解析(2)613 【解析】【分析】 (1)根据▱ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值.【详解】(1)证明:∵将△ABC 沿AC 翻折得到△AEC ,∴BC =CE ,AC ⊥CE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∴AD =CE ,AD ∥CE , ∴四边形ACED 是平行四边形,∵AC ⊥CE ,∴四边形ACED 是矩形.(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F ,∵BE =2BC =2×3=6,DE =AC =4,∴在Rt △BDE 中,2222BD BE DE 64213=+=+=∵S △BDE =12×DE•AD =12AF•BD , ∴AF 61313213=, ∵Rt △ABC 中,AB 2234+5,∴Rt △ABF 中,sin ∠ABF =sin ∠ABD =6136135AF AB ==方法二、如图2所示,过点O 作OF ⊥AB 于点F ,同理可得,OB =1132BD = ∵S △AOB =11OF AB OA BC 22⋅=⋅,∴OF =23655⨯=, ∵在Rt △BOF 中, sin ∠FBO =0661365513F OB ==, ∴sin ∠ABD =61365.【点睛】本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .9.在Rt △ABC 中,∠ACB=90°,AB=7,AC=2,过点B 作直线m ∥AC ,将△ABC 绕点C 顺时针旋转得到△A′B′C(点A ,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m 于点P ,Q .(1)如图1,当P 与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC 的交点为M ,当M 为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P ,Q 分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q 的最小面积;若不存在,请说明理由.【答案】(1)60°;(2)PQ =72;(3)存在,S 四边形PA 'B ′Q =3【解析】【分析】(1)由旋转可得:AC =A 'C =2,进而得到BC =∠A 'BC =90°,可得cos ∠A 'CB 'BC A C ==∠A 'CB =30°,∠ACA '=60°;(2)根据M 为A 'B '的中点,即可得出∠A =∠A 'CM ,进而得到PB =32=,依据tan ∠Q =tan ∠A2=BQ =BC =2,进而得出PQ =PB +BQ 72=;(3)依据S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ S 四边形PA 'B 'Q 最小,即S △PCQ 最小,而S △PCQ 12=PQ ×BC =,利用几何法即可得到S △PCQ 的最小值=3,即可得到结论.【详解】(1)由旋转可得:AC =A 'C =2.∵∠ACB =90°,AB=AC =2,∴BC =∵∠ACB =90°,m ∥AC ,∴∠A 'BC =90°,∴cos ∠A 'CB 'BC A C ==∴∠A 'CB =30°,∴∠ACA '=60°;(2)∵M 为A 'B '的中点,∴∠A 'CM =∠MA 'C ,由旋转可得:∠MA 'C =∠A ,∴∠A =∠A 'CM ,∴tan ∠PCB =tan ∠A =∴PB =32=.∵∠BQC =∠BCP =∠A ,∴tan ∠BQC =tan ∠A2=,∴BQ =BC =2,∴PQ =PB +BQ 72=;(3)∵S 四边形PA 'B 'Q =S △PCQ ﹣S △A 'CB '=S △PCQ ∴S 四边形PA 'B 'Q 最小,即S △PCQ 最小,∴S △PCQ 12=PQ ×BC =, 取PQ 的中点G . ∵∠PCQ =90°,∴CG 12=PQ ,即PQ =2CG ,当CG 最小时,PQ 最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min =PQ min ∴S △PCQ 的最小值=3,S 四边形PA 'B 'Q =3;【点睛】本题属于几何变换综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.10.已知:如图,直线y=-x+12分别交x轴、y轴于A、B点,将△AOB折叠,使A点恰好落在OB的中点C处,折痕为DE.(1)求AE的长及sin∠BEC的值;(2)求△CDE的面积.【答案】(1)2,sin∠BEC=35;(2)754【解析】【分析】(1)如图,作CF⊥BE于F点,由函数解析式可得点B,点A坐标,继而可得∠A=∠B=45°,再根据中点的定义以及等腰直角三角形的性质可得OC=BC=6,2,设AE=CE=x,则222-x,在Rt△CEF中,利用勾股定理求出x 的值即可求得答案;(2)如图,过点E作EM⊥OA于点M,根据三角形面积公式则可得S△CDE=S△AED=2,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,利用勾股定理求出y,继而可求得答案.【详解】(1)如图,作CF⊥BE于F点,由函数解析式可得点B(0,12),点A(12,0),∠A=∠B=45°,又∵点C是OB中点,∴OC=BC=6,CF=BF=32,设AE=CE=x,则EF=AB-BF-AE=122-32-x=92-x,在Rt△CEF中,CE2=CF2+EF2,即x2=(92-x)2+(32)2,解得:x=52,故可得sin∠BEC=35CFCE,AE=52;(2)如图,过点E作EM⊥OA于点M,则S△CDE=S△AED=12AD•EM=12AD×AEsin∠EAM=12AD•AE×sin45°=24AD×AE,设AD=y,则CD=y,OD=12-y,在Rt△OCD中,OC2+OD2=CD2,即62+(12-y)2=y2,解得:y=152,即AD=152,故S△CDE=S△AED=24AD×AE=754.【点睛】本题考查了解直角三角形的应用,涉及了勾股定理、折叠的性质、三角形面积、一次函数的性质等知识,综合性较强,正确添加辅助线、熟练应用相关知识是解题的关键.11.在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连结CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°,①如图1,∠DCB等于多少度;②如图2,点P在线段CB上,连结DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连结BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论;(2)如图3,若点P在线段CB 的延长线上,且∠A=α(0°<α<90°),连结DP,将线段DP绕点逆时针旋转2α得到线段DF,连结BF,请直接写出DE、BF、BP三者的数量关系(不需证明)【答案】(1)①∠DCB=60°.②结论:CP=BF.理由见解析;(2)结论:BF﹣BP=2DE•tanα.理由见解析.【解析】【分析】(1)①根据直角三角形斜边中线的性质,结合∠A=30°,只要证明△CDB是等边三角形即可;②根据全等三角形的判定推出△DCP≌△DBF,根据全等的性质得出CP=BF,(2)求出DC=DB=AD,DE∥AC,求出∠FDB=∠CDP=2α+∠PDB,DP=DF,根据全等三角形的判定得出△DCP≌△DBF,求出CP=BF,推出BF﹣BP=BC,解直角三角形求出CE=DEtanα即可.【详解】(1)①∵∠A=30°,∠ACB=90°,∴∠B=60°,∵AD=DB,∴CD=AD=DB,∴△CDB是等边三角形,∴∠DCB=60°.②如图1,结论:CP=BF.理由如下:∵∠ACB=90°,D是AB的中点,DE⊥BC,∠DCB=60°,∴△CDB为等边三角形.∴∠CDB=60°∵线段DP绕点D逆时针旋转60°得到线段DF,∵∠PDF=60°,DP=DF,∴∠FDB =∠CDP ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF.(2)结论:BF ﹣BP =2DEtanα.理由:∵∠ACB =90°,D 是AB 的中点,DE ⊥BC ,∠A =α,∴DC =DB =AD ,DE ∥AC ,∴∠A =∠ACD =α,∠EDB =∠A =α,BC =2CE ,∴∠BDC =∠A+∠ACD =2α,∵∠PDF =2α,∴∠FDB =∠CDP =2α+∠PDB ,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP =DF ,在△DCP 和△DBF 中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴△DCP ≌△DBF ,∴CP =BF ,而 CP =BC+BP ,∴BF ﹣BP =BC ,在Rt △CDE 中,∠DEC =90°,∴tan ∠CDE =CE DE, ∴CE =DEtanα, ∴BC =2CE =2DEtanα,即BF ﹣BP =2DEtanα.【点睛】本题考查了三角形外角性质,等边三角形的判定和性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出△DCP ≌△DBF 是解此题的关键,综合性比较强,证明过程类似.12.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A 处朝正南方向撤退,红方在公路上的B 处沿南偏西60°方向前进实施拦截,红方行驶1000米到达C 处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D 处成功拦截蓝方,求拦截点D处到公路的距离(结果不取近似值).【答案】拦截点D处到公路的距离是(500+500)米.【解析】试题分析:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.解Rt△BCE,求出BE=BC=×1000=500米;解Rt△CDF,求出CF=CD=500米,则DA=BE+CF=(500+500)米.试题解析:如图,过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则∠E=∠F=90°,拦截点D处到公路的距离DA=BE+CF.在Rt△BCE中,∵∠E=90°,∠CBE=60°,∴∠BCE=30°,∴BE=BC=×1000=500米;在Rt△CDF中,∵∠F=90°,∠DCF=45°,CD=BC=1000米,∴CF=CD=500米,∴DA=BE+CF=(500+500)米,故拦截点D处到公路的距离是(500+500)米.考点:解直角三角形的应用-方向角问题.13.如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)【答案】(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为127.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x 的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:12,设PF=5x,CF=12x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+120x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.37≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP=13x,∴CP=13×207≈37.1,BC+CP=90+37.1=127.1.答:从P到点B的路程约为127.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.14.如图,半圆O的直径AB=20,弦CD∥AB,动点M在半径OD上,射线BM与弦CD 相交于点E(点E与点C、D不重合),设OM=m.(1)求DE的长(用含m的代数式表示);(2)令弦CD所对的圆心角为α,且sin4 =25α.①若△DEM的面积为S,求S关于m的函数关系式,并求出m的取值范围;②若动点N在CD上,且CN=OM,射线BM与射线ON相交于点F,当∠OMF=90°时,求DE的长.【答案】(1)DE=10010mm-;(2)①S=2360300m mm-+,(5013<m<10),②DE=5 2 .【解析】【分析】(1)由CD∥AB知△DEM∽△OBM,可得DE DMOB OM=,据此可得;(2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =12∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =35,继而由OM =m 、OD =10得QM =DM sin ∠ODP =35(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得CD DM BO OM =,求得OM =5013,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×35=6,可得OM =8,根据(1)所求结果可得答案. 【详解】(1)∵CD ∥AB , ∴△DEM ∽△OBM ,∴DE DM OB OM =,即1010DE m m-=, ∴DE =10010m m -; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,∵OC =OD 、OP ⊥CD ,∴∠DOP =12∠COD , ∵sin 2α=45, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35, ∵OM =m 、OD =10,∴DM =10﹣m ,∴QM =DM sin ∠ODP =35(10﹣m ), 则S △DEM =12DE •MQ =12×10010m m -×35(10﹣m )=2360300m m m-+, 如图2,∵PD =OD sin ∠DOP =10×45=8, ∴CD =16,∵CD ∥AB ,∴△CDM ∽△BOM ,∴CD DM BO OM =,即1610=10OM OM-, 解得:OM =5013, ∴5013<m <10, ∴S =2360300m m m-+,(5013<m <10). ②当∠OMF =90°时,如图3,则∠BMO =90°,在Rt △BOM 中,BM =OB sin ∠BOM =10×35=6, 则OM =8,由(1)得DE =100108582-⨯=. 【点睛】本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.15.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).【答案】1.5米.【解析】试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出在Rt△ACD中,米,CD=2AD=3米,再证明△BOD是等边三角形,得到米,然后根据BC=BD−CD即可求出浮漂B与河堤下端C之间的距离.试题解析:延长OA交BC于点D.∵AO的倾斜角是,∴∵在Rt△ACD中, (米),∴CD=2AD=3米,又∴△BOD是等边三角形,∴(米),∴BC=BD−CD=4.5−3=1.5(米).答:浮漂B与河堤下端C之间的距离为1.5米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学内容:锐角三角函数
【重点难点提示】
重点:锐角三角函数的定义、特殊角的三角函数值,三角函数间的同角关系与互余关系.
难点:锐角三角函数在0°~90°之间的变化规律的应用.
考点:锐角三角函数的有关知识在初中数学中占有比较重要的地位;近年各地中考试题中,大多以填空或选择题的形式出现,约占考量的2.5%.
【经典范例引路】
例1 (1)计算:


+

cos
75
sin
15
sin2
2
+cot30°-tan45°-cos30°;
(2)Rt△ABC中,∠C=90°,a=2
5,b=2,求cosA.
解:(1)原式=


-

+

cos
)
15
90
(
sin
15
sin2
2
+ cot30°-t an45°-cos30°;
=



cos
15
cos
15
sin2
2
+
3-1-2
3
=1+
3-1-2
3
=
2
3
(2)在Rt△ABC中,∴∠C=90°,a=25,b=2,∴c=2
22
)5
(2+
=2
6
∴cosA=c
b
=
6
2
2
=
6
6
【解题技巧点拨】
(1)主要注意隐含关系式sin2α+cos2α=1的运用,来求得sin215°+sin275°=sin215°+cos215°=1的技巧.
例2 已知cosα=0.6975,sinβ=0.7328(α、β均为锐角),求证:α+β>90°
证明:∵α、β为锐角∴90°-β也为锐角,且cosα=0.6975,cos(90°-β)=sinβ=0.7328,根据余弦函数在0°~90°之间的变化规律有:α>90°-β即α+β>90°
【解题技巧点拨】
本题必须灵活运用余弦函数在0°~90°之间的变化规律及三角函数间的互余关系解题.
【综合能力训练】
一、填空题
1.计算:sin60°·cot30°+sin245°=.(2001江西中考题)
2.求值:2
1
sin60°·
2
2
cos45°= .(2001广州市中考题)
3.在△ABC中,如果∠C=90°,∠A=45°那么tanA+sinB= ;△ABC为对称图形(填“轴”或“中心”)(2001北京中考题)
4.α为锐角时,
2
)1
(cos-
α
=.
5.在Rt△ABC中,∠C=90°,
2
)1
(sin-
A
+|cosB+1|=.
6.已知:cot(90°-x)=2,则x
x
x
x
cos
sin
cos
sin
-
+
= 。

7.若tanα·tan46°= 1(α为锐角),则α=。

8.Rt△ABC中,∠C=90°,且
18
c
a+

7
a
b-
,
a
c
b
c
-
-

8
1
.则sinA=.
二、选择题:
9.(2001,甘肃中考题)若α是锐角,sinα=cos50°,则α等于()A.20°B.30°C.40°D.50°10.sin64°与cos26°之间的关系是()
A.sin64°<cos26°B.sin64°=cos26°
C.sin64°>cos26°D.sin64°= -cos26°
11.△ABC中,∠C=90°,则cosA·cotB的值是()
A. c
a
B.
a
c
C.
b
α
D.
α
b
12.当∠A 为锐角,且cotA 的值小于3时,∠A 应( )
A .小于30°
B .大于3O°
C .小于60°
D .大于60°
13.在Rt△ABC 中,各边的长度都扩大两倍,那么锐角A 的各三角函数值( ) A .都扩大两倍
B.都缩小两倍 C .不变
D .都扩大四倍
14.在△ABC 的三内角中, A∶B∶C=3∶2∶7,则sinA∶sinB=( )
A .1∶
3
B.1∶
2
C.
2
D.
2∶3
15.已知0°<α<45°,则使2
12sin 1
-
α无意义的α的值是( ) A .3O°
B .15°
C .不存在
D .非以上答案
16.已知45°<θ<90°,且2s inθ-x+3=0则x 的取值范围是( )
A.
2
2<x <1 B .3-
2<x <1
C .3+2<x <5
D .1<x <3+
2
三、解答题:
17.设x=(2
1)
-1
+(sin73°)0
+tan21°·tan69°,求(482
3--x x -44823+++x x x )÷696223--+-x x x x x 的
值.
18.已知方程4x 2
+kx +2=0的两根是sinθ,cosθ( θ为锐角),求k 和θ.
19.计算:
2
)1
60
(sin-

+|1-tan60°|
20.计算:(2
1
)-2+
2
3
2
-(sin21°13′-tan21°)0-︒

-

60
cos
30
cos
2
30
sin
21.已知sinα+cosα=m,sinα·cosα=n,试确定m与n的关系.
【创新思维训练】
22.计算:tan1°·tan2°·tan3°·tan4°……tan88°·tan89°的值.
23.cosx=α+α
1
(α> 0)成立吗?若成立,求出α的值.若不成立,请说明理由.
参考答案 【综合能力训练】
一、1.2 2. 83 3.1+22,轴 4.1-cos α 5.2 6.3+22 7.44° 8. 135
二、9.C 10.B 11.A 12.B 13.C 14.C 15.B 16.C
三、17.原式=34
-x =4(2+1) 18.24-=k ,θ=45° 19. 23 20.-1
21.m 2=2n+1
22.1 23.不成立(a +a 1
>1而0<cosx<1)。

相关文档
最新文档