小学五年级奥数试题类型归纳

合集下载

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 牛吃草问题(试题)含答案与解析

经典奥数:牛吃草问题(专项试题)一.填空题(共6小题)1.某牧场上有一片青草,可供27头牛吃6周,或供23头牛吃9周.如果草每周生长速度相同,那么这片青草可供21头牛吃周.2.有一个蓄水池装有9根水管,其中一根为进水管,其余8根是相同的出水管.已知储水池内有一定体积的水,并且进水管正以均匀的速度向这个蓄水池注水,如果8根出水管全部打开,需要3小时把池内的水全部排光;如果打开5根出水管,需要6小时把池内的水全部排光.如果在9小时内把水池中的水全部排光,需要同时打开根出水管.3.一艘轮船发生漏水事故。

当漏进水600桶时,两部抽水机开始排水,甲机每分钟能排水20桶,乙机每分钟能排水16桶,经50分钟刚好将水全部排完。

每分钟漏进的水有桶。

4.有一个酒桶坏了,所以每天匀速往外面流失酒,已知酒桶里面的酒可供7人喝6天,可供5人喝8天.若1人独饮,可以喝天.5.有一片牧场,草每天都在均匀地生长.如果在牧场上放养24头牛,那么6天就把草吃完了;如果只放养21头牛,那么8天才把草吃完、请问:(1)要使得草永远吃不完,最多可以放养头牛;(2)如果放养36头牛,天可以把草吃完.6.李奶奶家有12只鸡蛋和一只每天能下一只鸡蛋的母鸡,如果她家每天要吃3只鸡蛋,那么这些鸡蛋可连续吃天.二.解答题(共15小题)7.某建筑工地开工前运进一批砖,开工后每天运进相同数量的砖,如果派250个工人砌砖墙,6天可以把砖用完,如果派160个工人,10天可以把砖用完,现在派120个工人砌10天后,又增加5个工人一起砌还需要再砌几天可以把砖用完?8.一艘轮船发生漏水事故,立即安装两台抽水机向外抽水,此时已漏进水600桶.一台抽水机每分钟抽水18桶,另一台每分钟抽水14桶,50分钟把水抽完.每分钟漏进的水有多少桶?9.陕北某村有一块草场,假设每天草都均匀生长.这片草场经过测算可供100只羊吃200天,或可供150只羊吃100天.问:如果放牧250只羊可以吃多少天?放牧这么多羊对吗?为防止草场沙化,这片草场最多可以放牧多少只羊?10.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球新生成的资源增长速度是一定的,为使人类有不断发展的潜力,地球最多能养活多少亿人?11.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管,开始进水管以均匀的速度不停地向这个蓄水池注水,池内注入一些水后,有人想把出水管也打开,使池内的水再全部排光,如果把8根出水管全部打开,需要3个小时可将池内的水排光;若仅打开3根出水管,则需要18小时才能将池内的水排光.问:如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?12.某地遭遇干旱,政府为解决居民饮水问题,在一眼山泉旁边修了一个蓄水池,每小时有40立方米的水注入水池.当开动5台抽水机时,2.5小时把池水抽完,当开动8台抽水机时,1.5小时把池水抽完,这个蓄水池能容多少立方米水?13.一只船被发现漏水时,已经进了一些水,水均匀进入船内.如果10人淘水,3小时淘完;如果5人淘水,8小时淘完.如果要求2小时淘完,需要安排多少人淘水?14.牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?15.现在有牛、羊、马吃一块地的草,草均匀生长,牛、马吃需要45天吃完,马、羊吃需要60天吃完,牛、羊吃需要90天吃完,牛、羊一起吃草的速度为马吃草的速度,求马、牛、羊一起吃,需多少时间?16.有一口水井.在无渗水的情况下,甲抽水机用20小时可将水抽完,乙抽水机用12小时可将水抽完.现在甲、乙两台抽水机同时抽,由于有渗水,结果用9小时才将水抽完.在有渗水的情况下,用甲抽水机单独抽需多少小时抽完?17.有100名游客在世界文化历史遗产秦始皇兵马俑博物馆门前排队,开门后每分钟来的游人是相等的,一个入口处平均每分钟可以放进10名游客;如果两个入口处20分钟就可以全部检完票,外面没有人排队了,为了减少游客排队时间,现在开放4个入口处,那么开门后多少分钟就没有人排队了?18.有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?19.科技馆9点营业,每分钟来的人数相同.如果开5个窗口,则9点5分可无人排队;如果开3个窗口,则9点9分可没有人,求8点几分第一个游客到?20.某快递公司已存在部分快件,但仍有快件不断运来.公司决定用快递专车将快件分给客户(装车时间不计)若用9辆车发货,12小时可运完.若用8辆车发货,16小时可运完.快递公司开始只用了6辆车发货,三小时后增加若干辆车.再经过5小时就运完了,那么后来增加的车辆数应该是多少辆?21.有一池泉水,泉底不断涌出泉水,而且每分钟涌出的泉水一样多.如果用8部抽水机10小时能把全池泉水抽干,如果用12部抽水机6小时能把全池泉水抽干,那么用14部抽水机多少小时能把全池泉水抽干?参考答案与试题解析一.填空题(共6小题)1.【解答】解:假设每头牛每周吃青草1份,青草增加的速度:(23×9﹣27×6)÷(9﹣6),=45÷3,=15(份);原有的草的份数:27×6﹣6×15,=162﹣90,=72(份);可供21头牛吃:72÷(21﹣15),=72÷6,=12(周);答:这个草场的草可供21头牛吃12周.故答案为:12周.2.【解答】解:设每根出水管每小时出水1份,进水管的速度为:(5×6﹣8×3)÷(6﹣3),=6÷3,=2(份);蓄水池内原有的水为:5×6﹣2×6,=30﹣12,=18(份);9小时内把水池中的水全部排光,需要打开出水管的根数是:(18+2×9)÷9,=36÷9,=4(根);答:如果在9小时内把水池中的水全部排光,需要同时打开4根出水管.故答案为:4.3.【解答】解:[(20+16)×50﹣600]÷50=[36×50﹣600]÷50=[1800﹣600]÷50=1200÷50=24(桶)答:每分钟漏进的水有24桶。

小学五年级奥数题及答案与解析

小学五年级奥数题及答案与解析

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。

转化的类型有条件转化、问题转化、关系转化、图形转化等以下是⽆忧考整理的《⼩学五年级奥数题及答案与解析》相关资料,希望帮助到您。

【篇⼀】⼩学五年级奥数题及答案与解析 30粒珠⼦依8粒红⾊、2粒⿊⾊、8粒红⾊、2粒⿊⾊、……的次序串成⼀圈。

⼀只蚱蜢从第2粒⿊珠⼦起跳,每次跳过6粒珠⼦落在下⼀粒珠⼦上。

这只蚱蜢⾄少要跳⼏次才能再次落在⿊珠⼦上。

答案与解析: 这些珠⼦按8粒红⾊、2粒⿊⾊、8粒红⾊、2粒⿊⾊、的次序串成⼀圈,那么每10粒珠⼦⼀个周期,我们可以推断出这30粒珠⼦数到第9和10、19和20、29和30、39和40、49和50粒的时候,会是⿊珠⼦。

刚才是从第10粒珠⼦开始跳,中间隔6粒,跳到第17粒,接下来是第24粒、31粒、38粒、45粒、52粒、59粒,⼀直跳到59粒的时候会是⿊珠⼦,所以⾄少要跳7次。

【篇⼆】⼩学五年级奥数题及答案与解析 银⾏整存整取的'年利率是:⼆年期为11.7%,三年期为12.24%,五年期为13.86%.如果甲、⼄⼆⼈同时各存⼈⼀万元,甲先存⼆年期,到期后连本带利改存三年期;⼄存五年期.五年后,⼆⼈同时取出,那么谁的收益多,多多少元? 答案与解析: 甲存⼆年期,则两年后获得利息为:1×11.7%×2=0.234(万),再存三年期则为(1+23.4%)×12.24%×3=0.453(万元) ⼄存五年期,则五年后获得1×13.86%×5=0.693(万元) 所以⼄⽐甲多,0.693-0.453=0.24(万元)。

【篇三】⼩学五年级奥数题及答案与解析 ⼀串数排成⼀⾏,它们的规律是这样的。

:头两个数都是1,从第三个数开始,每⼀个数都是前两个数的和,也就是:1,1,2,3,5,8,13,21,34,55,…问:这串数的前100个数中(包括第100个数)有多少个偶数? 答案与解析: 观察⼀下已经写出的数就会发现,每隔两个奇数就有⼀个偶数,如果再算⼏个数,会发现这个规律仍然成⽴。

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇

小学五年级奥数题及答案6篇1.小学五年级奥数题及答案一排椅子只有15个座位, 部分座位已有人就座, 乐乐来后一看, 他无论坐在哪个座位, 都将与已就座的人相邻。

问: 在乐乐之前已就座的最少有几人?将15个座位顺次编为1:15号。

如果2号位、5号位已有人就座, 那么就座1号位、3号位、4号位、6号位的人就必然与2号位或5号位的人相邻。

根据这一想法, 让2号位、5号位、8号位、11号位、14号位都有人就座, 也就是说, 预先让这5个座位有人就座, 那么乐乐无论坐在哪个座位, 必将与已就座的人相邻。

因此所求的答案为5人。

2.小学五年级奥数题及答案1.某工车间共有77个工人, 已知每天每个工人平均可加工甲种部件5个, 或者乙种部件4个, 或丙种部件3个。

但加工3个甲种部件, 一个乙种部件和9个丙种部件才恰好配成一套。

问应安排甲、乙、丙种部件工人各多少人时, 才能使生产出来的甲、乙、丙三种部件恰好都配套?解: 设加工后乙种部件有x个。

3/5X+1/4X+9/3X=77x=20甲: 0.6×20=12(人)乙: 0.25×20=5(人)丙: 3×20==60(人)2.哥哥现在的年龄是弟弟当年年龄的三倍, 哥哥当年的年龄与弟弟现在的年龄相同, 哥哥与弟弟现在的年龄和为30岁, 问哥哥、弟弟现在多少岁?解: 设哥哥现在的年龄为x岁。

x-(30-x)=(30-x)-x/3x=18弟弟30-18=12(岁)3.小学五年级奥数题及答案对任意两个不同的自然数, 将其中较大的数换成这两数之差, 称为一次变换。

如对18和42可进行这样的连续变换: 18, 42→18, 24→18, 6→12, 6→6, 6。

直到两数相同为止。

问: 对12345和54321进行这样的连续变换, 最后得到的两个相同的数是几?为什么?如果两个数的公约数是a, 那么这两个数之差与这两个数中的任何一个数的公约数也是a。

秋季班五年级奥数小学奥数各类题型中点突破题目类型大全(可编辑)

秋季班五年级奥数小学奥数各类题型中点突破题目类型大全(可编辑)

帅帅看一本减肥书,第一天看了全书的18还多30页,第二天看了全书的16少4页,还剩全书的35没有看,这本故事书一共有多少页?崔气球给北极熊运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57。

问还有多少块蜂窝煤没有运来?(用方程解法)英国伦敦博物馆保存着一部极其珍贵的文物——纸莎草文书。

现存世界上最古老的方程就出现在这部英国考古学家兰德1858年找到的纸草书上。

经破译,上面都是一些方程,共85个问题。

其中有如下一道著名的求未知数的问题:一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,这个数为几何?碧空万里,一群大雁在飞翔,迎面又飞来一只小灰雁,它对群雁说:“你们好,百只雁!你们百雁齐飞,好气派!可怜我是孤雁独飞。

”群雁中一只领头的老雁说:“不对!小朋友,我们远远不足100只。

将我们这一群加倍,再加上半群,又加上四分之一群,最后还得请你也凑上,那才一共是100只呢!”请问这群大雁有多少只?列分数系数方程解应用题味多美西饼屋推出一款新蛋糕,第一天卖出了全部的15,第二天卖出了剩下的12,第二天比第一天多卖出40个,那么味多美西饼屋这次共推出新蛋糕多少个?(用方程解法)北京大学为庆祝其建校110周年举行徒步比赛。

甲、乙、丙三名运动员同时从同一个出发点起步后不间断地匀速步行,每分钟乙比甲少走15米,而比丙多走3米。

当乙到达赛程中点折返处时,比甲晚到4分钟,而比丙早到1分钟。

这次徒步比赛全程多少米?在线测试题温馨提示:请在线作答,以便及时反馈孩子的薄弱环节!1.小明看书第一天读了15,第二天比第一天多14,第三天读12页,此时还剩下全书的一半少2页没有看,全书共( )页。

A.175 B.180 C.195 D.2002.工程队修一条路,第一天修了60米,第二天修了全长的18,此时已修的路刚好是没修路的717,这条路全长()米。

A.380 B.360 C.345 D.3303.一个数的23与它的15的差等于26与它的14的和,那么这个数是()A.120B.60C.30D.154.实验小学的校园里,原来柳树的棵数是全校树木总棵数的25,今年又载种了50棵柳树。

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析

小学五年级精选奥数题及解析1、算薪水有两个人在一家工地做工,由于一个是学徒,一个是技工,所以他们的薪水是不一样的。

技工的薪水比学徒的薪水多20美元,但两人的薪水之差是21美元。

你觉得他俩的薪水各是多少?2、100面彩旗某街道从东往西按照五面红旗、三面黄旗、四面绿旗、两面粉旗的规律排列,共悬挂1995面彩旗,你能算出从西往东数第100面彩旗是什么颜色的吗?3、时钟表盘时钟的表盘上按标准的方式标着1, 2, 3,…,11, 12这12个数,在其上任意做n 个120°的扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同. 如果从这任做的n个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n的最小值.4、两头猪有4头猪,这4头猪的重量都是整千克数,把这4头猪两两合称体重,共称5次,分别是99、113、125、130、144,其中有两头猪没有一起称过。

那么,这两头猪中重量较重那头有多重?5、三张卡片有三张卡片,它们上面各写着数字2, 3, 4,从中抽出一张、二张、三张, 按任意次序排列出来,可以得到不同的一位数、二位数、三位数,请你将其中的质数都写出来.6、数学竞赛要求的三个自然数分别是32、35和38。

9、答案与解析:此题需要求抽屉的数量,反用抽屉原理和最”坏”情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,那么(1123-10)4-9=123......6 ,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校那么不能保证至少有10名同学来自同一个学校)10、答案与解析:120:2=60, 90:2=45,每两棵树之间的距离是它们的最大公约数。

(120, 60, 90, 45)=15, 一共要:(120+90)x24-15=28(棵)。

11、答案与解析:方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42, 48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48x80=3840分.乂因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42x100=4200分.在3840〜4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032 分.那么甲班的平均分为40324-42=96分,乙班的平均分为4032+48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分x42=乙班平均分x48,即甲班平均分x7二乙班平均分x8, 因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,乂因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12x(8-7)=12分.12、答案与解析:小于20的质数有2, 3, 5, 7, 11, 13, 17, 19,其中5+19=7+17=11+13.每个木块掷在地上后向上的数可能是六个数中的任何一个,三个数的和最小是5+5+5=15,最大是19+19+19=57,经试验,三个数的和可以是从15到57的所有奇数,所有可能的不同值共有22个。

小学五年级-奥数-体积问题

小学五年级-奥数-体积问题

=五年级奥数题(立体图形的体积)1、小学数学奥林匹克决赛)一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是立方厘米.2(1)有一个正方体,如果高增加4cm,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm,求原正方体的体积。

(2)一个长方体的高如果增加2cm,就成为一个正方体,这时表面积就比原来增加了48平方cm。

原来长方体的体积是多少?3(第六届“迎春杯”决赛)一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米.4、(第十届迎春杯刊赛)一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm的正方形(见右图)。

求挖洞后木块的体积。

6(第三届华杯赛复赛)如图,从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7.一个长方体的棱长总和是48cm,己知长是宽的1.5倍,宽是高的2倍,求它的体积。

8.一个正方体木块的表面积是96平方cm,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是多少?1.解答:所成立方体的棱长为:120÷(3+2)÷4=6(厘米),所以原长方体的体积为:6×6×(6+3+2)=396(立方厘米)。

3解答:依题意,这个长方体的长、宽、高之和是48÷4=12(厘米),于是它的宽与高都等于12÷(2+1+1)=3(厘米),它的长是3× 2=6厘米.所以这个长方体的体积是6×3×3=54(立方厘米).4解答:长方体的高是: (33.66-2.1×2.3×2)÷2÷(2.1+2.3)= 30/11(分米).长方体的体积是2.1×2.3 ×=(立方分米).5.解答:33-12×3×3+2×13=20cm3。

(完整版)小学五年级奥数题及答案(附精讲)

(完整版)小学五年级奥数题及答案(附精讲)

(完整版)⼩学五年级奥数题及答案(附精讲)⼩学五年级奥训练题及答案(精讲)⼀、⼯程问题1.⼀件⼯作,甲、⼄合做需4⼩时完成,⼄、丙合做需5⼩时完成。

现在先请甲、丙合做2⼩时后,余下的⼄还需做6⼩时完成。

⼄单独做完这件⼯作要多少⼩时?2.修⼀条⽔渠,单独修,甲队需要20天完成,⼄队需要30天完成。

如果两队合作,由于彼此施⼯有影响,他们的⼯作效率就要降低,甲队的⼯作效率是原来的五分之四,⼄队⼯作效率只有原来的⼗分之九。

现在计划16天修完这条⽔渠,且要求两队合作的天数尽可能少,那么两队要合作⼏天?3.甲⼄两个⽔管单独开,注满⼀池⽔,分别需要20⼩时,16⼩时.丙⽔管单独开,排⼀池⽔要10⼩时,若⽔池没⽔,同时打开甲⼄两⽔管,5⼩时后,再打开排⽔管丙,问⽔池注满还是要多少⼩时?4.⼀项⼯程,第⼀天甲做,第⼆天⼄做,第三天甲做,第四天⼄做,这样交替轮流做,那么恰好⽤整数天完⼯;如果第⼀天⼄做,第⼆天甲做,第三天⼄做,第四天甲做,这样交替轮流做,那么完⼯时间要⽐前⼀种多半天。

已知⼄单独做这项⼯程需17天完成,甲单独做这项⼯程要多少天完成?5.师徒俩⼈加⼯同样多的零件。

当师傅完成了1/2时,徒弟完成了120个。

当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个?6.⼀批树苗,如果分给男⼥⽣栽,平均每⼈栽6棵;如果单份给⼥⽣栽,平均每⼈栽10棵。

单份给男⽣栽,平均每⼈栽⼏棵?7.⼀个池上装有3根⽔管。

甲管为进⽔管,⼄管为出⽔管,20分钟可将满池⽔放完,丙管也是出⽔管,30分钟可将满池⽔放完。

现在先打开甲管,当⽔池⽔刚溢出时,打开⼄,丙两管⽤了18分钟放完,当打开甲管注满⽔是,再打开⼄管,⽽不开丙管,多少分钟将⽔放完?8.某⼯程队需要在规定⽇期内完成,若由甲队去做,恰好如期完成,若⼄队去做,要超过规定⽇期三天完成,若先由甲⼄合作⼆天,再由⼄队单独做,恰好如期完成,问规定⽇期为⼏天?9.两根同样长的蜡烛,点完⼀根粗蜡烛要2⼩时,⽽点完⼀根细蜡烛要1⼩时,⼀天晚上停电,⼩芳同时点燃了这两根蜡烛看书,若⼲分钟后来点了,⼩芳将两⽀蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?⼆.鸡兔同笼问题1.鸡与兔共100只,鸡的腿数⽐兔的腿数少28条,,问鸡与兔各有⼏只?三.数字数位问题1.把1⾄2005这2005个⾃然数依次写下来得到⼀个多位数123456789.....2005,这个多位数除以9余数是多少?2.A和B是⼩于100的两个⾮零的不同⾃然数。

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案(更新版)

小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。

小学数学五年级(奥数周期)问题类型全小升初常考

小学数学五年级(奥数周期)问题类型全小升初常考

例题1:25÷74的商的小数点后面第80位是数字几?小数点后面前80个数字之和是多少? 25÷74=0.3378378378……(80-1)÷3=26(组)……1(个) “3” 一个周期的和:3+7+8=18前80个数字之和:3+18×26+3=474答:小数点后面第80位是数字“3”,小数点后面前80位数字之和是474。

先算一个周期的和,再乘组数,最后加上不在完整周期内的数。

练习1.17=0.142857142857……小数点后第100位是数字几? 2.0.53728937289……小数点后面第2000位上的数字是多少?前2000位数字之和是多少?:例题2:请同学们伸出左手,如图所示,从大拇指开始依次数一数,数到2014时,刚好对应哪根手指呢? 1→2→3→4→5→6→7→8→9→……大拇指、食指、中指、小拇指、无名指、中指、食指、大拇指…… 周期为:82014÷8=251(组)……6(个) “无名指” 答:数到2014时,刚好对应“无名指”。

练习1.如下图所示,在各个手指间标记字母A、B、C、D。

请你按图中箭头所指方向(即A→B→C→D→C→B→A→B→C……的方式)从A开始数连续的自然数1、2、3、4……,当数到2018时,所对应的字母是()。

2.如下图所示,在各个手指间标记A、B、C、D,请你按图中箭头所指方向(A→B→C→D→C→B→A→B→C→……的方式),从A开始数连续自然数1、2、3、4……当字母B出现100次时,恰好数到()。

例题3:7×7×7×……×7积的个位数字是几?202个77的个数 1 2 3 4 5 6 7 8 ……积的个位数字7 9 3 1 7 9 3 1 ……积的个位数字的排列顺序为:7、9、3、1 周期为:4202÷4=50(组)……2(个)“9”答:积的个位数字是“9”。

小学五年级奥数经典题型

小学五年级奥数经典题型

密封瓶中,如果放进一个细菌,1分钟后瓶酒充满了细菌。

已知每个细菌每秒分裂2个,。

,如果开始时放入两个细菌,要使瓶中细菌充满需要多少秒如果开始时放入两个细菌,即等于原来只放一个细菌时的第2秒的情况,所以充满整瓶需要60-1=59秒【题目】有一个正六边形点阵,如图,它的中心是一个点,算作第一层;第二层每边两个点(相邻两边公用一个点);第三层每边三个点,……,这个六边形点阵共100层。

问这个点阵共有多少个点?【解析】:最里面一层先不看,原点阵则变成了由内到外,第一层有1个6点,后面每层依次比前一层多1个6点,共99层的一个点阵。

解法一:先用求和公式求这个99层的点阵共有多少个6点:1+2+3+4+……+99=(1+99)×99÷2=4950(个)。

原点阵共有点:1+6×4950=72901(点)。

解法二:先求出这个99层的点阵第99层的点子数为:6×99=594(点)。

再由求和公式求出这个99层的点阵共有点:(6+594)×99÷2=72900(点)。

原点阵共有点:72900+1=72901(点)。

【题目】:司机开车按顺序到5个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,问车到学校时,车上最少有多少学生?【解析】:这一题适合用倒推法解题。

“以后每站上车的人数都是前一站上车人数的一半”即:从后往前,前一站上车人数都是后一站上车人数的2倍。

又因为“每个车站都有学生上车”,则最后一站最少上了1名学生。

假设到学校前的最后一站上了1名学生,依次往前推,则之前四站每站依次上了2名、4名、8名、16名学生。

因为接学生到学校中途不会有人下车,所以车到学校时,车上最少有学生:1+2+4+8+16=31(名)。

【题目】:625名学生参加100米比赛,跑道有5条,每赛一次可淘汰4名选手,只留下第一名继续比赛,共需要赛多少次才能决出冠军?【解析】:共有625名选手,决出冠军,即最后只剩下一名选手,就需要淘汰选手:625-1=624(名)。

【经典】小学五年级数学奥数题题型汇总

【经典】小学五年级数学奥数题题型汇总

【经典】小学五年级数学奥数题题型汇总一、拓展提优试题1.(12分)甲、乙两人从A 地步行去B 地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过 分钟才能追上乙. 2.已知13411a b -=,那么()20132065b a --=______。

3.(7分)今年小翔和爸爸、妈妈的年龄分别是5岁、48岁、42岁. 年后爸爸、妈妈的年龄和是小翔的6倍.4.(7分)将偶数按下图进行排列,问:2008排在第 列. 2 4 6 8 16 14 12 10 18 20 22 24 32 30 28 26 …5.幼儿园给小朋友派礼物,如果有2人各派4个,其余各派3个,则还剩余11个,如果4人各派3个,其余各派6个,则剩余10个,问一共有多少件礼物? 6.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是 .7.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了 个松果.8.(8分)小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.9.如图,在梯形ABCD 中,若AB =8,DC =10,S △AMD =10,S △BCM =15,则梯形ABCD 的面积是 .10.如图,若长方形S 长方形ABCD =60平方米,S 长方形XYZR =4平方米,则四边形S 四边形EFGH= 平方米.11.四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.12.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.13.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.14.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.【参考答案】一、拓展提优试题1.解:法一:假设甲一小时走5米,乙一小时走2米,列表如下:时间 甲(米) 乙(米) 时间 甲(米) 乙(米) 0小时 0 4 3小时 7.5 10 0.5小时 2.5 5 3.5小时 10 11 1小时 2.5 6 4小时 10 12 1.5小时 5 7 4.5小时 12.5 13 2小时 5 8 5小时 12.5 14 2.5小时 7.595.5小时1515观察得5.5小时恰好追上(如果这时间超过了乙,就要用具体追及公式计算追及时间)法二:也可以设甲的速度为每小时10a (甲要休息,实际每小时走5a ),乙的速度为每小时4a ,因此要追8a .半小时内最多追3a ,可以先从要追的8a 中扣除3a ,因为在此之前不可能追上(之前的距离差不止3a ).之后再开始按每半小时列出,若不够半小时的话,用追及公式算.前面追的5a ,相当于每小时追a ,可以用5a ÷(5a ﹣4a )=5(小时)计算.之后,甲半小时再走2a ,乙再走5a ,加上还差的3a ,正好追上.因此,要追5.5小时,即330分钟. 故答案为:330. 2.2068[解答]由于13411a b -=,所以()6520513451155a b a b -=⨯-=⨯=,所以()()20132065201365202068b a a b --=+-=3.【分析】设x 年后,爸爸、妈妈的年龄和是小翔的6倍,则:小翔x 年后的年龄×4=小翔爸爸x 年后的年龄+小翔妈妈x 年后的年龄,列出方程解答即可.解:设x 年后,爸爸、妈妈的年龄和是小翔的6倍, (5+x )×6=48+42+2x 30+6x =90+2x 4x =60 x =15答:15年后,爸爸、妈妈的年龄和是小翔的6倍. 故答案为:15.4.【分析】首先发现数列中的偶数8个一循环,奇数行从左到右是从小到大,偶数行从右到左是从小到大,与上一行逆数;再求出2008是第2008÷2=1004个数,再用1004除以8算出余数,根据余数进一步判定. 解:2008是第2008÷2=1004个数,1004÷8=125…4,说明2008是经过125次循环,与第一行的第四个数处于同一列,也就是在第4列.故答案为:4.5.【分析】假设第一次每人都派3个,则还剩余2×(4﹣3)+11=13个,第二次如每人都派6个,同时少了4×(6﹣3)﹣10=2个,就是每人多派6﹣3=3个,则需要13+2=15个礼物,据此可求出人数,进而可求出礼物数.解:[2×(4﹣3)+11+4×(6﹣3)﹣10]÷(6﹣3)=[2×1+11+4×3﹣10]÷3=[2+11+12﹣10]÷3=15÷3=5(人)2×4+(5﹣2)×3+11=8+3×3+11=8+9+11=28(件)答:一共有28件礼物.6.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.7.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.8.解:依题意可知:当第一次过后,小张剩余194只铅笔,小李剩余19只钢笔.当第二次过后,小张剩余188只铅笔,小李剩余18只钢笔.当第三次过后,小张剩余182只铅笔,小李剩余17只钢笔.当第四次过后,小张剩余176只铅笔,小李剩余16只钢笔.正好是11倍.故答案为:四9.解:△ADM 、△BCM 、△ABM 都等高, 所以S △ABM :(S △ADM +S △BCM )=8:10=4:5, 已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20, 梯形ABCD 的面积是:10+15+20=45; 答:梯形ABCD 的面积是45. 故答案为:45.10.解:根据分析,如下图所示:长方形S 长方形ABCD =S 长方形XYZR +△AEF +△EFR +△FBG +△FGX +△HCG +△HGY +△DHE +△HEZ=S 长方形XYZR +2×(a +b +c +d ) ⇒60=4+2×(a +b +c +d ) ⇒a +b +c +d =28四边形S 四边形EFGH =△EFR +△FGX +△HGY +△HEZ +S 长方形XYZR =a +b +c +d +S 长方形XYZR =28+4=32(平方米). 故答案是:32.11.解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42(个),将42分解成3个数字相乘42=2×3×7.=a ×b 2×c 6.如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是=11×32×26=6336.=3663=11×37×32.因数的个数共2×2×3=12(个).故答案为:12个.12.解:根据分析,(1)△ABC 面积等于六边形面积的,连接AD , 四边形ABCD 是正六边形面积的,故△ACD 面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:16013.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.14.解:依题意可知:结果的首位是2,那么在第二个结果中的首位还是2.再根据第一个结果中有一个1,那么就是有和数字5相乘以后数字1的进位同时十位数字是偶数才能满足条件,第一个乘数的个位数字只能是2或者3才能满足进位是1.当第一个乘数尾数是2时,首位数字无论是哪一个偶数都不能得到200多的结果.不满足题意.当第一个乘数尾数是3时,来看看偶数的情况.23×9=207.43,63,83无论乘以数字几都不能构成百位十位是20的结果.故是23×95=2185,那么23+95=118.故答案为:11815.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

【奥数专题】精编人教版小学数学五年级上册 行程问题(试题)含答案与解析

经典奥数:行程问题(专项试题)一.选择题(共6小题)1.汽车3.5分钟可行驶7千米,照这样的速度,汽车1小时可行驶多少千米?下面算式中,错误的是()A.7÷3.5×60B.3.5÷7×60C.60÷3.5×7D.60÷(3.5÷7)2.李叔叔骑电动车上班,每小时行18km,0.35小时到达。

如果他骑自行车上班,每小时行10.5km,半小时能到吗?()A.能B.不能C.无法确定3.两辆汽车同时从两地相对开出,一辆车的速度是85千米/时,另一辆车的速度是75千米/时,出发后4.8小时相遇。

两地之间的公路长多少千米,计算错误的是()A.85+75×4.8B.85×4.8+75×4.8C.(85+75)×4.84.两人同时从相距10.5千米的两地相对而行,小明每小时行3.8千米,小军每小时行3.2千米,算式:3.2×[10.5÷(3.8+3.2)]求的是()A.经过几小时相遇B.相遇时小明行的路程C.相遇时小军行的路程D.小明和小军的平均速度5.一辆汽车1.5小时行驶90km,照这样计算,行驶652km要多少小时?下面正确的算式是()A.652÷(90÷1.5)B.652÷90÷1.5C.652÷(90×1.5)6.两地相距S千米,甲、乙两车同时分别从两地相向而行,甲车每小时行a千米,乙车每小时行b千米,经过()小时两车相遇。

A.(a+b)÷S B.(a+b)×S C.S÷(a+b)二.填空题(共6小题)7.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,两人第一次相遇在距甲地400米处,第二次相遇在距乙地150米.甲、乙两地的距离是米.8.小明从家到学校上课,开始时以每分钟50米的速度走了2分钟,这时他想:若根据以往上学的经验,再按这个速度走下去,肯定要迟到8分钟.于是他立即加快速度,每分钟多走10米,结果小明早到了5分钟.小明家到学校的路程是米.9.有两列火车,一车长130m,速度为23m/s;另一列火车长250m,速度为15m/s.现在两车相向而行,从相遇到离开需要s.10.小明和小红同时从相距5千米的甲、乙两地相对而行,小明到达乙地后立刻返回继续跑,小红到达甲地后也立刻返回继续跑,已知小明每分跑320米,小红每分跑305米,从出发到第二次相遇共用分钟.11.小明和爸爸在同一圆形跑道上跑步,小明每15分跑一圈,爸爸每10分跑一圈.他们早上7:00从同一地点起跑,那么他们第二次在起点相遇时是.如跑道一圈为400m,相遇时,小明跑了m.12.甲、乙两人分别从边长为21米的正方形围墙对角顶点(如图)同时出发按逆时针方向跑,甲每秒跑7米,乙每秒跑5米,经过秒,甲可以看见乙.三.应用题(共9小题)13.两地相距540千米,甲、乙两列火车同时从两地相对开出,经过4时相遇,已知甲车的速度是乙车的1.5倍,甲、乙两列火车每时各行多少千米?14.同样时间里,兔子能跑3步,狗能跑2步,兔子一步跑1米,狗一步跑1.5米,若兔子和狗在50米长的跑道上进行往返跑,它们同时出发,求兔子折返几次后刚好比狗快6米?15.某市出租车收费标准是:3千米以内起步价9元,超过3千米的部分每千米2.4元。

小五奥数知识点及试题

小五奥数知识点及试题

小五奥数知识点及试题一、奥数简介奥数是指近年来兴起的一种数学竞赛活动,主要针对小学五年级的学生。

奥数注重培养学生的逻辑思维能力、数学解决问题的能力以及创造性思维能力。

下面将介绍一些小五奥数的知识点和相关试题。

二、知识点1. 算式变形算式变形是奥数中常见的题型,要求学生将给定的算式进行变形,求解出所缺的变量。

例如:已知 2 + x = 7,求 x 的值。

2. 分数运算分数运算是小五奥数的重要知识点,要求学生掌握分数的加减乘除运算。

例如:计算 (2/3) + (5/6) = ?3. 运算规律奥数还要求学生掌握一些运算规律,例如:计算 63 × 99 = ?4. 图形与几何奥数还涉及到很多关于图形和几何的问题。

例如:一个平面图形的3个角分别是120°、60°,求第三个角的度数。

三、试题示例下面是一些小五奥数的试题示例:1. 题目:已知 a + 2 = 5,求 a 的值。

答案:a = 32. 题目:计算 (1/3) + (2/5) = ?答案:(1/3) + (2/5) = (5/15) + (6/15) = 11/153. 题目:计算 37 × 99 = ?答案:37 × 99 = 36634. 题目:一个平面图形的两个角分别是80°、50°,求第三个角的度数。

答案:第三个角的度数为 180° - 80° - 50° = 50°这些试题只是小五奥数的一部分,通过解答这些题目可以提高学生的数学思维和解决问题的能力。

小结:小五奥数是培养学生数学综合能力的有效途径。

通过掌握算式变形、分数运算、运算规律以及图形与几何知识,学生可以在奥数竞赛中取得更好的成绩。

希望本文提供的小五奥数的知识点和试题示例能够对学生们的学习有所帮助,激发他们对数学的兴趣和热爱。

祝愿所有小五学生在奥数竞赛中取得优异的成绩!。

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析

小学五年级奥数应用题100道及答案解析1. 有两根绳子,第一根长56 厘米,第二根长36 厘米。

同时点燃后,平均每分钟都烧掉2 厘米。

多少分钟后,第一根绳子的长度是第二根绳子长度的 3 倍?答案:13 分钟解析:设经过x 分钟。

则第一根绳子剩下56 - 2x 厘米,第二根绳子剩下36 - 2x 厘米。

56 - 2x = 3×(36 - 2x),解得x = 13 。

2. 鸡兔同笼,共有30 个头,88 只脚。

求笼中鸡兔各有多少只?答案:鸡16 只,兔14 只解析:假设全是鸡,应有脚2×30 = 60 只,比实际少88 - 60 = 28 只。

因为每把一只兔当成鸡就少算2 只脚,所以兔有28÷2 = 14 只,鸡有30 - 14 = 16 只。

3. 一列火车通过530 米的桥需40 秒钟,以同样的速度穿过380 米的山洞需30 秒钟。

求这列火车的速度是每秒多少米?车长多少米?答案:车速15 米/秒,车长70 米解析:设火车速度为x 米/秒,车长为y 米。

40x = 530 + y,30x = 380 + y,解得x = 15,y = 70 。

4. 某班有40 名学生,其中有15 人参加数学小组,18 人参加航模小组,有10 人两个小组都参加。

那么有多少人两个小组都不参加?答案:17 人解析:参加了至少一个小组的人数为15 + 18 - 10 = 23 人,两个小组都不参加的人数为40 - 23 = 17 人。

5. 甲、乙、丙三个数的和是105,甲数比乙数多4,乙数比丙数多4,求丙数。

答案:31解析:设丙数为x,则乙数为x + 4,甲数为x + 8 。

x + x + 4 + x + 8 = 105 ,解得x = 31 。

6. 果园里苹果树的棵数是桃树棵数的3 倍,管理人员每天能给25 棵苹果树和15 棵桃树喷撒农药。

几天后,当给桃树喷完农药时,苹果树还有140 棵没有喷药。

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

小学奥数全国推荐最新五年级奥数通用学案附带练习题解析答案3定义新运算、通项归纳(一)

年级五年级学科奥数版本通用版课程标题定义新运算定义新运算是奥数题中一类常考的、难度较低的计算题。

在一道定义新运算的题目中,会“发明”新的运算符号,解题的关键是先看清新符号的运算规则,再代入数值准确计算。

注意运算顺序:注意新符号是对多少个数值进行计算(常见的是对两个数值进行计算)。

题目有可能给出计算规则和计算结果要求反推未知数。

题目有可能不给出计算规则而是要求观察规律确定计算规则。

题目中的加、减、乘、除号有可能不同于普通的定义。

例1. (1)若A*B表示(A+3B)×(A+B),求5*7的值;(2)[A]表示小于A的最大质数,计算[[45]+[23]]。

【分析与解】以上两道题就属于直接计算型问题。

=+⨯⨯+=(1)5*7(537)(57)312+=+==(2)[[45][23]][4319][62]61例2. 已知a,b是任意自然数,我们规定:a#b=a+b-1,a*b=a×b+1,试计算[(5*3)#(2*5)]*(6#6)【分析与解】与例1的区别是多了一种计算的符号,但本质上还是直接计算型问题。

本题可按顺序分步计算。

(5*3)=53+1=16(2*5)25111[16#11]1611126(6#6)6611126*1126111=287⨯=⨯+==+-==+-==⨯+例3. 如果a △b 表示(a -2)×b ,例如3△4=4,那么,当a △5=30时,a = 。

【分析与解】把定义的运算新法则代入a △5=30中可得a △5=(a -2)×5=30解得a -2=6a =8例4. 若有新运算a#b ,a#b 表示a 、b 中较大数除以较小数后的余数。

例如;2#7=1,8#3=2,9#16=7,21#2=1。

若(21#(21#x ))=5,则x 可以是________(x 小于50)。

【分析与解】反推未知数型。

21#x 可能是8、16、26、47,又因为必须小于21,所以只能是8、16。

五年级奥数----平均数问题(含答案)

五年级奥数----平均数问题(含答案)

五年级奥数---平均数问题1、五年级一班的同学进行数学测试,根据前五次检测的平均成绩是80,他想使成绩再提高一些,那他第六次考多少分才能使这六次的平均成绩达到82分?2、两组数据,第一组16个数据的和是98,第二组的平均数是11.两组数的平均数是8,那么第二组有几个数据?3、一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求男生有多少人?4、一位同学在期中测试中,除了数学外,其他几门功课的平均成绩是94分,如果数学算在内,平均每门95分。

已知他数学得了100分,问这位同学一共考了多少门功课?5、把五个数从小到大排列,平均数是38,前三个数的平均数是27,后三个数的平均数是48,中间的一个数是多少?6、五一班有60人参加数学竞赛,全班平均分为92分,男生平均分为94分,女生平均分为91分,求五一班男生和女生分别是多少人?7、东东参加数学测试,他第一次得了60分,第二次得了70分,第三次得了65分,第四次的成绩比这四次的平均分还多15分,那么东东第四次测验得了多少分?8、甲乙丙三人的平均年龄是22岁,其中甲乙的平均年龄是18岁,乙丙的平均年龄是25岁,那么乙的年龄是多少岁?9、两组同学跳绳,第一组有25人,平均每人跳80下,第二组有20人,平均每人比两组同学跳的平均数多5下,,两组同学平均每人跳多少下?10、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。

这一次是他第几次测验?11、两地相距360千米,一艘汽艇顺水行全程需要10小时,已知水流速度为6千米/小时,求往返平均速度。

12、以2为首的连续52个自然数的平均数是多少?13、有四个数,从第二个起,每个数都比前一个数大3,已知这四个数的平均数是24.5,其中最大的一个数是多少?14、把一份书稿平均分给甲乙两人去打,甲每分钟打30个字,乙每分钟打20个字。

小学五年级奥数试题讲解

小学五年级奥数试题讲解

小学五年级奥数试题讲解【例一】点点家养了一些鸡和兔子,同时养在一个笼子里,点点数了数,它们共有35个头,94只脚.问:点点家养的鸡和兔各有多少只?(基本假设法)【解析】方法一:抬腿法。

每只动物都抬起2条腿,剩下94-35×2=24.剩下的每只兔子两条腿,所以共有12只兔子。

方法二:假设35只都是兔子,那么就有354140×=(只)脚,假设的比实际的多了140-94=46(只).多46只的原因是35只里不全是兔子,现在我们得把鸡给换回来,一只兔子换一只鸡会少2条腿,所以得换46÷2=23只鸡回来。

方法三:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少2只脚,那么共有兔子24÷2=12(只).要点:“抬腿”法简单易操作,但适用范围较小;“假设法“稍有难度,但必须掌握,因为假设法在以后很多题目中都会用到,比如工程问题和行程问题等。

一般假设法总结:假设兔子,得出鸡;假设鸡,得出兔子。

(方便孩子做题,但千万不能单纯记忆)【例题2】动物园里养了一些梅花鹿和鸵鸟,共有脚208只,鸵鸟比梅花鹿多20只,梅花鹿和鸵鸟各有多少只?(变型假设法)【解析】方法一:假设鸵鸟数跟梅花鹿一样多,那么总脚数就得减去多出来20只鸵鸟的40 只脚,新的总脚数就是168只。

鸵鸟和梅花鹿一样多,所以梅花鹿的腿数是鸵鸟的两倍。

那么168只就是3倍,所以梅花鹿的腿数是112条,就由28只,鸵鸟是48只。

方法二:假设梅花鹿数跟鸵鸟一样多,那么总脚数就得增加80只脚,新的总脚数就是288只。

梅花鹿和鸵鸟一样多,所以梅花鹿的腿数是鸵鸟的两倍。

那么288只就是3倍,所以鸵鸟有96条腿,就有48只,梅花鹿有28只。

要点:和倍问题与鸡兔同笼【例题3】在一个停车场上,现有车辆41辆,其中汽车有4个轮子,摩托车有3个轮子,这些车共有127个轮子,那么三轮摩托车有多少辆?(变型题)【解析】假设都是三轮摩托车,应有3×41=123轮子,少了127-123=4(个)轮子.每把一辆汽车假设为三轮摩托车,会减少4-3=1(个)轮子.汽车有4÷1=4(辆);从而求出三轮摩托车有37辆.同理,可假设都是汽车。

小学五年级奥数经典题型

小学五年级奥数经典题型

【题目】有一个正六边形点阵,如图,它的中心是一个点,算作第一层;第二层每边两个点(相邻两边公用一个点);第三层每边三个点,……,这个六边形点阵共100层。

问这个点阵共有多少个点【解析】:最里面一层先不看,原点阵则变成了由内到外,第一层有1个6点,后面每层依次比前一层多1个6点,共99层的一个点阵。

解法一:先用求和公式求这个99层的点阵共有多少个6点:1+2+3+4+……+99=(1+99)×99÷2=4950(个)。

原点阵共有点:1+6×4950=72901(点)。

解法二:先求出这个99层的点阵第99层的点子数为:6×99=594(点)。

再由求和公式求出这个99层的点阵共有点:(6+594)×99÷2=72900(点)。

原点阵共有点:72900+1=72901(点)。

【题目】:司机开车按顺序到5个车站接学生到学校,每个站都有学生上车,第一站上了一批学生,以后每站上车的人数都是前一站上车人数的一半,问车到学校时,车上最少有多少学生【解析】:这一题适合用倒推法解题。

“以后每站上车的人数都是前一站上车人数的一半”即:从后往前,前一站上车人数都是后一站上车人数的2倍。

又因为“每个车站都有学生上车”,则最后一站最少上了1名学生。

假设到学校前的最后一站上了1名学生,依次往前推,则之前四站每站依次上了2名、4名、8名、16名学生。

因为接学生到学校中途不会有人下车,所以车到学校时,车上最少有学生:1+2+4+8+16=31(名)。

【题目】:625名学生参加100米比赛,跑道有5条,每赛一次可淘汰4名选手,只留下第一名继续比赛,共需要赛多少次才能决出冠军【解析】:共有625名选手,决出冠军,即最后只剩下一名选手,就需要淘汰选手:625-1=624(名)。

每赛一次可淘汰4名选手,要淘汰选手624名,共需比赛:624÷4=156(次)。

【题目】:一个人要住宾馆但是忘记带钱,身上只有一根7个银环套在一起的手链。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、找规律(周期问题)、数列问题
1.有10个连续奇数,第5个数与第8个数的和为56,求第一个数是
_________。

(五年级)
2.下图是按一定的规律排列的数学三角形,请你按规律填上空缺的数字。

1
2 4
3 6 9
4 8 12 16
5 10 15 () 25
6 12 18 () 30 36 (五年级)
3.金逸国际电影院放置了30排座位,第一排有26个座位,往后每排都比前
一排多2个座位,这个剧场一共有个座位。

(五年级)
4.10个3的连乘的积减去5,所得差的个位数字是(五年级)
5.已知等差数列首项是5,第8项是26,这个等差数列的公差是_______。

(六
年级)
二、定义新运算
6.定义运算※为a※b=a×b-(a+b),如果3※(5※x)=3,则x=_______。

(五
年级)
7.规定:6﹡2=6+66=72
2﹡3=2+22+222=246
1﹡4=1+11+111+1111=1234.
求:7﹡5=______。

(五年级)
三、逻辑推理题
8.警察抓住4名盗窃犯A、B、C、D,下面是他们的答话:
A说:“是B干的。


B说:“是D干的。


C说:“不是我干的。


D说:“B在说谎。


后来证实,这四个人中只有一个人说的是真话,那么罪犯是谁_______。

(五年级)
9.A、B、C、D四个同学猜测他们之中谁被评为十佳少年。

A说:如果我被评上,那么B也被评上。

B说:如果我被评上,那么C也被评上。

C说:如果D没被评上,那么我也没评上。

实际上,他们四人之中有一人没被评上,交且A、B、C说的都是正确的。

可知没被评上十佳少年。

(五年级)
四、植树问题
10.在100米的路段上植树,问:至少要植_______棵树,才能保证至少有2
棵之间的距离小于10米。

(五年级)
五、数字问题
11.把一个三位数的百位和个位上的数字互换,得到一个新的三位数,新、旧
两个三位数都能被4整除。

这样的三位数共有_______个。

(五年级)
12.一个小于200的奇数,它的各位数字之和为奇数,且它可以表示为两个两
位数之积。

那么这个数是_______。

(五年级)
13.有一个两位数,它的两个数字之和的5倍恰好等于它自身,那么这个两位
数是(五年级)
14.将1—9这九个自然数分别填入如图的九个○内,使三角形每边上的四数
之和都等于19,且有一个顶点○的数字为1. (五年级)
15.一个自然数n,满足:n与200的和为一个平方数,n与292的和为另一个
平方数。

那么这个自然数是______。

(六年级)
16.小马虎把被除数88.8错看成8.88,结果所得的商比正确的商少3.33,则
正确的商是_______. (六年级)
六、日期问题
17.在放暑假的8月份,小明有五天是在姥姥家过的。

这五天的日期除一天是
合数外,其他四天的日期都是质数。

这四个质数分别是这个合数减去1,
这个合数加上1,这个合数乘上2减去1,这个合数乘上2加上1.问:小
明是8月_______、______、______、_______、________在姥姥家住的。

(五年级)
七、最大公约数与最小公倍数问题
18.将长200厘米,宽120厘米,厚40厘米的长方体木料锯成同样大小的正
方体木块,而没有剩余,共有_______种不同的锯法?当正方体的边长是
_______厘米时,锯成的小木块的体积最大,共有_______块.(五年级)
19.有一根长木棍上有三种刻度,第一种刻度线将木棍10等分,第二种刻度
线将木棍12等分,第三种刻度线将木棍15等分。

如果沿每条刻度线将木
棍锯断,那么,木棍总共被锯成_______段。

(六年级)
八、面积问题、周长问题
20.有一张长方形纸,长18厘米,宽10厘米。

从这张纸上剪下一个最大的正
方形后,剩下部分的周长是厘米。

(五年级)
21.在直线m上摆放着三个正三角形:△ABC、△HFG、△DCE,已知CE=2BC,F、
G分别是BC、CE的中点,FM平行于AC,GN平行于DC。

设图中三个平行四
边形的面积依次是S1、S2、S3,若S1+S3=10,则S2= _____ 。

(五年
级)
22.有甲、乙、丙三个梯形,它们高之比依次是1︰2︰3,上底之比依次是6
︰9︰4.下底之比依次是12︰15︰10,已知梯形甲的面积是30平方厘米,那么乙、丙两个梯形的面积之和是_______平方厘米。

(六年级)
23.一个400m的跑道,两头是两个半圆,每一半圆的弧长是100m,中间是一
个长方形,长为100米,求两个半圆的面积之和与跑道所围成的面积之比
是________。

(六年级)
24.如图所示,平形四边形ABCD的面积是80平方厘米,圆周长为31.4厘米,
阴影部分面积是_________平方厘米?(六年级)
25.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一
个直径上.则小圆的周长之和为_________厘米.(六年级)
九、排列组合问题、最短线路问题
26.在“希望杯”足球赛中,共有27支小足球队参赛。

①如果这27个队进行单循环赛(两队间只比赛一次,称作一场),需要比赛________场。

②如果这27个队进行淘汰赛,最后决出冠军,共需比赛_______场。

(五年级)
27.在左下图的街道示意图中,C处因施工不能通行,从A到B的最短路线共
有______条。

(六年级)
28.街道旁有A,B,C,D,E五栋居民楼(见下图),现要立一个邮筒,为使
五栋楼的居民到邮筒的距离之和最短,邮筒应立在_______处?(六年
级)
十、抽屉原理、容斥原理
29.有红、黄、蓝三种颜色的小珠子各4颗混放在口袋里,为了保证一次能取
到2颗颜色相同的珠子,一次至少要取颗。

如果要保证一次取到两种不同
颜色的珠子各2颗,那么一定至少取出颗。

(五年级)
30.某班同学中有39人打篮球,37人跑步,25人即打篮球又跑步,问全班参
加篮球、跑步这两项体育活动的总人数是_______. (六年级)
31.现在有64个乒乓球,18个乒乓球盒,每个盒子里最多可以放6个乒乓球,
至少有___ ________个乒乓球盒子里的乒乓球数目相同。

(六年级)
十一、二进制问题
32.把下列十进制数化成二进制数:(六年级)
⑴139(10)=________.
⑵312(10)=________.
⑶477(10)=________.
十二、行程问题
33.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,
狗跑出10步后主人开始追,主人追上狗时,狗跑出_______步? (六年
级)
十三、假设法、鸡兔同笼问题
34.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5
分.小宇最终得41分,他做对______题.(六年级)
十四、奇偶性问题
35.算式:(121+122+…+170)-(41+42+…+98)的结果是_____(填奇数或偶
数)(六年级)
十五、牛吃草问题
36.一块草场,青草每天生长的速度相同。

现在这片草场牧草可供16头牛吃
20天,或者20头牛吃12天,那么这片草场上的草可供25头牛吃多少天?
原题为:一块草场,青草每天生长的速度相同。

现在这片草场牧草可供16
头牛吃20天,或者80只羊吃12天。

如果一头牛一天的吃草量等于4只
羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?(六年级)
十六、盈亏问题
37.学校买来一些扫帚和拖把,扫帚的数量是拖把的2倍,如果扫帚每班分5
把,则少8把;如果拖把每班分2把,则多6把。

学校买来扫帚和拖把各
多少把?(五年级)
十七、分解质因数
38.植树节快到了,蒋老师带领同学们去植树,学生按人数恰好平均分成四组,
已知蒋老师与学生共种了147棵树,老师与学生每人种的树一样多,这个
班共有学生多少人?每人种树多少棵?(五年级)
十八、年龄问题
39.祖父今年72岁,3个孙子的年龄分别是16岁、12岁和8岁。

问年后3
个孙子的年龄和等于祖父的年龄。

相关文档
最新文档