新人教版七年级下册第六章实数全章教案

合集下载

七年级数学下册 6 实数教案 (新版)新人教版

七年级数学下册 6 实数教案 (新版)新人教版

第六章实数1.理解算术平方根、平方根、立方根等概念及其有关概念的意义,并会用根号表示它们.2.会求平方根、算术平方根和立方根.3.理解有理数、无理数以及实数的概念,知道这些数和数轴上的点的对应关系.4.会进行实数的运算.1.抓住新旧知识的联系,灵活运用乘方、开方、有理数的知识,实现知识的迁移,并使新旧知识融会贯通.2.深刻理解并掌握类比的方法,并针对所学的知识启发学生深入思考,交流、探讨,将知识学深、学透、学活.3.重视对数学思想方法的掌握与运用,达到优化解题思路、简化解题过程的目的.培养认真观察、仔细思考的学习习惯,培养从生活中发现、解决数学问题的意识.本章教材在初中数学中具有重要的地位,本章知识是有理数到实数的扩展,是进行其他学习的理论基础和运算基础(如一元二次方程、解三角形、函数、分式等),几乎贯穿了整个数学体系之中.本章主要学习了算术平方根、平方根、立方根的概念,无理数和实数的概念及实数的运算.教材从典型的实际问题入手,首先介绍算术平方根,给出算术平方根的概念和符号表示.在学习算术平方根的基础上学习平方根,利用乘方与开方互为逆运算的特点探讨数的平方根的特征.类比平方根学习立方根,探讨立方根的特征,最后学习无理数及实数的运算.【重点】1.算术平方根、平方根、立方根、实数的概念.2.会求某些非负数的平方根及某些数的立方根.3.知道实数与数轴上的点一一对应,并能进行实数的运算.【难点】求非负数的平方根、算术平方根及算术平方根与平方根的区别与联系.1.关于平方根与算术平方根的学习.(1)通过让学生计算两个不为零的互为相反数的数的平方是同一个正数,总结出“一个正数有两个平方根,它们互为相反数”的性质,加深感性认识.(2)帮助学生正确认识算术平方根的两个非负性:一是被开方数的非负性,即只有非负数才有算术平方根(在中a≥0);二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数(≥0,a≥0).2.关于立方根的学习.(1)引导学生运用类比平方根的方法来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清两者的区别与联系,并适当分析结论不同的原因.(2)要引导学生注意转化思想,将求负数的立方根问题转化为求正数的立方根问题.3.关于无理数与实数的学习.(1)引导学生复习有关有理数的知识,让学生了解有理数包括有限小数和无限循环小数,为学习无理数做好准备.引导学生用数轴上的点来表示有理数、无理数,将所学知识联系起来,使学生了解无理数的存在性.(2)引导学生分清“无限不循环小数”与“无限循环小数”的区别,理解无限循环小数可化成分数,它是有理数;而无限不循环小数不能化成分数,它是无理数,从而启发学生总结有理数和无理数的区别在于是否能够分数化,真正分清有理数和无理数.(3)要引导学生明确有理数的运算法则、运算律同样适用于无理数和实数,使学生能够按照有理数的运算法则、运算律进行无理数和实数的运算.6.1平方根3课时6.2立方根1课时6.3实数3课时单元概括整合1课时6.1平方根1.理解算术平方根的概念,领会乘方与开方的关系.2.会用计算器求一个数的算术平方根,理解被开方数与算术平方根大小的关系.3.会用“夹值法”求一个数算术平方根的近似值.4.掌握平方根的概念,明确平方根和算术平方根之间的区别和联系.1.通过平方根的学习,建立初步的数感和符号感,为学习实数做准备.2.通过求算术平方根的近似值,培养学生勇于探索的精神.1.通过探索活动培养学生克服困难的精神.2.通过解决生活中的实际问题,帮助学生体验数学与生活的紧密联系.3.培养学生从多方面、多角度分析问题、解决问题的思想意识,养成综合分析问题的习惯.【重点】1.平方根的概念和算术平方根.2.夹值法估计一个(无理)数的大小.【难点】1.用夹值法估计一个(无理)数的大小.2.平方根和算术平方根的区别和联系.第课时1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的.2.通过探究活动培养学生动手能力,锻炼学生克服困难的意志,建立自信心,提高学习热情.【重点】算术平方根的概念.【难点】根据算术平方根的概念正确求出非负数的算术平方根.【教师准备】教材章前图的投影图片.【学生准备】复习平方的概念.导入一:同学们,你们知道宇宙飞船离开地球进入轨道正常运行的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(米/秒)而小于第二宇宙速度v2(米/秒).v1,v2的大小满足=gR,=2gR.其中,g是物理中的一个常量,R是地球的半径.怎样求v1,v2呢?即使给出g,R的对应值,利用我们已学过的知识,也很难求出.这就要用到平方根的概念,也就是本章的主要学习内容.[设计意图]借助于教材章前图的内容,使学生认识到生活中的一些问题需要用新的知识去解决,进而增强学生的学习欲望和进取精神.导入二:学校要举行美术作品比赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?你一定会算出边长应取5 dm.说一说你是怎样算出来的.因为S=25 dm2,所以这个正方形画布的边长应取5 dm.上面的计算过程,就是求一个数是由什么数的平方得来的.本课时我们就要学习相关的内容.[设计意图]用教材的问题作为导入材料,能够和学生的课前预习活动对接,可以提高学生的预习效果.导入三:丽丽家新购的一套住房,客厅是长与宽之比为5∶2的长方形,面积为40 m2,求这间客厅的长与宽各为多少.要求客厅的长与宽,依题意可设客厅的长与宽分别是5x m,2x m,可得2x·5x=40,即x2=4,那么怎样才能由x2=4求x呢?[设计意图]从学生能够理解的生活事例入手,帮助学生感受引入平方根概念的必要性.[过渡语](针对导入二)如果小鸥想要裁出的正方形画布面积分别是下表中的数字,怎样求这个正方形的边长呢?1.算术平方根.思路一填写表格后回答问题.正方形的面积/dm2191636正方形的边长/dm1346(1)写出表格中正方形边长的计算过程.(2)上述过程可以概括成怎样的问题?(3)怎样用数学语言描述这个运算过程?(这个运算过程是什么呢?)问题提示:(1)12=1,32=9,42=16,62=36,=.(2)已知一个正数的平方,求这个正数的问题.(3)例如,已知一个正数的平方为a,求这个正数x问题.(可以用不同的字母表示)[设计意图]第(1)问意在复习平方的知识,为学习平方根知识做准备.第(2)问是从平方根的角度帮助学生思考.第(3)问是进一步引导学生通过抽象思维去理解平方根.归纳总结:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.思路二学生阅读教材第40页例1前的内容,回答问题.(1)什么是算术平方根?一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.(2)算术平方根怎么表示?a的算术平方根记为,读作“根号a”,a叫做被开方数.(3)0的算术平方根是多少?0的算术平方根是0.处理方式:学生阅读教材后交流;老师指定部分学生总结问题;总结平方根相关概念.强调:书写时根号一定要把被开方数盖住.讨论:为什么0的算术平方根是0?2.例题讲解.求下列各数的算术平方根.(1)100;(2);(3)0.0001.〔解析〕本题三个数的共同特点是都是正数,符合算术平方根的前提条件.无论是正整数、正分数还是正小数,都有自己的算术平方根.求算术平方根不仅要明确算术平方根的含义,更要习惯用数学方式表达算术平方根的求解过程.解:(1)因为102=100,所以100的算术平方根是10,即=10.(2)因为=,所以的算术平方根是,即=.(3)因为0.012=0.0001,所以0.0001的算术平方根是0.01,即=0.01.追问:从上面的例题中,你发现被开方数和算术平方根之间有什么关系?提示:被开方数越大,对应的算术平方根越大,这个结论对所有的正数都成立.[过渡语]根据例1中的被开方数,我们都能猜到这个数是哪个数的平方,那么怎么求类似7,8,9这些数的算术平方根呢?(补充)求下列各数的算术平方根.(1)36;(2)0.09;(3);(4)(-4)2;(5)0;(6)10.〔解析〕算术平方根的求法:一个正数的算术平方根就是要找一个正数,使它的平方等于这个数.解:(1)因为62=36,所以36的算术平方根是6,即=6.(2)因为0.32=0.09,所以0.09的算术平方根是0.3,即=0.3.(3)因为=,所以的算术平方根是,即 =.(4)因为42=(-4)2=16,所以(-4)2的算术平方根是4,即=4.(5)0的算术平方根是0,=0.(6)10的算术平方根是.[知识拓展]求一个数的算术平方根与求一个正数的平方恰好是互逆的过程,因此,求一个数的算术平方根实际上可以转化为求一个数的平方的逆运算,只不过只有正数和0才有算术平方根,负数没有算术平方根.1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.a的算术平方根记为,读作“根号a”,a叫做被开方数.3.规定:0的算术平方根是0.1.9的算术平方根为()A.3B.±3C.-3D.81解析:因为32=9,所以9的算术平方根为3.故选A.2.下列说法正确的是()A.5是25的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根解析:如果x2=a(x>0),则这个正数x是a的算术平方根,由此判断各选项.A.=5,故选项正确;B.=4,所以16的算术平方根是4,故选项错误;C.=6,故选项错误;D.=0.1,故选项错误.故选A.3.一个数的算术平方根是它本身,这个数是()A.1B.-1C.0D.1或0解析:根据算术平方根的定义:一个正数x的平方等于a,即x2=a,那么这个正数x叫做a 的算术平方根.若一个数的算术平方根是它本身,可以知道这个数是0或1.故选D.4.100的算术平方根是,0.36的算术平方根是.解析:本题求100和0.36的算术平方根,就是求哪个正数的平方等于100或0.36,由此即可解决问题.因为102=100,所以100的算术平方根为10,因为0.62=0.36,所以0.36的算术平方根为0.6.答案:100.6第1课时1.算术平方根定义符号表示0的算术平方根2.例题讲解例1例2一、教材作业【必做题】教材第41页练习第1,2题.【选做题】教材第47页习题6.1第1题.二、课后作业【基础巩固】1.一个数只要存在算术平方根,那么这个数()A.只有一个并且是正数B.一定小于这个数的算术平方根C.必是一个非负数D.不可能等于这个数的算术平方根2.49的算术平方根的相反数是()A.7B.-7C.±7D.±3.下列命题中正确的有()①1的算术平方根是1;②(-1)2的算术平方根是-1;③-4没有算术平方根;④一个数的算术平方根是它本身,这个数只能是零.A.1个B.2个C.3个D.4个4.求下列各数的算术平方根.(1)0.49;(2);(3).5.求下列各式的值.(1)-;(2);(3).【能力提升】6.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数.其中不正确的有()A.5个B.4个C.3个D.2个7.一个数的算术平方根为a,则比这个数大5的数是()A.a+5B.a-5C.a2+5D.a2-58.下列运算正确的是()A.=9B.|-3|=-3C.-=-3D.-32=99.(±4)2的算术平方根是,的算术平方根是.10.已知+(b+2)2=0,那么a+b的值为.11.计算.(1);(2)-;(3)++-.【拓展探究】12.已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a+2b的算术平方根.13.计算下列题目:=,=,=,=,=,=,=.根据计算结果回答下列问题.(1)一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算=.【答案与解析】1.C(解析:因为任何数的平方都不可能为负,都是非负数,所以负数没有算术平方根,只有正数或0才有算术平方根,所以本题应选C.)2.B(解析:49的算术平方根是7,其相反数是-7.故选B.)3.B(解析:根据算术平方根的定义可知:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,结合命题与定理的定义可得答案.①1的算术平方根是1,故此项正确;②(-1)2=1,1的算术平方根是1,故此项错误;③因为-4<0,所以-4没有算术平方根,故此项正确;④一个数的算术平方根是它本身,这个数是0或1,故此项错误.所以正确的有2个.故选B.)4.解:(1)=0.7. (2)=. (3)=.5.解:(1)-=-0.1. (2)=5. (3)=10-3.6.B(解析:根据算术平方根的定义依次分析各小题即可.①负数没有算术平方根;②0的算术平方根是0;③当a<0时,a2的算术平方根是-a;④(π-4)2的算术平方根是4-π,故错误;⑤算术平方根不可能是负数,正确.故选B.)7.C(解析:首先根据算术平方根的定义求出这个数,然后利用已知条件即可求解.因为一个数的算术平方根为a,所以这个数为a2,所以比这个数大5的数是a2+5.故选C.)8.C(解析:A.是求9的算术平方根,所以是3,故选项错误;B.负数的绝对值是正数,结果是3,故选项错误;C.-=-3,故选项正确;D.-32=-9,故选项错误.故选C.)9.4(解析:因为(±4)2=16,42=16,所以(±4)2的算术平方根是4.因为62=36,所以=6,所以的算术平方根是.)10.0(解析:根据非负数的意义:如果两个非负数的和等于0,那么这两个数都为0可知a-2=0,b+2=0,a=2,b=-2,则a+b=2-2=0.)11.解:(1)===5. (2)-=-=-9. (3)++-=++-=1+=.12.解:因为2a-1的算术平方根是3,3a+b-1的算术平方根是4,所以2a-1=9,3a+b-1=16,解得a=5,b=2,所以a+2b=9,所以a+2b的算术平方根是3.13.解:30.760.280(1)不一定等于a,=|a|=(2)π-3.14借助于平方知识,通过逆向思维的类比方式,学生比较好地理解了算术平方根的定义,同时注重强调了对0的算术平方根的理解.学生根据先前的平方知识,会意识到一个正数的平方根会有两个.这就需要特别强调算术平方根定义当中的“一个正数”的限制.在课时的教学过程中,对这点没有做出特别的强调.课前做好平方知识的复习,为学习平方根做准备.引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识.注意引导学生发现被开方数与对应的算术平方根之间的关系.练习(教材第41页)1.提示:(1)0.05. (2)9. (3)3.2.提示:(1)1. (2). (3)2.求下列各式的值.(1);(2) ;(3);(4).〔解析〕(1)就是求484的算术平方根.(2) 就是求12的算术平方根.(3)就是求20.25的算术平方根.(4)8×9×10×11+1=7921,就是求7921的算术平方根.解:(1)因为222=484,所以=22.(2)因为==12,所以 =.(3)因为4.52=20.25,所以=4.5.(4)因为8×9×10×11+1=7921,892=7921,所以=89.第课时1.会用计算器求一个数的算术平方根.2.理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.3.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.通过计算近似值,比较两个算术平方根的大小,培养学生的细心探求精神.【重点】计算算术平方根的两种方法;理解无限不循环小数.【难点】夹值法及估计一个数(无理数)的大小.【教师准备】教材图6.1-1的投影图片.【学生准备】1.复习算术平方根的相关知识.2.计算器.导入一:能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?如图所示,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2 dm2的大正方形.你知道这个大正方形的边长是多少吗?设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=.所以大正方形的边长是 dm.问题:到底有多大呢?导入二:3.1415926…,看到这个数字大家一定会想到圆周率吧.圆的周长和直径的比是一个无限不循环小数,除此之外,像,等是不是无限不循环小数呢?[过渡语]-到底有多大呢?我们一起来探索下吧.1.探索的大小.师:因为12=1,22=4,所以1<<2.这里我们只是粗略地知道了的大小,还不是很精确,这就需要我们继续探索下去.怎么继续下去呢?大家想个办法吧.生:取一个大于1且小于2的数试一试.师:从1.1到1.9这些数字我们怎么选呢?生:通过估算和计算,我们发现1.42=1.96,1.52=2.25,所以1.4<<1.5.师:用刚才的办法还能继续探索下去吗?生:因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415……师:我们可以如此进行下去,会得到的更精确的近似值.但我们无论进行多少次探索,都不会有一个最终的数值,可见=1.41421356237…,它是一个无限不循环小数.实际上,许多正有理数的算术平方根(例如,,等)都是无限不循环小数.2.用计算器求算术平方根.[过渡语]像前面探索一个数的算术平方根的方法无疑是繁琐的,我们通过计算器可以很轻松地解决求算术平方根的问题.大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).(教材例2)用计算器求下列各式的值.(1);(2)(精确到0.001).〔解析〕正确选择计算器上的功能键是关键,对算术平方根的值要根据要求或需要进行取舍.同时需要注意计算器上显示的数值是一个近似值.解:(1)依次按键3136=,显示:56.所以=56.(2)依次按键2=,:1.414213562.所以≈1.414.[过渡语]计算器为人们进行复杂的计算提供了巨大的方便,比如我们来看引言中提出的问题.由=gR,=2gR,得v1=,v2=,其中g≈9.8,R≈6.4×106.用计算器求v1和v2(用科学记数法把结果写成a×10n的形式,其中a保留小数点后一位),得v1=≈7.9×103,v2=≈1.1×104.因此,第一宇宙速度v1大约是7.9×103 m/s,第二宇宙速度v2大约是1.1×104 m/s.3.用计算器探究.(1)利用计算器计算下表中的各式,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?…………(2)用计算器计算(精确到0.001),并利用你在(1)中发现的规律说出,,的近似值,你能根据的值说出的值是多少吗?问题提示:(1)如下表所示:………0.250.792.57.92579250…从表中可以发现:被开方数的小数点每向右(或向左)移动两位,开方后的结果向相同的方向移动一位.(2)因为≈1.732,≈0.1732,≈17.32,≈173.2,根据的值不能说出是多少.4.估计算术平方根的值解决问题.[过渡语]在生活中,我们经常遇到估计一个数的大小的问题.请看下面的例子.(教材例3)小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?〔解析〕本题的核心是能否按照要求裁出一个长宽比为3∶2、面积为300 cm2的长方形,通过列方程的办法可以计算出满足这样条件的长方形的长和宽,再与正方形的边长做对比,就可以得出相应的结论.解:设长方形纸片的长为3x cm,宽为2x cm,根据边长与面积的关系得:3x·2x=300,6x2=300x2=50,x=.因此长方形纸片的长为3 cm.因为50>49,所以>7.由上可知3>21,即长方形纸片的长应该大于21 cm.因为=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.【思考】如果一个数的平方等于19,这个数是多少?[知识拓展]确定x2=a(a≥0)中正数x的近似值的方法:1.确定正数x的整数部分.根据平方的定义,把x夹在两个连续的正整数之间,确定其整数部分.2.确定x的小数部分十分位上的数字.将这两个整数平方和的平均数与x比较,预测十分位上数字的取值范围,也可以采用试验的方法进行估计.在求某些数的算术平方根时,当有些数据比较大或不易求出时,便可以利用计算器求算术平方根,用计算器上的“”键.一般先按“”键,然后再输入数据,再按“=”键即可.在没有计算器或不允许用计算器的情况下,可进行估算,我们通常取与被开方数相近的两个完全平方数的算术平方根相比较.1.我们可以利用计算器求一个正数a的算术平方根,其操作方法是按顺序进行按键输入:a = ,16,4,则他按键1600,显示结果应为.解析:根据被开方数扩大到原来的100倍,算术平方根扩大到原来的10倍直接解答即可.故填40.2.已知a,b为两个连续的整数,且a<<b,则a+b=.解析:因为<<,所以3<<4,因为a<<b,所以a=3,b=4,所以a+b=3+4=7.故填7.3.用计算器求下列各式的值(结果保留4个有效数字).(1);(2);(3).解:(1)依次按键734,显示27.09243437,所以≈27.09.(2)依次按键0.012345,显示0.111108055,所以≈0.1111.(3)依次按键5,显示2.236067977,所以≈2.236.4.小川的房间地面面积为17.6 m2,房间地面恰好由110块相同的正方形铺成,每块地砖的边长是多少米?解:设每块地砖的边长是x m,则110x2=17.6,x2=0.16,所以x=0.4.答:每块地砖的边长是0.4 m.第2课时1.探索的大小2.用计算器求算术平方根例13.用计算器探究4.估计算术平方根的值解决问题例2一、教材作业【必做题】教材第44页练习第1,2题.【选做题】教材47页习题6.1第6题.二、课后作业【基础巩固】1.若m=-4,则估计m的值所在的范围是()A.1<m<2B.2<m<3C.3<m<4D.4<m<52.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间3.用计算器计算:-3.142≈.(结果保留三个有效数字)4.小杰卧室地板的总面积为16平方米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长.5.圆的面积S(cm2)与半径r(cm)之间的关系式为S=πr2,现要制作一块面积为49π cm2的圆形零件,此零件的半径应为多少厘米?【能力提升】6.如图所示,方格图中小正方形的边长为1,将方格中阴影部分图形剪下来,再把剪下的部分重新剪拼成一个正方形,那么所拼成的这个正方形的边长为()A. B.2 C. D.7.用计算器估算:若2.6456<<2.6459,则a的整数值是.8.如果的整数部分为a,小数部分为b,那么a-b=.9.学校组织集邮展览,某同学用30枚长3 cm,宽2.5 cm的邮票恰好拼成了一个正方形,你能求出这个正方形的边长吗?【拓展探究】10.请你观察、思考下列计算过程:因为112=121,所以=11,同样因为1112=12321,所以=111,由此猜想=.11.用计算器求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078.(2)0.00065,0.065,6.5,650,65000.【答案与解析】1.B(解析:先估算出在哪两个整数之间,即可得到结果.因为6=<<=7,所以2<-4<3,故选B.)2.B(解析:根据正方形的面积先求出正方形的边长,然后估算即可得出答案.设正方形的边长为x,因为正方形面积是15,所以x2=15,故x=.因为9<15<16,所以3<<4.故选B.)3.0.464(解析:首先利用计算器求出13的算术平方根,然后即可求出结果.-3.142≈3.6056-3.142=0.4636≈0.464.)4.解:每块地板砖的面积=平方米,所以每块地板砖的边长==(米).5.解:设此零件的半径为r cm,由题意得49π=πr2,解得r=7.所以此零件的半径为7 cm.6.C(解析:根据题意可得,所拼成的正方形的面积是5,所以正方形的边长是.故选C.)7.7(解析:因为2.6456=,2.6459=,所以a的整数值是7.)8.4-(解析:先求出的范围,即可求出a,b的值,再代入求出即可.因为2<<3,所以的整数部分为a=2,小数部分是b=-2,所以a-b=2-(-2)=4-,故答案为4-.)9.解:一枚邮票的面积为3×2.5=7.5(cm2),30枚邮票的总面积为7.5×30=225(cm2),则正方形的边长为15 cm.10.111111111(解析:因为112=121,所以=11.同样1112=12321,所以=111,…,由此猜想=111111111.)11.解:(1)≈279.3,≈27.93,≈2.793,≈0.2793,≈0.02793. (2)≈0.02550,≈0.2550,≈2.550,≈25.50,≈255.0.规律是:被开方数的小数点向左(右)移动两位,则其算术平方根的小数点就向左(右)移动一位.用“夹值法”探索根式的近似值,其教学过程中蕴含着多种教学目的,如帮助学生深入领会无限不循环小数,为以后得出无理数和实数的概念做准备,同时也可以培养学生勇于探索的精神.本课时在教学的过程中,通过情境引入、师生研讨等方式较好地落实了课程教学目标.在探索近似值的过程中,最初没有让学生利用计算器进行探索,课堂上浪费了一定时间,在利用计算器进行探索的时候,忽略了学生使用计算器的差异.在利用计算器进行近似值探索的时候,可以让学生自己总结一些数的算术平方根的性质.在探索规律的过程中,学生不易直接发现小数点变化的规律,应该进行一定的提示.关注学生对计算器的正确使用,并强调计算器的显示结果只是算术平方根的一个近似值.练习(教材第44页)1.提示:(1)37. (2)10.06. (3)2.24.。

七年级数学下册6实数教案新人教版

七年级数学下册6实数教案新人教版

第六章实数1.理解算术平方根、平方根、立方根等概念及其有关概念的意义,并会用根号表示它们.2.会求平方根、算术平方根和立方根。

3.理解有理数、无理数以及实数的概念,知道这些数和数轴上的点的对应关系.4.会进行实数的运算.1.抓住新旧知识的联系,灵活运用乘方、开方、有理数的知识,实现知识的迁移,并使新旧知识融会贯通。

2。

深刻理解并掌握类比的方法,并针对所学的知识启发学生深入思考,交流、探讨,将知识学深、学透、学活。

3。

重视对数学思想方法的掌握与运用,达到优化解题思路、简化解题过程的目的。

培养认真观察、仔细思考的学习习惯,培养从生活中发现、解决数学问题的意识.本章教材在初中数学中具有重要的地位,本章知识是有理数到实数的扩展,是进行其他学习的理论基础和运算基础(如一元二次方程、解三角形、函数、分式等),几乎贯穿了整个数学体系之中。

本章主要学习了算术平方根、平方根、立方根的概念,无理数和实数的概念及实数的运算.教材从典型的实际问题入手,首先介绍算术平方根,给出算术平方根的概念和符号表示.在学习算术平方根的基础上学习平方根,利用乘方与开方互为逆运算的特点探讨数的平方根的特征.类比平方根学习立方根,探讨立方根的特征,最后学习无理数及实数的运算。

【重点】1.算术平方根、平方根、立方根、实数的概念.2.会求某些非负数的平方根及某些数的立方根.3。

知道实数与数轴上的点一一对应,并能进行实数的运算。

【难点】求非负数的平方根、算术平方根及算术平方根与平方根的区别与联系。

1。

关于平方根与算术平方根的学习。

(1)通过让学生计算两个不为零的互为相反数的数的平方是同一个正数,总结出“一个正数有两个平方根,它们互为相反数”的性质,加深感性认识。

(2)帮助学生正确认识算术平方根的两个非负性:一是被开方数的非负性,即只有非负数才有算术平方根(在中a≥0);二是算术平方根本身的非负性,即一个非负数的算术平方根是一个非负数(≥0,a≥0).2。

新人教版七年级下册第六章实数全章教案51621备课讲稿

新人教版七年级下册第六章实数全章教案51621备课讲稿

6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。

教学重点:算术平方根的概念和求法。

教学难点:算术平方根的求法。

一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是已知一个正数的平方,求这个正数的问题。

2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。

⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。

三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。

由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。

七年级数学下册6实数教案新版新人教版

七年级数学下册6实数教案新版新人教版

第六章实数6.1平方根(1)掌握平方根的定义,会求平方根.重点平方根的概念及其符号表示.难点理解平方根的概念.一、创设情境,引入新课问题 学校要举行美术作品比赛,小鸥很高兴.想裁出一块面积为25 dm 2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?师:∵52=25,∴这个正方形画框的边长应取5 dm . 二、讲授新课师:请同学们填表:师:上面的问题,实际上是已知一个正数的平方,求这个正数的问题.师:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.记作a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 师:我们一起来做题. 展示课件:【例】 求下列各数的算术平方根:(1)100; (2)4964; (3)0.0001.学生活动:尝试独立完成.教师活动:巡视、指导,派一生上黑板板演. 师生共同完成.解:(1)∵102=100,∴100的算术平方根是10. 即100=10.(2)∵(78)2=4964,∴4964的算术平方根是78,即4964=78.(3)∵0.012=0.0001,∴0.0001的算术平方根是0.01,即0.0001=0.01.三、随堂练习课本第41页练习.四、课堂小结本节课你学到了哪些知识?与同伴交流.师生共同归纳算术平方根的定义及其表示方法.教师首先利用例子提出问题:请你说出上面等式右边各数的平方根,通过学生动脑动口加深对算术平方根概念的初步理解;然后在上面叙述的基础上提出算术平方根概念的符号表示方法,同时用练习巩固所学新知,由量变到质变,使学生能牢固掌握本节内容.6.1平方根(2)能用夹值法求一个数的算术平方根的近似值,会用计算器.重点夹值法估计一个数的算术平方根的大小.难点夹值法估计一个数的算术平方根的大小.一、创设情境,引入新课师:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?运用多媒体,展示课件:怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?学生活动:小组合作操作、观察、交流.二、讲授新课师:将两个小正方形沿对角线剪开,得到几个直角三角形?生:4个.师:大正方形的面积多大?生:面积为2的大正方形.师:这个大正方形的边长如何求?学生活动:尝试独立完成.教师活动:启发,适时点拨.师生共同归纳:设大正方形的边长为x,则x2=2,由算术平方根的意义可知:x= 2. ∴大正方形的边长为 2.师:小正方形的对角线的长为多少?生:对角线长为 2.师:很好,2有多大呢?学生活动:小组合作交流.教师活动:适时启发,点拨.师生共同归纳:∵12=1,22=4,∴1<2<2.∵1.42=1.96,1.52=2.25,∴1.4<2<1.5.∵1.412=1.9881,1.422=2.0164,∴1.41<2<1.42.∵1.4142=1.999396,1.4152=2.002225,∴1.414<2<1.415.……如此进行下去,可以得到2的更精确的近似值.其实,2=1.41421356……它是一个无限不循环小数,无限不循环小数是指小数位数无限,且小数部分不循环的小数.师:你能举出几个例子吗?生:能,如:3、5、7等.师:如何用计算器求出一个正有理数的算术平方根(或其近似值).学生活动:尝试独立完成例2.师:请同学们用计算器求出引言中的第一宇宙速度、第二宇宙速度.学生活动:用计算器小组合作完成.第一宇宙速度:v1≈7.9×103m/s;第二宇宙速度:v2≈1.1×104m/s.展示课件:1.利用计算器计算,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?师:你能说出其中的规律吗?学生活动:小组讨论交流.师生共同归纳:求算术平方根时,被开方数的小数点要两位两位地移动,当被开方数向左(右)每移动两位时,它的算术平方根相应地向左(右)移动一位.新知应用:师:我们一起来做题:展示课件.运用多媒体:【例】小丽想用一块面积为400 cm2的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?解:设长方形纸片的长为3x cm,宽为2x cm.根据边长与面积的关系得3x·2x=300,6x2=300,x2=50,x=50.因此长方形纸片的长为350 cm.因为50>49,所以50>7.由上可知350>21,即长方形纸片的长应该大于21 cm.因为400=20,所以正方形纸片的边长只有20 cm.这样,长方形纸片的长将大于正方形纸片的边长.【答】不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.三、随堂练习课本第44页练习.四、课堂小结通过本节课的学习,你有哪些收获?与同伴交流.1.使每个学生都参与用计算器求一个正有理数的算术平方根,由于有的同学没有带计算器,所以没有很好地理解所学的知识.2.平方根移动的规律,须让学生通过查表、探索、发现、总结,最好是自己找出其中所蕴含的规律.6.1平方根(3)数的开方意义、平方根的意义、平方根的表示法.重点平方根.难点正确理解平方根的意义.一、创设情境,引入新课师:如果一个数的平方等于9,这个数是多少?学生思考、讨论.生:3.师:除此之外,还有没有别的数的平方也等于9呢?生:-3.师:所以,若一个数的平方等于9,这个数是3或-3.二、讲授新课师:请同学们填表.展示课件:如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.用字母表示为:如果x2=a,则x叫做a的平方根.例:3和-3是9的平方根,简记为±3是9的平方根.求一个数a的平方根的运算,叫做开平方.师:请同学们看图.展示课件:师:平方与开平方有何联系? 生:平方与开平方互为逆运算.师:我们可以根据这种运算关系,来求一个数的平方根.请同学们做题: 【例】 求下列各数的平方根: (1)100;(2)916;(3)0.25.解:(1)因为(±10)2=100,所以100的平方根是±10; (2)因为(±34)2=916,所以916的平方根是±34;(3)因为(±0.5)2=0.25,所以0.25的平方根是±0.5.师:正数、负数、0的平方根有何特点? 生讨论、交流. 师生共同分析:正数的平方根有两个,它们互为相反数,正的平方根是这个数的算术平方根. ∵负数的平方是正数,∴在我们所认识的数中,任何一个数的平方都不会是负数. ∴负数没有平方根. ∵02=0,∴0的平方根是0.归纳:①正数有两个平方根,它们互为相反数; ②负数没有平方根; ③0的平方根是0.师:正数a 的平方根表示为±a ,读作“正、负根号a ”. 如:±9=±3,±25=±5.师:a 只有当a ≥0时有意义,a <0时无意义,为什么? 生:负数没有平方根. 师:请大家做题. 求下列各式的值:(1)144;(2)-0.81;(3)±121196. 学生活动:尝试独立完成,一生上黑板板演. 教师活动:巡视、指导、纠正. 师生共同完成:(1)∵122=144,∴144=12.(2)∵0.92=0.81,∴-0.81=-0.9. (3)∵(±1114)2=121196,∴±121196=±1114. 三、随堂练习课本第46页、第47页第1、2、3、4题. 四、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.1.提供足够的时间,让学生理解平方根的意义.掌握正数、0、负数的平方根的特点. 2.多提供适量的有代表性的习题,随堂练习. 3.易出错的题目随堂订正.6.2 立方根掌握立方根的定义;正数、负数、0的立方根的特点;用计算器求立方根.重点掌握立方根的定义.难点运用所学知识解决问题.一、创设情境,引入新课要制作一种容积为27 m 3的正方体形状的包装箱,这种包装箱的边长应该是多少? 师:设这种包装箱的边长为x m ,则 x 3=27这就是要求一个数,使它的立方等于27. ∵33=27, ∴x =3.即这种包装箱的边长为3 m .师:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.即:如果x 3=a ,那么x 叫做a 的立方根. ∵33=27,∴3是27的立方根. 师:什么是开立方?生:求一个数的立方根的运算,叫做开立方.师:正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算,据此我们可以求一个数的立方根.师:请看大屏幕.根据立方根的意义填空,看看正数、0和负数的立方根各有什么特点? ∵23=8,∴8的立方根是(2);∵(0. 5)3=0. 125,∴0.125的立方根是(0.5);∵(0)3=0,∴0的立方根是(0);∵(-2)3=-8,∴-8的立方根是(-2);∵(-23)3=-827,∴-827的立方根是(-23).师生共同归纳:正数的立方根是正数. 负数的立方根是负数. 0的立方根是0.师:你能说说数的平方根与数的立方根有什么不同吗? 生:每一个数均有一个立方根,而负数没有平方根.师:一个数a的立方根表示法:3a,读作“三次根号a”.其中a是被开方数,3是根指数.如38表示8的立方根,即38=2.3-8表示-8的立方根,即3-8=-2.3a中的根指数3不能省略.注:算术平方根的符号a,实际上省略了2a中的根指数2,因此a也可读作“二次根号a”.师:请同学们填空:∵3-8=________,-38=________.∴3-8________-38.∵3-27=________,-327=________.∴3-27________-327.一般地,3-a________-3a.师:请同学们做题:【例】求下列各式的值:(1)364;(2)-318;(3)3-2764.解:(1)364=4;(2)-318=-12;(3)3-2764=-34.其实,很多有理数的立方根是无限不循环小数.如32、33等都是无限不循环小数,可以用有理数、近似数表示它们.师:请同学们用计算器求出一个数的立方根.学生活动:用计算器求一些数的立方根.师:请同学们观看大屏幕.用计算器计算…,30.000216,30.216,3216,3216000,…,你能发现什么规律?用计算器计算3100(精确到0.001),并利用你发现的规律求30.1,30.0001,3100000的近似值.师:同学们发现了什么规律?学生讨论、交流并发言.师生共同归纳:被开方数的小数点向左(右)每移动三位,其立方根的小数点相应地向左(右)移动一位.二、随堂练习课本第51页练习.三、课堂小结通过本节课的学习,你有哪些收获?请与同伴交流.教学设计着重于把立方根与开立方进行类比教学,注重概念的形成过程,让学生在新概念的形成过程中,逐步理解新概念,通过设置问题,组织思考讨论来帮助学生理解立方根和开立方的概念.让学生通过实例和抽象类比来理解立方根与平方根概念的联系与区别.6.3实数第1课时实数了解无理数和实数的意义,会对实数进行分类,了解实数的绝对值和相反数的意义.重点理解实数的概念.难点运用所学知识解决问题.一、创设情境,引入新课师:请同学们使用计算器,把下列有理数写成小数的形式,你有什么发现? 3,-35,478,911,1190,59生1:3=3.0 -35=-0.6 478=5.875911=0.81 1190=0.12 59=0.5 生2:这些有理数都可以写成有限小数或者无限循环小数. 二、讲授新课 师:很好,其实,任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.师:很多数的平方根和立方根都是无限不循环小数,无限不循环小数叫做无理数.例如:2、-5、32、33等都是无理数.π=3. 14159265……也是无理数.师:有理数和无理数统称实数.实数⎩⎪⎨⎪⎧有理数 有限小数或无限循环小数无理数 无限不循环小数师:像有理数一样,无理数也有正负之分.无理数⎩⎨⎧正无理数 2,33,π,……负无理数 -2,-33,-π,……师:由于非0有理数和无理数都有正、负之分,所以实数可以这样分类:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数师:每个有理数都可以用数轴上的点来表示,无理数也可以用数轴上的点来表示.请大家观看大屏幕: 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?师:从图中可以看出,OO ′的长是多少? 生1:这个圆的周长为π. 师:O ′的坐标是多少? 生2:O ′的坐标是π.师:所以无理数π可以用数轴上的点表示出来. 师:如何在数轴上表示±2呢? 学生活动:小组合作交流.教师活动:巡视、检查,适时点拨. 师生共同完成:归纳:每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.师:实数与数轴上的点有何关系?师:实数与数轴上的点是一一对应的,即每一个实数都可以用数轴上的一个点来表示.反过来,数轴上的每一个点都表示一个实数.师:平面直角坐标系中的点与有序实数对之间也是一一对应的.右边的点表示的实数总比左边的点表示的实数大,当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合实数.师:请同学们做题:2的相反数是________,-π的相反数是________,0的相反数是________,|2|=________,|-π|=________,|0|=________.师:同学们有什么发现?生:与有理数一样.师生共同归纳:数a的相反数是-a(a表示任意一个实数).一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.【例】(1)分别写出-6,π-3.14的相反数;(2)指出-5,1-33分别是什么数的相反数;(3)求3-64的绝对值;(4)已知一个数的绝对值是3,求这个数.解:(1)因为-(-6)=6,-(π-3.14)=3.14-π,所以,-6,π-3.14的相反数分别为6,3.14-π.(2)因为-(5)=-5,-(33-1)=1-33,所以,-5,1-33分别是5,33-1的相反数.(3)因为3-64=-364=-4,所以|3-64|=|-4|=4.(4)因为|3|=3,|-3|=3,所以绝对值为3的数是3或- 3.三、随堂练习课本第56页第1、2、3题.四、课堂小结通过本节课的学习,同学们有哪些收获?请与同伴交流.本节课通过对无理数的学习,使学生对数的认识又提升到一个新的层次.通过举一些数让学生对其进行分类,即按有理数和无理数归类,使他们对这两类数进行区分,更深入地认识这两类数的区别.第2课时实数的运算法则实数的运算法则.重点掌握实数的运算法则.难点实数运算法则的正确应用.一、创设情境,引入新课师:有理数的运算法则是什么?生:先算高级运算,同级运算从左至右,遇有括号的先算括号内.二、讲授新课师:很好.有理数运算法则仍适用于实数,请大家看几个题目:展示课件:【例1】计算下列各式的值:(1)(3+2)-2;(2)33+2 3.学生活动:尝试独立完成,两名学生上黑板板演,其余学生在位上做.教师活动:巡视、指导.师生共同完成:(1)(3+2)-2=3+(2-2)(加法结合律)=3+0= 3(2)33+2 3=(3+2) 3 分配律=5 3师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.【例2】计算(结果保留小数点后两位):(1)5+π;(2)3· 2.学生尝试独立计算,一学生上黑板板演.教师巡视、纠正.师生共同完成:(1)5+π≈2.236+3.142≈5.38(2)3· 2≈1.732×1.414≈2.45三、随堂练习课本第56页第4题,第57页第4、5、6题.四、课堂小结通过本节课的学习,你有哪些收获?首先通过课本引例问题,旨在使学生通过自己的探究活动,经过老师的引导,感受并经历实数的运算、化简;让学生根据实例进行探索,通过学生互相交流合作,得出两个化简的公式,培养他们的合作精神和探索能力,也让他们获得成功的体验,充分调动、发挥学生主动性的多样化学习方式,促进学生在老师指导下主动地、富有个性地学习.。

新人教版七年级下册第六章实数教案

新人教版七年级下册第六章实数教案

第六章实数单元(章)教学计划1、地位与作用:本章<实数>是人教版八年级数学上册第三十章内容。

学习算术平方根,平方根,立方根之后,为学习实数打下基础;由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。

运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。

因此,本章是今后学习根式运算、方程、函数等知识的重要基础。

2、目标与要求:知识与技能通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;会用计算器求算术平方根;使学生理解平方根的概念,了解平方与开平方的关系。

学会平方根的表示法和求非负数的平方根;进一步认识实数和数轴上的点一一对应蕴含着数形结合的思想,通过学习不仅是完善了学生的知识结构,而且让学生领会到数形结合的思想,培养了学生的分类意识,使学生养成用多角度思维的思考习惯过程与方法通过了解平方与开平方的关系,培养学生逆向思维能力;能对具体情景中的数学信息作出合理的解释和推断、解决问题,能由实际问题抽象成数学问题,让学生讨论、类比提出自己的见解,并在探索的同时较好的获得新知;经历在具体例子中抽象出概念的过程,培养学习的主动性,提高数学运算能力。

情感态度与价值观通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的合理性和严谨性,使学生养成积极思考,独立思考的好习惯,并且同时培养学生的团队合作精神。

3、重点与难点:重点:算术平方根、平方根、立方根的概念和运算;实数的认识。

难点:算术平方根与平方根联系与区别;有理数与无理数的区别。

4、教法与学法:教师启发引导,学生自主探究,分类比较法,统一归纳法,自学讨论法,小组互动法等教学方法.5、活动步骤:一、创设导入;二、探索归纳;三、应用;四、练习;五、课堂总结;六、布置作业;6、时间安排:6.1平方根 3课时6.2立方根 1课时6.3实数 2课时复习与小结 2课时6.1.1平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

人教版七年级数学下册第六章实数优秀教学案例

人教版七年级数学下册第六章实数优秀教学案例
4.教师简要回顾前面所学知识,引导学生发现实数与前面的知识之间的联系,为新课的学习做好铺垫。
(二)讲授新知
1.教师引导学生探究实数的定义和性质,通过讲解、示例等方式,让学生理解实数的概念,掌握实数的分类。
2.运用数形结合的思想,讲解实数与数轴的关系,让学生能够将实数对应到数轴上的正确位置。
3.教授实数的运算方法,包括加、减、乘、除等基本运算,通过示例和练习,让学生熟练掌握实数的运算规则。
人教版七年级数学下册第六章实数优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第六章“实数”为主题,本章主要内容包括实数的定义、分类及实数与数轴的关系。对于七年级的学生来说,实数是数学学习中一个非常重要的概念,它既包括有理数,也包括无理数,是对前面学习的数的扩充。在本章节的教学中,我以提高学生的数学思维能力、培养学生的抽象思维和逻辑推理能力为目标,充分运用教学策略,提高教学效果。
4.组织小组展示和分享,让学生在课堂上展示自己的研究成果,培养学生的表达能力和自信心的同时,增进学生之间的相互学习。
(四)总结归纳
1.教师引导学生对实数的相关知识进行总结归纳,帮助学生梳理实数的定义、分类、运算方法以及实数与数轴的关系等。
在教学过程中,我充分考虑学生的认知规律和学习特点,以生活实例引入实数的概念,让学生感受数学与生活的紧密联系。通过设置具有启发性的问题,引导学生主动探究、积极思考,从而加深对实数的理解。同时,注重运用数形结合的思想,让学生在动手操作、观察中发现实数与数轴之间的关系,提高学生的空间想象力。
在教学评价方面,我采用多元化的评价方式,既关注学生的知识掌握程度,也重视学生的能力发展。通过课堂提问、小组讨论、数学日记等形式,了解学生在实数学习过程中的困惑和问题,及时调整教学策略,为学生提供个性化的指导。此外,还结合课后作业和练习,对学生的学习效果进行检测,为下一步教学提供依据。

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

(实用)最新人教版七年级 第六章《实数》整章教案(绝对精品)

6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。

教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。

因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。

人教版数学七年级下册第6章第3课实数实数(教案)

人教版数学七年级下册第6章第3课实数实数(教案)
-举例突破:在实数的运算中,可以设计一些具体的例题,如√2与√3的加减运算,指导学生如何进行运算,并解释运算规则。
-直观教学:利用数轴模型,将实数与数轴上的点进行对应,通过动画或实物演示,帮助学生建立直观的几何概念。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如足球的面积计算)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
课堂上,我尝试了多种教学方法,比如小组讨论和实验操作,让学生们动手动脑,这样可以提高他们的参与度和兴趣。从学生的反馈来看,这种互动式的学习方式效果不错,他们能够更直观地理解实数与数轴的关系。
然而,我也注意到,在实数的运算环节,尤其是涉及无理数的计算时,学生们还是感到有些困惑。我意识到,我需要提供更多的例题和练习,特别是那些能够逐步引导他们理解无理数运算规则的问题。
人教版数学七年级下册第6章第3课实数实数(教案)
一、教学内容
人教版数学七年级下册第6章第3课实数。本节课将涵盖以下内容:
1.实数的定义:有理数和无理数的统称,包括整数、分数以及无理数。
2.无理数的理解:介绍无理数的概念,如π、√2等,并解释其与有理数的区别。
3.实数的性质:探讨实数的封闭性、可比较性、可运算性等。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与实数相关的实际问题,如无理数的近似计算。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用剪刀和直尺制作一个π的近似计算模型。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

人教版数学七年级下册6.3《实数》优秀教学案例

人教版数学七年级下册6.3《实数》优秀教学案例
2.运用启发式教学法,引导学生发现实数的性质,培养学生的问题解决能力。
3.采用小组合作学习法,让学生在讨论和交流中,共同完成实数性质的探究,培养学生的合作意识和团队精神。
4.设计丰富的教学活动,让学生在实践中感受实数的性质,提高学生的动手操作能力和实践能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,使学生树立自信心,相信自己能够掌握实数的知识。
4.引导学生总结实数的性质,培养学生的归纳总结能力,例如“实数的性质有哪些?如何描述有理数和无理数?”
(三)小组合作
1.让学生分组讨论实数的性质,鼓励学生发表自己的观点,培养学生的合作意识和团队精神。
2.设计小组活动,让学生共同探究实数的运算规则,例如“以小组为单位,总结实数的加法、减法、乘法、除法规则。”
在教学设计上,我遵循了由浅入深、循序渐进的原则,将知识点进行合理划分,使得学生能够逐步理解和掌握实数的概念和性质。在教学方法上,我采用了启发式教学法和小组合作学习法,鼓励学生主动发现问题、解决问题,培养学生的合作意识和团队精神。
在教学评价上,我注重过程性评价与终结性评价相结合,全面了解学生的学习情况,及时调整教学策略,提高教学效果。通过本节课的教学,希望学生能够熟练掌握实数的相关知识,提高他们的数学素养。
三、教学策略
(一)情景创设
1.利用生活实例引入实数的概念,例如身高、体重、温度等,让学生感受到实数与生活的紧密联系。
2.通过设计有趣的数学问题,激发学生的学习兴趣,例如“小明身高1.6米,小红身高1.5米,请问小明比小红高多少?”
3.利用多媒体课件展示实数的应用场景,例如在平面直角坐标系中,展示实数表示的点的位置。
4.创设问题情境,引导学生思考实数的性质,例如“为什么实数可以分为有理数和无理数?”

七年级数学下册6实数教案新人教版

七年级数学下册6实数教案新人教版

第六章实数1.明白得算术平方根、平方根、立方根等概念及其有关概念的意义,并会用根号表示它们.2.会求平方根、算术平方根和立方根.3.明白得有理数、无理数和实数的概念,明白这些数和数轴上的点的对应关系.4.会进行实数的运算.1.抓住新旧知识的联系,灵活运用乘方、开方、有理数的知识,实现知识的迁移,并使新旧知识融会贯通.2.深刻明白得并把握类比的方式,并针对所学的知识启发学生深切试探,交流、探讨,将知识学深、学透、学活.3.重视对数学思想方式的把握与运用,达到优化解题思路、简化解题进程的目的.培育认真观看、认真试探的学习适应,培育从生活中发觉、解决数学问题的意识.本章教材在初中数学中具有重要的地位,本章知识是有理数到实数的扩展,是进行其他学习的理论基础和运算基础(如一元二次方程、解三角形、函数、分式等),几乎贯穿了整个数学体系当中.本章要紧学习了算术平方根、平方根、立方根的概念,无理数和实数的概念及实数的运算.教材从典型的实际问题入手,第一介绍算术平方根,给出算术平方根的概念和符号表示.在学习算术平方根的基础上学习平方根,利用乘方与开方互为逆运算的特点探讨数的平方根的特点.类比平方根学习立方根,探讨立方根的特点,最后学习无理数及实数的运算.【重点】1.算术平方根、平方根、立方根、实数的概念.2.会求某些非负数的平方根及某些数的立方根.3.明白实数与数轴上的点一一对应,并能进行实数的运算.【难点】求非负数的平方根、算术平方根及算术平方根与平方根的区别与联系.1.关于平方根与算术平方根的学习.(1)通过让学生计算两个不为零的互为相反数的数的平方是同一个正数,总结出“一个正数有两个平方根,它们互为相反数”的性质,加深感性熟悉.(2)帮忙学生正确熟悉算术平方根的两个非负性:一是被开方数的非负性,即只有非负数才有算术平方根(在中a≥0);二是算术平方全然身的非负性,即一个非负数的算术平方根是一个非负数(≥0,a≥0).2.关于立方根的学习.(1)引导学生运用类比平方根的方式来学习立方根的概念、性质、求法,并启发学生与平方根的相应结论进行联系、比较,弄清二者的区别与联系,并适当分析结论不同的缘故.(2)要引导学生注意转化思想,将求负数的立方根问题转化为求正数的立方根问题.3.关于无理数与实数的学习.(1)引导学生温习有关有理数的知识,让学生了解有理数包括有限小数和无穷循环小数,为学习无理数做好预备.引导学生用数轴上的点来表示有理数、无理数,将所学知识联系起来,使学生了解无理数的存在性.(2)引导学生分清“无穷不循环小数”与“无穷循环小数”的区别,明白得无穷循环小数可化成份数,它是有理数;而无穷不循环小数不能化成份数,它是无理数,从而启发学生总结有理数和无理数的区别在于是不是能够分数化,真正分清有理数和无理数.(3)要引导学生明确有理数的运算法那么、运算律一样适用于无理数和实数,使学生能够依照有理数的运算法那么、运算律进行无理数和实数的运算.平方根3课时立方根1课时实数3课时单元概括整合1课时平方根1.明白得算术平方根的概念,领会乘方与开方的关系.2.会用计算器求一个数的算术平方根,明白得被开方数与算术平方根大小的关系.3.会用“夹值法”求一个数算术平方根的近似值.4.把握平方根的概念,明确平方根和算术平方根之间的区别和联系.1.通过平方根的学习,成立初步的数感和符号感,为学习实数做预备.2.通过求算术平方根的近似值,培育学生勇于探讨的精神.1.通过探讨活动培育学生克服困难的精神.2.通过解决生活中的实际问题,帮忙学生体验数学与生活的紧密联系.3.培育学生从多方面、多角度分析问题、解决问题的思想意识,养成综合分析问题的适应.【重点】1.平方根的概念和算术平方根.2.夹值法估量一个(无理)数的大小.【难点】1.用夹值法估量一个(无理)数的大小.2.平方根和算术平方根的区别和联系.第课时1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根.通过学习算术平方根,成立初步的数感和符号感,进展抽象思维.1.通过解决实际生活中的问题,让学生体验数学与生活实际是紧密联系着的.2.通过探讨活动培育学生动手能力,锻炼学生克服困难的意志,成立自信心,提高学习热情.【重点】算术平方根的概念.【难点】依照算术平方根的概念正确求出非负数的算术平方根.【教师预备】教材章前图的投影图片.【学生预备】温习平方的概念.导入一:同窗们,你们明白宇宙飞船离开地球进入轨道正常运行的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(米/秒)而小于第二宇宙速度v2(米/秒).v1,v2的大小知足=gR,=2gR.其中,g是物理中的一个常量,R是地球的半径.如何求v1,v2呢?即便给出g,R的对应值,利用咱们已学过的知识,也很难求出.这就要用到平方根的概念,也确实是本章的要紧学习内容.[设计用意]借助于教材章前图的内容,使学生熟悉到生活中的一些问题需要用新的知识去解决,进而增强学生的学习欲望和进取精神.导入二:学校要举行美术作品竞赛,小鸥想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加竞赛,这块正方形画布的边长应取多少?你必然会算出边长应取5 dm.说一说你是如何算出来的.因为S=25 dm2,因此那个正方形画布的边长应取5 dm.上面的计算进程,确实是求一个数是由什么数的平方得来的.本课时咱们就要学习相关的内容.[设计用意]用教材的问题作为导入材料,能够和学生的课前预习活动对接,能够提高学生的预习成效.导入三:丽丽家新购的一套住房,客厅是长与宽之比为5∶2的长方形,面积为40 m2,求这间客厅的长与宽各为多少.要求客厅的长与宽,依题意可设客厅的长与宽别离是5x m,2x m,可得2x·5x=40,即x2=4,那么如何才能由x2=4求x呢?[设计用意]从学生能够明白得的生活事例入手,帮忙学生感受引入平方根概念的必要性.[过渡语](针对导入二)若是小鸥想要裁出的正方形画布面积别离是下表中的数字,如何求那个正方形的边长呢?思路一填写表格后回答下列问题.正方形的面积/dm2 1 9 16 36正方形的边长/dm 1 3 4 6(1)写出表格中正方形边长的计算进程.(2)上述进程能够归纳成如何的问题?(3)如何用数学语言描述那个运算进程?(那个运算进程是什么呢?)问题提示:(1)12=1,32=9,42=16,62=36,=.(2)已知一个正数的平方,求那个正数的问题.(3)例如,已知一个正数的平方为a,求那个正数x问题.(能够用不同的字母表示)[设计用意]第(1)问意在温习平方的知识,为学习平方根知识做预备.第(2)问是从平方根的角度帮忙学生试探.第(3)问是进一步引导学生通过抽象思维去明白得平方根.归纳总结:一样地,若是一个正数x的平方等于a,即x2=a,那么那个正数x叫做a的算术平方根.a的算术平方根记为,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.思路二学生阅读教材第40页例1前的内容,回答下列问题.(1)什么是算术平方根?一样地,若是一个正数x的平方等于a,即x2=a,那么那个正数x叫做a的算术平方根.(2)算术平方根怎么表示?a的算术平方根记为,读作“根号a”,a叫做被开方数.(3)0的算术平方根是多少?0的算术平方根是0.处置方式:学生阅读教材后交流;教师指定部份学生总结问题;总结平方根相关概念.强调:书写时根号必然要把被开方数盖住.讨论:什么缘故0的算术平方根是0?2.例题讲解.求以下各数的算术平方根.(1)100;(2);(3).〔解析〕此题三个数的一起特点是都是正数,符合算术平方根的前提条件.不管是正整数、正分数仍是正小数,都有自己的算术平方根.求算术平方根不仅要明确算术平方根的含义,更要适应用数学方式表达算术平方根的求解进程.解:(1)因为102=100,因此100的算术平方根是10,即=10.(2)因为=,因此的算术平方根是,即=.(3)因为=,因此的算术平方根是,即=.追问:从上面的例题中,你发觉被开方数和算术平方根之间有什么关系?[过渡语]依照例1中的被开方数,咱们都能猜到那个数是哪个数的平方,那么怎么求类似7,8,9这些数的算术平方根呢?(补充)求以下各数的算术平方根(1)36;(2);(3);(4)(-4)2;(5)0;(6)10.〔解析〕算术平方根的求法:一个正数的算术平方根确实是要找一个正数,使它的平方等于那个数.解:(1)因为62=36,因此36的算术平方根是6,即=6.(2)因为=,因此的算术平方根是,即=.(3)因为=,因此的算术平方根是,即 =.(4)因为42=(-4)2=16,因此(-4)2的算术平方根是4,即=4.(5)0的算术平方根是0,=0.(6)10的算术平方根是.[知识拓展]求一个数的算术平方根与求一个正数的平方恰好是互逆的进程,因此,求一个数的算术平方根事实上能够转化为求一个数的平方的逆运算,只只是只有正数和0才有算术平方根,负数没有算术平方根.1.一样地,若是一个正数x的平方等于a,即x2=a,那么那个正数x叫做a的算术平方根.的算术平方根记为,读作“根号a”,a叫做被开方数.3.规定:0的算术平方根是0.的算术平方根为()B.±3解析:因为32=9,因此9的算术平方根为3.应选A.2.以下说法正确的选项是()是25的算术平方根B.±4是16的算术平方根是(-6)2的算术平方根是的算术平方根解析:若是x2=a(x>0),那么那个正数x是a的算术平方根,由此判定各选项.A.=5,应选项正确;B.=4,因此16的算术平方根是4,应选项错误;C.=6,应选项错误;D.=,应选项错误.应选A.3.一个数的算术平方根是它本身,那个数是()或0解析:依照算术平方根的概念:一个正数x的平方等于a,即x2=a,那么那个正数x叫做a的算术平方根.假设一个数的算术平方根是它本身,能够明白那个数是0或1.应选D.的算术平方根是,的算术平方根是.解析:此题求100和的算术平方根,确实是求哪个正数的平方等于100或,由此即可解决问题.因为102=100,因此100的算术平方根为10,因为=,因此的算术平方根为.答案:10第1课时1.算术平方根概念符号表示0的算术平方根2.例题讲解例1例2一、教材作业【必做题】教材第41页练习第1,2题.【选做题】教材第47页习题第1题.二、课后作业【基础巩固】1.一个数只要存在算术平方根,那么那个数()A.只有一个而且是正数B.必然小于那个数的算术平方根C.必是一个非负数D.不可能等于那个数的算术平方根的算术平方根的相反数是()C.±7D.±3.以下命题中正确的有()①1的算术平方根是1;②(-1)2的算术平方根是-1;③-4没有算术平方根;④一个数的算术平方根是它本身,那个数只能是零.个个个个4.求以下各数的算术平方根.(1);(2);(3).5.求以下各式的值.(1)-;(2);(3).【能力提升】6.以下说法:①任何数都有算术平方根;②一个数的算术平方根必然是正数;③a2的算术平方根是a;④(π-4)2的算术平方根是π-4;⑤算术平方根不可能是负数.其中不正确的有()个个个个7.一个数的算术平方根为a,那么比那个数大5的数是()+5 +58.以下运算正确的选项是()A.=9B.|-3|=-3=-3 =99.(±4)2的算术平方根是,的算术平方根是.10.已知+(b+2)2=0,那么a+b的值为.11.计算.(1);(2)-;(3)++-.【拓展探讨】12.已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a+2b的算术平方根.13.计算以下题目:=,=,=,=,=,=,=.依照计算结果回答以下问题.(1)必然等于a吗?你发觉其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算=.【答案与解析】(解析:因为任何数的平方都不可能为负,都是非负数,因此负数没有算术平方根,只有正数或0才有算术平方根,因此此题应选C.)(解析:49的算术平方根是7,其相反数是-7.应选B.)(解析:依照算术平方根的概念可知:一样地,若是一个正数x的平方等于a,即x2=a,那么那个正数x叫做a的算术平方根,结合命题与定理的概念可得答案.①1的算术平方根是1,故此项正确;②(-1)2=1,1的算术平方根是1,故此项错误;③因为-4<0,因此-4没有算术平方根,故此项正确;④一个数的算术平方根是它本身,那个数是0或1,故此项错误.因此正确的有2个.应选B.)4.解:(1)=. (2)=. (3)=.5.解:(1)-=. (2)=5. (3)=10-3.(解析:依照算术平方根的概念依次分析各小题即可.①负数没有算术平方根;②0的算术平方根是0;③当a<0时,a2的算术平方根是-a;④(π-4)2的算术平方根是4-π,故错误;⑤算术平方根不可能是负数,正确.应选B.)(解析:第一依照算术平方根的概念求出那个数,然后利用已知条件即可求解.因为一个数的算术平方根为a,因此那个数为a2,因此比那个数大5的数是a2+5.应选C.)(解析:A.是求9的算术平方根,因此是3,应选项错误;B.负数的绝对值是正数,结果是3,应选项错误;=-3,应选项正确;=-9,应选项错误.应选C.)(解析:因为(±4)2=16,42=16,因此(±4)2的算术平方根是4.因为62=36,因此=6,因此的算术平方根是.)(解析:依照非负数的意义:若是两个非负数的和等于0,那么这两个数都为0可知a-2=0,b+2=0,a=2,b=-2,则a+b=2-2=0.)11.解:(1)===5. (2)-=-=-9. (3)++-=++-=1+=.12.解:因为2a-1的算术平方根是3,3a+b-1的算术平方根是4,因此2a-1=9,3a+b-1=16,解得a=5,b=2,因此a+2b=9,因此a+2b的算术平方根是3.13.解:360(1)不必然等于a,=|a|=(2)π借助于平方知识,通过逆向思维的类例如式,学生比较好地明白得了算术平方根的概念,同时注重强调了对0的算术平方根的明白得.学生依照先前的平方知识,会意识到一个正数的平方根会有两个.这就需要专门强调算术平方根概念当中的“一个正数”的限制.在课时的教学进程中,对这点没有做出专门的强调.课前做好平方知识的温习,为学习平方根做预备.引入算术平方根的知识,要借助具体的生活情境,如此才能加深对引入平方根知识必要性的熟悉.注意引导学生发觉被开方数与对应的算术平方根之间的关系.练习(教材第41页)1.提示:(1). (2)9. (3)3.2.提示:(1)1. (2). (3)2.求以下各式的值.(1);(2) ;(3);(4).〔解析〕(1)确实是求484的算术平方根.(2) 确实是求12的算术平方根.(3)确实是求的算术平方根.(4)8×9×10×11+1=7921,确实是求7921的算术平方根.解:(1)因为222=484,因此=22.(2)因为==12,因此 =.(3)因为=,因此=.(4)因为8×9×10×11+1=7921,892=7921,因此=89.第课时1.会用计算器求一个数的算术平方根.2.明白得被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.3.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解数的无穷不循环性,明白得用近似值表示无穷不循环小数的实际意义.通过计算近似值,比较两个算术平方根的大小,培育学生的细心探求精神.【重点】计算算术平方根的两种方式;明白得无穷不循环小数.【难点】夹值法及估量一个数(无理数)的大小.【教师预备】教材图的投影图片.【学生预备】1.温习算术平方根的相关知识.2.计算器.导入一:可否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?如下图,把两个小正方形别离沿对角线剪开,将所得的4个直角三角形拼在一路,就取得一个面积为2 dm2的大正方形.你明白那个大正方形的边长是多少吗?设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=.因此大正方形的边长是 dm.问题:到底有多大呢?导入二:…,看到那个数字大伙儿必然会想到圆周率吧.圆的周长和直径的比是一个无穷不循环小数,除此之外,像,等是不是无穷不循环小数呢?[过渡语]-到底有多大呢?咱们一路来探讨下吧.1探讨的大小师:因为12=1,22=4,因此1<<2.那个地址咱们只是粗略地明白了的大小,还不是很精准,这就需要咱们继续探讨下去.怎么继续下去呢?大伙儿想个方法吧.生:取一个大于1且小于2的数试一试.师:从到这些数字咱们怎么选呢?生:通过估算和计算,咱们发觉=,=,因此<<.师:用适才的方法还能继续探讨下去吗?生:因为=,=,因此<<;因为=,=,因此<<……师:咱们能够如此进行下去,会取得的更精准的近似值.但咱们不管进行多少次探讨,都可不能有一个最终的数值,可见=…,它是一个无穷不循环小数.事实上,许多正有理数的算术平方根(例如,,等)都是无穷不循环小数.2.用计算器求算术平方根.[过渡语]像前面探讨一个数的算术平方根的方式无疑是繁琐的,咱们通过计算器能够很轻松地解决求算术平方根的问题.大多数计算器都有键,用它能够求出一个正有理数的算术平方根(或其近似值).(教材例2)用计算器求以下各式的值.(1);(2)(精准到.〔解析〕正确选择计算器上的功能键是关键,对算术平方根的值要依照要求或需要进行取舍.同时需要注意计算器上显示的数值是一个近似值.解:(1)依次按键3136=,显示:56.因此=56.(2)依次按键2=,显示:.[过渡语]计算器为人们进行复杂的计算提供了庞大的方便,比如咱们来看引言中提出的问题.由=,=2,得1=,2=,其中≈,≈×10用计算器求v1和v2(用科学记数法把结果写成a×10n的形式,其中a保留小数点后一名),得v1=≈×103,v2=≈×104.因此,第一宇宙速度v1大约是×103 m/s,第二宇宙速度v2大约是×104 m/s.3.用计算器探讨.(1)利用计算器计算下表中的各式,并将计算结果填在表中,你发觉了什么规律?你能说出其中的道理吗?…………(2)用计算器计算(精准到,并利用你在(1)中发觉的规律说出,,的近似值,你能依照的值说出的值是多少吗?问题提示:(1)如下表所示:………25 79 250 …从表中能够发觉:被开方数的小数点每向右(或向左)移动两位,开方后的结果向相同的方向移动一名.(2)因为≈,≈,≈,≈,依照的值不能说出是多少.4.估量算术平方根的值解决问题.[过渡语]在生活中,咱们常常碰到估量一个数的大小的问题.请看下面的例子.(教材例3)小丽想用一块面积为400 cm的正方形纸片,沿着边的方向裁出一块面积为300 cm2的长方形纸片,使它的长宽之比为3∶2.她不知可否裁得出来,正在发愁.小明见了说:“别发愁,必然能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?小丽能用这块纸片裁出符合要求的纸片吗?〔解析〕此题的核心是可否依照要求裁出一个长宽比为3∶2、面积为300 cm2的长方形,通过列方程的方法能够计算出知足如此条件的长方形的长和宽,再与正方形的边长做对照,就能够够得出相应的结论.解:设长方形纸片的长为3x cm,宽为2x cm,依照边长与面积的关系得:3x·2x=300,6x2=300x2=50,x=.因此长方形纸片的长为3 cm.因为50>49,因此>7.由上可知3>21,即长方形纸片的长应该大于21 cm.因为=20,因此正方形纸片的边长只有20 cm.如此,长方形纸片的长将大于正方形纸片的边长.答:不能同意小明的说法.小丽不能用这块正方形纸片裁出符合要求的长方形纸片.【试探】若是一个数的平方等于19,那个数是多少?[知识拓展]确信x2=a(a≥0)中正数x的近似值的方式:1.确信正数x的整数部份.依照平方的概念,把x夹在两个持续的正整数之间,确信其整数部份.2.确信x的小数部份十分位上的数字.将这两个整数平方和的平均数与x比较,预测十分位上数字的取值范围,也能够采纳实验的方式进行估量.在求某些数的算术平方根时,当有些数据比较大或不易求出时,即能够利用计算器求算术平方根,用计算器上的“”键.一样先按“”键,然后再输入数据,再按“=”键即可.在没有计算器或不许诺用计算器的情形下,可进行估算,咱们通常取与被开方数相近的两个完全平方数的算术平方根相较较.1.咱们能够利用计算器求一个正数a的算术平方根,其操作方式是按顺序进行按键输入: a = ,小明按键输入16,显示结果为4,那么他按键1600,显示结果应为.解析:依照被开方数扩大到原先的100倍,算术平方根扩大到原先的10倍直接解答即可.故填40.2.已知a,b为两个持续的整数,且a<<b,则a+b=.解析:因为<<,因此3<<4,因为a<<b,因此a=3,b=4,因此a+b=3+4=7.故填7.3.用计算器求以下各式的值(结果保留4个有效数字).(1);(2);(3).解:(1)依次按键734,显示,因此≈.(2)依次按键,显示,因此≈.(3)依次按键5,显示,因此≈.4.小川的房间地面面积为 m2,房间地面恰好由110块相同的正方形铺成,每块地砖的边长是多少米?解:设每块地砖的边长是x m,则110x2=,x2=,因此x=.答:每块地砖的边长是 m.第2课时1.探讨的大小2.用计算器求算术平方根例13.用计算器探讨4.估量算术平方根的值解决问题例2一、教材作业【必做题】教材第44页练习第1,2题.【选做题】教材47页习题第6题.二、课后作业【基础巩固】1.若m=-4,那么估量m的值所在的范围是()<m<2 <m<3<m<4 <m<52.一个正方形的面积是15,估量它的边长大小在()与3之间与4之间与5之间与6之间3.用计算器计算:≈.(结果保留三个有效数字)4.小杰卧室地板的总面积为16平方米,恰好由64块正方形的地板砖铺成,求每块地板砖的边长.5.圆的面积S(cm2)与半径r(cm)之间的关系式为S=πr2,现要制作一块面积为49π cm2的圆形零件,此零件的半径应为多少厘米?【能力提升】6.如下图,方格图中小正方形的边长为1,将方格中阴影部份图形剪下来,再把剪下的部份从头剪拼成一个正方形,那么所拼成的那个正方形的边长为()A. C. D.7.用计算器估算:若<<,则a的整数值是.8.若是的整数部份为a,小数部份为b,那么a-b=.9.学校组织集邮展览,某同窗用30枚长3 cm,宽 cm的邮票恰好拼成了一个正方形,你能求出那个正方形的边长吗?【拓展探讨】10.请你观看、试探以下计算进程:因为112=121,因此=11,一样因为1112=12321,因此=111,由此猜想=.11.用计算器求以下各数的算术平方根(保留四个有效数字),并观看这些数的算术平方根有什么规律.(1)78000,780,,,.(2),,,650,65000.【答案与解析】(解析:先估算出在哪两个整数之间,即可取得结果.因为6=<<=7,因此2<-4<3,应选B.) (解析:依照正方形的面积先求出正方形的边长,然后估算即可得出答案.设正方形的边长为x,因为正方形面积是15,因此x2=15,故x=.因为9<15<16,因此3<<4.应选B.)解析:第一利用计算器求出13的算术平方根,然后即可求出结果.≈解:每块地板砖的面积=平方米,因此每块地板砖的边长==(米).5.解:设此零件的半径为r cm,由题意得49π=πr2,解得r=7.因此此零件的半径为7 cm. (解析:依照题意可得,所拼成的正方形的面积是5,因此正方形的边长是.应选C.)(解析:因为=,=,因此a的整数值是7.)(解析:先求出的范围,即可求出a,b的值,再代入求出即可.因为2<<3,因此的整数部份为a=2,小数部份是b=-2,因此a-b=2-(-2)=4-,故答案为4-.)9.解:一枚邮票的面积为3×=(cm2),30枚邮票的总面积为×30=225(cm2),那么正方形的边长为15 cm.(解析:因为112=121,因此=11.一样1112=12321,因此=111,…,由此猜想=1.)11.解:(1)≈,≈,≈,≈,≈. (2)≈,≈,≈,≈,≈.规律是:被开方数的小数点向左(右)移动两位,那么其算术平方根的小数点就向左(右)移动一名.用“夹值法”探讨根式的近似值,其教学进程中包括着多种教学目的,如帮忙学生深切领会无穷不循环小数,为以后得出无理数和实数的概念做预备,同时也能够培育学生勇于探。

新人教版七年级下册第六章6.3《实数》教案

新人教版七年级下册第六章6.3《实数》教案

《实数》教学设计一、学习目标1、了解无理数、实数的概念和分类,知道实数和数轴上的点一一对应,能估算无理数的大小。

2、了解实数的运算法则及运算律,准确地进行实数范围内的运算。

二、新课导入1的平方根是 __,算术平方根是 .2、一个数的立方根等于它本身,这个数是 .3、 2.078=0.2708=,则y =( )A.0.8966 B.0.008966C.89.66 D.0.00008966三、自主学习认真阅读课本第53页至第54页的内容。

Ⅰ、完成下面练习,并体验知识点的形成过程。

1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=______,25=______,35-=______, 427=______,119 =______,911=______。

我们发现,上面的有理数都可以写成________ 或者 的形式。

归纳 事实上,任何一个 都可以写成有限小数或无限循环小数的形式。

反过来, 任何__________________________也都是有理数。

观察 我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫做 _ __。

例如 , , , 等都是 ____ 。

3.14159265π=也是 。

结论 有理数和无理数统称为 。

试一试 我们学过的数可以这样分类:{实数像有理数一样,无理数也有正负之分。

,π是,,π-是。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:{四、合作探究从课本图6.3-1中可以看出OO'的长是,所以O'对应的数是.总结(1)每个有理数都可以用数轴上的点来表示。

事实上,每一个也都可以用数轴上的表示出来。

这就是说,数轴上的点有些表示数,有些表示数。

(2)当从有理数扩充到实数以后,实数与数轴上的点就是___ 的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的每一个点都是表示一个。

(3)与有理数一样,对于数轴上的任意两个点,边的点所表示的实数总比_ 边的点表示的实数。

人教版七年级下册(新)第六章《6

人教版七年级下册(新)第六章《6
6.请同学们预习下一节课的内容,了解实数与数轴的关系,为课堂学习做好准备。
作业要求:
1.认真完成作业,书写规范,保持卷面整洁。
2.遇到问题要积极思考,可以请教同学或老师,培养解决问题的能力。
3.家长要关注孩子的学习情况,协助孩子完成作业,并给予适当的鼓励和指导。
(三)学生小组讨论
1.分组讨论:让学生分成小组,讨论实数的性质、运算法则以及在实际问题中的应用。
2.案例分析:提供一些实数运算的案例,让学生分析并解决,促进学生对实数知识的理解和运用。
3.小组汇报:每个小组选派代表进行汇报,分享本组的讨论成果,其他小组进行评价和补充。
(四)课堂练习
1.设计不同难度的练习题,让学生进行实数运算的练习,巩固所学知识。
1.体会到数学的严谨性和实数在生活中的广泛应用,激发学生学习数学的兴趣。
2.培养学生勇于探索、积极思考的学习态度,提高学生的自主学习能力。
3.使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
4.培养学生团结协作、共同进步的精神,增强集体荣誉感。
在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养学生的创新精神和实践能力。通过本章的学习,为学生后续学习奠定坚实的基础。
2.针对数轴上实数的大小比较,设计相关练习,提高学生的实数比较能力。
3.教师巡回指导,针对学生存在的问题,给予个别辅导,帮助学生克服困难。
(五)总结归纳
1.对本节课所学内容进行回顾,引导学生总结实数的概念、分类、性质和运算方法。
2.强调实数在实际生活中的应用,激发学生学习数学的兴趣。
3.鼓励学生提出疑问,解答学生在学习过程中遇到的问题,巩固所学知识。

新人教版七年级下册第六章实数数学教案

新人教版七年级下册第六章实数数学教案

第六章实数6.1 平方根(3 课时)课程目标一、知识与技能目标1. 通过对平方值的计算等确立平方根的意义、开方的运算。

了解算术平方根与平方根的区别与联系。

2. 对于任意有理数都能区分其“+” 、“-”性,运用计算器已势在必行。

二、过程与方法目标采用类比平方值的求法,定义出平方根的概念,同时从这个过程可知一个什么样的数才具有平方根,这种数有几个平方根?并比较这两个平方根之间有什么关系?三、情感态度与价值观目标1. 引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神。

2. 了解无理数的发现过程,鼓励学生大胆质疑,培养学生学习数学的热情。

教材解读本节内容首先给出一个简单的问题,根据正方形的面积求出其边长,由此引出求某数的平方根的问题,在涉及到不能直接用已有的知识开方时,则引进计算器的使用方法,通过计算器对任意正数进行开方。

这样将有理数与无理数沟通起来成为实数。

学情分析上学期已经学习了有理数,对任何数的形式主义都能够顺利得到,同时也感知了“互为相反数的平方相等” ,故由平方值去探索平方根的问题实际上只是互逆过程,只要求出一个数的平方就可得知平方根的值。

第1课时一、创设情境,导入新课玲玲家最近喜事不断,家里新购了一套房子,全家欢欢喜喜地搬进新居,爸爸妈妈又增加了工资。

条件改善了,为了给玲玲一个好的学习环境,爸爸打算给玲玲买一张桌子供她在家做作业。

爸爸问玲玲:“你喜欢长方形桌子还是正方形桌子?”玲玲认为正方形桌子更大,可以多堆点书,又可以有足够的位置写字,所以她更喜欢正方形桌子。

于是爸爸根据她的喜爱为她购置了一张正方形桌子,玲玲量了量课桌的边长为100cm,你能算出这张桌子的周长和面积吗?当然可以了,?可是如果玲玲更直接地告诉爸爸“我想要一张面积约为125dm的正方形桌子”。

?请问她爸爸能为她购置到满意的桌子吗?当然可以,计算正方形的面积必须要知道正方形的边长,根据边长求面积是乘方运算,而根据面积求边长又是什么运算呢?这节课我们就来探讨这个问题。

人教版七年级下册数学第6章《实数》优秀教学案例(教案)

人教版七年级下册数学第6章《实数》优秀教学案例(教案)
五、案例亮点
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”

新人教版七年级下册第六章《实数》全章教案(共8份)

新人教版七年级下册第六章《实数》全章教案(共8份)

(总第十三课时)6.1平方根(1)
教学过程设计
(总第十四课时)6.1平方根(2)
教学过程设计
问:拼成的这个面积为2dm的大正方形的边长应该是多
3136
56.

1.41421356
2.
应用规律
(总第十五课时)6.1平方根(3)
教学过程设计
问:前四个是什么运算?后面的又是什么运算?
教师板书:求一个数A的平方根的运算,叫开平方,叫被开方数.。

问题(五)
(总第十六课时)6.2立方根(1)
教学过程设计
(总第十七课时)6.2立方根(2)
教学过程设计
(总第十八课时)6.3实数(1)
教学过程设计
探究实数与数轴上的点一一对应关系。

我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?
如图所示,直径为1个单位长度的圆从原点沿数轴向
总结: 1.事实上,当从有理数扩充到实数以后,
与数轴上的点就是一一对应的,即每一个实数都可以
怎样表示无理数
(总第十九课时)6.3实数(2)
教学过程设计
(总第二十课时)第六章小结与复习
教学过程设计。

新人教七年级下册第六章实数全章教案

新人教七年级下册第六章实数全章教案

第六章实数6.1.1 平方根第一课时【教学目标】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,开展抽象思维,为学生以后学习无理数做好准备。

教学重点:算术平方根的概念和求法。

教学难点:算术平方根的求法。

教具准备: 三块大小相等的正方形纸片;学生计算器。

教学方法: 自主探究、启发引导、小组合作【教学过程】一、情境引入:问题:学校要举行美术作品比赛,小欧很快乐,他想裁出一块面积为25dm2的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为5dm。

接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、4,那么正方形的边长分别是多25第-1-页共35页少呢?学生会求出边长分别是1、3、4、6、2,接下来教师可以引导性地提问:5上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。

上面的问题,实际上是一个正数的平方,求这个正数的问题。

归纳:⑴算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a那么这个正数x叫做a的算术平方根。

⑵算术平方根的表示方法:a的算术平方根记为a,读作“根号a〞或“二次很号a〞,a叫做被开方数。

三、应用:例1、求以下各数的算术平方根:⑴100⑵49⑶17⑷0.0001⑸0649解:⑴因为102100,所以100的算术平方根是10,即10010;⑵因为(7)249,所以49的算术平方根是7,即497;864648648⑶因为1716,(4)216,所以17的算术平方根是4,即17164;993993993⑷因为0.0120.0001,所以0.0001的算术平方根是0.01,即0.00010.01;⑸因为020,所以0的算术平方根是0,即00。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级下册第六章实数全章教案案场各岗位服务流程销售大厅服务岗:1、销售大厅服务岗岗位职责:1)为来访客户提供全程的休息区域及饮品;2)保持销售区域台面整洁;3)及时补足销售大厅物资,如糖果或杂志等;4)收集客户意见、建议及现场问题点;2、销售大厅服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范迎接指引递阅资料上饮品(糕点)添加茶水工作要求1)眼神关注客人,当客人距3米距离时,应主动跨出自己的位置迎宾,然后侯客迎询问客户送客户注意事项15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!”3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人;4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品);7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等待;阶段工作及服务流程班中工作程序工作要求注意事项饮料(糕点服务)1)在所有饮料(糕点)服务中必须使用托盘;2)所有饮料服务均已“对不起,打扰一下,请问您需要什么饮品”为起始;3)服务方向:从客人的右面服务;4)当客人的饮料杯中只剩三分之一时,必须询问客人是否需要再添一杯,在二次服务中特别注意瓶口绝对不可以与客人使用的杯子接触;5)在客人再次需要饮料时必须更换杯子;下班程序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;2)填写物资领用申请表并整理客户意见;3)参加班后总结会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.3.3吧台服务岗1.3.3.3.1吧台服务岗岗位职责1)为来访的客人提供全程的休息及饮品服务;2)保持吧台区域的整洁;3)饮品使用的器皿必须消毒;4)及时补充吧台物资;5)收集客户意见、建议及问题点;1.3.3.3.2吧台服务岗工作及流程阶段工作及服务流程班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。

班中工作程序服务流程行为规范问询需求按需求提供饮品客户离开后清理桌面阶段工作及服务流程服务准迎客:保得知需客户班中工作程序工作要求注意事项1)在饮品制作完毕后,如果有其他客户仍在等到则又销售大厅服务岗呈送;2)所有承装饮品的器皿必须干净整洁;下班程序5)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导;6)填写物资领用申请表并整理客户意见;7)参加班后总结会;8)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4展示区服务岗岗位职责1.3.4.1车场服务岗1.3.4.1.1车场服务岗岗位职责1)维护停车区的正常停车秩序;2)引导客户车辆停放,同时车辆停放有序;3)当车辆挺稳时,上前开车门并问好;同时提醒客户锁好车门;4)视情况主动为客户提供服务;5)待车辆停放完好后,仔细检查车身情况请客户签字确认;1.3.4.1.2阶段工作及服务流程班前阶段1)自检仪容仪表2)检查周边及案场区设备、消防器材是否良好,如出现异常现象立即报告或报修3)检查停车场车位是否充足,如有异常及时上报上级领导班中工作程序服务流程行为规范1.敬礼2.指引停车3.迎客问好4.目送阶段工作及服务流程班中工作程序工作要求注意事项1)岗位应表现良好的职业形象时刻注意自身的表现,用BI规范严格要求自己2)安全员向客户敬礼,开车门,检查车辆情况并登记,用对讲系统告知销售大厅迎宾,待客人准备离开目送客人离开;迎送引导敬为问指引销售检查车为引敬下班程序1)检查使用的工具情况,异常情况及时记录并报告上级领导;2)参加班后总结会;3)统计访客量;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4.2展示区礼宾岗1.3.4.2.1展示区礼宾岗岗位职责1)对过往的客户行标准的军礼,目视;2)与下一交接岗保持信息联系,及时将信息告知下一岗位,让其做好接待工作;3)热情礼貌的回答客户的提问,并做正确的指引;4)注视岗位周边情况,发现异常及时上报上级领导;1.3.4.2.2展示区礼宾岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表2)检查周边及案场区设备、消防器材是否良好,如出现异常现象立即报告或报修班中工作程序服务流程敬礼问指引样板敬礼目送行为规范1.迎接客户2.指引客户3.为客户提供帮助4.目送客户工作要求注意事项1)礼宾岗必须掌握样板房户型、面积、朝向、在售金额、物业服务管理费用等客户比较关注的话题;2)礼宾岗上班后必须检查样板房的整体情况,如果发现问题必须及时上报并协助销售进行处理;3)视线范围内见有客户参观时,远处目视,待客户行进1.5米的距离时,敬军礼并主动向客户微笑问好,“欢迎您来参观样板房,这边请,手势指引样板房方向”;阶段工作及服务流程班中工作程序工作要求注意事项4)参观期间,礼宾岗需注意背包或穿大衣等可以重点人员进行关注,避免样板房的物品丢失,当巡检时发现有物品丢失及时上报上级领导,对参观的可疑人员进行询问,根据销售部的意见决定是否报警;5)样板房开放时间,在未经销售、项目部允许而进行拍照、摄像等行为劝阻,禁止任何人员挪动展示物品;6)样板房开放时礼宾岗要关注老人、小孩、孕妇及行动不便的人群,对在参观过程中出现的意外及物品损坏必须及时上报上级领导,根据销售部的意见进行处理并做好登记;7)样板房开放期间礼宾岗要礼貌准确的回答客户的问题,对不能回答的问题需引导给销售人员由其进行解答,严禁用含糊不清或拒绝来回答;8)留意客户是否离开样板房,通知电瓶车司机来接客户;9)当客户参观完毕离开样板房,待客户1.5米距离时微笑敬礼目送客户,手势指向出门的方向,若电瓶车未到,向客户致歉并说明电瓶车马上就到;10)每天下班要对样板房物品进行检查并做好登记,如出现丢失或损坏须向上级领导呈报,根据销售部意见进行处理并做好记录;11)礼宾岗下班后要关闭样板房的水源、电源及监控系统并与晚班人员做好交接;12)对于特殊天气,样板房礼宾岗要检查周边环境,以防不则;下班程序1)检查使用的工具情况,异常情况及时记录并报告上级领导;2)参加班后总结会;3)统计访客量;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.4.3电瓶车服务岗1.3.4.3.1电瓶车服务岗岗位职责1)严格按照规定的路线及线路行驶,将客人送到指定地点;2)正确执行驾驶操作流程,确保车行安全;3)了解开发建设项目的基本情况并使用统一说辞,在允许的情况下礼貌回答客户问题;4)车辆停放时及时对车辆进行清洁,确保车辆干净;5)负责车辆的检查;6)对车辆实施责任化管理,未经允许任何人不得驾驶;7)不允许非客户人员乘坐电瓶车;8)做好电瓶车的交接工作1.3.4.3.2电瓶车服务岗工作及服务流程阶段工作及服务流程班前阶段1)自检仪容仪表2)检查电瓶车运行状态,如发现问题立即上报上级领导进行维修并做好记录班中工作程序服务流程行为规范1)迎接客户上车2)转弯、减速、避让提示客户3)下车提示客户小心工作要求注意事项1)电瓶车驾驶员载客至样板房过程中禁止鸣笛、超速、遇车避让;2)客户上车时应主动问好,欢迎您来到XX项目,车辆行驶时应提示客户坐稳扶好,到达目的地时,驾驶员提示客户样板房已经到达请小心下车,客户离开电瓶车时应说:欢迎下次乘坐,谢谢再见,问指引车辆起车辆行驶下请慢走;3)带客户下车时应检查车上是否有遗留物品,并提示客户随身带好物品;4)电瓶车必须严格按照规定路线行驶;5)做好行车记录;下班程序1)待客户全部离开后将电瓶车开至指定位置,并将车辆进行清洁及充电;2)整理客户意见,参加班后会;3)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.5样板房服务岗1.3.5.1样板房讲解岗岗位标准1.3.5.1.1样板房讲解岗岗位职责1)负责来访样板房客户的全程接待与讲解;2)协助、配合置业顾问介绍;3)客户离开后,样板房零星保洁的处理;4)收集客户意见、建议及现场问题点的填写(样板房日常庶务)反馈单,下班后递交案场负责人;1.3.5.1.2样板房讲解刚工作及服务流程阶段工作及服务流程班前阶1)自检仪容仪表,以饱满的工作状态进入工段作;2)检查样板房设备设施运行情况,如有异常及时上报并做好登记;3)检查样板房保洁情况及空调开启情况;设备设施班中工作程序服务流程行为规范1)站立微笑自然2)递送鞋套3)热情大方、细致讲解4)温馨道别保持整洁工作要求注意事项1)每日对接样板房设备清单,检查空调开启及保洁状态;2)站在样板房或电梯口,笑意盈盈接待客户;3)顾客出现时,身体成30度角鞠躬“欢迎光顾XX样板房”4)引领入座并双手递上鞋套,双手递上时不宜过高,与客人坐下时的膝盖同高;5)与客户交谈时声音要足,吐字清晰避迎客,引导客协助置向客户免重复;6)专注你接待的客户,勿去应其他客户,以示尊重,对其他客户微笑点头以示回应;7)若无销售人员带领的客户,要主动介绍房子的户型及基本信息,谈到房子的价位时请客户直接与销售人员联系不要直接做回答;8)参加样板房时,未经销售或其他人员允许谢绝拍照及录像,谢绝动用样板房物品及附属设施,对客遗失物品做好登记并上报上级领导;9)时刻注意进入样板房的客户群体,特别是小孩,要处处表达殷勤的关心,以示待客之道;10)时刻留意客户的谈话,记下客户对样板房的关注点和相关信息;11)送别,引领客户入座示意脱下鞋套双手承接,客户起身离去时,鞠躬说感谢您参观样板房,并目送客户离开;下班程序1)检查样板房设备设施是否处于良好的运营状态,如出现异常及时维修;2)需对接样板房物品清单;3)整理客户意见,参加班后会;4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;1.3.5.2样板房服务岗岗位标准(参见销售大厅服务岗岗位标准)1.3.6案场服务岗管理要求培训及例会岗前培训BI规范及楼盘基本情况在岗培训每月至少一次1)公司企业文化2)客户服务技巧3)客户心理培训4)突发事件处理5)营销知识培训6)职业安全7)7S现场管理例会日会:每日参加案场管理岗组织的总结会并及时接收案场信息周会:每周参加管理岗组织的服务类业务点评会客户信息收集反馈每日汇总客户信息反馈到案场管理岗样板房客户车场岗客户监督考核1)考核频次:至少每月一次;2)考核人:案场管理岗;3)每月汇总客户信息反馈表,依据上级检查及客户满意度调查情况进行绩效加减;4)由案场负责人直接考核;5)连续两个月考核不合格者直接辞退1.4案场基础作业岗1.4.1案场基础作业岗任职资格岗位类型岗位名称任职资格基础作业岗安全岗基本要求:1)男性:身高1.80米以上;2)年龄:(18-30)岁;3)普通话标准;4)学历:高中以上;技能要求:1)熟悉项目的基本情况2)具备过硬的军事素质素质要求:1)性格:开朗、主动服务意识强有亲和力;2)从业经历:具有同岗位经验半年以上案场保洁岗及绿化养护岗基本要求:1)男女不限;2)年龄30岁以下3)学历:初中以上技能要求“案场保洁岗:熟知药剂使用及工具使用案场绿化养护岗:熟知树木习性及绿化养护知识素质要求:具有亲和力,对保洁及绿化工作有认同感案场技术保障岗基本要求:男性五官端正学历:中专(机电一体化)技能要求:1)具有水或电及空调证书;2)熟悉各岗位操作工具的使用;3)同岗工作一年以上素质要求:踏实肯干,具有亲和力及主动服务意识1.4.2案场基础作业岗通用行为规范通用规范 参照标准君正物业员工BI 规范手册1.4.3安全岗岗位标准1.4.3.1安全岗岗位职责1)负责销售案场管理服务区域的安全巡视工作,维持正常秩序;2)监督工作区域内各岗位工作状态及现场情况及时反馈信息;3)发现和制止各种违规和违章行为,对可疑人员要礼貌的盘问和跟踪察看;4)谢绝和制止未经许可的各类拍照、摆放广告行为;1.4.3.2安全岗作业要求1)按照巡视路线巡视签到检查重点部位;2)遇见客户要站立、微笑、敬礼,礼貌的回答客户的提问并正确引导;3)人过地净,协助案场保洁人员做好案场的环境维护;4)在每一巡视期内检查设备设施运行状态并做好记录;5)协助做好参观人员的车辆引导、指引和执勤工作;6)积极协助其他岗位工作,依据指令进行协助;1.4.4保洁岗岗位标准1.4.4.1保洁岗岗位职责1)负责案场办公区域、样板房及饰品的清洁工作;2)负责案场外围的清洁工作;3)负责案场垃圾的处理;4)对案场杂志等资料及时归位;1.4.4.2保洁岗作业要求1)每天提前半小时上岗,对案场玻璃、地面等进行全方位清洁;2)卫生间每十分钟进行一次巡视性清洁;3)阴雨天提前关闭门窗;4)掌握清洁器具的使用;5)熟知清洁药剂的配比及使用;1.4.5绿化岗岗位标准1.4.5.1绿化岗岗位职责1)负责管理区域内一切绿化的养护;2)确保绿化的正常存活率;3)对绿植进行修剪及消杀;1.4.6案场技术岗岗位标准1.4.6.1案场技术岗岗位职责1)全面负责案场区域内设备设施的维护、维修及保养;2)协助管理岗完成重大接待工作案场的布置;3)现场安全的整体把控;1.4.6.2案场技术岗岗位要求1)每日案场开放前对辖区设备设施进行检查,保障现场零事故;2)每日班后对设备设施进行检查保障正常运行并做好相关记录;3)报修后5分钟赶到现场;4)接到异常天气信息,对案场设备进行安全隐患排除;1.4.7案场基础作业岗岗位要求培训及例会岗前培训BI规范及楼盘基本情况在岗培训每月至少一次1)公司企业文化2)客户服务技巧3)客户心理培训4)突发事件处理5)营销知识培训6)职业安全7)7S现场管理例会日会:每日参加案场管理岗组织的总结会并及时接收案场信息周会:每周参加管理岗组织的服务类业务点评会客户信息收集反馈每日汇总客户信息反馈到案场管理岗监督考核1)考核频次:至少每月一次;2)考核人:案场管理岗;3)每月汇总客户信息反馈表,依据上级检查及样板房客户车场岗客户客户满意度调查情况进行绩效加减;4)由案场负责人直接考核;5)连续两个月考核不合格者直接辞退2服务创新案例项目推荐亮点服务为客户爱车提供遮阳服务服务员面向客户时刻关注客户上午11点给客户送上点心,关怀到心2服务创新案例项目推荐亮点服务夏日毛巾送清凉,冬日毛巾暖人心洗手间提供百宝箱样板房门口提供卷尺待客户使用摆件销售大厅销售大厅标准摆设:布置整齐规范布置整齐规范水中花、烟缸、百宝箱、项目推介书茶几物品、花、烟缸水中花时尚周围用木桩装饰垃圾桶装饰(石子边缘放置一枚花卉)垃圾桶上方加印LOGO整齐的伞架样板房没有电样板房门口鞋销售大厅设置梯所设的温馨字画套分门别类摆放娱乐实施(桌球等)6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。

相关文档
最新文档