陕西省榆林育才中学高中数学 第1章《三角函数》8函数的图像(2)导学案 北师大版必修4
高中数学第一章三角函数1.8函数y=Asin(ωxφ)的图象课堂导学案北师大版必修4
1.8 函数y=Asin (ωx+φ)的图象课堂导学三点剖析1.求y=Asin(ωx+φ)的振幅,周期,频率,相位及初相 【例1】 用五点法作出函数y=2sin(x-3π)+3的图象,并指出它的周期、频率、相位、初相、最值及单调区间.思路分析:本题考查y=Asin(ωx+φ)的基本概念,注意辨别初相与相位. 解:列表如下:x3π 65π 34π 611π37π x-3π 02π π 123π 2π y 3 5313描点作图,如下图:周期T=2π,频率f=T 1=π21,相位x-3π,初相-3π,最大值5,最小值1,单调减区间[2k π+65π,2k π+611π](k∈Z ),单调增区间[2k π-6π,2k π+65π](k∈Z ).友情提示y=Asin(ωx+φ)+k 沿y 轴方向平移,所以函数最值发生变化.(1)用五点法作函数y=Asin(ωx+φ)+k 的图象,五个点应是使函数取得最大值、最小值以及曲线与x 轴的交点.(2)用五点法作函数y=Asin(ωx+φ)+k 的图象的步骤是: 第一步:列表x ωϕ-ωϕωπ-2 ωϕωπ- ωϕωπ-23 ωϕωπ-2 ωx+φ 0 2ππ 23π 2π ykA+kkk-Ak注意:由ωx+φ=0、2π、π、23π、2π先求出x ,再由ωx+φ的值求出y 的值.第二步:在同一坐标系中描出各点.第三步:用光滑的曲线连接这些点,而成图象.各个击破 类题演练 1 已知函数y=3sin(2x+3π). (1)求出它的周期;(2)用“五点法”作出一个周期的简图; (3)指出函数的单调区间. 解析:(1)周期为:T=22π=π. (2)列表. 2x+3π 02π π23π 2πx6π-12π 3π 127π 65π y 0 3-3描点连线(如下图)(3)可见在一个周期内,函数在[12π,127π]上递减,又因函数的最小正周期为π,所以函数的递减区间为[k π+12π,k π+127π](k∈Z ).同理,增区间为[k π-125π,k π+12π](k∈Z ).变式提升 1如右图,已知y 1=Asin(ωx+φ)的一个周期的图象. (1)写出y 1的解析式;(2)若y 2与y 1的图象关于直线x=2对称,写出y 2的解析式; (3)指出y 2的周期、频率、振幅和初相. 解析:(1)由题图易知:A=2,T=7-(-1)=8,ω=82ππ=2T =4π. ∴y 1=2sin(4πx+φ),将点(-1,0)代入得 2sin(-4π+φ)=0.∴φ=4π.∴y 1=2sin(4πx+4π).(2)作出与y 1的图象关于直线x=2对称的图象,可以看出y 2的图象相当于将y 1的图象向右平移2个单位得到的.∴y 2=2sin [4π(x-2)+4π]=2sin(4πx-4π). (3)由(2)知,y 2的周期T=42ππ=8,频率f=811=T ,振幅A=2,初相φ=-4π.2.由y=sinx 到y=Asin(ωx+φ)以及由y=cosx 到y=Acos(ωx+φ)的图象变换【例2】 要得到函数y=sin(2x-3π)的图象,只要将y=sin 21x 的图象( )A.先把每个x 的值扩大4倍,y 值不变,再向右平移3π个单位B.先把每个x 的值缩小4倍,y 值不变,再向左平移3π个单位C.先把每个x 的值扩大4倍,y 值不变,再向左平移6π个单位D.先把每个x 的值缩小4倍,y 值不变,再向右平移6π个单位解析:21x→2x,先缩小4倍,又∵-3π<0,∴右移23π=6π.答案:D 友情提示 y=sin21x 变换成y=sin2x 是把每个x 值缩小4倍,有的同学错认为是扩大4倍,这样就错选A 或C ;再把y=sin2x 变换成y=sin(2x-3π),即变为y=sin2(x-6π),则应当向右平移6π,有的同学认为是平移3π,这样导致错选A 或B ;也有的同学左右平移方向搞错,导致出错. 类题演练 2 作出函数y=3cos(2x-4π)的图象,并说明这个图象可以由y=cosx 的图象经过怎样的变化得到?解析:①列出五个关键点如下: 2x-4π 02π π23π 2πx8π 83π 85π 87π 89π y 3 0-3②描点作图.③以π为周期把所得图象向左,右扩展,得 y=3cos(2x-4π)的图象. 这个图象可以由y=cosx 的图象先向右平移4π个单位,再将图象上每一点的横坐标压缩到原来的21,每一点的纵坐标伸长到原来的3倍而得到. 变式提升 2使函数y=f(x)图象上每一点的纵坐标保持不变,横坐标缩小到原来的21倍,然后再将其图象沿x 轴向左平移6π个单位得到的曲线与y=sin2x 的图象相同,则f(x)的表达式为( ) A.y=sin(4x-3π) B.y=sin(x-6π)C.y=sin(4x+3π)D.y=sin(x-3π)解析:据题意,y=sin2x −−−−−→−个单位向右平移6πy=sin2(x-6π)=sin(2x-3π)y=sin(x-3π). 答案:D3.根据图象写出函数的解析式 【例3】 如下图所示,函数y=Asin(ωx+φ)(A>0,ω>0)的图象上相邻的最高点与最低点的坐标分别为(125π,3)和(1211π,-3). 求该函数的解析式.思路分析:根据相邻的最高点与最低点确定2T从而确定ω;由点的坐标满足图象解析式,代入得出φ.解:依题意知A=3,设最小正周期为T,则12512112ππ-=T =2π,∴T=π,又T=ωπ2, ∴ω=2.∴函数解析式为y=3sin(2x+φ).∵点(125π,3)在图象上, ∴3=3sin(2×125π+φ)⇒sin(65π+φ)=1.⇒65π+φ=2k π+2π⇒φ=2k π-3π,k∈Z . ∴y=3sin(2x+2k π-3π).故y=3sin(2x-3π)为所求. 友情提示这类问题的求解难点是φ的确定,除以上方法外,常用移轴方法:做平移,使移轴公式为x=x′+6π,y=y′,则易知函数在新坐标系中的方程是y′=3sin2x′,而x′=x -6π. ∴所求函数y=3sin [2(x-6π)],而平移时,方向与符号易出错.类题演练 3如下图,某地一天从6时到14时的温度变化曲线近似满足y=Asin(ωx+φ)+b ,(1)求这段时间的最大温差; (2)写出这段曲线的函数解析式. 解析:(1)20°. (2)A=10,b=20. ∵2T=14-6=8, ∴T=16. ∴16=ωπ2, ∴ω=8π. ∴y=10sin(8πx+φ)+20. 由五点法知,10sin(8π×6+φ)+20=10.即8π×6+φ=23π,∴φ=43π.∴y=10sin(8πx+43π)+20,x∈[6,14].变式提升 3如右图,它是函数y=Asin(ωx+φ)(A>0,ω>0),|φ|<π的图象,根据图中数据,写出该函数解析式.解析:由图象知,A=5,T=3π,于是ω=32,所以y=5sin(32x+φ). 将最高点坐标(4π,5)代入y=5sin(32x+φ),得5sin(6π+φ)=5.∴6π+φ=2k π+2π,∴φ=2k π+3π,(k∈Z ),取φ=3π. ∴该函数的解析式为y=5sin(32x+3π).。
陕西省榆林育才中学高中数学 第1章《三角函数》1-2周期现象与角的概念的推广导学案 北师大版必修4
陕西省榆林育才中学高中数学第1章《三角函数》1-2周期现象与角的概念的推广导学案北师大版必修4【学习目标】1.了解周期现象在现实生活中的广泛存在,通过周期现象的实例感悟周期现象的特征.2.通过实例理解角的概念的推广的必要性,理解任意角的概念,能根据角的终边旋转方向判断正角、负角和零角.3.掌握终边相同角的表示方法,会判断象限角和坐标轴上的角.【重点难点】【自主学习】1.潮汐现象、地球公转与自转、单摆的摆动等都是_________________.2.角可以看成平面内一条射线绕着________从一个位置旋转到另一个位置所形成的_________. 射线在旋转时有两个相反的方向,_________________________________________________为正角;______________________________________为负角;_______________________________________为零度角,又称零角.3.在直角坐标系中讨论角时,使角的顶点与_____重合,角的始边与________重合. 角的终边在第几象限,就把这个角叫作________________________.如果终边在坐标轴上,就认为这个角不属于任何象限,称这个角为坐标轴上的角.4.终边相同的角有________个,相等的角终边一定__________,但终边相同的角不一定__________.S5.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合=____________________________________.6. 与 490-终边相同的最小正角是_________,最大负角是________,绝对值最 小的角是________,它们是第______象限角.【合作探究】1.在 360~0范围内,找出与下列各角终边相同的角,并判断它们是第几象限角.(1) 120-; (2) 640; (3)'8950 -.2. 在直角坐标系中,写出终边在y 轴上的角的集合(用 360~0的角表示).3.写出与下列各角终边相同的角的集合,并把集合中适合不等式 720360<≤-β 的元素β写出来.(1) 60; (2) 225-.【课堂检测】1. 下列说法中,正确的是( )A. 第一象限的角是锐角B. 锐角是第一象限的角C. 小于 90的角是锐角D. 0到 90的角是第一象限的角2. 若时针走过2小时40分,则分针转过的角度是________.3. 若α是第三象限角,则2α是第几象限角?2α是第几象限角?【课堂小结】1. 角的推广;2. 象限角的定义;3. 终边相同角的表示;4. 终边落在坐标轴等;5. 区间角表示.第一象限角:{α|k ⨯360o <α<k ⨯360o +90o ,k∈Z } 第二象限角:{α|k ⨯360o +90o <α<k ⨯360o +180o ,k∈Z }第三象限角:{α|k ⨯360o +180o <α<k ⨯360o +270o ,k∈Z }第四象限角:{α|k ⨯360o +270o <α<k ⨯360o +360o ,k ∈Z }【课后训练】1.276-是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角2. 今天是星期二,从今天算起,27天后的那一天是星期_____,第50天是星期 _______.。
高中数学 第1章《三角函数》三角函数小结导学案 北师大版必修
陕西省榆林育才中学高中数学 第1章《三角函数》三角函数小结导学案 北师大版必修4【学习目标】1.了解任意角的概念和弧度制,能进行弧度与角度的互化.2.理解任意角三角函数(正弦、余弦、正切)的定义.3.能画出函数x y x y x y tan ,cos ,sin ===的图像.会利用单位圆或三角函数图像 推导出诱导公式,并能借助图像理解正弦函数、余弦函数在]2,0[π,正切函数 在)2,2(ππ-上的性质(如单调性、最大值和最小值、图像与x 轴交点等).4.了解)sin(ϕω+=x A y 的实际意义;会画)sin(ϕω+=x A y 的图像,体会参数ϕω,,A 对函数图像的影响.2.弧度制(1)1弧度的角: (2)弧度与角度的互化: (3)弧长公式和扇形面积公式: 3.任意角的三角函数 (1)定义:(2)三角函数值的符号:(3)诱导公式的口诀:4.正弦、余弦、正切函数的图像及性质 函数x y sin =x y cos =x y tan =图像定义域 值域 周期性 奇偶性 单调性 对称性【合作探究】1. 已知角α的终边在函数x y 21-=的图像上,求ααcos ,sin 和.tan α2. )sin()cos()23sin()2cos()3sin()(απαππααππαα----+---=f .(1)化简)(αf ; (2)若331πα-=,求)(αf 的值. 3. 函数)||,0,0()sin(πϕωϕω≤>>++=A b x A y 在一个周期内,当6π=x 时,y 取最小值1;当65π=x 时,y 取最大值3.请求出此函数的解析式.4. 求下列函数的值域: (1))34cos(32π--=x y ; (2)2sin 1sin 3-+=x x y .【课堂检测】 1. 求函数)343sin(51π-=x y 的最小正周期、单调递增区间、最大值及对应的x 值 的集合.2. 判断下列函数的奇偶性: (1)x x y cos 2+=;(2)x y sin 21=;(3)x x y sin 2=;(4)x x y tan cos -=.3. 一个扇形的弧长和面积的数值都是5,求这个扇形中心角的度数.4. 比较下列各组函数值的大小:(1)532sin π和427sin π; (2))2037cos( -和852cos ; (3))718tan(π-和)843tan(π-.【课后训练】。
陕西省榆林育才中学高中数学 第1章《统计案例》1.1.1回归分析(2)导学案(无答案)北师大版选修1-2
陕西省榆林育才中学高中数学第1章《统计案例》1.1.1回归分析(2)导学案(无答案)北师大版选修1-21. 通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用;2. 了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.3. 会用相关指数,残差图评价回归效果.复习1:用相关系数r可衡量两个变量之间关系.r>0, 相关,r<0 相关;r越接近于1,两个变量的线性相关关系,它们的散点图越接近;r>,两个变量有关系.复习2:评价回归效果的三个统计量:总偏差平方和;残差平方和;回归平方和.二、新课导学※学习探究探究任务:如何评价回归效果?新知:1、评价回归效果的三个统计量(1)总偏差平方和:(2)残差平方和:(3)回归平方和:2、相关指数:2R表示对的贡献,公式为:2R=2R的值越大,说明残差平方和,说明模型拟合效果 .3、残差分析:通过来判断拟合效果.通常借助图实现.残差图:横坐标表示,纵坐标表示 .残差点比较均匀地落在的区的区域中,说明选用的模型,带状区域的宽度越 ,说明拟合精度越 ,回归方程的预报精度越 .※ 典型例题为了对x 、y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+, 717y x =+,试比较哪一个模型拟合的效果更好?※ 动手试试练1. 某班5名学生的数学和物理成绩如下表:(4)求学生A,B,C,D,E 的物理成绩的实际成绩和回归直线方程预报成绩的差 2i i e y y =-.并作出残差图评价拟合效果.).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 两个变量 y 与x 的回归模型中,分别选择了 4 个不同模型,它们的相关指数 2R 如下 ,其中拟合效果最好的模型是( ).A. 模型 1 的相关指数2R 为 0.98B. 模型 2 的相关指数2R 为 0.80C. 模型 3 的相关指数2R 为 0.50D. 模型 4 的相关指数2R 为 0.252. 在回归分析中,残差图中纵坐标为( ).A. 残差B. 样本编号C. xD. n e3. 通过12,,,n e e e 来判断模拟型拟合的效果,判断原始数据中是否存在可疑数据,这种分工称为( ).A.回归分析B.独立性检验分析C.残差分析D. 散点图分析4.2R 越接近1,回归的效果 .5. 在研究身高与体重的关系时,求得相关指数2R = ,可以叙述为“身高解释了69%的体重变化,而随机误差贡献了剩余 ”所以身高对体重的效应比随机误差的 .练.(07广东文科卷)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y=+;关于x的线性回归方程y bx a(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?⨯+⨯+⨯+⨯=)(参考数值3 2.543546 4.566.5(4)求相关指数评价模型.。
陕西省榆林育才中学高中数学 第1章《立体几何初步》垂直关系的判定导学案 北师大版必修2
陕西省榆林育才中学高中数学 第1章《立体几何初步》垂直关系的判定导学案 北师大版必修2你的 疑惑3.(1)半平面:一个平面内的一条直线,把这个平面分成 _________,其中的________都叫作半平面.(2)二面角:从一条直线出发的___________所组成的图形叫作二面角,___________叫做二面角的棱,______________叫作二面角的面.(3)二面角的记法:以直线AB 为棱,半平面α、β为面的二面角,记作________________.(如下图(1))(4)二面角的平面角:以二面角的棱上_________为端点,在两个半平面内分别作___________的两条射线,这两条射线所组成的角叫作二面角的平面角. 如下图(2)中的AOB ∠. ______________的二面角叫作直二面角.(5)两个平面相交,如果所成的二面角是__________,就说这两个平面互相垂直.4. 将一支铅笔垂直于桌面,再用一本书紧贴着铅笔转动,你能观察到书本和桌面的关系吗?再观察下图(1)(2)中的长方体,可以发现:平面α内的直线a 与平面β________,这时,α____β.抽象概括平面和平面垂直的判定定理:如果一个平面经过另一个平面的一条_______,那么这两个平面互相垂直.图形语言: 符号语言:若直线AB ____平面β,AB ______平面α,策略与反思 纠错与归纳【学习目标】 1. 理解直线和平面、平面和平面垂直的判定定理,并能进行简单应用. 2. 通过垂直关系判定定理的探究和应用过程,进一步提高空间想象能力和逻辑思维能力. 3. 通过垂直关系判定定理的探究和应用过程,体会数学和生活的紧密联系. 【重点难点】 重点:直线和平面、平面和平面垂直的判定定理及应用. 难点:对直线和平面、平面和平面垂直判定定理的理解. 【使用说明】 1. 认真阅读课本第35—37页的内容,独立完成自主学习内容. 2. 在自主学习的基础上,通过小组讨论,完成合作探究内容. 【自主学习】 1. 如右图,拿一块教学用的直角三角板,放在墙角,使三角板的 直角顶点C 与墙角重合,直角边AC 所在直线与墙角所在直线重合,将三角板绕AC 转动,在转动过程中,直角边CB 与地面紧贴,这就表示,AC 与地面垂直.抽象概括 直线和平面垂直的定义:如果一条直线和一个平面内的___________直线都_________,那么称这条直线和这个平面垂直. 2. 观察上图(1)的长方体,c b ,是平面α内的两条_______直线,直线a __b ,a __c ,这时,a __α. 观察上图(2)的长方体,平面α内的两条直线c b ,不相交,虽然直线a 与c b ,都______,但是a 与α_________. 抽象概括 直线和平面垂直的判定定理:如果一条直线和一个平面内的_______________都垂直,那么该直线与此平面垂直. 图形语言: 符号语言:若直线a ____平面α,直线b _____平面α, 直线l ____a , 直线l ____b ,a ____A b =, 则α⊥l .天才在于积累 聪明在于勤奋。
高中数学 第1章 三角函数 8 函数y=Asin(ωx+φ)的图像与性质(2)练习 北师大版必修4-
8 函数y =A sin(ωx +φ)的图像与性质(2)课时跟踪检测一、选择题1.函数y =sin(2x +π)是( ) A .周期为π的奇函数 B .周期为π的偶函数 C .周期为2π的奇函数D .周期为2π的偶函数解析:y =sin(2x +π)=-sin2x ,周期为2π2=π.∵f (-x )=-sin2(-x )=sin2x =-f (x ), ∴y =sin(2x +π)为奇函数. 答案:A2.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4,若存在α∈(0,π),使得f (x +α)=f (x +3α)恒成立,则α的值是( )A .π6B .π3C .π4D .π2解析:函数f (x )的周期T =2π2=π. ∵f (x +α)=f (x +3α),∴T =2α=π,即α=π2.答案:D3.已知函数y =sin ⎝⎛⎭⎪⎫π4-2x ,则其图像的下列结论中,正确的是( )A .向左平移π8后得到奇函数B .向左平移π8后得到偶函数C .关于点⎝ ⎛⎭⎪⎫-π8,1中心对称 D .关于直线x =π8轴对称答案:A4.若将函数y =2sin2x 的图像向左平移π12个单位长度,则平移后图像的对称轴为( )A .x =k π2-π6(k ∈Z )B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z ) 解析:由题意,将函数y =2sin2x 的图像向左平移π12个单位得y =2sin2⎝ ⎛⎭⎪⎫x +π12=2sin ⎝ ⎛⎭⎪⎫2x +π6,则平移后函数的对称轴为2x +π6=π2+k π,k ∈Z ,即x =π6+k π2,k ∈Z ,故选B .答案:B5.已知函数f (x )=2sin(ωx +φ)(ω>0)的图像关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为( )A .2B .4C .6D .8解析:由题意得π3ω+φ=k 1π+π2(k 1∈Z ),π12ω+φ=k 2π(k 2∈Z ),∴π4ω=(k 1-k 2)π+π2(k 1,k 2∈Z ).∴ω=4(k 1-k 2)+2(k 1,k 2∈Z ).∵ω>0,∴ω的最小值为2.答案:A6.设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A .13B .3C .6D .9解析:依题意得f ⎝ ⎛⎭⎪⎫x -π3=cos ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π3=cos ⎝ ⎛⎭⎪⎫ωx -π3ω=cos ωx ,∴-π3ω=2k π(k ∈Z ),∴ω=-6k .又ω>0,∴当k =-1时,ω有最小值6. 答案:C 二、填空题7.函数y =sin ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤-π,π2的单调递增区间为________.解析:由-π2+2k π≤12x +π3≤π2+2k π,k ∈Z 得函数的单调递增区间为⎣⎢⎡⎦⎥⎤4k π-5π3,π3+4k π,k ∈Z .又x ∈⎣⎢⎡⎦⎥⎤-π,π2,∴单调递增区间为⎣⎢⎡⎦⎥⎤-π,π3.答案:⎣⎢⎡⎦⎥⎤-π,π3 8.(2018·某某卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图像关于直线x =π3对称,则φ的值是________.解析:由题意可得sin ⎝ ⎛⎭⎪⎫23π+φ=±1,所以23π+φ=π2+k π,φ=-π6+k π(k ∈Z ),因为-π2<φ<π2,所以当k =0时,φ=-π6.答案:-π69.设函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,φ∈⎝ ⎛⎭⎪⎫-π2,π2的最小正周期为π,且图像关于直线x =π12对称,则在下面四个结论中:①图像关于点⎝ ⎛⎭⎪⎫π4,0对称; ②图像关于点⎝ ⎛⎭⎪⎫π3,0对称; ③在⎣⎢⎡⎦⎥⎤0,π6上是增函数; ④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数. 那么所有正确结论的编号为________. 解析:∵2πω=π,∴ω=2.∴f (x )=sin(2x +φ), 又∵f (x )关于x =π12对称,∴sin ⎝ ⎛⎭⎪⎫2·π12+φ=±1, ∴π6+φ=k π+π2, ∴φ=k π+π3,k ∈Z ,又∵φ∈⎝ ⎛⎭⎪⎫-π2,π2, ∴令k =0得φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 令f (x )=0得2x +π3=k π,∴x =k π2-π6,k ∈Z , 令k =1得一个对称中心⎝ ⎛⎭⎪⎫π3,0, 令-π2≤2x +π3≤π2,-512π≤x ≤π12, ∴f (x )的一个增区间为⎣⎢⎡⎦⎥⎤-512π,π12,又∵⎣⎢⎡⎦⎥⎤-π6,0⊆⎣⎢⎡⎦⎥⎤-512π,π12,∴②④正确. 答案:②④ 三、解答题10.已知函数f (x )=12sin ⎝ ⎛⎭⎪⎫2x +π6+54.(1)求f (x )的最大值、最小值,及相应x 的值; (2)求f (x )的最小正周期、对称轴和对称中心;(3)函数f (x )的图像至少向左平移多少个单位长度时才为偶函数?解:(1)当2x +π6=2k π+π2(k ∈Z )时,f (x )有最大值74,即当x =π6+k π(k ∈Z )时,f (x )max =74,当2x +π6=-π2+2k π(k ∈Z )时,f (x )有最小值34,即当x =k π-π3(k ∈Z )时,f (x )min =34.(2)由T =2π|ω|知函数f (x )的最小正周期为T =π.令2x +π6=k π+π2(k ∈Z ),则x =k π2+π6(k ∈Z ),∴对称轴为直线x =k π2+π6(k ∈Z ), 令2x +π6=k π(k ∈Z ),则x =k π2-π12(k ∈Z ),∴对称中心为⎝⎛⎭⎪⎫k π2-π12,54(k ∈Z ).(3)由函数性质知若函数y =A sin(ωx +φ)+b 为偶函数,φ>0,则φ至少为π2,即y =12sin ⎝⎛⎭⎪⎫2x +π2+54=12cos2x +54为偶函数.∴应将函数y =12sin ⎝ ⎛⎭⎪⎫2x +π6+54的图像平移至函数y =12sin ⎝ ⎛⎭⎪⎫2x +π2+54的图像处.由函数图像平移方法知:y =12sin ⎝ ⎛⎭⎪⎫2x +π6+54的图像――→向左平移π6个单位长度y =12sin ⎝ ⎛⎭⎪⎫2x +π2+54的图像,∴函数f (x )的图像至少向左平移π6个单位长度才为偶函数.11.已知函数f (x )=A sin(ωx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中A >0,ω>0,0<φ<π2的图像与x 轴的交点中,相邻两个交点之间的距离为π2,且图像上一个最低点为M ⎝ ⎛⎭⎪⎫2π3,-2.(1)求f (x )的解析式; (2)当x ∈⎣⎢⎡⎦⎥⎤π12,π2,求f (x )的值域.解:(1)由最低点为M ⎝⎛⎭⎪⎫2π3,-2得A =2.由x 轴上相邻的两个交点之间的距离为π2得T 2=π2,即T =π,ω=2πT =2ππ=2.由点M ⎝ ⎛⎭⎪⎫2π3,-2在图像上知,2sin ⎝ ⎛⎭⎪⎫2×2π3+φ=-2, 即sin ⎝ ⎛⎭⎪⎫4π3+φ=-1. 故4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ). 又∵φ∈⎝ ⎛⎭⎪⎫0,π2,∴φ=π6.故f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6.(2)∵x ∈⎣⎢⎡⎦⎥⎤π12,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π3,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1,故f (x )的值域为[-1,2].12.已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图像两相邻对称轴之间的距离是π2,若将f (x )的图像先向右平移π6个单位,再向上平移3个单位,所得函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间.解:(1)∵2πω=2×π2,∴ω=2,∴f (x )=sin(2x +φ)-b .又∵g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,则φ=π3,b =3,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3- 3. (2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-3,其对称轴由2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ).由2k π-π2≤2x +π3≤2k π+π2(k ∈Z ),得k π-5π12≤x ≤k π+π12(k ∈Z ),由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ).∴函数f (x )的对称轴为x =k π2+π12(k ∈Z ),增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ), 减区间为⎣⎢⎡⎦⎥⎤k π+π12,k π+7π12(k ∈Z ).13.已知函数f (x )=A sin(ωx +φ)与对数函数y =g (x )在同一坐标系中的图像如图所示.(1)分别写出两个函数的解析式; (2)方程f (x )=g (x )共有多少个解? 解:(1)由图像知A =2,φ=0,T =2, 故ω=π,f (x )=2sinπx .设g (x )=log a x ,由图像知log a 4=-1, 故a =14,g (x )=log 14x .(2)因g (x )为减函数,f (x )最小值为-2.故当g (x )≥-2时,可能有交点,由log 14x ≥-2,得0<x ≤16.当2≤x ≤16时,f (x )与g (x )在f (x )的每一个周期上的图像均有两个交点,共14个交点;当0<x <2时,由图像知有3个交点;当x>16时,图像无交点.综上可知f(x)=g(x)共有17个解.。
陕西省榆林育才中学高中数学 第1章《三角函数》4单位圆与诱导公式(1)导学案 北师大版必修4
陕西省榆林育才中学高中数学 第1章《三角函数》4单位圆与诱导公式(1)导学案 北师大版必修4【学习目标】1. 借助三角函数的定义及单位圆的对称性推导角αππαα-±-,,的正、余弦函数 的诱导公式,并会用诱导公式进行简单三角函数式的求值与化简.2. 通过诱导公式的推导,进一步培养用几何法研究代数问题的方法,体会周期性、对称性在研究问题中的价值.【自主学习】1. 锐角α的终边与α-的终边位置关系如何?任意角α与α-呢?若设角α的终边与单位圆的交点为),(v u P ,则角α-的终边与单位圆的交点'P 的坐标为 ____.由任意角正、余弦三角函数的定义,你能找出角α与α-的正、余弦函数之间的关系吗?2. 锐角α的终边与πα±的终边位置关系如何?任意角α与πα±呢?若设角α的终边与单位圆的交点为),(v u P ,则角πα±的终边与单位圆的交点'P 的坐标为______.由任意角正、余弦三角函数的定义,你能找出角α与πα±的 正、余弦函数之间的关系吗?3.锐角α的终边与απ-的终边位置关系如何?任意角α与απ-呢?若设角α的终边与单位圆的交点为),(v u P ,则角απ-的终边与单位圆的交点'P 的坐标为______.由任意角正、余弦三角函数的定义,你能找出角α与απ-的正、余弦函数之间的关系吗?4. 求下列函数值:(1)ο150cos ; (2))45sin(π-; (3))1320cos(ο-.【合作探究】1. 在单位圆中,角α的终边与单位圆交于点)1312,135(-P ,写出点P 关于x 轴、y 轴 和原点对称的点的坐标,并分别求出角απαπααπ-+--2,,,的正弦函数值、余弦 函数值.2.化简:)sin()5cos()4cos()3sin(αππαπααπ-----+.3. 利用单位圆,求适合下列条件的角的集合.(1)22cos -=α; (2)21sin ≤α.【课堂检测】 1.下列各式不正确的是( )A. ααsin )180sin(-=+οB. )cos()cos(βαβα--=+-C. ααsin )360sin(-=--οD. )cos()cos(βαβα+=-- 2.已知)30(31)sin(πααπ<<-=+,求)sin(απ-的值.3. 化简:)5sin()4sin()2sin()sin()3sin()sin(απαππαπααπαπ+----+--.【课堂小结】【课后训练】。
陕西省西安市育才中学高中数学必修4第一章函数的图像教案2
第二课时 y =sinx 和y =sin ωx 的图像, y =sinx 和 y =Asin(ωx +φ)的图像 一、教学思路【创设情境,揭示课题】上一节课,我们已过y =sinx 和y =Asinx 的图像,y =sinx 和 y =sin (x +φ)的图像间的关系,请与y =Asin(ωx +φ)比较一下,还有什么样的我们没作过? 【探究新知】 例一.画出函数y=sin2x x ∈R ;y=sin 21x x ∈R 的图象(简图)。
解:∵函数y=sin2x 周期T=π ∴在[0, π]上作图 令t=2x 则x=2t从而sint=sin2x列表:x函数y=sin 2x周期T=4π ∴在[0, 4π]上作图列表配套练习:函数y =sin 32x的图像与函数y =sinx 的图像有什么关系?引导, 观察启发 与y=sinx 的图象作比较,结论:1.函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)2.若ω<0则可用诱导公式将符号“提出”再作图。
由上例和练习可以看出:在函数y=sin ωx, x ∈R (ω>0且ω≠1)中,ω决定了函数的周期T =ωπ2,通常称周期的倒数f =T 1=πω2为频率。
例二.画出函数y=3sin(2x+3π) x ∈R 的图象。
解:设-1小结平移法过程(步骤)两种方法殊途同归【巩固深化,发展思维】教材P58练习1、2、3二、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?三、布置作业:教材P62习题2、3、4四、课后反思。
陕西省榆林育才中学高中数学 第1章《立体几何初步》平行关系与垂直关系习题课导学案 北师大版必修2
陕西省榆林育才中学高中数学第1章《立体几何初步》平行关系与垂直关系习题课导学案北师大版必修2【要点回顾】.1.平行关系的转化判定判定线线平行线面平行面面平行性质性质⑴直线与平面平行的判定定理:⑵平面与平面平行的判定定理:⑶直线与平面平行的性质定理:⑷平面与平面平行的性质定理:2.垂直关系的转化判定判定线线垂直线面垂直面面垂直性质性质⑴直线与平面垂直的判定定理:⑵平面与平面垂直的判定定理:⑶直线与平面垂直的性质定理:⑷平面与平面垂直的性质定理:【基础自测】1. 在空间给出下列四个命题:①如果平面α内的一条直线a垂直于平面β内的任意一条直线,则αβ⊥;②如果直线a与平面β内的一条直线平行,则α//β;③如果直线a与平面β内的两条直线都垂直,则aβ⊥;④如果平面α内的两条直线都平行于平面β,则α//β.其中正确的个数是()A. 1B. 2C. 3D.42. 下列命题中,,m n表示两条不同的直线,,,αβγ是三个不同的平面,则下列四个命题:①若,m nα⊥//α,则m n⊥;②若,αγβγ⊥⊥,则α//β;③若m//α,n//β,则m//n;④若α//β,β//γ,m⊥α,则mγ⊥;其中正确的命题的序号是_____________3. 已知α//β,A,C,α∈B,Dβ∈,直线AB,CD交于点S,且AS=8,BS=9,CD=34.①当S在,αβ之间时,CS=_____;②当S不在,αβ之间时,CS=_____3.正方体1111ABCD A B C D-中,E,F,G,H分别为111111,,,AA CC C D D A的中点,试判断四边形EFGH的形状,并说明理由.【合作探究】1.已知直角梯形ABCD中,AB//CD,AB⊥BC,过A作AE⊥CD,垂足为E,G,F分别为AD,CE的中点,现将∆ADE沿AE折叠,使DE⊥EC.①求证:BC⊥平面CDE; ②求证:FG//平面BCD你的疑惑策略与反思纠错与归纳课题:平行关系与垂直关系习题课高一数学 天才在于积累 聪明在于勤奋2、如图,B 为∆ACD 所在的平面外一点,M,N,G 分别为∆ABC ,∆ABD ,∆BCD 的重心. ① 求证:平面MNG//平面ACD; ② 求证::MNG DC s s ∆∆A【课堂检测】1. 设ABCD 和ABEF 均为平行四边形,它们不在同一平面,M, N 分别为对角线AC, BF 上的点,且AM :FN=AC :BF. 求证:MN // 平面BEC2. 已知∆ABC 为正三角形,EC ⊥平面ABC ,DB ⊥平面ABC ,且EC ,DB 在平面ABC 的同侧,M 为EA 的中点,CE=CA=2BD. 求证: ①DE=DA ;② 平面BDM ⊥平面ECA ; ③ 平面DEA ⊥平面ECA.(提示:取AC 中点N ,连接MN ,BN )【课后训练】1. 已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点. 求证:① O C 1//平面11D AB ② ⊥C A 1 面 11D AB2四面体ABCD 中,BD=2a ,AB=AD=CB=CD=AC=a , 求证:平面ABD ⊥平面BCD (提示:取BD 的中点E )策略与反思 纠错与归纳策略与反思 纠错与归纳。
陕西省榆林育才中学高中数学 第1章《三角函数》8函数的图像(1)导学案 北师大版必修4
陕西省榆林育才中学高中数学 第1章《三角函数》8函数的图像(1)导学案 北师大版必修4【学习目标】1. 了解)sin(ϕω+=x A y 的实际意义.2. 通过作函数)sin(ϕω+=x A y 的图像,理解参数ϕω,,A 对函数图像变化的影响.3. 会用“五点法”画函数)sin(ϕω+=x A y 的图像.【重点难点】重点:ϕω,,A 对函数)sin(ϕω+=x A y 图像的影响.难点:)sin(ϕω+=x A y 的图像与函数x y sin =的图像间的关系.【使用说明】通过数形结合和由特殊到一般的思想方法,理解参数ϕω,,A 对函数)sin(ϕω+=x A y 图像的影响,然后总结)sin(ϕω+=x A y 的图像与x y sin =的图像间的关系.【自主学习】1. 作函数x y sin 2=和x y sin 21=的简图,并说明它们与函数x y sin =的关系.思考:将x y sin =的图像作怎样的变换就可以得到函数x A y sin =)0(>A 的图像?2. 画出函数)4sin(π+=x y 和)6sin(π-=x y 的简图,并说明它们与函数x y sin =的关系.思考:将x y sin =的图像作怎样的变换就可以得到函数x y ωsin =)0(>ω的图像?4. 函数)sin(ϕω+=x A y ,R x A ∈>>,0,0ω的振幅为_______,周期=T _______, 频率=f __________,初相为________.【合作探究】1.阅读课本第49—51页,说明如何由x y sin =的图像变换得到1)62sin(3++=πx y的图像.思考:如何由x y sin =的图像变换到b x A y ++=)sin(ϕω)0,0(>>ωA 的图像? 方法一: x y sin = x y ωsin = )sin(ϕω+=x y)sin(ϕω+=x A y b x A y ++=)sin(ϕω 方法二: x y sin = )sin(ϕ+=x y )sin(ϕω+=x y )sin(ϕω+=x A y b x A y ++=)sin(ϕω2. 利用“五点法”作出函数1)62sin(3++=πx y 在一个周期内的简图.【课堂检测】1.为了得到函数)321sin(π-=x y 的图像,只需将x y 21sin =的图像上每一点( ) A.横坐标向左平移3π个单位长度 B.横坐标向右平移3π个单位长度 C.横坐标向左平移32π个单位长度 D.横坐标向右平移32π个单位长度 2.将函数)542cos(π+=x y 的图像上各点向右平行移动2π个单位长度,再把横坐标缩 短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图像的函数解析式为______________________.3. 已知函数)34sin(8)(π+=x x f ,求函数)(x f 的周期、振幅、相位与初相.【课堂小结】。
高中数学第一章三角函数1.8函数y=Asin(wx+φ)的图像与性质(2)课件1北师大版必修4
故
故函数的值域为[- ,2].
上的值域.
第十五页,共51页。
【方法技巧】函数y=Asin(ωx+φ)+b的值域(最值)的求解策略 (1)x∈R时:把“ωx+φ”视为一个整体(zhěngtǐ),结合函数y=Asinx+b中sinx的有界 性求其值域. (2)x∈[a,b]时:把“ωx+φ”视为一个整体(zhěngtǐ),先依据x∈[a,b],求出“ωx+φ”的 范围,在此基础上类比函数y=Asinx+b值域的求法,结合函数单调性或函数图像 求解.
3因为x08由2知函数fx在02上是增加的在28上是减少的所以当x2时fx有最大值为当x8时fx有最小值为1故fx的值域为1类型二函数yasinx性质的综合应用典例已知函数fxasinxa00的图像在y轴上的截距为1它在y轴右侧的第一个最大值点和最小值点分别为解题探究1怎样确定周期和a的值
1.8 函数y=Asin(ωx+φ)的图像(tú xiànɡ)与性
误的是 ( )
A.图像C关于直线x=- 对称 B.图像C关于点 对称12
C.函数f(x)在区间
内是增加的
D.由y=3cos2x得图像向右平移(pínɡ yí) 个单位长度可以得到图像C
第二十七页,共51页。
【解析】选C.A,B经验证可知正确(zhèngquè),C中当 不是正弦函数的单调区间,错误; D中y=3cos2x得图像向右平移 5个单位长度可以得到y=3cos
12 因为 正确(zhèngquè).
第二十八页,共51页。
【补偿(bǔcháng)训练】已知函数f(x)=2sin
(ω>0)的最小正周期为
π.
(1)求函数f(x)的递增区间.
陕西省榆林育才中学高中数学 第1章《三角函数》7正切函数的定义、图像与性质导学案 北师大版必修4
陕西省榆林育才中学高中数学 第1章《三角函数》7正切函数的定义、图像与性质导学案 北师大版必修4【学习目标】1. 能借助单位圆理解任意角的正切函数的定义.2. 能借助单位圆中的正切线画出x y tan =的图像.3. 理解正切函数的性质.【重点难点】重点:正切函数的定义、图像与性质.难点:正切函数性质的应用.【使用说明】 类比正、余弦函数的学习方法,借助单位圆理解正切函数的定义,并能利用正切线画出x y tan =的图像,通过观察正切曲线总结正切函数的性质.【自主学习】1. 正切函数的定义(1)在直角坐标系中,如果角α满足:)(2Z k k ∈+≠ππα,那么角α的终边与单位圆交于点),(b a P ,唯一确定比值a b,根据函数的定义,比值a b是角α的函数,我们把它叫作角α的正切函数,记作_____________,其中Z k k R ∈+≠∈,2,ππαα.(比值b a叫作角α的余切函数,记作αcot =y ,其中.,,Z k k R ∈≠∈παα)(2)当角在第_________象限时,其正切函数值为正;当角在第_________象限时, 其正切函数值为负.(3)由x x xk x k x x tan cos sin )cos()sin()tan(==++=+πππ(.,2,Z k k x R x ∈+≠∈ππ)可知,正切函数是周期函数,_______是它的最小正周期.2. 正切函数图像的画法(1)正切线:设单位圆与x 轴正半轴交于A 点,过点A 作圆的切线与角的终边或终边的延长线相交于T点,线段AT成为角α的正切线.(2)类比画正弦函数图像的方式,先利用正切线画出函数xy tan=,)2,2(ππ-∈x的图像,再利用正切函数的周期性画出正切曲线.3.正切函数的性质函数xy tan=(ZkkxRx∈+≠∈,2,ππ)定义域值域周期性奇偶性单调性对称性【合作探究】1.若角α的顶点在原点,始边与x轴的正半轴重合,终边落在直线xy4-=上,求αααtan,cos,sin的值.靖边三中2015届数学必修4导学案2. 解下列不等式:(1)0tan <x ; (2)1tan -≥x .3. 设α是锐角,利用单位圆证明:(1)1cos sin >+αα; (2)αααtan sin <<.【课堂检测】1. 函数x y 2tan =的定义域为________________________________.2.(1)正切函数在整个定义域内是增加的吗?为什么?(2)正切函数会不会在某个区间是减少的?为什么?3. 已知)3,(x P 是角θ终边上一点,且53tan -=θ,求x 的值.【课堂小结】。
高中数学第一章三角函数1.8函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4(20
2018-2019学年高中数学第一章三角函数1.8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第一章三角函数1.8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第一章三角函数1.8 函数y=Asin(ωx+φ)的图像与性质(二)学案北师大版必修4的全部内容。
§8函数y=A sin(ωx+φ)的图像与性质(二)学习目标 1.掌握函数y=A sin(ωx+φ)的周期、单调性及最值的求法(重、难点). 2。
理解函数y=A sin(ωx+φ)的对称性(难点).知识点函数y=A sin(ωx+φ)(A>0,ω>0)的性质定义域R值域[-A,A]周期T=错误!奇偶性φ=kπ,k∈Z时,y=A sin(ωx+φ)是奇函数;φ=kπ+错误!,k∈Z时,y=A sin(ωx+φ)是偶函数对称轴方程由ωx+φ=kπ+错误!(k∈Z)求得对称中心由ωx+φ=kπ(k∈Z)求得单调性递增区间由2kπ-错误!≤ωx+φ≤2kπ+错误!(k∈Z)求得;递减区间由2kπ+错误!≤ωx+φ≤2kπ+错误!π(k∈Z)求得(1)函数y=2sin(2x+错误!)+1的最大值是()A.1 B.2C.3 D.4解析当2x+错误!=2kπ+错误!时,即x=kπ+错误!(k∈Z)时最大值为3.答案C(2)函数f(x)=sin错误!的最小正周期为()A.4π B.2π C.π D。
北师大版高中数学必修四陕西省西安育才第一章函数的图像教案(1)
第二课时 y =sinx 和y =sin ωx 的图像, y =sinx 和 y =Asin(ωx +φ)的图像 一、教学思路【创设情境,揭示课题】上一节课,我们已过y =sinx 和y =Asinx 的图像,y =sinx 和 y =sin (x +φ)的图像间的关系,请与y =Asin(ωx +φ)比较一下,还有什么样的我们没作过? 【探究新知】 例一.画出函数y=sin2x x ∈R ;y=sin 21x x ∈R 的图象(简图)。
解:∵函数y=sin2x 周期T=π ∴在[0, π]上作图 令t=2x 则x=2t从而sint=sin2x列表:x函数y=sin 2x周期T=4π ∴在[0, 4π]上作图列表配套练习:函数y =sin 32x的图像与函数y =sinx 的图像有什么关系?引导, 观察启发 与y=sinx 的图象作比较,结论:1.函数y=sin ωx, x ∈R (ω>0且ω≠1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的ω1倍(纵坐标不变)2.若ω<0则可用诱导公式将符号“提出”再作图。
由上例和练习可以看出:在函数y=sin ωx, x ∈R (ω>0且ω≠1)中,ω决定了函数的周期T =ωπ2,通常称周期的倒数f =T 1=πω2为频率。
例二.画出函数y=3sin(2x+3π) x ∈R 的图象。
解:设-1小结平移法过程(步骤)两种方法殊途同归【巩固深化,发展思维】教材P58练习1、2、3二、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?三、布置作业:教材P62习题2、3、4四、课后反思。
高中数学 第1章《三角函数》8函数的图像(2)导学案 北师大版必修
陕西省榆林育才中学高中数学 第1章《三角函数》8函数的图像(2)导学案 北师大版必修4【学习目标】1.理解函数)sin(ϕω+=x A y 的性质,并能灵活的用其解决相关问题.2.掌握如何根据函数)sin(ϕω+=x A y 的图像及性质求函数的解析式.【重点难点】 函数)sin(ϕω+=x A y 的性质及其应用.【使用说明】类比正、余弦函数的性质,试着总结函数)sin(ϕω+=x A y 的性质,然后利用性质解决相关问题.【自主学习】1. 对于函数)sin(ϕω+=x A y ),0,0(R x A ∈>>ω,有以下性质:①值域:___________; ②周期性:=T _______;③奇偶性:当Z k k ∈=,πϕ时,是奇函数,当Z k k ∈+=,2ππϕ时,是偶函数; ④单调性:由)(2222Z k k x k ∈+≤+≤+-ππϕωππ可求出单调增区间,由__________________________________________可求出单调减区间; ⑤对称性:图像的对称轴方程可由)(2Z k k x ∈+=+ππϕω求出,图像的对称中心的横坐标可由__________________________求出.【合作探究】1. 求下列函数的最大值和最小值,以及达到最大值、最小值时x 值的集合.(1)12sin 21+=x y ; (2)1)12cos(6-+-=x y .2.(1)求函数)43cos(21π+=x y 的递增区间; (2)求函数)3sin(3x y -=π的递减区间.3.已知函数)sin()(ϕω+=x A x f )2||,0,0(πϕω<>>A 的部分图像如下图. (1)求函数)(x f 的解析式;(2)令)67()(π+=x f x g ,判断函数)(x g 的奇偶性,并说明理由.【课堂检测】1. 同时具有下列性质:“①对任意)()(,x f x f R x =+∈π恒成立;②图像关于直线3π=x 对称;③]3,6[ππ-上是增函数”的函数可以是( ) A. )62sin()(π+=x x f B. )62sin()(π-=x x f C. )32cos()(π+=x x f D. )62cos()(π-=x x f 2.(1)函数))(63sin(53R x x y ∈-=π的递增区间是_____________________; (2)函数])2,0[)(3221cos(3ππ∈+=x x y 的递减区间是___________________. 3. 函数)sin(ϕω+=x A y )20,0,0(πϕω<<>>A 一个周期的图像如图所示,试确定ϕω,,A 的值.【课堂小结】【课后训练】1.函数)435sin(2π-=x y 的周期是________,最小值为_____,取最小值时的x 的取值集合为______________________.2. 判断下列函数的奇偶性.(1)))(23cos(R x x y ∈+=π; (2)))(22sin(3R x x y ∈-=π.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省榆林育才中学高中数学 第1章《三角函数》8函数的图像(2)导
学案 北师大版必修4
【学习目标】
1.理解函数)sin(ϕω+=x A y 的性质,并能灵活的用其解决相关问题.
2.掌握如何根据函数)sin(ϕω+=x A y 的图像及性质求函数的解析式.
【重点难点】 函数)sin(ϕω+=x A y 的性质及其应用.
【使用说明】
类比正、余弦函数的性质,试着总结函数)sin(ϕω+=x A y 的性质,然后利用
性质解决相关问题.
【自主学习】
1. 对于函数)sin(ϕω+=x A y ),0,0(R x A ∈>>ω,有以下性质:
①值域:___________; ②周期性:=T _______;
③奇偶性:当Z k k ∈=,πϕ时,是奇函数,当Z k k ∈+=,2ππϕ时,是偶函数; ④单调性:由)(2222Z k k x k ∈+≤+≤+-ππ
ϕωππ
可求出单调增区间,由______
____________________________________可求出单调减区间;
⑤对称性:图像的对称轴方程可由)(2Z k k x ∈+=+ππ
ϕω求出,图像的对称中
心的横坐标可由__________________________求出.
【合作探究】
1. 求下列函数的最大值和最小值,以及达到最大值、最小值时x 值的集合.
(1)12sin 21+=
x y ; (2)1)12cos(6-+-=x y .
2.(1)求函数)4
3cos(21π+=x y 的递增区间; (2)求函数)3sin(
3x y -=π的递减区间.
3.已知函数)sin()(ϕω+=x A x f )2||,0,0(πϕω<
>>A 的部分图像如下图. (1)求函数)(x f 的解析式;
(2)令)6
7()(π+
=x f x g ,判断函数)(x g 的奇偶性,并说明理由.
【课堂检测】
1. 同时具有下列性质:“①对任意)()(,x f x f R x =+∈π恒成立;②图像关于直线
3
π=x 对称;③]3,6[π
π-上是增函数”的函数可以是( ) A. )62sin()(π+=x x f B. )62sin()(π-=x x f C. )32cos()(π+
=x x f D. )62cos()(π-=x x f 2.(1)函数))(6
3sin(53R x x y ∈-=π的递增区间是_____________________; (2)函数])2,0[)(3
221cos(3ππ∈+=x x y 的递减区间是___________________. 3. 函数)sin(ϕω+=x A y )20,0,0(πϕω<<>>A 一个周期的图像如图所示,试确定
ϕω,,A 的值.
【课堂小结】
【课后训练】
1.函数)435sin(2π-=x y 的周期是________,最小值为_____,取最小值时的x 的取值集合为______________________.
2. 判断下列函数的奇偶性.
(1)))(23cos(R x x y ∈+=π; (2)))(22sin(3R x x y ∈-=π.。