规律探索型问题

合集下载

专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题06 整式中规律探索的三种考法(解析版)-2024年常考压轴题攻略(7年级上册人教版)

专题06整式中规律探索的三种考法类型一、单项式规律性问题例.如图,一只青蛙在圆周上标有数字的五个点上跳,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点.若青蛙从数1这点开始跳,第1次跳到数3那个点,如此,则经2015次跳后它停的点所对应的数为()A.5B.3C.2D.1【答案】C【分析】先根据题意,求出前几次跳到的点的位置,发现这是一个循环,按照3、5、2、1成一个循环,再用解循环问题的方法求解.【详解】解:按照题意,第一次在1这个点,下一次就跳到3,再下一次跳到5,再下一次跳到2,2是偶数了,就逆时针跳一个点,又回到了1这个点,发现这是一个循环,3、5、2、1是一个循环,÷ ,20154=5033∴最后到2这个点.故选:C.【点睛】本题考查找规律,解题的关键是通过前几个数发现这是一个循环问题,利用解循环问题的方法求解.【变式训练1】按上面数表的规律.得下面的三角形数表:【点睛】本题考查了数字的变化类,找出数字的变化规律是解题的关键.类型三、图形类规律探索例.根小棒,搭2020个这样的小正方形需要小棒()根.A.8080B.6066C.6061D.6060【答案】C【分析】通过归纳与总结得出规律:每增加1个正方形,火柴棒的数量增加3根,由此求出第n个图形时需要火柴的根数的代数式,然后代入求值即可.【详解】解:搭2个正方形需要4+3×1=7根火柴棒;搭3个正方形需要4+3×2=10根火柴棒;搭n个这样的正方形需要4+3(n﹣1)=3n+1根火柴棒;∴搭2020个这样的正方形需要3×2020+1=6061根火柴棒;故选C.【点睛】本题考查了图形规律型:图形的变化.解题的关键是发现各个图形的联系,找出其中的规律,有一定难度,要细心观察总结.【变式训练1】下列每一个图形都是由一些同样大小的三角形按一定的规律排列组成的,其中第①个图形中有5个小三角形,第②个图形中有10个小三角形,第③个图形中有16个小三角形,按此规律,则第⑨个图中小三角形的个数是()A.69B.73C.77D.83【答案】B【分析】根据已知图形得出第⑨个图形中三角形的个数的特点,据此可得答案.【详解】解:∵第①个图形中三角形的个数5=1+2×(1-1),第②个图形中三角形的个数10=5+2×1+3,第③个图形中三角形的个数16=5+2×2+3+4,第④个图形中三角形的个数23=5+2×3+3+4+5,第⑤个图形中三角形的个数31=5+2×4+3+4+5+6,……【答案】57【分析】根据每个图形增加三角形的个数,找到规律即可.【详解】解:第1个图形中一共有1个三角形,第2个图形中一共有1+4=5个三角形,第3个图形中一共有1+4+4=9个三角形,…,第n个图形中三角形的个数是1+4(n﹣1)=(4n﹣3)个,当n=15时,4n﹣3=4×15﹣3=57.故答案为:57.【点睛】本题考查了图形的变化规律,解题关键是通过图形数量的变化发现规律,并应用规律解决问题.课后训练20192020)a a -。

规律探索问题

规律探索问题

方法总结: 解答图形类规律探索问题,要注意分析图形特征 和图形变化规律,一要合理猜想,二要加以实际验证 .
专题训练
一、选择题 (每小题 4 分,共 32 分)
1.请你计算:(1- x)(1+ x ),(1- x)(1+ x+ x 2),?, 猜想(1-x)(1+x+x2+?+ xn)的结果是 ( )
4.(2015·宜宾)如图,以点 O 为圆心的 20 个同心圆,
它们的半径从小到大依次是 1,2,3,4,?, 20,阴影部分
是由第 1 个圆和第 2 个圆,第 3 个圆和第 4 个圆,??,
第 19 个圆和第 20 个圆形成的所有圆环,则阴影部分的
面积为( )
A.231π
B.210π
C.190π
【解析】 在等腰 Rt △OAA 1 中, ∠OAA 1=90°, OA=1,∴OA1= 2.同理可求 OA2=( 2)2,OA3=( 2)3. 依此类推 OA6=( 2)6=8.
答案: 8
3.(2015·安顺)如图所示是一组有规律的图案,第 1 个图案是由 4 个基础图形组成,第 2 个图案是由 7 个基础图形组成,??,第 n(n 是正整数 )个图案中的 基础图形的个数为 (用含 n 的式子表示 ).
考点二 图形类规律探索问题 例 2 (2015·益阳)如图是用长度相等的小棒按一定规 律摆成的一组图案,第 1 个图案中有 6 根小棒,第 2 个 图案中有 11 根小棒,??,则第 n 个图案中有________ 根小棒.
【点拨】第 1 个图案中有 6 根小棒,第 2 个图案
比第 1 个图案多一个
A. 222
B. 280
C. 286
D. 292
【解析】设能连续搭建正三角形的个数是 n,则 正六边形的个数为 (n-6),观察图形可知,搭建一个正 三角形用 3 根火柴棍,搭建 n 个正三角形用(2n+1)根 火柴棍;搭建一个正六边形用 6 根火柴棍,搭建 (n-6)个正六边形用 [5(n-6)+1]根火柴棍,正三角形 和正六边形共用了 2 016 根火柴棍,故可得 2n+1+ 5(n-6)+1=2 016,解得 n=292.故选 D.

专题一 规律探索型问题

专题一 规律探索型问题
2 3 2014
32015-1 的值是__ 2 __.
数式规律型问题
【例2】 (2014·扬州)设a1,a2,„,a2014是从1,0,-1这三个 数中取值的一列数,若a1+a2+„+a2014=69,(a1+1)2+(a2+1)2 +„+(a2014+1)2=4001,则a1,a2,„,a2014中为0的个数是 __165__. 【点评】本题解题的关键是对给出的式子进行正确的变形.
5.(2014· 铁岭)将(n+1)个边长为 1 的正方形按如图所示的方式排列,点 A, A1,A2,A3,„,An+1 和点 M,M1,M2,„,Mn 是正方形的顶点,连接 AM1, AM2,AM3,„,AMn,分别交正方形的边 A1M,A2M1,A3M2,„,AnMn-1 于点 N1,N2,N3,„,Nn,四边形 M1N1A1A2 的面积是 S1,四边形 M2N2A2A3 的面积是 2n+1 S2,„„四边形 MnNnAnAn+1 的面积是 Sn,则 Sn=__ __. 2n+2
1.(2014· 兰州)为了求 1+2+22+23+„+2100 的值,可令 S=1+2+ 22+23+„+2100,则 2S=2+22+23+24+„+2101,因此 2S-S=2101-1, 所以 S=2101-1,即 1+2+22+23+„+2100=2101-1,仿照以上推理计算 1+3+3 +3 +„+3
【点评】本题主要考查了点的坐标以及图形变化类,根据题意数形 结合得出B点横坐标变化规律是解题关键.
4.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的 一条对角线所穿过的小正方形个数f, (1)当m,n互质(m,n除1外无其他公因数)时,观察下列图形并完 成下表:
m 1 1 2 2 3
专题一 规律探索型问题

专题一 规律探索型问题

专题一 规律探索型问题

GB BH BE BH = ,即 = .又∵DG∥CA,∴△BHD FD DH FD 2DH
BH DH BH BA BE k ∽△BAC,∴ = ,即 = =k.∴ = . BA CA DH CA FD 2




1.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连 接菱形各边的中点得到第二个矩形,按照此方法继续下去,已知第一个矩
BE (2)当 AB=kAC 时(如图所示),求 的值(用含 k 的式子表示). FD
中考典例精析
【点拨】本题是一个关于线段比的探究题,主要考查学生的自学探究 能力.解答此类问题的一般思路是:先从简单问题入手,总结解题规律, 以此规律解答类似相关复杂问题.
【解答】(1)①22.5 1 ②结论:BE= FD.证明如下:如图,过点 D 作 DG 2




7.(2011·北京)在下表中,我们把第i行第j列的数记为ai,j(其中i ,j都是不大于5的正整数),对于表中的每个数ai,j规定如下:当i≥j时,
ai,j=1;当i<j时,ai,j=0.例如:当i=2,j=1时,ai,j=a2,1=1.按此
规定,a1,3=________;表中的25个数中,共有________个1;计算
1 n-1 2 【解答】( ) cm 4
中考典例精析
(2011·大连)在△ABC 中,∠A=90°,点 D 在线段 BC 上,∠EDB 1 = ∠C,BE⊥DE,垂足为 E,DE 与 AB 相交于点 F. 2
(1)当 AB=AC 时(如图所示), ①∠EBF=________°; ②探索线段 BE 与 FD 的数量关系,并加以证明.
答案:(1)4×6-52=24-25=-1 (2)答案不唯一.如n(n+2)-

中考一轮复习--专题五 规律探索题

中考一轮复习--专题五 规律探索题
(2)图形的结构观察.
(3)通过对简单、特殊情况的观察,再推广到一般情况.
2.规律探究的基本原则:
(1)遵循类推原则,项找项的规律,和找和的规律,差找差的规律,积
找积的规律.
(2)遵循有序原则,从特殊开始,从简单开始,先找3个,发现规律,再
验证运用规律.
类型一
类型二
类型三
类型一 数式的变化规律
例1(2019·安徽)观察以下等式:
∴S5= =-1-a,
4
∴S6=-S5-1=a.
1
1
∴S7= = =S1,
6
故此规律为 6 个一循环,
∵2 018÷6=336 余 2,
1+
∴S2 018=- .
1
2
3
4
5
6
7
4.(2018·黑龙江龙东区)如图,已知等边△ABC的边长是2,以BC边上
的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边
(2)∵2 020÷3=673…1,∴需要小正方形674个,大正方形673个.
1
2
3
4
5
6
7
7.图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上
面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.
将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有
n(n + 1)
圆圈的个数为1+2+3+…+n= 2 .如果图3和图4中的圆圈各有13

.
类型一
类型二
类型三
分析:(1)观察图形,结合已知条件,得出将基本图每复制并平移一
次,特征点增加5个,由此得出图4中特征点的个数为17+5=22个,进

12探索规律(基础)知识讲解及其练习

12探索规律(基础)知识讲解及其练习

探索规律(基础)知识讲解【学习目标】1. 通过观察、分析、总结等一系列过程,经历探索数量关系,并运用代数式表示规律,通过运算验证规律是否正确的过程;2.会用代数式表示简单问题中的数量关系,能用合并同类项、去括号等法则验证所探索的规律是否正确;3.通过动手操作、观察、思考,体验数学活动是充满着探索性和创造性的过程.【要点梳理】要点一、规律探索型问题常见类型1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了分析、归纳、抽象、概括能力.一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.要点诠释:由于寻找规律并用字母表示这一规律体现了从特殊到一般和归纳、猜想的数学思想的运用.解题中应注意先从特殊的结果入手寻找规律,再用字母表示,最后加以验证.2、图形规律根据一组相关图形的变化,从中总结图形变化所反映的规律.解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律.要点诠释:图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查数形结合的数学思想.3、数表规律解决本题的方法一般是先看行(或列)的规律,再以列(或行)为单位用数列找规律方法找规律.有时也需要看看有没有一个数是上面两数或下面两数的和或差等.有时还需要先局部看,再整体找规律.要点二、规律探索型问题解题技巧1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量.所谓找规律,多数情况下,是指变量的变化规律. 所以,抓住了变量,就等于抓住了解决问题的关键.而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号.2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多.对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了.3、要进行计算尝试找规律,当然是找数学规律.而数学规律,多数是函数的解析式.函数的解析式里常常包含着数学运算.因此,找规律,在很大程度上是在找能够反映已知量的数学运算式子.所以,从运算入手,尝试着做一些计算,也是解答找规律题的好途径.4、寻找事物的循环节有些题目包含着事物的循环规律,找到了事物的循环规律,其他问题就可以迎刃而解. 【典型例题】类型一、数式规律1.按某种规律在横线上填上适当的数: (1)1,3,5,7,9,11, ,………; (2)3,6,12,24,48,96, ,………; (3)1,4,9,16,25,36, ,………; (4)0,3,8,15,24,35, ,………; (5)2,-2,2,-2,2,-2, ,……….【答案】(1)13;(2)192;(3)49;(4)48;(5)2. 【解析】 解:(1)这个数列中,后一项与前一项差为定值2,所以第7个数为:11213+=; (2)这个数列中,后一项总是前一项的2倍,所以第7个数为:962192⨯=; (3) 这个数列中,每个数位上的数分别是它所在位置号的平方或立方,所以第7个数为:2749=;(4) 这个数列中,后一项与前一项的差依次多2,所以第7个数为:351348+=; (5)这个数列中,每两个数一个循环,奇数位上的数为2,偶数位的数为-2.所以第7个数为:2. 【总结升华】(1)一列数中,后一项与前一项的差是一个固定的数,则这列数的第n 个数为:从左往右数第一个数+固定数值×(n-1).(2)一列数中,相邻两项的后一项与前一项的商为固定值q (q ≠0),则这列数的第n 个数为:从左往右数第一个数×1n q-.(3) 一列数中,每个数位上的数分别是它所在位置号的平方或立方,则第n 个数为:2n 或3n . (4)此数列满足:差值呈固定值2增长,第n 个数为21n -. (5)此数列中的第n 个数可表示为1(1)2n +-⨯.举一反三:【变式1】按某种规律在横线上填上适当的数: (1) -5,-2,1,4, ; (2) 2,5,10,17, ,37;(3) 1,8,27,64, ,216 . 【答案】(1) 7 (2), 26 (3) 125【变式2】(•德州)一组数1,1,2,x ,5,y…满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( ) A .8 B .9 C .13 D .15 【答案】A .解:∵每个数都等于它前面的两个数之和, ∴x=1+2=3, ∴y=x+5=3+5=8,即这组数中y 表示的数为8.2.(•丹东)观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.【思路点拨】根据题意可得:所有数据分母为连续正整数,第奇数个是负数,且分子是连续正整数的平方加1,进而得出答案.【答案】﹣.【解析】解:∵﹣2=﹣,,﹣,,﹣,…,∴第11个数据是:﹣=﹣.故答案为:﹣.【总结升华】此题主要考查了数字变化类,正确得出分子与分母的变化规律是解题关键,另外要注意符号的变化.举一反三:【变式】根据以下等式:1=12,1+2+1=22,1+2+3+2+1=32,….对于正整数n(n≥4),猜想:1+2+ … +(n-1)+n+(n-l)+ … +2+1= .【答案】n2类型二、图表规律3.用火柴棒按下图的方式搭三角形:(1)填写下表:三角形个数 1 2 3 4 5 火柴棒根数(2)照这样的规律搭下去,搭n个这样的三角形需要多少根火柴棒?【思路点拨】每多搭一个三角形,就多用两根火柴棒.【答案与解析】三角形个数 1 2 3 4 5火柴棒根数 3 5 7 9 11 (2)搭n个这样的三角形需要 2n+1 根火柴棒【总结升华】将“形”的规律转换为“数”的规律.举一反三:【变式】观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个图形中共有个★.n【答案】314.(•泰安)下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252【答案】C.【解析】解:首先根据图示,可得第n个表格的左上角的数等于n,左下角的数等于n+1;然后根据4﹣1=3,6﹣2=4,8﹣3=5,10﹣4=6,…,可得从第一个表格开始,右上角的数与左上角的数的差分别是3、4、5、…,n+2,据此求出a的值是多少∵a+(a+2)=20,∴a=9,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209【总结升华】此题主要考查了探寻数字规律问题,注意观察总结出规律,并能正确的应用规律.举一反三:【变式】观察下列有序整数对:(1,1).(1,2),(2,1).(1,3),(2,2),(3,1)(1,4),(2,3),(3,2),(4,1).(1,5),(2,4),(3,3),(4,2),(5,1).…它们是按一定规律排列的,依照此规律,第10行从左到右第5个整数对是【答案】(5,6)5.如图,如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“♣”,共个.【思路点拨】本题的关键是要找出4个图形一循环,然后再求2012被4整除,从而确定是共第503♣.【答案】503【解析】解:根据题意可知梅花是1,2,3,4即4个一循环.所以2012÷4=503.所以共有503个♣.【总结升华】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后直接利用规律求解.举一反三:【变式】观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是.(填图形的名称)▲■★■▲★▲■★■▲★▲…【答案】五角星提示:6个一循环.【巩固练习】一、选择题1.(•黄冈中学自主招生)对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.52.(•东莞市一模)如图,填在各方格中的三个数之间均具有相同的规律,根据此规律,n 的值是()A.48 B.56 C.63 D.743.小明用棋子摆放图形来研究数的规律.图1中棋子围成三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是().A.2010 B.2012 C.2014 D.20164.某种细菌在培养过程中,每半小时分裂1次,每次一分为二.若这种细菌由1个分裂到16个,那么这个过程要经过 ( ) .A.1.5小时; B.2小时; C.3小时; D.4小时.5. 观察下列算式:12345678 22242821623226421282256========, , , , , , , ,根据上述算式中的规律,你认为202的末位数字是().A. 2B. 4C. 6D. 86.下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为().A.50 B.64 C.68 D.72二、填空题7. 观察下列等式:9-1=8,16-4=12,25-9=16,36-16=20,49-25=24,…这些等式反映出自然数间的某种规律,设n表示自然数,用含字母n的等式表示这个规律 .8.观察下面一列有规律的数:111111,,,,,2612203042,……,根据规律可知第7个数是________,第n个数应是________(n是正整数).9.有一列数:1,2,3,4,5,6,……当按顺序从第二个数数到第n个数时,共数了________个数;当按顺序从第m个数数到第n个数(n>m)时, 共数了________个数.10. 今天是星期一,58天后是星期.11.(•南宁)观察下列等式:在上述数字宝塔中,从上往下数,2016在第层.12.(•绥化)填在下面各正方形中的四个数之间都有一定的规律,按此规律得出a+b+c= .三、解答题13.(春•郑州期末)任意一个三位数,百位数字乘个位数字的积作为下一个数字的百位.百位数字乘十位数的积作为下一个数的十位数字,十位数字乘个位数字的积作为下一个数的个位数字.在上面每次相乘的过程中,如果积大于9,则将积的个位数与十位数相加,若和仍大于9,则继续相加直到得出一位数.重复这个过程…例如,以832开始,运算以上规则依次可得到:832,766,669,999,999,…(1)你选择的三位数是什么?按上述规则进行运算你都得到了哪些数?你得到了什么结论?(2)换个数试试,你有什么进一步的猜想?14.如图a是一个三角形,分别连接这个三角形三边的中点得到图b,再分别连接图b中各小三角形三边中点,得到图c,按此方法继续下去,请你根据每个图中三角形个数的规律,完成下列问题:图a 图b 图c图形编号 1 2 3 4 5 ……三角形个数 1 5 9(2)在第n个图形中有多少个三角形(用含n的式子表示).15.从2开始,连续的偶数相加(特别地,把1个2相加也看成和).和的情况如下:==,+==,++==,+++==, (221224623246123424682045)⨯⨯⨯⨯(1)推测从2开始,n个连续偶数相加,和是多少?(2)取n=6,验证(1)的结论是否正确.【答案与解析】一、选择题 1.【答案】C .【解析】∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0, ∴1!+2!+3!+…+10!的末尾数为3.2.【答案】C ;【解析】解:从方格上方的数的数1、3、5、可以推出m=7,第一个方格中:3=1×2+1, 第二个方格中:15=3×4+3, 第三个方格中:35=5×6+5, ∴第四个方格中:n=7×8+7=63. 故选:C .3. 【答案】D ;【解析】既是三角形数又是正方形数,应是12的倍数. 4. 【答案】B ;【解析】16=24,所以这个过程要经过了4个半小时,即2小时. 5.【答案】C ;【解析】末位数字以2,4,8,6为一个循环,20÷4=5,所以202的末位数字应与42的末位数字相同. 6. 【答案】D ;【解析】第⑥个图形中五角星的个数:2+4+6+8+10+12+10+8+6+4+2=72. 二、填空题7. 【答案】22(2)4(1)n n n +-=+; 8.【答案】156,1(1)n n +; 【解析】111111;;;;2126231234===⨯⨯⨯第n 个代数式为1(1)n n +.9.【答案】n -1,n -m +1; 10.【答案】三;【解析】58/7=8(星期)……2(天),所以是星期三. 11.【答案】44;【解析】解:第一层:第一个数为12=1,最后一个数为22﹣1=3,第二层:第一个数为22=4,最后一个数为32﹣1=8,第三层:第一个数为32=9,最后一个数为42﹣1=15,∵442=1936,452=2025, 又∵1936<2016<2025,∴在上述数字宝塔中,从上往下数,2016在第44层,故答案为:44.12.【答案】110【解析】根据左上角+4=左下角,左上角+3=右上角,右下角的数是左下角与右上角两个数的乘积减去1的差,可得6+4=a,6+3=c,ac+1=b,可得:a=10,c=9,b=91,所以a+b+c=10+9+91=110.三、解答题13.【解析】解:(1)如选择的三位数是123,运用以上规则依次可得到:123,326,963,999,999,…这组数的后面都是999;(2)如选择的三位数是788,运用以上规则依次可得到:788,221,242,488,551,575,788,…如选择的三位数是255,运用以上规则依次可得到:255,117,717,477,114,414,744,117,…猜想:无论给出一个什么样的三位数,总能得到重复出现的一组数:都是999或6个数为一组重复出现.14.【解析】解:(1)13,17 ;(2)1+4(n-1)=4n-3.15. 【解析】解:(1)n(n+1);(2)n=6,n(n+1)=6×7=42=2+4+6+8+10+12,(1)的结论正确.。

探索图形规律的方法总结

探索图形规律的方法总结

探索图形规律的方法总结一、规律探索型问题的分类1、数式规律通常给定一些数字、代数式、等式或不等式,然后猜想其中蕴含的规律,反映了由特殊到一般的数学方法,考查了学生的分析、归纳、抽象、概括能力。

一般解法是先写出数式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式。

猜想归纳是解决这类问题的有效方法,通过对已给出的材料和信息对研究的对象进行观察、实验、比较、归纳和分析综合,作出符合一定规律与事实的推测性想象,从而发现一般规律。

它是发现和认识规律的重要手段。

平时的教学不能局限于课本,可以设计一些猜想性、类比性的活动,让学生经历一个观察、试验等活动过程,在活动中通过对大量特殊情形的观察猜想出一般情形的结论,从而探索事物的内在规律。

2、图形规律根据一组相关图形的变化规律,从中总结图形变化所反映的规律。

解决这类图形规律问题的方法有两种,一种是数图形,将图形转化成数字规律,再用数字规律的解决问题,一种是通过图形的直观性,从图形中直接寻找规律。

图案、图表具有直观、形象、简明,包含的信息量多等特点,解决此类问题需要把“形”转化为“数”,考查学生数形结合的数学思想。

二、规律探索型问题常用解法1、抓住条件中的变与不变找数学规律的题目,都会涉及到一个或者几个变化的量。

所谓找规律,多数情况下,是指变量的变化规律。

所以,抓住了变量,就等于抓住了解决问题的关键。

而这些变量通常按照一定的顺序给出,揭示的规律,常常包含着事物的序列号。

如:一组按规律排列的式子:,,,,…(),其中第7个式子是,第个式子是(为正整数)。

分子和分母的底数没变,变化的是符号及它们的指数,再把变量和序列号放在一起加以比较,就很容易发现其中的奥秘。

2、化繁为简,形转化为数有些题目看上去很大、图形很复杂,实际上,关键性的内容并不多。

对题目做一番认真地分析,去粗取精,取伪存真,把其中主要的、关键的内容抽出来,题目的难度就会大幅度降低,问题也就容易解决了。

规律探索型问题PPT课件

规律探索型问题PPT课件

横排中右边的数比左边的数大1
纵列中下面的数比上面的数大7
2021
27
观察下面的几个算式,你发现了什么规律?
12=1 112=121 1112=12321 11112=1234321 利用上面的规律,请猜出 111112= 123454321 。
2021
28
葛店镇党委、政府十分重视本地企业的发 展,葛店水泥制管厂就是我镇的一家民营企业。 为了更好地节约场地,工人师傅们按下面的图 示堆放水泥管。
1×3=3, 而 3=22-1
3×5=15,而15=42-1
5×7=35,而35=62-1
7×9=63,而63=82-1
……
……
13×15=195,而195=142-1
……
……
将你猜想到的规律用含n(n≥1的整数)的等式表示出来
解:(2n-1)(2n+1)=(2n)2-1,其中n是大于1的
自然数.
或者n(n+2)=(n+1)2-1,其中n表示奇数.
50 101
2021
11
例3、在△ABC 中,D为BC边的中点,E为AC边上的任意 一点,AD交BE于点O.某学生在研究问题时,发现了如 下的事实:

AE 1 1 时,有 AC 2 11
AO AD
2 3
2 21(如图1)
当 AE1 1 AC 3 12
时,有
AO AD
42 222(如图2)
当 AE1 1 时,有 AC 4 13
2021
5
例2. 研究下列算式,你会发现什么规律? 1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 ……

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08 整式中规律性探索的三种考法(解析版)(北师大版)

专题08整式中规律探索的三种考法类型一、数字类规律探索问题-,A B.30,D C.29,BA.29【答案】A【分析】观察不难发现,每个峰排列5个数,求出5个峰排列的数的个数,中C位置的数的序数,然后根据排列的奇数为负数,偶数为正数解答;用【答案】4【分析】由题意知,第一次输出的结果是4,第二次输出的结果是1,第四次输出的结果是4,第五次输出的结果是=⨯+,进而可得第2023次输出的结果.202336741【详解】解:由题意知,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,……,∴可知三次为一个循环,=⨯+,∵202336741∴第2023次输出的结果是4,故答案为:4.【点睛】本题考查了程序流程图与有理数计算,规律探究.解题的关键在于根据推导一般性规律.【变式训练1】按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【答案】C【分析】分三种情况讨论,当输入n经过一次运算即可得到输出的结果为656,当输入n经过两次运算即可得到输出的结果为656,当输入n经过三次运算即可得到输出的结果为656,再列方程,解方程即可得到答案.【详解】解:当输入n经过一次运算即可得到输出的结果为656,51556∴+=,n∴=5655,nn∴=131.当输入n经过两次运算即可得到输出的结果为656,()∴++=5511656,n∴+=26.51131,n∴=n当输入n经过三次运算即可得到输出的结果为656,()∴+++=n555111656,⎡⎤⎣⎦()∴++=5126,n5511131,∴+=5n∴=.n综上:开始输入的n值可能是5或26或131.故选:C.【点睛】本题考查的是程序框图的含义,一元一次方程的解法,分类思想的应用,掌握以上知识是解题的关键.课后训练A.31B.49C.62D 【答案】BA.13-B.2【答案】CA.73B.81C.91D.109【答案】C【分析】根据图形,将每个图形分为上下两部分,分别数出每个图形两部分中菱形的个数,总结出数量变化的一般规律即可.【详解】解:由图可知:第一个图形:上面由3个菱形,下面有0个菱形,第二个图形:上面有6个菱形,下面有1个菱形,A .62B .70【答案】B 【分析】观察图形得到第1个五边形数为1,第为14712++=,第4个五边形数为14710+++A .31B .32C .63D .64【答案】C 【分析】根据图形,可以得到正方形个数的变化特点,从而可以得到图⑤中正方形的个数.【详解】解:由图可得,第①个图形中正方形的个数为:212321+==-,第②个图形中正方形的个数为:23122721++==-,第③个图形中正方形的个数为:23412221521+++==-,…则第⑤个图形中正方形的个数为:62164163-=-=,故选:C .【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现正方形个数的变化特点,求出图⑤中正方形的个数.7.下列图形都是由大小相同的小正方形按一定规律组成的,其中第①个图形中有1个小正方形,第②个图形中有5个小正方形,第③个图形中有11个小正方形,…,按此规律排列下去,第⑦个图形中的小正方形个数为()个A .40B .49C .55D .71【答案】C 【分析】由已知图形中点的分布情况知:横放是图形序号的平方减去1,竖着摆放的数与序号相同,再进行相加即可.【详解】解:根据图形可得第①个图案正方形个数为:21111=-+;第②个图案正方形个数为:2532212=+=-+;第③个图案正方形个数为:21183313=+=-+;第④个图案正方形个数为:219154414=+=-+;所以,第⑦个图形中的小正方形个数为271755-+=(个)故选:C【点睛】本题考查了规律型中的图形变化问题,要求学生首先分析题意,找到规律,并进行推导得出答案.8.如图1,AE 是O 的直径,点B 、C 、D 将半圆分成四等分,把五位同学分别编为序号1、2、3、4、5按顺序站在半圆的五个点上,现把最右边的5号同学调出,站到2号和3号两位同学之间,再把最右边的4号同学调出,站到1号和2号两位同学之间,得到图2,称为“1次换序”.接着按同样的方法,把最右边的3号同学调出,站到4号和2号两位同学之间,再把最右边的5号同学调出,站到1号和4号两位同学之间,得到图3,称为“2次换序”.以此类推……;若从图1开始,经过“n 次换序”后,得到的顺序与图1相同,则n 的值可以是()A .11B .12C .13D .14【答案】B 【分析】先得到前4次换序后的结果,再归纳类推出一般规律,由此即可得.【详解】解:由题意得:1次换序后,得到的顺序为1,4,2,5,3,2次换序后,得到的顺序为1,5,4,3,2,3次换序后,得到的顺序为1,3,5,2,4,4次换序后,得到的顺序为1,2,3,4,5,由此可知,每经过4次换序,得到的顺序与图1相同,即此时4n k =(k 为正整数),观察四个选项可知,只有选项B 符合题意,故选:B .【点睛】本题考查了图形类规律探索,正确归纳类推出一般规律是解题关键.。

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析

初中数学规律探究问题的类型及解题技巧分析初中数学规律探究问题是指通过观察数学题目中的规律,通过实际计算或逻辑推理,发现其中的数学规律,并运用规律解题的一类问题。

这类问题在初中数学中经常出现,解决这类问题需要掌握一些解题技巧和分析方法。

一、问题类型1. 数列规律问题:给出一系列数字,要求分析数字之间的规律,并预测下一个数字或找出满足条件的数字。

例如:1,4,9,16,...,下一个数是多少?答案是25,因为给定的数列是平方数列。

解题技巧:观察数列中相邻数字之间的差异或倍数关系,找出规律,并应用规律计算。

2. 图示规律问题:给出一幅图形或图形序列,要求分析图形之间的规律并预测下一幅图形或找出符合规律的图形。

例如:下面的图形序列中,哪个图形是下一个?□□□■■■■□□□■■■■■■□□□■■■■■■■■答案是:□□□■■■■■根据观察可以发现,□表示空白,■表示实心,图形序列遵循奇数行是空白实心交替,偶数行是实心空白交替的规律。

解题技巧:观察图形的形状、组成要素、排列方式等,找出规律,并应用规律预测下一个图形或找出符合规律的图形。

4. 条件规律问题:给出一组满足特定条件的数字或图形,要求分析条件之间的关系并找出满足条件的其他数字或图形。

例如:对于下面的等式,填入适当的数字:1 2 3 = 62 3 4 = 93 4 5 = 12答案是:4 5 6 = 15,等号右边的数字是等号左边三个数字的和。

解题技巧:通过观察和分析给定的条件,找出条件之间的关系,根据关系找出满足条件的其他数字或图形。

二、解题技巧1. 观察比较:解决规律问题首先要通过观察和比较找出数字、图形之间的规律。

可以通过列举题目给出的一些例子来观察,也可以通过自己构造一些例子来观察。

在观察的过程中,要关注数字或图形之间的差异、相似性,以及数字之间的大小关系、图形的形状变化等。

2. 抽象总结:通过观察找到规律后,要将观察到的规律进行抽象和总结,归纳出一个普遍适用的规律。

中考数学复习指导:探索规律型问题归类解析

中考数学复习指导:探索规律型问题归类解析

探索规律型问题归类解析探索规律型问题是历年中考数学试题中的重要题型之一,其特点是给出一组变化了的数字、式子、表格、图形等,要求学生通过观察、归纳、猜想、验证、类比,探求其内在规律.1.通用的解题策略解答规律型问题一般要从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.这种“特殊——一般——特殊”的解题模式,体现了总结归纳的数学思想,也正是人们认识新事物的一般过程.具体来说,就是先写出开头几个数式的基本结构,然后通过横比或纵比找出各部分的特征,写出符合要求的结果.例1 如图1,房间地面的图案是用大小相同的黑、白正方形镶嵌而成.图中,第1个黑色“L”形由3个正方形组成,第2个黑色“L”形由7个正方形组成,…那么组成第6个黑色“L”形的正方形个数是( )(A)22 (B)23 (C)24 (D)25解析从特例入手:如图1.纵比正方形的个数3,7,11,15中,后一个数比前一个大4(即相邻两数的差为4),猜想与4有关.横比3与1,7与2,11与3,15与4之间有何关系?联想到与4有关,故改写为:3=4×1-1,7=4×2-1.11=4×3-1,15=4×4-1.猜想组成第6个黑色L形的正方形个数是4 ×6-1=23个.故选B.点评考察相邻两数的差(或商)是探究数字规律的常用手段.常见的类型有:相邻两数的差(或商)相等或成倍数关系,相邻两数的差相等与商相等交替出现等.2.关注特殊数列(1)斐波那契数列:1,1,2,3,5,8,13,21…(其规律为:从第三项开始,每一项都等于前两项之和);(2)平方数数列:1,4,9,16,25,36…(其规律为:n2,即每一项都等于项数的平方).例2 有一组数:1,2,5,10,17,26…请观察这组数的构成规律,用你发现的规律确定第8个数为_______.解析规律为:n2+1(n=0,1,2…).答案:50.点评此类题要注意n2,n2+1,n2-1等(3)三角形数列:1,3,6,10,15,21,…(其规律为1+2+3+…+n)例3 世界上著名的莱布尼茨三角形如图2所示,则排在第10行从左边数第3个位置上的数是:( )(A)(B)(C)(D)解析从第3行起,从左边数第3位置上的数分别为,,,,…它们的分母可分别改写为:1×3,3×4,6×5,10×6,15×7,21×8,…,而1,3,6,10,15,21,…,正是三角形数,故答案为:.选B.(4)杨辉三角形,杨辉三角形斜边上1以外的各数,都等于它“肩上”的两数之和,如图3.(5)与等差等比数列有关的数列.如例1中3,7,11,15…就是一个等差数列.例4 数字解密:第一个数是3=2+1,第二个数是5=3+2,第三个数是9=5+4,第四个数是17=9+8,……观察并猜想第六个数应是_______.解析第二个加数1,2,4,8…规律为2n(为一等比数列,也要关注这一数列),第一个加数2,3,5,9…比第二个加数大1.所以第六个数为(25+1)+25=65.例5 一组按规律排列的数:…请你推断第9个数是________.解析这列数的分母为2,3,4,5,6…的平方数,分子形成二阶等差数列,依次相差2,4,6,8…故第9个数分子为1+2+4+6+8+10+12+14+16=73,分母为100,故答案为.(6)与循环有关的问题例6 让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a3;第三步:算出a2的各位数字之和得n3,再计算n32+1得a3;……依此类推,则a2008=_______.解析根据题意可算出a1=26,a2=65,a3=122,a4=26,a5=65,a6=122,…发现每3个数就出现一次循环.所以由2008=669×3+1,可得a2008=a1=26.点评一列数由某m个数循环出现组成,可依据同余等值(由n=p·m+r得a n=a r)实施转换.(7)分奇数项偶数项的问题例7 一组按规律排列的式子:,…(a b≠0),其中第7个式子是________,第n个式子是_(n为正整数).解析6的指数2,5,8,11…,相邻两数差为3,是等差数列,其规律为3n-1;再注意到奇数项为负,偶数项为正,则第n个式子为第七个式子为3.特殊数列的迁移例8 把数字按如图4所示排列起来,从上开始,依次为第一行、第二行、第三行、…,中间用虚线围的一列,从上至下依次为1.5.13.25.…,则第10个数为_______.解析1 中间框出的一列数的规律为:第n个数为1+4+8+12+…+4(n-1).所以第10个数为1+4+8+12+…+36=.解析2 用虚线圈出的一列数1,5,13,25可改写为:02+12,12+22,22+32,32+42,猜想第10个数为92+102=181.点评此列数可看成是平方数数列的迁移.例9 图5中是与杨辉三角有类似性质的三角形数垒.a,b,c,d是相邻两行的前四个数,那么当a=8时,c=_______,d=_______.解析除两边外,中间的每个数等于肩上两数的和.答案:9;32.点评此列数可看成是杨辉三角形的迁移.4.关注中考新题型例10 观察图6所示表格,依据表格数据排列的规律,数2008在表格中出现的次数共有_______次.解析从特例入手,通过扩充表格可得:数1,2,3,4,5,6,7,8,9,10出现次数分别为1,2,2,3,2,4,2,4,3,4.出现的次数恰为给定数的所有因数的个数,而2008的因数为1,2,4,8,251,502,1004,2008等8个.故答案为8.点评本例中新产生的数为自然数的倍数,因此,其出现的次数与其因数的多少有关,仔细观察便会发现,其出现次数就是给定数所有因数的个数,本题规律的隐蔽性较强,因而有一定的难度.。

专题5 规律探索型问题

专题5 规律探索型问题

,摆放第三个“7”字图形得顶点F2,依此类推,…,摆
放第n个“7”字图形得顶点Fn-1,…,则顶点F2019的坐
标为
6062 5
5
,405
5

【解析】(1)12 ;(2)过 C 作 CM⊥y 轴于 M,过 M1 作 M1N⊥x 轴,过
F 作 FN1⊥x 轴.根据勾股定理易证得 BD= 22+12 = 5 ,CM=
=13
,∴FN1=6 5 5
,∴AN1=3 5 5
,∴ON1=OA+AN1=2 5 5
+3 5 5
=5
5 5
,∴F(5 5 5
,6
5 5
),
同理,F1(8 5 5
,7
5 5
),即(1×35+5
5 ,6+5 1
5 ),F2(115 5 ,
85 5
),即(2×35+5
5 ,6+5 2
5 ),F3(145 5 ,105 5 ),即
(2)写出你猜想的第n个等式:________(用含n的等式表 示),并证明.
解:(1)第 6 个等式为:121 =16 +616 ; (2)2n2-1 =n1 +n(2n1-1) . 证明:∵右边n1 +n(2n1-1) =n2(n2-n1-+11) =2n2-1 =左边.∴等式成立.
【思路方法】数式规律题的解题方法: 第一步:给已知等式标序数; 第二步:观察等式的每一项与序数(1,2,3,…,n)之 间的关系(平方、乘积); 第三步:将等式拆分,每一项用含序数的式子表示出 来.
专题5 规律探索型问题
专题解读
规律探索型问题指的是给出一组具有某种特定关系 的数、式、图形,或是给出与图形有关的操作变化过 程,或某一具体的问题情境,要求通过观察分析推理 ,探究其中蕴含的规律,进而归纳或猜想出一般性的 结论.主要思想方法是从特殊到一般的归纳猜想法. 常见类型有“数式规律”“图形规律”等题型.

2024中考压轴题06 规律探究(4题型+解题模板+技巧精讲)(原卷版)

2024中考压轴题06 规律探究(4题型+解题模板+技巧精讲)(原卷版)

压轴题解题模板06规律探究目录题型一周期型题型二递推型题型三固定累加型题型四渐变累加型图形的规律探索题型一 周期型【例1】(2023·广东江门·一模)现有四条公共端点为O 的射线OA 、OB 、OC 、OD ,若点1P ,2P ,3P ,……按如图所示的规律排列,则点2023P 应该落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上【变式1-1】(2023·新疆克孜勒苏·一模)在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A →B →C →D →A …循环爬行,其中A 点坐标为()1,1-,B 点坐标为()1,1--,C 点坐标为()1,3-,当蚂蚁爬了2017个单位时,它所处位置的坐标为( )A .()1,1B .()1,0C .()0,1D .()0,1-【变式1-2】已知11a x =-(1x ≠,2x ≠),2111a a =-,3211a a =-,…,111n n a a -=-,则2023a =( )A .21xx-- B .12x- C .1x - D .1x -【变式1-3】有一个数字游戏,第一步:取一个自然数14n =,计算()1131n n ⋅+得1a ,第二步:算出1a 的各位数字之和得2n ,计算()2231n n ⋅+得2a ,第三步算出2a 的各位数字之和得3n ,计算()3331n n ⋅+得3a ;以此类推,则2022a 的值为( ) A .7B .52C .154D .310题型二递推型【例2】(2023·山东临沂·中考真题)观察下列式子 21312⨯+=;22413⨯+=;23514⨯+=;……按照上述规律, 2n =.【变式2-1】(2023·湖南岳阳·中考真题)观察下列式子:21110-=⨯;22221-=⨯;23332-=⨯;24443-=⨯;25554-=⨯;…依此规律,则第n (n 为正整数)个等式是 .【变式2-2】(2023·辽宁阜新·一模)如图,在平面直角坐标系中,123A A A △,345A A A △,567A A A ,789A A A △…都是等边三角形,且点1A ,3A ,5A ,7A ,9A 坐标分别是()13,0A ,()32,0A ,()54,0A ,()71,0A ,()95,0A ,依据图形所反映的规律,则2023A 的坐标是( )A .()509,0B .()508,0C .()503,0-D .()505,0-【变式2-3】(2023·宁夏银川·三模)如图,在平面直角坐标系中,点A 在y 轴的正半轴上,1OA =,将OA 绕点O 顺时针旋转45︒到1OA ,扫过的面积记为1S ,121⊥A A OA 交x 轴于点2A ;将2OA 绕点O 顺时针旋转45︒到3OA ,扫过的面积记为2S ,343A A OA ⊥交y 轴于点4A ;将4OA 绕点O 顺时针旋转45︒到5OA 扫过的面积记为3S ;⋯;按此规律,则2023S为( )A .20192πB .20202πC .20212πD .20222π题型三 固定累加型【例3】(2023·山东烟台·中考真题)如图,在直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P 为位似中心作正方形123PA A A ,正方形456,PA A A ⋯,按此规律作下去,所作正方形的顶点均在格点上,其中正方形123PA A A 的顶点坐标分别为()()()123,0,2,1,1,0P A A ---,()32,1A --,则顶点100A 的坐标为( )A .()31.34B .()31,34-C .()32,35D .()32,0【变式3-1】(2023·重庆·中考真题)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第①个图案用了14根木棍,第①个图案用了19根木棍,第①个图案用了24根木棍,……,按此规律排列下去,则第①个图案用的木棍根数是( )A .39B .44C .49D .54【变式3-2】(2023·山西·中考真题)如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有 个白色圆片(用含n 的代数式表示)【变式3-3】(2023·湖北十堰·中考真题)用火柴棍拼成如下图案,其中第①个图案由4个小等边三角形围成1个小菱形,第①个图案由6个小等边三角形围成2个小菱形,……,若按此规律拼下去,则第n 个图案需要火柴棍的根数为 (用含n 的式子表示).题型四 渐变累加型【例4】(2023·四川绵阳·中考真题)如下图,将形状、大小完全相同的“●”和线段按照一定规律摆成以下图形,第1幅图形中“●”的个数为1a ,第2幅图形中“●”的个数为2a ,第3幅图形中“●”的个数为3a ,…,以此类推,那么123191111a a a a +++⋅⋅⋅+的值为( )A .2021B .6184C .589840D .431760【变式4-1】(2023·重庆·中考真题)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第①个图案中有5个圆圈,第①个图案中有8个圆圈,第①个图案中有11个圆圈,…,按此规律排列下去,则第①个图案中圆圈的个数为( )A .14B .20C .23D .26【变式4-2】(2023·山东聊城·中考真题)如图,图中数字是从1开始按箭头方向排列的有序数阵.从3开始,把位于同一列且在拐角处的两个数字提取出来组成有序数对:()3,5;()7,10;()13,17;()21,26;()31,37…如果单把每个数对中的第一个或第二个数字按顺序排列起来研究,就会发现其中的规律.请写出第n 个数对: .【变式4-3】(2023·四川遂宁·中考真题)烷烃是一类由碳、氢元素组成的有机化合物,在生产生活中可作为燃料、润滑剂等原料,也可用于动、植物的养护.通常用碳原子的个数命名为甲烷、乙烷、丙烷、……、癸烷(当碳原子数目超过10个时即用汉文数字表示,如十一烷、十二烷……)等,甲烷的化学式为4CH ,乙烷的化学式为26C H ,丙烷的化学式为38C H ……,其分子结构模型如图所示,按照此规律,十二烷的化学式为 .一、单选题1.(2023·云南红河·一模)如图图形是同样大小的小五角星按一定规律组成的,按此规律排列,则第n 个图形中小五角星的个数为( )A .21n +B . 21n -C .21n -D .21n2.(2023·云南玉溪·一模)观察下列一组数:23,45,67,89,1011,⋯,它们是按一定规律排列的,那么这一组数的第n 个数是( ) A .1n n- B .221nn - C .221nn + D .12n n ++3.(2023·广东肇庆·三模)用黑色和白色的正方形的卡片按照如图所示的规律拼图案,即从第2个图案开始,每个图案都比前一个图案多3个黑色正方形.若第n 个图案中黑色正方形的个数为55,则n 的值为( )A .17B .18C .19D .204.(23-24七年级上·河南周口·阶段练习)按一定规律排列的单项式:a ,22a -,34a ,48a -,516a ,⋅⋅⋅⋅⋅⋅,第n 个单项式是( ) A .()12n n a -- B .2n a -C .()2nn a -D .()112n n a ---5.(23-24七年级上·河南新乡·期中)把黑色圆点按如图所示的规律拼图案,其中第①个图案中有4个黑色圆点,第①个图案中有6个黑色圆点,第①个图案中有8个黑色圆点,…,按此规律排列下去,则第①个图案中黑色圆点的个数为( )A .12B .14C .16D .186.(2023·河南安阳·一模)如图,将数列排成一个三角形数阵:按照以上排列的规律,第11行从左数第5个数为( ) A .119 B .-121 C .-117 D .1237.(2023·浙江衢州·一模)观察下列数据:0,3,8,15,24,…,它们是按一定规律排列的,依照此规律,第201个数据是( ) A .40400 B .40040 C .4040 D .4048.(2023·云南昭通·三模)按一定规律得列的单项式;2345,3,5,7,9a a a a a ,…,按照上述规律,第n 个单项式为( ) A .n na B .()21nn a -C .()21nn a +D .2n na9.(19-20七年级上·四川达州·期末)探索规律:观察下面的一列单项式:x 、22x -、34x 、48x -、516x 、…,根据其中的规律得出的第9个单项式是( ) A .9256x B .9256x -C .8512x -D .9512x10.(2023·重庆巴南·一模)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有5颗棋子,第①个图形有8颗棋子,第①个图形有13颗棋子,……,则第①个图形中棋子的颗数为( )A .36B .40C .49D .5311.(2023·重庆渝中·二模)如图,是一组有规律的图案,它们是由边长相同的小正方形组成的,其中部分小正方形涂有阴影,按照这样的规律,第2023个图案中涂有阴影的小正方形个数是( )·A .8092B .8093C .4046D .404712.(2023·辽宁阜新·一模)如图,在平面直角坐标系中,11OA OB =,11120AOB ∠=︒,将11AOB △绕点O 顺时针旋转并且按一定规律放大,每次变化后得到的图形仍是顶角为120︒的等腰三角形.第一次变化后得到等腰三角形22A OB ,点1(1,0)A 的对应点为(21,A -;第二次变化后得到等腰三角形33A OB ,点2A 的对应点为332A ⎛- ⎝⎭;第三次变化后得到等腰三角形44A OB ,点3A 的对应点为4(4,0)A ……依此规律,则第2023年等腰三角形中,点2023B 的坐标是( )A .(20212,2--B .(20212,2-C .2023,2⎛- ⎝⎭D .20232⎛- ⎝⎭二、填空题13.(2023·新疆乌鲁木齐·二模)将一些完全相同的三角形按如图所示的规律排列,第1个图形中有2个三角形,第2个图形中有5个三角形,第①个图形中有10个三角形,第①个图形中有17个三角形,…,按此规律排列,则第①个图形中三角形的个数为 .14.(22-23七年级下·黑龙江哈尔滨·期末)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2023次运动后,动点P的坐标是.15.(2023·山西忻州·模拟预测)如图是一组有规律的图案,它们是由边长相同的正方形和三角形镶嵌而成,第(1)个图案有4个三角形和4个正方形,第(2)个图案有10个三角形和8个正方形,第(3)个图案有16个三角形和12个正方形,…,依此规律,第()n个图案中三角形和正方形的总个数为个.(用含n的式子表示)(1)(2)(3)。

规律探索型问题

规律探索型问题


.
【点评】本题是对图形变化规律的考查,查出前三 个图形的火柴棒的根数,并观察出后一个图形比前 一个图形多6根火柴棒是解题的关键.
考点4 数形结合猜想型问题
【例 4】(2012·益阳)观察图形,解答问题:
(1)按下表已填写的形式填写表中的空格:
考点4 数形结合猜想型问题
解:(1)填表如下:
考点4 数形结合猜想型问题
A. 2010
B. 2012
C. 2014
D. 2016
4.(2012·绍兴) 在一条笔直的公路边,有一些树和路灯,每相 邻的两盏灯之间有 3 棵树,相邻的树与树,树与灯间的距离 是 10m,如图,第一棵树左边 5 cm 处有一个路牌,则从此路
牌起向右 510m~550m 之间树与灯的排列顺序是 ( B )
第①个图有 2 个相同的小正方形,2=1×2; 第②个图有 6 个相同的小正方形,6=2×3;
答第③题个模图板有 12 个16.相探同索的小数正量方规形律,1题2=常3×用4;的方法
第④个图有 20 个相同的小正方形,20=4×5;…… 按此规律,第○n 个图有 n(n+1)个相同的小正方形. (3)首先分析题意,找到规律,并进行推导得出答案. 观察分析可得: 第 1 个图有 1 个圆; 第 2 个图由 7 个圆组成,7=1+6; 第 3 个图由 19 个圆组成,19=1+6+2×6;…… 故第 9 个图由 1+6+2×6+3×6+…+8×6 =1+(1+2+3+…+8)×6=217 个圆组成.
答题模板 探索数量规律题常用的方法
答题思路
第一步:审题,仔细观察图形并找到相应的规律; 第二步:化形为数,相当于找出数列的前若干项; 第三步:考察相邻两项的差异,再根据这些项或项中某

中考复习: 探索型问题

中考复习:  探索型问题

知能迁移 1 已知下列 n(n 为正整数)个关于 x 的一元二次 2 2 2 方程: ①x -1=0;②x +x-2=0;③x +2x-3=0; „;
n ○x2+(n-1)x-n=0. n (1)请解上述一元二次方程①、②、③、„○;
(2)请你指出这 n 个方程的根具有什么共同特点,写出一 条即可. 2 解 (1)方程①x2-1=0 的解是 x1=1,x2=-1; 2 解 (1)方程①x -1=0 的解是 x1=1,x2=-1;方程②x 2 方程②x +x-2=0 的解是 x1=1,x2=-2; +x-2=0 的解是 x1=1,x2=-2;方程③x2+2x-3=0 的 2 方程③x +2x-3=0 的解是 x1=1,x2=-3;…; 解是 x1=1,x2=-3;…;方程○n x2+(n-1)x-n=0 的 n 2 方程○x +(n-1)x-n=0 的解是 x1=1,x2=-n. 解是 x1=1,x2=-n. (2)这 n 个方程都有一个根是 x=1.
解 (1)当∠BPQ=90°时, 在 Rt△BPQ 中,∠B=60°,BP=3-t,BQ=t. BP ∵cosB= , BQ 1 ∴BP=BQ·cosB,即 3-t=t· ,解得 t=2. 2 当∠BQP=90°时, 在 Rt△BPQ 中,∠B=60°,BP=3-t,BQ=t, BQ ∵cosB= , BP 1 ∴BQ=BP·cosB,即 t=(3-t)· ,解得 t=1. 2 综上,t=1 或 t=2 时,△PBQ 是直角三角形.
基础自测
1. (2012·梅州) 如图, 连接在一起的两个正方形的边长都为 1 cm, 一个微型机器人由点 A 开始按 ABCDEFCGA„的顺序沿正方形的边 7 循环移动.①第一次到达 G 点时移动了________cm;②当微型 E 机器人移动了 2012 cm 时,它停在________点.

规律探索性问题(含解析)

规律探索性问题(含解析)

规律探索性问题第一部分 讲解部分一.专题诠释规律探索型题是根据已知条件或题干所提供的若干特例,通过观察、类比、归纳,发现题目所蕴含的数字或图形的本质规律与特征的一类探索性问题。

这类问题在素材的选取、文字的表述、题型的设计等方面都比较新颖新。

其目的是考查学生收集、分析数据,处理信息的能力。

所以规律探索型问题备受命题专家的青睐,逐渐成为中考数学的热门考题。

二.解题策略和解法精讲规律探索型问题是指在一定条件下,探索发现有关数学对象所具有的规律性或不变性的问题,它往往给出了一组变化了的数、式子、图形或条件,要求学生通过阅读、观察、分析、猜想来探索规律.它体现了“特殊到一般”的数学思想方法,考察了学生的分析、解决问题能力,观察、联想、归纳能力,以及探究能力和创新能力.题型可涉及填空、选择或解答.。

三.考点精讲 考点一:数与式变化规律通常根据给定一列数字、代数式、等式或者不等式,然后写出其中蕴含的一般规律,一般解法是先写出数式的基本结构,然后通过比较各式子中相同的部分和不同的部分,找出各部分的特征,改写成要求的规律的形式。

例1. 有一组数:13,25579,,101726,请观察它们的构成规律,用你发现的规律写出第n (n 为正整数)个数为 .分析:观察式子发现分子变化是奇数,分母是数的平方加1.根据规律求解即可. 解答:解:21211211⨯-=+; 23221521⨯-=+; 252311031⨯-=+;272411741⨯-=+; 219251265+⨯-=;…; ∴第n (n 为正整数)个数为2211n n -+. 点评:对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.此题的规律为:分子变化是奇数,分母是数的平方加1. 例2(2010广东汕头)阅读下列材料:1×2 =31(1×2×3-0×1×2), 2×3 = 31(2×3×4-1×2×3),3×4 = 31(3×4×5-2×3×4),由以上三个等式相加,可得1×2+2×3+3×4= 31×3×4×5 = 20. 读完以上材料,请你计算下列各题:(1) 1×2+2×3+3×4+···+10×11(写出过程);(2) 1×2+2×3+3×4+···+n ×(n +1) = ______________; (3) 1×2×3+2×3×4+3×4×5+···+7×8×9 = ______________.分析:仔细阅读提供的材料,可以发现求连续两个正整数积的和可以转化为裂项相消法进行简化计算,从而得到公式)1(433221+⨯++⨯+⨯+⨯n n[])1()1()2)(1()321432()210321(31+--++++⨯⨯-⨯⨯+⨯⨯-⨯⨯⨯=n n n n n n )2)(1(31++=n n n ;照此方法,同样有公式: )2()1(543432321+⨯+⨯++⨯⨯+⨯⨯+⨯⨯n n n [])2()1()1()3()2()1()43215432()32104321(41+⨯+⨯⨯--+⨯+⨯+⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯=n n n n n n n n )3)(2)(1(41+++=n n n n . 解:(1)∵1×2 = 31(1×2×3-0×1×2), 2×3 =31(2×3×4-1×2×3), 3×4 = 31(3×4×5-2×3×4),…10×11 =31(10×11×12-9×10×11), ∴1×2+2×3+3×4+···+10×11=31×10×11×12=440.(2))2)(1(31++n n n .(3)1260.点评:本题通过材料来探索有规律的数列求和公式,并应用此公式进行相关计算.本题系初、高中知识衔接的过渡题,对考查学生的探究学习、创新能力及综合运用知识的能力都有较高的要求.如果学生不掌握这些数列求和的公式,直接硬做,既耽误了考试时间,又容易出错.而这些数列的求和公式的探索,需要认真阅读材料,寻找材料中提供的解题方法与技巧,从而较为轻松地解决问题.例3(2010山东日照,19,8分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d .(用“>”或“<”填空)你能应用不等式的性质证明上述关系式吗?分析:可以用不等式的基本性质和不等式的传递性进行证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【中考数学专题复习一】
探索规律
课标要求:
探索具体问题中的数量关系和变化规律,掌握用代数式、方程、不等式、函数进行表述的方法。

教学过程:
【活动一】引入:所谓探索规律型问题:指的是给出一组具有某种特定关系的数、式、图形,要求通过观察、分析、推理,探求其中所隐含的规律,进而归纳或猜想出一般性的结论.
在山西近几年的中考中,此类型题目备受命题专家的青睐,常见的类型有两种:
(1)数与式变化规律型;(2)图形变化规律型.
【活动二】数与式变化规律型
中考真题分析:
则第n 个式子是 (n 是正整数)。

分析:
1、统一形式:
2、同位比较:
3、原样组合: 例:(2013山西)一组按规律排列的式子:
,,7,5,3,8642 a a a a
【活动三】图形变化规律型问题方法探索
(2009山西)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为______个。

分析:直接数
对比数
分层法
【活动四】小结
一、数与式变化规律型问题解决方法:
数:基本数列要记熟,复杂数列要分解。

复杂数列分解成基本数列的加、减、乘、除、乘方、开方等的组合。

二、图形变化规律型问题解决方法:
1、分层或分组法;
2、数列法。

三、数学思想:
1、从特殊到一般;
2、数形结合思想;
3、转化思想。

(1) (2) (3) …… ……。

相关文档
最新文档