七年级数学一元一次方程实际问题分类汇总
初中数学知识归纳一元一次方程的实际应用
初中数学知识归纳一元一次方程的实际应用一元一次方程是初中数学中的基础内容,它的实际应用广泛且重要。
本文将对一元一次方程的实际应用进行归纳总结,以帮助读者更好地理解和应用这一数学知识。
1. 买卖问题在日常生活中,我们经常会遇到买卖问题。
通过建立一元一次方程,我们可以求解出一些相关信息,比如商品的原价、打折后的价格等。
例如,小明在商场看中了一件原价为x元的衣服,由于打折活动,他最终以80元买下了这件衣服。
假设打折的折扣率为p(0<p<1),我们可以建立如下方程:x * p = 80通过解这个方程,我们可以得到原价x的数值,从而了解到商品的真实价值。
2. 平均数问题在统计学中,经常需要求解一组数据的平均数。
通过建立一元一次方程,我们可以根据已知条件求解未知数,得到平均数的数值。
例如,某班级共有30名学生,他们的数学期末成绩的平均分为80分。
现在,有一名学生因病没有参加考试,但是我们知道他的成绩为90分。
我们可以建立如下方程:(30 * 80 - 90) / 30 = 平均分通过解这个方程,我们可以计算出去掉这名学生后班级的平均分数。
3. 距离、速度和时间问题在物理学和交通运输领域,经常需要通过距离、速度和时间之间的关系建立一元一次方程,来求解未知数。
例如,一辆汽车以速度v行驶了t小时,行驶的距离为d。
我们知道速度和时间之间的关系为v = d / t,其中d为常数。
如果我们知道速度为60km/h,时间为2小时,我们可以建立如下方程:60 = d / 2通过解这个方程,我们可以求解出汽车行驶的总距离。
4. 工程问题在工程领域中,一元一次方程也有着重要的应用。
比如建筑设计、电路布线等方面,我们可以通过建立一元一次方程来求解相关参数,计算出设计所需的具体数值。
例如,一栋建筑物的墙壁总面积为A平方米,我们知道每平方米的墙壁所需喷涂的面漆量为x升。
我们可以建立如下方程:A = x * 喷涂的面漆量通过解这个方程,我们可以计算出墙壁喷涂所需的具体面漆量。
初一数学一元一次方程应用题的各种类型
初一数学一元一次方程应用题的各种类型
一、直接问题
例1:
一家商店共有商品150个,其中书籍与文具的总数为110个,书籍的数量是
文具的2倍。
求文具的数量。
解:设文具的数量为x,则书籍的数量为2x,根据题意可列方程: x + 2x = 110,解得 x = 40。
悉知文具的数量为40个。
二、尺寸问题
例2:
将一个正方形底边长为x m的长方体的长、宽、高依次加长,使得体积增加153 m³,求原底边和增长量各是多少?
解:设原正方形底边长为x,则原长方体的体积为x³,经计算可得(DO IT YOURSELF)。
故原底边长为3m,增长量为2m。
三、速度问题
例3:
甲、乙两地相距160km,甲以每小时40km的速度向乙方向行驶,而乙以每小时20km的速度向甲方向行驶。
两人出发时,距离甲地60km的地方对面接触,问:这次相遇到底花费了多少时间?
解:设相遇所需时间为t小时,甲行驶时间为t小时,乙行驶时间为(t - 60/20)小时,由此可列方程: 40t + 20(t - 60/20) = 160,解得t = 2。
故这次相遇花费了
2小时。
四、混合问题
例4:
有一瓶饮料,里面有150ml水,加了40g的糖。
若按这样的方法再加入50g
的糖,得到的糖水浓度为20%,求这瓶饮料总共有多少(ml)?
解:设原糖水总量为x ml,则从题意可列方程: (40+50)/(x+150) = 20%,解得 x = 650。
故这瓶饮料总共为650ml。
未完,待更新……。
七年级上一元一次方程实际应用题分类汇总
一元一次方程实际应用题分类汇总1.列一元一次方程解应用题的一般步骤:(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设未知数,列方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.若干应用问题等量关系的规律(1)和、差、倍、分问题:增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题:常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h= r2h②长方体的体积:V=长×宽×高=abc3.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a,百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.4.市场经济问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.5.行程问题基本量之间的关系:路程=速度×时间(1)相遇问题快行距+慢行距=原距(2)追及问题快行距-慢行距=原距(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.6.工程问题工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=17.储蓄问题(1)利润=每个期数内的利息本金×100%一元一次方程实际应用题分类讨论题型(一)数字问题例:小明和小红作游戏,小明拿出一张日历说;“我用笔圈出了2╳2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?1、在日历上任意画一个含有9个数字的方框(3╳3),然后把方框中的9个数字加起来,结果等于90,试求出这9个数字正中间的那个数。
(完整版)初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
七年级数学一元一次方程实际问题归纳
一元一次方程实际问题归纳(王学栋)一、知识点1:利润问题:(1)商品利润=商品实际售价-商品成本价%(2)商品利润率= 商品利润商品成本价(3)商品实际售价=商品标价×折扣率(4)商品销售额=商品售价×商品销售量(5)商品销售利润=单个商品利润×商品销售量(6)商品打几折,就是按原价的百分之几十出售,如商品打8折出售,就是按原价的80%出售。
专题练习:(列表法)1.某商品的进价是15000元,售价是16000元,求该商品的利润和利润率。
2.一家商店将某种服装按进价提高40%标价,又以8折优惠卖出,结果每件获利15元,这种服装每件的进价是多少?3.一件商品按30%的利润定价价,又以8折优惠卖出,结果获利84元,这种商品的进价是多少?4.甲乙两种商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两种商品都按定价的90%出售,结果仍获利27.70元,甲乙两种商品的成本各是多少元?5.某商品进价为1600元,按标价的8折出售利润率为10%,该商品的标价是多少?6.某商品的标价为165元,若优惠10%出售,仍可获利10%,那么该商品的进价是多少?二、知识点2:行程问题(1)基本量之间的关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间(2)船在水中航行:船顺水速度=船静水速度+水流速度船逆水速度=船静水速度-水流速度船静水速度=(船顺水速度+船逆水速度)÷2水流速度=(船顺水速度-船逆水速度)÷2船顺水航行路程=船顺水速度×船顺水航行时间船逆水航行路程=船逆水速度×船逆水航行时间(3)飞机航行:飞机顺风速度=飞机无风速度+风速飞机逆风速度=飞机无风速度-风速飞机无风速度=(飞机顺风速度+飞机逆风速度)÷2风速=(飞机顺风速度-飞机逆风速度)÷2飞机顺风航行路程=飞机顺风速度×飞机顺风航行时间飞机逆风航行路程=飞机逆风速度×飞机逆风航行时间专题练习:(列表法)1.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
七年级数学实际问题与一元一次方程分类知能点解析
实际问题与一元一次方程分类归纳知识点1:市场经济、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?[等量关系:商品利润率=商品利润/商品进价例2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?[等量关系:(利润=折扣后价格—进价)折扣后价格-进价=15随堂演练:1.一种商品进价为50元,为赚取20%的利润,该商品的标价为________元.2.某商品的标价为220元,九折卖出后盈利10%,则该商品的进价为______元.3.某种商品若按标价的8折出售可获利20%,若按原标价出售,则可获利().A.25% B.40% C.50% D.14.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后().A.赢利16.8元 B.亏本3元 C.赢利3元 D.不赢不亏5.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 506.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A、700元B、约733元C、约736元D、约856元7.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.8.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.9、某商品进价是1000元,标价为1500元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?知识点2:储蓄、储蓄利息问题(1)顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率。
七年级数学一元一次方程实际问题分类汇总
七年级数学一元一次方程实际问题分类汇总七年级数学一元一次方程应用题分类汇总一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一元一次方程应用题分类1、分配问题例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?走?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________.变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少?(3)某商品的进价是3000元,标价是4500元.①商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?②若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?③如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?4、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
七年级一元一次方程应用题8种类型归类
七年级一元一次方程应用题8种类型归类第一类:简单的线性方程的应用题这类题目基本上是直接套用一元一次方程的定义,根据题目中的条件列出方程,然后解方程得到答案。
这类问题比较简单,适合入门阶段的学生练习。
第二类:带有关系的线性方程应用题这类题目常常要求学生根据题意建立两个或多个物体之间的量的关系,然后通过建立方程解决问题。
这类问题往往需要学生较高的抽象思维能力来解决。
第三类:工作时间线性方程应用题这类题目要求学生根据不同情况下人员的工作效率和时间推导出方程,然后解决问题。
这类问题对学生的逻辑思维和数学应用能力有一定要求。
第四类:比例关系与一元一次方程的整合这类题目旨在让学生熟练掌握用比例关系建立一元一次方程,进一步拓展了一元一次方程的应用范围,对学生的推导能力和计算能力提出了更高的要求。
第五类:几何问题与线性方程的结合这类题目结合了几何图形中的关系与线性方程的解法,通过建立图形中的几何关系,以方程的形式呈现并求解,培养了学生的几何直观和数学抽象能力。
第六类:消耗量的线性方程应用题这类问题常常涉及到消耗量与产出量之间的关系,学生需要根据不同情况下物质的消耗速度和产出速度建立方程,解决问题。
第七类:时间速度距离的线性方程题型这类题目涉及了时间、速度和距离之间的关系,要求学生根据不同的情景情况建立方程,解决问题。
这类题目较为灵活,需要学生综合考虑多个变量间的关系。
第八类:经济问题的线性方程应用题这类题目常常涉及到金钱的支出与收入之间的关系,学生需要根据题目中的条件建立方程,解决经济问题。
这类题目旨在培养学生的实际应用能力和经济思维。
以上就是七年级一元一次方程应用题的8种典型类型,不同类型的题目反映了一元一次方程在现实生活中的广泛应用,通过解决这些问题,学生不仅可以提高解决实际问题的能力,还能深入理解一元一次方程的运用和意义。
希望同学们在学习过程中能够灵活应用这些方法,提高自己的数学水平。
一元一次方程实际应用题分类汇总(全)
一元一次方程解决问题分类汇总和差倍分问题(生产、做工等各类问题):例题1、某厂今年的产值是去年产值的3倍少25万,今年和去年产值总和是75万,求今年该厂的产值?变式1、已知购买甲种物品比乙种物品贵5元,某人用款300元买到甲种物品10件和乙种物品若干件,这时,它每到甲、乙物品的总件数,比把这笔款全都购买甲种物品的件数多5件,问甲、乙物品每件各是多少元?计分问题:例题1、在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?变式1、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分。
某同学做了全部试题,得了70分,他一共做对了多少道题目?变式2、足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一支足球队在某个赛季比赛共需比赛14场,现已比赛8场,输了一场,得17分,则前8场比赛中,这支球队共胜了多少场,这支球队打满14场比赛,最高能得多少分?变式3、在学完“有理数的运算”后,实验中学七年级各班各选出5名学生组成一个代表队,在数学方老师的组织下进行一次知识竞赛. 竞赛规则是:每队都分别给出50道题,答对一题得3分,不答或答错一题倒扣1分.⑴如果㈡班代表队最后得分142分,那么㈡班代表队回答对了多少道题?⑵㈠班代表队的最后得分能为145分吗?请简要说明理由.调配问题:例题1、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?变式1、到第二车间甲队人数是乙队人数的2倍,从甲队调12人到乙队后,甲队剩下来的人数是原乙队人数的一半还要多15人。
求甲、乙两队原有人数各多少人?分配问题:例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1、某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?匹配问题:例题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
初一数学上册 一元一次方程实际问题归纳
【初一数学上册一元一次方程实际问题归纳】一元一次方程是初中数学学习的重要内容之一,它不仅是数学知识的重要组成部分,也是理解和解决实际问题的有力工具。
在初一数学上册中,我们学习了一元一次方程,并通过实际问题的归纳,来更深入地理解这一概念。
在本文中,我将从简单到复杂的角度,逐步展开对一元一次方程实际问题的归纳,并结合个人观点和理解进行阐述。
一、小明买苹果问题1. 问题描述:小明买了苹果,每斤3元,他花了15元钱,请问他买了多少斤苹果?2. 解题过程:设小明买了x斤苹果,根据题意可得出方程3x=15。
3. 解答:通过解方程得知,小明买了5斤苹果。
这个问题很简单,但它展示了一元一次方程在实际问题中的应用。
通过建立方程和解方程的过程,我们可以轻松地得出结果,解决实际问题。
二、甲乙两地的距离问题1. 问题描述:甲地到乙地有320公里,甲地比乙地离原点远80公里,求甲地到原点的距离。
2. 解题过程:设甲地到原点的距离为x公里,根据题意可得出方程x+80=320。
3. 解答:通过解方程得知,甲地到原点的距离为240公里。
这个问题稍微复杂一些,但同样可以通过一元一次方程来解决。
通过建立方程和解方程的过程,我们可以清晰地得出结果,解决实际问题。
三、小明和小红的芳龄问题1. 问题描述:小明比小红大5岁,两年后小明的芳龄是小红的两倍,求他们现在的芳龄。
2. 解题过程:设小红的芳龄为x岁,根据题意可得出方程(x+5+2)*2=x+2。
3. 解答:通过解方程得知,小红现在的芳龄为7岁,小明现在的芳龄为12岁。
这个问题更加复杂,但依然可以通过一元一次方程来解决。
通过建立方程和解方程的过程,我们可以准确地得出结果,解决实际问题。
总结回顾:通过以上实际问题的归纳,我们可以看到一元一次方程在解决实际问题中的重要作用。
通过建立方程和解方程的过程,我们可以清晰地得出结果,解决各种复杂的实际问题。
在学习初一数学上册一元一次方程时,我们应该注重实际问题的应用,这样可以更好地理解和掌握这一知识点。
初一一元一次方程解决实际问题十种典型类型
一、普通列式1、一个梯形的下底比上底多2厘米,高是5厘米,面积是40平方厘米,求上底有多长?2、某校三年共购买计算机140台,去年购买数量是前年的两倍,今年购买数量又是去年的两倍,前年这个学校购买了多少台计算机?3、洗衣机厂今年计划生产洗衣机25500台,其中a型b型c型三种洗衣机的数量比为1:2:14,这三种洗衣机各计划生产多少台?4、一个人用540元买了两种布料,共138尺,其中蓝色布料每尺三元,黑色布料每尺5元,两种布料各买了多少尺?5、有两个无聊的牧童甲对乙说,把你的羊给我一只,我的羊就是你的两倍。
乙回答说,还是你把你的羊给我一只我们的杨树就一样了。
请问它们分别有几只羊?5、某人工作一年的报酬是年终给他一件衣服和10枚金币,但他干满7个月就决定不干了,结账时给了他一件衣服和两枚金币请问,这件衣服值多少枚金币?二、数字关系1、把12的两个数字对调得到21,一个两位数,个位上的数是a,10位上的数是b,把它们对调得到另一个数用式子分别表示这两个数及它们的差,这样的差能被九整除吗?为什么?一个两位数个位上的数是10位数上的数字是x 把一与x对调,新两位数比原两位数小18,x等于多少?2、一个三位数百位上的数字比10位上的数字大一个位上的数字比10位上的数字三倍少2,若将个位与百位数字调换位置后,所得的三位数与原三位数的和是1171,求这个三位数。
3、每年春节妈妈总要给小申压岁钱,但今年春节妈妈知道小申已经上七年级了,于是今年给小申的是一本银行存折,里面存有1000元。
她提示存折有一个6位数的密码有以下两个特征:A.这个6位数的最左端数字是1,B.如果把最左端的数字一移到最右端,则所得到的新6位数是原来6位数的三倍。
请问你能拿到压岁钱吗?四、剩缺问题1、有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余三只鸽子,无鸽笼住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只,原有多少只鸽子和多少个鸽笼?2、把一些图书分给某班学生阅读,如果每人分三本,则剩余20本,如果每人分4本则还缺25本,这个班有多少学生?3、铜仁市对城区主干道进行绿化,计划,把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔5米栽一棵,则树苗缺21棵,如果每隔6米栽一棵,则树苗正好用完,请问有多少棵树苗?五、火车问题1、一列火车匀速行驶,经过一条长300米的隧道需要20秒的时间,隧道的顶上有一盏灯垂直向下发光,灯光照在火车上的时间是10秒,求出火车的长度?2、某铁路桥长1200米,现在有一辆火车,从桥上通过,测得火车从上桥到完全过桥共用50秒,整个火车完全在桥上的时间是30秒,求火车的长度和速度。
初一数学一元一次方程应用题专题
初一数学一元一次方程应用题专题一元一次方程应用题归类列方程解应用题是初中数学的重要内容之一。
许多实际问题都可以用方程或方程组来解决,因此,解应用题是数学联系实际,解决实际问题的一个重要方面。
下面我们将从以下几个方面对常见的数学问题进行分类并进行阐述,希望对同学们有所帮助。
1.和、差、倍、分问题:1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例如,根据2001年3月28日___公布的第五次人口普查统计数据,截止到2000年11月1日时,全国每10万人中具有小学文化程度的人口为人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?2.等积变形问题:等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
例如,用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为125×125mm2内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数,π≈3.14)3.劳力调配问题:这类问题要搞清人数的变化,常见题型有:1)既有调入又有调出;2)只有调入没有调出,调入部分变化,其余不变;3)只有调出没有调入,调出部分变化,其余不变。
例如,机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?4.比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例如,三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是多少?5.数字问题1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9)则这个三位数表示为:100a+10b+c。
七年级一元一次方程应用题类型总结
32
2021/10/10
1、某单位急需用车但无力购车,他们决定租车使 用,某个体出租车公司的条件是:每月付1210元, 另外每行驶100km付10元汽油费;另一国营出租车 公司的条件是:每行驶100km付120元。
(1)这个单位若每月平均跑1000km,则租谁的车划 算?
(2)这个单位每月平均跑多少千米时,租两家公司的 车费用都一样?
答:应安排40人加工螺钉,60人加工螺母。 解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把 握什么?
(2)解一元一次方程步骤有哪些?
3
2021/10/10
列方程解应用题的一般步骤
1. 审:审题,找出题中的已知量和未知量,以及各量
之 之间的关系
2. 找:找出题目中的所有的等量关系。 3. 设:根据题意,设适当的未知数。 4. 列:把等量关系中的量用未知数表示,从而列出方
程。 5. 解:解方程。 6. 答:检验并写出答案。
4
2021/10/10
1、一套仪器由一个A部件和3个B部件构成。用1m³ 钢材可做40个A部件或240个B部件。现要用6m³钢 材制作这种仪器,应用多少钢材做A部件,多少钢 材做B部件,恰好配成这种仪器多少套?
2、一张圆桌由一个桌面和四条腿组成,如果1m³, 木料可制作圆桌的桌面50个,或制桌腿300条,现 有5m³木料,请你设计一下,用多少木料做桌腿, 多少木料做桌面,恰好配成圆桌多少张?
23
2021/10/10
7、在6点和7点之间,什么时刻时钟的分针和时针 重合?
老师解析:6:00时分针指向12,时针指向6,此时 二针相差180°, 在6:00~7:00之间,经过x分 钟当二针重合时,时针走了0.5x°分针走了6x° 。 以下按追击问题可列出方程,不难求解。
(完整版)一元一次方程实际问题归纳
一元一次方程应用题归类汇集一元一次方程应用题归类汇集:行程问题,配套问题,工程问题,调配问题,分配问题,比例问题,和差倍分问题,销售问题,储蓄问题,积分问题,年龄问题,几何问题、数字问题,增长率问题,古代数学问题,分段问题,方案选择问题等。
列一元一次方程解应用题的一般步骤1. 审:审题,分析题目中的数量关系;2. 设:设适当的未知数,并表示未知量;3. 列:根据题目中的数量关系列方程;4. 解:解这个方程求未知数的值;5. 检验:检验是否符合实际;6. 答:作答.(一)行程问题(1)行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(2)基本类型有①相遇问题;②追及问题;常见的还有:相背而行、环形跑道问题、行船问题、火车过隧道(桥)的问题。
(3)解此类题常常借助画草图来分析,理解行程问题。
①相遇问题(同时出发“两段”)1.西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?分析:快车路程+慢车路程=总路程或(快车速度+慢车速度)×相遇时间=相遇路程①相遇问题(不同时出发“三段”)2.西安站和武汉站相距1500km,一列慢车从西安开出,速度为60km/h,一列快车从武汉开出,速度为90km/h,若两车相向而行,慢车先开5小时,快车行驶几小时后两车相遇?分析:慢车先行路程+慢车后行路程+快车路程=总路程②追及问题(同时出发)3.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?②追及问题(不同时出发)4.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?②追及问题5.敌我两军相距32km,乱军以每小时6km的速度逃窜,我军同时以每小时16km的速度追击,在相距2km的时候发生战斗,则战斗是从开始追击后几小时发生的?③相背而行6.甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
初一数学一元一次方程应用题的各种类型
初一数学一元一次方程应用题的各种类型一、一元一次方程的应用题类型及解题方法在初中数学中,一元一次方程是一个重要的概念。
它广泛应用于实际生活中的各种问题,如速度、时间、距离等。
在初一数学中,我们学习了许多种类型的一元一次方程应用题,包括简单的线性问题、复杂的线性问题、实际问题等。
本文将详细介绍这些类型的题目及其解题方法。
1.1 简单的线性问题简单的线性问题是指已知两个变量之间的关系,求另一个变量的值。
这类问题通常用一元一次方程表示,形式如下:x + y = 52.2 复杂的线性问题复杂的线性问题是指已知三个或更多个变量之间的关系,求其中一个或几个变量的值。
这类问题通常用一元一次方程表示,形式如下:x + y + z = 103.1 实际问题实际问题是指与现实生活密切相关的数学问题。
这类问题通常用一元一次方程表示,形式如下:小明每天骑自行车上学,他家离学校的距离是10公里。
他骑车的速度是每小时15公里。
请问他需要多长时间才能到达学校?二、解题方法及步骤针对上述各种类型的一元一次方程应用题,我们可以采用以下解题方法及步骤:(1)审题:仔细阅读题目,理解题目中的已知条件和未知量。
注意区分已知条件和未知量之间的数量关系。
(2)设未知数:根据题目中的已知条件和未知量,设出未知数的表达式。
例如,对于简单的线性问题,我们需要设出一个变量的表达式;对于复杂的线性问题,我们需要设出多个变量的表达式;对于实际问题,我们需要设出小明骑车的速度和所需时间的关系式。
(3)建立方程:根据已知条件和未知量的表达式,建立一元一次方程。
例如,对于简单的线性问题,我们可以得到一个关于x的一元一次方程;对于复杂的线性问题,我们可以得到一个关于x、y、z的一元一次方程;对于实际问题,我们可以得到一个关于小明骑车速度和所需时间的关系式。
(4)解方程:运用加减消元法、代入消元法等方法,求解一元一次方程。
例如,对于简单的线性问题,我们可以通过移项、合并同类项等操作求解;对于复杂的线性问题,我们可以通过代入某个变量的值来求解其他变量的值;对于实际问题,我们可以通过计算得出小明骑车的速度和所需时间的关系式。
初一数学一元一次方程应用题的各种类型
初一数学一元一次方程应用题的各种类型一、一元一次方程的应用题类型初一数学,我们学习了很多有趣的知识,其中最让人头疼的就是一元一次方程的应用题。
今天,我就来给大家讲讲一元一次方程应用题的各种类型,让我们一起来看看吧!1.1 速度、时间和距离的问题这类问题是最常见的一元一次方程应用题。
比如:“小明骑自行车去上学,他骑了20分钟,每分钟骑行200米,那么他离学校还有多远?”这类问题我们可以这样解:假设小明离学校的距离为x米,那么根据题意,我们可以得到一个一元一次方程:$20\times 200 + x = 总路程$。
通过这个方程,我们就可以求出小明离学校的距离了。
1.2 相遇与追及的问题这类问题主要考察我们对一元一次方程的灵活运用。
比如:“甲乙两人相向而行,甲的速度是乙的1.5倍,他们相距100米,那么他们要多久才能相遇?”这类问题我们可以这样解:假设甲乙两人相遇时所用时间为t分钟,那么根据题意,我们可以得到一个一元一次方程:$(1.5 1)\times t = 100$。
通过这个方程,我们就可以求出他们相遇的时间了。
1.3 利润、成本和售价的问题这类问题主要考察我们对一元一次方程的实际应用。
比如:“一家商店进货一件衣服,进价是200元,如果按照原价的1.5倍出售,那么它的利润是多少?”这类问题我们可以这样解:假设这件衣服的利润为y元,那么根据题意,我们可以得到一个一元一次方程:$y = (售价进价)div 原价\times 1.5$。
通过这个方程,我们就可以求出这件衣服的利润了。
二、如何解决这些应用题呢?2.1 仔细审题,理解题意在解决一元一次方程应用题时,首先要做的就是仔细审题,理解题意。
只有弄清楚了题目中的已知条件和所求未知量,我们才能找到解题的方向。
2.2 建立方程,求解未知量在理解了题意之后,我们需要建立一个一元一次方程来求解未知量。
这里需要注意的是,我们要保证建立的方程是正确的,否则得出的结果也是错误的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学一元一次方程应用题分类汇总一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一元一次方程应用题分类1、分配问题例题1、把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.问这个班有多少学生?变式1:某水利工地派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应怎样安排人员,正好能使挖出的土及时运走?变式2:某校组织师生春游,如果只租用45座客车,刚好坐满;如果只租用60座客车,可少租一辆,且余30个座位.请问参加春游的师生共有多少人?2、调配与配套问题例题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?变式1:某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?变式2:用白铁皮做罐头盒,每张铁片可制盒身10个或制盒底30个。
一个盒身与两个盒底配成一套罐头盒。
现有100张白铁皮,用多少张制盒身,多少张制盒底,可以既使做出的盒身和盒底配套,又能充分利用白铁皮?例题2、某车间100个工人,每人平均每天可加螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓配两个螺母),应如何分配加工螺栓和螺母的工人?例题3、一台挖土机和200名工人在水利工地挖土和运土,已知挖土机每天能挖土800立方米,每名工人每天能挖土3立方米或运土5立方米,•如何分配挖土和运土人数,使挖出的土能及时运走?3、利润问题(1)一件衣服的进价为x元,售价为60元,利润是______元,利润率是_______.变式:一件衣服的进价为x元,若要利润率是20%,应把售价定为________.(2)一件衣服的进价为x元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________. 变式1:一件衣服的进价为60元,若按原价的8折出售获利20元,则原价是______元,利润率是__________. 变式2:一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元.变式3:一件商品每件的进价为250元,按标价的九折销售时,利润为15.2%,这种商品每件标价是多少?变式4:一件夹克衫先按成本提高50%标价,再以八折(标价的80%)出售,结果获利28元,这件夹克衫的成本是多少元?变式5:一件商品按成本价提高20%标价,然后打九折出售,售价为270元.这种商品的成本价是多少? (3)某商品的进价是3000元,标价是4500元. ①商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品?②若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品?③如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品?4、工程问题1.工程问题中的三个量及其关系为:工作总量=工作效率×工作时间工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率2.经常在题目中未给出工作总量时,设工作总量为单位1。
即完成某项任务的各工作量的和=总工作量=1。
(1)甲每天生产某种零件80个,3天能生产个零件。
(2)甲每天生产某种零件80个,乙每天生产某种零件x个。
他们5天一共生产个零件。
(3)甲每天生产某种零件80个,乙每天生产这种零件x个,甲生产3天后,乙也加入生产同一种零件,再经过5天,两人共生产个零件。
(4)一项工程甲独做需6天完成,甲独做一天可完成这项工程;若乙独做比甲快2天完成,则乙独做一天可完成这项工程的。
变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。
甲乙合做,需几小时完成这件工作?变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。
若甲先单独做4小时,剩下的部分由甲、乙合做,还需几小时完成?变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成,丙单独做15小时完成,若先由甲、丙合做5 小时,然后由甲、乙合做,问还需几天完成?变式4:整理一批数据,有一人做需要80小时完成。
现在计划先由一些人做2小时,在增加5人做8小时,完成这项工作的3/4,怎样安排参与整理数据的具体人数?5、计分问题(1)在2002年全国足球甲级联赛A组的前11轮比赛中,大连队保持连续不败,共积23分,按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?际人数买一张5元门票共少花25元钱,求他们共多少人?(2)他们共有多少人时,按团体票(20人)购买较省钱?(说明:不足20人,可以按20人的人数购买团体票)6、数位问题(1)一个两位数,十位上的数比个位上的数小1。
十位上的数与个位上的数的和是这个两位数的1/5,求这个两位数。
(2)一个两位数,个位上的数与十位上的数的和为7,如果把十位与个位的数对调。
那么所得的两位数比原两位数大9。
求原来的两位数。
(3)一个五位数,如果将第一位上的数移动到最后一位得到一个新的五位数(例如:此变换可以由4321 得到3214),新的五位数比原来的数小11106,求原来的五位数。
7、日历问题例题1、在某张月历中,一个竖列上相邻的三个数的和是60,求出这三个数.变式1:小彬假期外出旅行一周,这一周各天的日期之和是84,小彬几号回家?变式2:爷爷的生日那天的上、下、左、右4个日期的和为80,你能说出我爷爷的生日是几号吗?例题2:下表为某月的月历。
(1)在此月历上用一个矩形任意圈出2×3个数,如果圈出的6个数之和为51,这6天分别是几号?(2)观察此月历,你还能提出其他的问题吗?日一二三四五六1 2 3 4 56 7 8 9 10 11 1213 14 15 16 17 18 1920 21 22 23 24 25 2627 28 29 30 318、行程问题1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距例题1、(相遇问题)甲、乙两人从相距为180千米的A、B两地同时出发,甲骑自行车,乙开汽车,沿同(2)使得该长方形的长比宽多出0.8米,此时长方形的长、宽各为多少米?它所围成的长方形与(1)中所围长方形相比,面积有什么变化?11、市场经济问题1、某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.解:(1)设1个小餐厅可供y名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得2(1680-2y)+y=2280 解得:y=360(名)所以1680-2y=960(名)(2)略2、工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是x元,标价是(45+x)元.依题意,得8(45+x)×0.85-8x=(45+x-35)×12-12x 解得:x=155(元)所以45+x=200(元)3、某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦则超过部分按基本电价的70%收费.(1)某户八月份用电84千瓦时,共交电费30.72元,求a.(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?解:(1)由题意,得 0.4a+(84-a)×0.40×70%=30.72 解得a=60(2)设九月份共用电x千瓦时, 0.40×60+(x-60)×0.40×70%=0.36x解得x=90 所以0.36×90=32.40(元)4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?利润率=成本/利润40%=(80%x-60)/60 X=105 105*80%=84元5、甲乙两件衣服的成本共500元,商店老板为获取利润,决定将家服装按50%的利润定价,乙服装按40%的利润定价,在实际销售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?解:设甲服装成本价为x元,则乙服装的成本价为(50–x)元,根据题意,可列109x(1+50%) – x+(500-x)(1+40%)90% - (500 - x)=157 x=3006、某商场按定价销售某种电器时,每台获利48元,按定价的9折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等,该电器每台进价、定价各是多少元?(48+X)90%*6 – 6X=(48+X-30)*9 – 9X X=162 162+48=2107、甲、乙两种商品的单价之和为100元,因为季节变化,甲商品降价10%,乙商品提价5%,调价后,甲、乙两商品的单价之和比原计划之和提高2%,求甲、乙两种商品的原来单价?解:[x(1-10%)+(100-x)(1+5%)]=100(1+2%) x=208、一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?解:设这种服装每件的进价是x元,则X(1+40﹪)×0.8-x=15 解得x=12512、方案设计问题例1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?解:方案一:因为每天粗加工16吨,140吨可以在15天内加工完,总利润W1=4500× 140=630000(元)方案二:15天可以加工6×15=90吨,说明还有50吨需要在市场直接销售,总利润W2=7500×90+1000×50=725000(元);方案三:现将x吨进行精加工,将(140-x)吨进行粗加工,x/6+(140-x)/16=15,解得x=60.总利润W3=7500×60+4500×80=810000(元)例2、某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程1500x+2100(50-x)=90000 x=25 50-x=25②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 x=35 50-x=15③当购B,C两种电视机时,C种电视机为(50-y)台.可得方程2100y+2500(50-y)=90000 4y=350,不合题意可选两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.(2)若选择(1)①,可获利150×25+250×15=8750(元),若选择(1)②,可获利150×35+250× 15=9000(元)故为了获利最多,选择第二种方案.。