人教版七年级数学下册名校课堂训练:期末复习(四)二元一次方程组

合集下载

新人教版初一下新人教版七年级下期末总复习完整资料二元一次方程组

新人教版初一下新人教版七年级下期末总复习完整资料二元一次方程组

二元一次方程组(时间:45分钟 满分:100分) 姓名一、选择题(每小题5分,共20211. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩ B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩ D .35251025x y x y +=⎧⎨+=⎩2.由132x y-=,可以得到用x 表示y 的式子是( )A .223x y -=B .2133x y =-C .223x y =-D .223xy =-3.方程组327413x y x y +=⎧⎨-=⎩的解是( )A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩4.方程组125x y x y -=⎧⎨+=⎩的解是( )A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=-⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=⎩二、填空题(每小题6分,共24分)5.在349x y +=中,如果2y = 6,那么x = 。

6.已知18x y =⎧⎨=-⎩是方程31mx y -=-的解,则m = 。

7.若方程m x + n y = 6的两个解是11x y =⎧⎨=⎩,21x y =⎧⎨=-⎩,则m = ,n = 。

8.如果2150x y x y -+=+-=,那么x = ,y = 。

三、解下列方程组(每小题8分,共16分)9.1323334m nm n ⎧+=⎪⎪⎨⎪-=⎪⎩10.()()344126x y x y x y x y⎧+--=⎪⎨+-+=⎪⎩四、综合运用(每小题10分,共40分)11.用16元买了60分、80分两种邮票共22枚。

60分与80分的邮票各买了多少枚?12.已知梯形的面积是42cm2,高是6cm,它的下底比上底的2倍少1cm,求梯形的上下底。

13.〈〈一千零一夜〉〉中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13,若从树上飞下去一只,则树上、树下的鸽子就一样多了。

精品课件:人教版七年级下册数学期末总复习(四)第八章《二元一次方程(组)》

精品课件:人教版七年级下册数学期末总复习(四)第八章《二元一次方程(组)》


①+②,得:
①+②×2,得:
把 x 1 代入①得
5x 5 x 1
把 x 2 代入②得
11x 22 x2
y2
所以方程组的解为
y3

x 1 y2
所以方程组的解为

x2 y 3
2 x 3 y 10 ax by 2 8.关于x、y的二元一次方程组 的解与 4 x 5 y 2 ax by 4
x 2, 6、已知 y 3 是方程3x-3y=m和5x+y=n的公


共解,则m2-3n= 246 .
1 7.若 (2x 3 y 5) x y 2 0,则x= 5
2
,y=
9 5
.
8.若x、y互为相反数,且(x+y+3)(x-y-2)=6,则
ax by 2 x 2 2a 2b 2 将 代入方程组 得 ax by 4 y 2 2a 2b 4 a 1.5 解得 b 0.5
a 1.5, b 0.5.
7x 3y 4 9.方程组 的解能使4 x 3 y 7成立,求m的值。 5x 2 y m 1
y 2 解方程组得 m时,方程组的解互为相反数
x 2 其解为 y 2
x 8 mx ny 62 11.方程组 ax 20 y 224 的解应为 y 10 ,但由于看错了系
的解相同,求a、b的值 2 x 3 y 10 ax by 2 分析:只要将方程组 的解代入方程组 , ax by 4 4 x 5 y 2 就可求出a,b的值
2 x 3 y 10 解: 解方程组 ,得 4 x 5 y 2

新人教版数学新人教版七年级下期末复习(四)二元一次方程组(word版)

新人教版数学新人教版七年级下期末复习(四)二元一次方程组(word版)

期末复习(四) 二元一次方程组考点一二元一次方程(组)的解的概念【例1】(2021·菏泽)已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2C.2D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.(2021·白银)若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】(2021·汕头)解方程组:128.x yx y=++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.xy==⎧⎨⎩方法二:1,28.x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.(2021·怀化)方程组25,7213x yx y+=--=⎧⎨⎩的解是__________.3.(2021·滨州)解方程组:3419,4.x yx y+=-=⎧⎨⎩①②考点三由解的关系求方程组中字母的取值范围【例3】若关于x、y的二元一次方程组31,33x y ax y+=++=⎧⎨⎩①②的解满足x+y<2,则a的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x、y的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a,由x+y<2,得1+4a<2,解得a<4.故选A.【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x、y满足方程组25,24,x yx y+=+=⎧⎨⎩则x-y的值为__________.考点四二元一次方程组的应用【例4】(2021·临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵2021.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=2021,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x元,y元.由题意,得200,425000.x yx y-=+=⎧⎨⎩解得900,700.xy==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 2021元).答:九年级师生租车一天共需资金5 2021.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 2021,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩ 6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2021·抚州)已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222x y z ===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共202111.已知a 、b12.(2021·咸宁)已知2,1x y ==⎧⎨⎩是二元一次方程组7,1mx ny nx my +=-=⎧⎨⎩的解,则m+3n 的立方根为__________. 13.孔明同学在解方程组,2y kx b y x=+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________. 14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)(2021·梅州)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2021·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 2021在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)(2021·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?202112分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利2021,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.214 34 15.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩ 将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20211)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+202125=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

2016年人教版数学七年级下期末复习(四)二元一次方程组

2016年人教版数学七年级下期末复习(四)二元一次方程组
x 2y 4,
考点四 二元一次方程组的应用
【例 4】(2013·临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、
小明同学有关租车问题的对话:
李老师:“平安客运公司有 60 座和 45 座两种型号的客车可供租用,60 座客车每辆每天的租金比 45 座的贵
ax y b, x 1,
1.(2012·白银)若方程组 的解是 求(a+b)2-(a-b)(a+b)的值.
x by a y 1.
x y 200, x 900,
解得
4x 2y 5000. y 700.
答:平安客运公司 60 座和 45 座的客车每辆每天的租金分别为 900 元和 700 元.
4.验根并作答:检验方程的根是否符合题意,并写出完整的答.
5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,
求 x,y 的值.
200 元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了 4 辆 60 座和 2 辆 45 座的客车到韶山参观,一天的租
金共计 5 000 元.”
小明:“我们九年级师生租用 5 辆 60 座和 1 辆 45 座的客车正好坐满.”
x y 1,①
方法二:
2x y 8.②
对①进行移项,得 x-y=1.③
②+③得 3x=9.解得 x=3.
将 x=3 代入①中,得 y=2.
(2)5×900+1×700=5 200(元).
答:九年级师生租车一天共需资金 5 200 元.

人教版七年级数学下册期末复习四二元一次方程组习题【优选】

人教版七年级数学下册期末复习四二元一次方程组习题【优选】

期末复习(四) 二元一次方程组各个击破命题点1 二元一次方程组的解法【例1】 (厦门中考)解方程组:⎩⎪⎨⎪⎧2x +y =4,①2y +1=5x.② 【思路点拨】 方法一:将①变形为y =4-2x ,然后代入②,消去y ,转化为一元一次方程求解; 方法二:①×2-②,消去y ,转化为一元一次方程求解.【解答】 方法一:由①,得y =4-2x ,③代入②,得2(4-2x)+1=5x ,解得x =1,把x =1代入③,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 方法二:①×2,得4x +2y =8.③③-②,得4x -1=8-5x.解得x =1.把x =1代入②,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 【方法归纳】 二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.(毕节中考)已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为(A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43 D .m =-13,n =432.(枣庄中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为8. 3.(滨州中考)解方程组:⎩⎪⎨⎪⎧3x +4y =19,①x -y =4.②解:由②,得x =4+y.③把③代入①,得3(4+y)+4y =19.解得y =1.把y =1代入③,得x =4+1=5.∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 命题点2 由解的关系求方程组中字母的取值【例2】 若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,x +3y =3 ①②的解满足x +y<2,则a 的取值范围为(A )A .a<4B .a>4C .a<-4D .a>-4【思路点拨】 本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x +y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x +y<2求出a 的取值范围,但计算量大.【方法归纳】 通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为(B ) A .4 B .2C . 2D .±25.已知方程组⎩⎪⎨⎪⎧ax +by =1,2x -y =1和方程组⎩⎪⎨⎪⎧ax -by =5,x +2y =3的解相同,求a 和b 的值. 解:解方程组⎩⎪⎨⎪⎧2x -y =1,x +2y =3,得⎩⎪⎨⎪⎧x =1,y =1. 将⎩⎪⎨⎪⎧x =1,y =1代入⎩⎪⎨⎪⎧ax +by =1,ax -by =5,得 ⎩⎪⎨⎪⎧a +b =1,a -b =5,即⎩⎪⎨⎪⎧a =3,b =-2.命题点3 二元一次方程组的应用【例3】 (临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【思路点拨】 (1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700. 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元.【方法归纳】 列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.6.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒的总价为440元.7.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子上的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得⎩⎪⎨⎪⎧x +y =70,1 200x ×2=1 800y.解得⎩⎪⎨⎪⎧x =30,y =40. 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.整合集训1.下列方程组中,是二元一次方程组的是(B )A .⎩⎪⎨⎪⎧2x +y =-1y +z =2B .⎩⎪⎨⎪⎧5x -3y =3y =2+3x C .⎩⎪⎨⎪⎧x -5y =1xy =2 D .⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =1,3x -2y =8时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①⎩⎪⎨⎪⎧6x +9y =1,6x -4y =8;②⎩⎪⎨⎪⎧4x +6y =1,9x -6y =8;③⎩⎪⎨⎪⎧6x +9y =3,-6x +4y =-16; ④⎩⎪⎨⎪⎧4x +6y =2,9x -6y =24. 其中变形正确的是(B )A .①②B .③④C .①③D .②④3.方程组⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11 ②的最优解法是(C ) A .由①得y =3x -2,再代入②B .由②得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y4.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是(C )A .⎩⎪⎨⎪⎧x =2y =2z =1B .⎩⎪⎨⎪⎧x =2y =1z =1C .⎩⎪⎨⎪⎧x =-2y =8z =1D .⎩⎪⎨⎪⎧x =2y =2z =25.(广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为(B ) A .-4 B .4 C .-2 D .26.若(x +y -5)2+|2x -3y -10|=0,则x ,y 等于(C )A .⎩⎪⎨⎪⎧x =3y =2 B .⎩⎪⎨⎪⎧x =2y =3 C .⎩⎪⎨⎪⎧x =5y =0 D .⎩⎪⎨⎪⎧x =0y =5 7.A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km /h ,乙的速度为y km /h ,则得方程组为(D )A .⎩⎪⎨⎪⎧x +y =63x +3y =6B .⎩⎪⎨⎪⎧x +y =63x -y =6 C .⎩⎪⎨⎪⎧x -y =63x +3y =6 D .⎩⎪⎨⎪⎧x +y =63x -3y =6 8.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为(C )A .50人,40人B .30人,60人C .40人,50人D .60人,30人9.(齐齐哈尔中考)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是(C )A .1或2B .2或3C .3或4D .4或510.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需要315元,购买甲1件、乙2件、丙3件共需要285元,那么购甲、乙、丙三种商品各一件共需要(C )A .50元B .100元C .150元D .200元11.(安顺中考)如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.12.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.13.孔明同学在解方程组⎩⎪⎨⎪⎧y =-2x 的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为⎩⎪⎨⎪⎧x =-1,y =2,又已知3k +b =1,则b 的正确值应该是-11. 14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35.15.(武汉中考)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=10.三、解答题(共50分)16.(12分)解方程组:(1)(荆州中考)⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7;② 解:由②,得x =7-3y.③③代入①,得3(7-3y)-2y =-1.解得y =2.把y =2代入③,得x =7-3y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.(2)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.解:原方程组可化为:⎩⎪⎨⎪⎧4x -y =5,①3x +2y =12.② ①×2+②,得11x =22,∴x =2.将x =2代入①,得y =3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =3.17.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值. 解:解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5,得⎩⎪⎨⎪⎧x =1,y =-2. 将x =1,y =-2代入ax +5y =4,得a =14.将x =1,y =-2代入5x +by =1,得b =2.18.(12分)如图,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,求小长方形的长和宽.解:设小长方形的长为x ,宽为y.由题意,得⎩⎪⎨⎪⎧x +y +2x =17,x +y +5y =17,解得⎩⎪⎨⎪⎧x =5,y =2. 答:小长方形的长为5,宽为2.19.(14分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?解:(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得⎩⎪⎨⎪⎧x +y =50,1 500x +2 100y =90 000.解得⎩⎪⎨⎪⎧x =25,y =25. 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧x +z =50,1 500x +2 500z =90 000.解得⎩⎪⎨⎪⎧x =35,z =15. 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧y +z =50,2 100y +2 500z =90 000.解得⎩⎪⎨⎪⎧y =87.5,z =-37.5.不合题意,舍去.故此种方案不可行. (2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,丙种电冰箱15台.。

七年级数学下册期末复习四二元一次方程组习题新版5(1)

七年级数学下册期末复习四二元一次方程组习题新版5(1)

期末复习(四) 二元一次方程组各个击破命题点1 二元一次方程组的解法【例1】 (厦门中考)解方程组:⎩⎪⎨⎪⎧2x +y =4,①2y +1=5x.② 【思路点拨】 方法一:将①变形为y =4-2x ,然后代入②,消去y ,转化为一元一次方程求解;方法二:①×2-②,消去y ,转化为一元一次方程求解.【解答】 方法一:由①,得y =4-2x ,③代入②,得2(4-2x)+1=5x ,解得x =1,把x =1代入③,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 方法二:①×2,得4x +2y =8.③③-②,得4x -1=8-5x.解得x =1.把x =1代入②,得y =2,∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 【方法归纳】 二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.(毕节中考)已知关于x ,y 的方程x 2m -n -2+4y m +n +1=6是二元一次方程,则m ,n 的值为(A )A .m =1,n =-1B .m =-1,n =1C .m =13,n =-43D .m =-13,n =432.(枣庄中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧2a -b =2,a +2b =6,则3a +b 的值为8. 3.(滨州中考)解方程组:⎩⎪⎨⎪⎧3x +4y =19,①x -y =4.② 解:由②,得x =4+y.③把③代入①,得3(4+y)+4y =19.解得y =1.把y =1代入③,得x =4+1=5.∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =1. 命题点2 由解的关系求方程组中字母的取值【例2】 若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧3x +y =1+a ,x +3y =3 ①②的解满足x +y<2,则a 的取值范围为(A )A .a<4B .a>4C .a<-4D .a>-4【思路点拨】 本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x +y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x +y<2求出a 的取值范围,但计算量大.【方法归纳】 通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为(B ) A .4 B .2C . 2D .±25.已知方程组⎩⎪⎨⎪⎧ax +by =1,2x -y =1和方程组⎩⎪⎨⎪⎧ax -by =5,x +2y =3的解相同,求a 和b 的值. 解:解方程组⎩⎪⎨⎪⎧2x -y =1,x +2y =3,得⎩⎪⎨⎪⎧x =1,y =1. 将⎩⎪⎨⎪⎧x =1,y =1代入⎩⎪⎨⎪⎧ax +by =1,ax -by =5,得 ⎩⎪⎨⎪⎧a +b =1,a -b =5,即⎩⎪⎨⎪⎧a =3,b =-2.命题点3 二元一次方程组的应用【例3】 (临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【思路点拨】 (1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700. 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元.【方法归纳】 列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.6.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒的总价为440元.7.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子上的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得⎩⎪⎨⎪⎧x +y =70,1 200x ×2=1 800y.解得⎩⎪⎨⎪⎧x =30,y =40. 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.整合集训一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是(B )A .⎩⎪⎨⎪⎧2x +y =-1y +z =2B .⎩⎪⎨⎪⎧5x -3y =3y =2+3x C .⎩⎪⎨⎪⎧x -5y =1xy =2 D .⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =1,3x -2y =8时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①⎩⎪⎨⎪⎧6x +9y =1,6x -4y =8;②⎩⎪⎨⎪⎧4x +6y =1,9x -6y =8;③⎩⎪⎨⎪⎧6x +9y =3,-6x +4y =-16; ④⎩⎪⎨⎪⎧4x +6y =2,9x -6y =24. 其中变形正确的是(B )A .①②B .③④C .①③D .②④3.方程组⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11 ②的最优解法是(C ) A .由①得y =3x -2,再代入②B .由②得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y4.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是(C )A .⎩⎪⎨⎪⎧x =2y =2z =1B .⎩⎪⎨⎪⎧x =2y =1z =1C .⎩⎪⎨⎪⎧x =-2y =8z =1D .⎩⎪⎨⎪⎧x =2y =2z =25.(广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为(B ) A .-4 B .4 C .-2 D .26.若(x +y -5)2+|2x -3y -10|=0,则x ,y 等于(C )A .⎩⎪⎨⎪⎧x =3y =2B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =5y =0D .⎩⎪⎨⎪⎧x =0y =5 7.A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km /h ,乙的速度为y km /h ,则得方程组为(D )A .⎩⎪⎨⎪⎧x +y =63x +3y =6B .⎩⎪⎨⎪⎧x +y =63x -y =6 C .⎩⎪⎨⎪⎧x -y =63x +3y =6 D .⎩⎪⎨⎪⎧x +y =63x -3y =6 8.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为(C )A .50人,40人B .30人,60人C .40人,50人D .60人,30人9.(齐齐哈尔中考)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是(C )A .1或2B .2或3C .3或4D .4或510.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需要315元,购买甲1件、乙2件、丙3件共需要285元,那么购甲、乙、丙三种商品各一件共需要(C )A .50元B .100元C .150元D .200元二、填空题(每小题4分,共20分)11.(安顺中考)如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0.12.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.13.孔明同学在解方程组⎩⎪⎨⎪⎧y =kx +b ,y =-2x 的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为⎩⎪⎨⎪⎧x =-1,y =2,又已知3k +b =1,则b 的正确值应该是-11. 14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35.15.(武汉中考)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=10.三、解答题(共50分)16.(12分)解方程组:(1)(荆州中考)⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7;② 解:由②,得x =7-3y.③③代入①,得3(7-3y)-2y =-1.解得y =2.把y =2代入③,得x =7-3y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.(2)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2. 解:原方程组可化为:⎩⎪⎨⎪⎧4x -y =5,①3x +2y =12.② ①×2+②,得11x =22,∴x =2.将x =2代入①,得y =3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =3.17.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值. 解:解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5,得⎩⎪⎨⎪⎧x =1,y =-2. 将x =1,y =-2代入ax +5y =4,得a =14.将x =1,y =-2代入5x +by =1,得b =2.18.(12分)如图,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,求小长方形的长和宽.解:设小长方形的长为x ,宽为y.由题意,得⎩⎪⎨⎪⎧x +y +2x =17,x +y +5y =17,解得⎩⎪⎨⎪⎧x =5,y =2. 答:小长方形的长为5,宽为2.19.(14分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?解:(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得⎩⎪⎨⎪⎧x +y =50,1 500x +2 100y =90 000.解得⎩⎪⎨⎪⎧x =25,y =25.故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧x +z =50,1 500x +2 500z =90 000.解得⎩⎪⎨⎪⎧x =35,z =15.故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧y +z =50,2 100y +2 500z =90 000.解得⎩⎪⎨⎪⎧y =87.5,z=-37.5.不合题意,舍去.故此种方案不可行. (2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,丙种电冰箱15台.。

人教版七年级数学下册期末必考知识点总结和例题: 二元一次方程组

人教版七年级数学下册期末必考知识点总结和例题: 二元一次方程组

人教版七年级数学下册期末必考知识点总结:二元一次方程组考点一 二元一次方程(组)的解的概念【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________. 3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-+=⎧⎨⎩B.53323x y y x -==+⎧⎨⎩C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21x y ==⎧⎨⎩,是方程组4,0ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( )A.6336x y x y +=+=⎧⎨⎩B.636x y x y +=-=⎧⎨⎩C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( ) A.8 B.4 C.-4 D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩ ∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得 151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.xy ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得 50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去.故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

初中数学人教新版七年级下册期末复习四二元一次方程组习题新版新5(1)

初中数学人教新版七年级下册期末复习四二元一次方程组习题新版新5(1)

初中数学人教新版七年级下册实用资料期末复习(四) 二元一次方程组各个击破命题点1 二元一次方程组的解法【例1】(厦门中考)解方程组:⎩⎪⎨⎪⎧2x+y=4,①2y+1=5x.②【思路点拨】方法一:将①变形为y=4-2x,然后代入②,消去y,转化为一元一次方程求解;方法二:①×2-②,消去y,转化为一元一次方程求解.【解答】方法一:由①,得y=4-2x,③代入②,得2(4-2x)+1=5x,解得x=1,把x=1代入③,得y=2,∴原方程组的解为⎩⎪⎨⎪⎧x=1,y=2.方法二:①×2,得4x+2y=8.③③-②,得4x-1=8-5x.解得x=1.把x=1代入②,得y=2,∴原方程组的解为⎩⎪⎨⎪⎧x=1,y=2.【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.1.(毕节中考)已知关于x,y的方程x2m-n-2+4y m+n+1=6是二元一次方程,则m,n的值为(A) A.m=1,n=-1 B.m=-1,n=1C.m=13,n=-43D.m=-13,n=432.(枣庄中考)已知a,b满足方程组⎩⎪⎨⎪⎧2a-b=2,a+2b=6,则3a+b的值为8.3.(滨州中考)解方程组:⎩⎪⎨⎪⎧3x+4y=19,①x-y=4.②解:由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为⎩⎪⎨⎪⎧x=5,y=1.命题点2 由解的关系求方程组中字母的取值【例2】若关于x,y的二元一次方程组⎩⎪⎨⎪⎧3x+y=1+a,x+3y=3①②的解满足x+y<2,则a的取值范围为(A) A.a<4 B.a>4C .a<-4D .a>-4【思路点拨】 本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x +y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x +y<2求出a 的取值范围,但计算量大.【方法归纳】 通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧mx +ny =8,nx -my =1的解,则2m -n 的算术平方根为(B ) A .4 B .2 C . 2 D .±25.已知方程组⎩⎪⎨⎪⎧ax +by =1,2x -y =1和方程组⎩⎪⎨⎪⎧ax -by =5,x +2y =3的解相同,求a 和b 的值.解:解方程组⎩⎪⎨⎪⎧2x -y =1,x +2y =3,得⎩⎪⎨⎪⎧x =1,y =1.将⎩⎪⎨⎪⎧x =1,y =1代入⎩⎪⎨⎪⎧ax +by =1,ax -by =5,得 ⎩⎪⎨⎪⎧a +b =1,a -b =5,即⎩⎪⎨⎪⎧a =3,b =-2.命题点3 二元一次方程组的应用【例3】 (临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元? 【思路点拨】 (1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元,由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】 (1)设平安客运公司60座和45座的客车每辆每天的租金分别为x 元,y 元.由题意,得⎩⎪⎨⎪⎧x -y =200,4x +2y =5 000.解得⎩⎪⎨⎪⎧x =900,y =700. 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元. (2)5×900+1×700=5 200(元).答:九年级师生租车一天共需租金5 200元.【方法归纳】 列方程解决实际问题的解题步骤是: 1.审题:弄清已知量和未知量;2.设未知数,并根据相等关系列出符合题意的方程; 3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.6.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒的总价为440元.7.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子上的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得⎩⎪⎨⎪⎧x +y =70,1 200x ×2=1 800y.解得⎩⎪⎨⎪⎧x =30,y =40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.整合集训一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是(B )A .⎩⎪⎨⎪⎧2x +y =-1y +z =2B .⎩⎪⎨⎪⎧5x -3y =3y =2+3xC .⎩⎪⎨⎪⎧x -5y =1xy =2D .⎩⎪⎨⎪⎧3x -y =7x 2+y =1 2.用加减法解方程组⎩⎪⎨⎪⎧2x +3y =1,3x -2y =8时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形结果:①⎩⎪⎨⎪⎧6x +9y =1,6x -4y =8;②⎩⎪⎨⎪⎧4x +6y =1,9x -6y =8;③⎩⎪⎨⎪⎧6x +9y =3,-6x +4y =-16; ④⎩⎪⎨⎪⎧4x +6y =2,9x -6y =24. 其中变形正确的是(B )A .①②B .③④C .①③D .②④3.方程组⎩⎪⎨⎪⎧3x -y =2,①3x +2y =11 ②的最优解法是(C )A .由①得y =3x -2,再代入②B .由②得3x =11-2y ,再代入①C .由②-①,消去xD .由①×2+②,消去y4.方程组⎩⎪⎨⎪⎧2x +y =4,x +3z =1,x +y +z =7的解是(C )A .⎩⎪⎨⎪⎧x =2y =2z =1B .⎩⎪⎨⎪⎧x =2y =1z =1C .⎩⎪⎨⎪⎧x =-2y =8z =1D .⎩⎪⎨⎪⎧x =2y =2z =25.(广州中考)已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为(B )A .-4B .4C .-2D .26.若(x +y -5)2+|2x -3y -10|=0,则x ,y 等于(C )A .⎩⎪⎨⎪⎧x =3y =2B .⎩⎪⎨⎪⎧x =2y =3C .⎩⎪⎨⎪⎧x =5y =0D .⎩⎪⎨⎪⎧x =0y =5 7.A ,B 两地相距6 km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km /h ,乙的速度为y km /h ,则得方程组为(D )A .⎩⎪⎨⎪⎧x +y =63x +3y =6 B .⎩⎪⎨⎪⎧x +y =63x -y =6C .⎩⎪⎨⎪⎧x -y =63x +3y =6D .⎩⎪⎨⎪⎧x +y =63x -3y =6 8.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为(C )A .50人,40人B .30人,60人C .40人,50人D .60人,30人9.(齐齐哈尔中考)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是(C )A .1或2B .2或3C .3或4D .4或510.有甲、乙、丙三种商品,如果购甲3件、乙2件、丙1件共需要315元,购买甲1件、乙2件、丙3件共需要285元,那么购甲、乙、丙三种商品各一件共需要(C )A .50元B .100元C .150元D .200元二、填空题(每小题4分,共20分)11.(安顺中考)如果4x a +2b -5-2y 3a -b -3=8是二元一次方程,那么a -b =0. 12.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.13.孔明同学在解方程组⎩⎪⎨⎪⎧y =kx +b ,y =-2x 的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为⎩⎪⎨⎪⎧x =-1,y =2,又已知3k +b =1,则b 的正确值应该是-11. 14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为35.15.(武汉中考)定义运算“*”,规定x*y =ax 2+by ,其中a ,b 为常数,且1*2=5,2*1=6,则2*3=10.三、解答题(共50分) 16.(12分)解方程组:(1)(荆州中考)⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7;②解:由②,得x =7-3y.③③代入①,得3(7-3y)-2y =-1. 解得y =2.把y =2代入③,得x =7-3y =1.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.(2)⎩⎪⎨⎪⎧4(x -y -1)=3(1-y )-2,x 2+y 3=2.解:原方程组可化为:⎩⎪⎨⎪⎧4x -y =5,①3x +2y =12.②①×2+②,得11x =22,∴x =2.将x =2代入①,得y =3.∴原方程组的解是⎩⎪⎨⎪⎧x =2,y =3.17.(12分)已知方程组⎩⎪⎨⎪⎧5x +y =3,ax +5y =4与方程组⎩⎪⎨⎪⎧x -2y =5,5x +by =1有相同的解,求a ,b 的值.解:解方程组⎩⎪⎨⎪⎧5x +y =3,x -2y =5,得⎩⎪⎨⎪⎧x =1,y =-2.将x =1,y =-2代入ax +5y =4,得a =14.将x =1,y =-2代入5x +by =1,得b =2.18.(12分)如图,周长为34的长方形ABCD 被分成7个大小完全一样的小长方形,求小长方形的长和宽.解:设小长方形的长为x ,宽为y.由题意,得⎩⎪⎨⎪⎧x +y +2x =17,x +y +5y =17,解得⎩⎪⎨⎪⎧x =5,y =2. 答:小长方形的长为5,宽为2.19.(14分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?解:(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得⎩⎪⎨⎪⎧x +y =50,1 500x +2 100y =90 000.解得⎩⎪⎨⎪⎧x =25,y =25. 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧x +z =50,1 500x +2 500z =90 000.解得⎩⎪⎨⎪⎧x =35,z =15. 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得⎩⎪⎨⎪⎧y +z =50,2 100y +2 500z =90 000.解得⎩⎪⎨⎪⎧y =87.5,z =-37.5.不合题意,舍去.故此种方案不可行. (2)上述的第一种方案可获利:150×25+200×25=8 750(元), 第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,丙种电冰箱15台.。

人教版数学七年级下册周期末复习(四) 二元一次方程组

人教版数学七年级下册周期末复习(四)  二元一次方程组

期末复习(四) 二元一次方程组考点一 二元一次方程(组)的解的概念 【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) A.4 B.2D.±2 【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a+=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二 二元一次方程组的解法【例2】解方程组:128.x y x y =++=⎧⎨⎩,①②【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③ ②+③得3x=9.解得x=3. 将x=3代入①中,得y=2. 所以原方程组的解为3,2.x y ==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①②考点三 由解的关系求方程组中字母的取值范围 【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a<2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元? 【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案. 【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元. (2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元. 【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( ) A.212x y y z +=-+=⎧⎨⎩ B.53323x y y x -==+⎧⎨⎩ C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组 3.方程组32,3211x y x y -=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y ,再代入①C.由②-①,消去xD.由①×2+②,消去y 4.已知21x y ==⎧⎨⎩,是方程组4,ax by ax by +=--=⎧⎨⎩的解,那么a ,b 的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A 、B 两地相距6 km ,甲、乙两人从A 、B 两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h ,乙的速度为y km/h ,则得方程组为( ) A.6336x y x y +=+=⎧⎨⎩ B.636x y x y +=-=⎧⎨⎩ C.6336x y x y -=+=⎧⎨⎩D.6336x y x y +=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场 7.已知a 、b 满足方程组22,26,a b a b -=+=⎧⎨⎩则3a+b 的值为( )A.8B.4C.-4D.-88.方程组24,31,7x y x z x y z +=+=++=⎧⎪⎨⎪⎩的解是( )A.221x y z ===⎧⎪⎨⎪⎩B.211x y z ===⎧⎪⎨⎪⎩C.281x y z ⎧=-==⎪⎨⎪⎩D.222 xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习 1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩整理,得1,1.a b a b -=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩,3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1. 把y=1代入③,得x=4+1=5. ∴原方程组的解为51.x y ==⎧⎨⎩,4.15.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C 11.6 12.2 13.-11 14.214 3415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩,(2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3. ④-②,得2x=12,即x=6. ④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵. 18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14. 将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得 100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元), 因为8 750<9 000,故应选择第二种进货方案, 即购进甲种电冰箱35台,乙种电冰箱15台.。

《名校课堂》(人教版)七年级(下册)数学

《名校课堂》(人教版)七年级(下册)数学

《名校课堂》(人教版)七年级(下册)数学湖北世纪华章文化传播有限公司公司简介湖北世纪华章文化传播有限公司创建于2001年,是一家以中小学教育辅导类图书开发为重点,集内容策划、出版发行于一体的民营股份制企业,是全国一流的基础教育图书供应商。

公司成功研发出版的《名校课堂》、《火线100天》等系列图书已经成为全国中小学教育类图书的一线品牌,每年有2000余万人次中小学生、98万余人次的教师、超过4.8万所学校使用本公司的图书,产品畅销不衰。

目前,公司拥有4项注册商标、一项国家专利,并与广西师范大学出版社、黑龙江教育出版社、北京市海淀区教师进修学校、黄冈市教育科学研究院等全国知名出版社、教育研发机构深度合作,重点研发教育类图书、报刊、网站等项目。

公司宗旨:服务教师、服务教学、服务教育公司使命:以图书出版推动教育进步公司愿景:让每一位学生以较小的成本分享到高品质的教育七年级(下册)数学(人教版)Word 版习题教学资源包导学案第五章相交线与平行线第六章实数第七章平面直角坐标系第八章二元一次方程组第九章不等式与不等式组第十章数据的收集、整理与描述期末复习第五章相交线与平行线5.1 相交线5.2 平行线及其判定周周练(5.1~5.2)5.3 平行线的性质小专题(一)平行线的性质与判定5.4 平移周周练(5.3~5.4)单元测试(一)相交线与平行线第六章实数6.1 平方根6.2 立方根6.3实数单元测试(二)实数第七章平面直角坐标系7.1 平面直角坐标系7.2 坐标方法的简单应用单元测试(三)平面直角坐标系期中测试第八章二元一次方程组8.1 二元一次方程组8.2 消元——解二元一次方程组小专题(二)二元一次方程组的解法8.3 实际问题与二元一次方程组小专题(三)二元一次方程组的实际应用周周练(8.1~8.3)8.4 三元一次方程组的解法单元测试(四)二元一次方程组第九章不等式与不等式组9.1 不等式9.2 一元一次不等式周周练(9.1~9.2)9.3 一元一次不等式组小专题(四)解一元一次不等式(组)单元测试(五) 不等式与不等式组第十章数据的收集、整理与描述10.1 统计调查10.2 直方图小专题(五)从图表中获取信息单元测试(六)数据的收集、整理与描述期末测试期末复习期末复习(一) 相交线与平行线期末复习(二) 实数期末复习(三) 平面直角坐标系期末复习(四) 二元一次方程组期末复习(五) 不等式与不等式组期末复习(六) 数据的收集、整理与描述第五章相交线与平行线5.1 相交线5.1.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角第五章相交线与平行线5.2 平行线及其判定5.2.1平行线5.2.2平行线的判定第五章相交线与平行线5.3 平行线的性质5.3.1平行线的性质5.3.2命题、定理、证明第六章实数6.1 平方根第1课时算术平方根第2课时平方根第七章平面直角坐标系7.1 平面直角坐标系7.1.1有序数对7.1.2平面直角坐标系第七章平面直角坐标系7.2 坐标方法的简单应用7.2.1用坐标表示地理位置7.2.2用坐标表示平移第八章二元一次方程组8.2 消元——解二元一次方程组第1课时用代入消元法解方程组第2课时用加减消元法解方程组第九章不等式与不等式组9.1 不等式9.1.1不等式及其解集9.1.2不等式的性质第九章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式的解法第2课时一元一次不等式的应用。

2023—2024学年人教版数学七年级下册期末复习(4)二元一次方程组

2023—2024学年人教版数学七年级下册期末复习(4)二元一次方程组

⎪⎩⎪⎨⎧=-+=+=-;1,3,152z y x z y y x ⎪⎪⎩⎪⎪⎨⎧=+=-=+-.51,43,1z x y x xy y x 七年级数学第八章二元一次方程组复习 (4)班级 姓名 类型一:方程及方程组的概念1、下列方程中是二元一次方程的有 。

① 1225=-n m ② 161147=-y x ③ 2532-=-z x ④ 311=-+ba 2、若方程03)2()32()4(22=+-+-+-k y k x k x k 为二元一次方程,则k 的值为( )A. 2B. -2C. 2或-2D.以上均不对。

3、判断下列方程组是二元一次方程组,还是三元一次方程组:(1)⎩⎨⎧-=-=;63,42x y y x (2)⎩⎨⎧=-=;1,1y x xy (3) (4) 类型二:方程或方程组的解4、下列哪组数是方程组⎩⎨⎧=-=+123,532y x y x 的解( )A .⎩⎨⎧==1,0y xB .⎩⎨⎧==1,1y xC .⎩⎨⎧==0,1y xD .⎩⎨⎧-=-=1,1y x 5、方程 2x+y=5的非负整数解为____________ _____.6、试写出一个解是⎩⎨⎧-==23y x 的二元一次方程组_______________ __。

类型三:方程组的解法7、解下列方程组:(1)⎩⎨⎧=-=+56345y x y x (2)⎩⎨⎧=-=+2463247y x y x (3)⎪⎩⎪⎨⎧=+=+=+101216m t t n n m类型四:综合运用9.已知⎩⎨⎧=-=1,2y x 是方程组⎩⎨⎧=+=--5,62ny x y mx x 的解,则m-n=10.若方程组⎩⎨⎧=-=+m y x m y x 28的解满足152-=-y x ,则m =________.类型五:易错题15.解方程组⎪⎪⎩⎪⎪⎨⎧=+++=--+.32533,233254y x y x课后跟踪作业一 填空题1.二元一次方程组⎩⎨⎧=+=-82237y x y x 的解是2.已知方程3x-y=8,用含x 的代数式表示y ,得 ;用含y 的代数式表示x ,得 。

2016年人教版数学七年级下期末复习(四)二元一次方程组

2016年人教版数学七年级下期末复习(四)二元一次方程组
20.(12 分)某商场计划拨款 9 万元从厂家购进 50 台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别 为:甲种每台 1 500 元,乙种每台 2 100 元,丙种每台 2 500 元.
(1)某商场同时购进其中两种不同型号电冰箱共 50 台,用去 9 万元,请你研究一下商场的进货方案;
小明同学有关租车问题的对话: 李老师:“平安客运公司有 60 座和 45 座两种型号的客车可供租用,60 座客车每辆每天的租金比 45 座的贵
200 元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了 4 辆 60 座和 2 辆 45 座的客车到韶山参观,一天的租
金共计 5 000 元.”
小明:“我们九年级师生租用 5 辆 60 座和 1 辆 45 座的客车正好坐满.”
x 1, y 2, 又已知 3k+b=1,则 b 的正确值应该是__________.
14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则 x=__________,y=__________,z=__________. 15.一个两位数的十位数字与个位数字的和为 8,若把这个两位数加上 18,正好等于将这个两位数的十位数字与个 位数字对调后所组成的新两位数,则原来的两位数为__________.
A.a<4
B.a>4
C.a<-4
D.a>-4
【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到 x、y 的关系,再根据 x+y<2,求得本题答
案;也可以按常规方法求出二元一次方程组的解,再由 x+y<2 求出 a 的取值范围,但计算量大.
【解答】由①+②,得

2016年人教版数学七年级下期末复习(四)二元一次方程组

2016年人教版数学七年级下期末复习(四)二元一次方程组

期末复习(四) 二元一次方程组考点一二元一次方程(组)的解的概念【例1】(2012·菏泽)已知是二元一次方程组的解,则2m-n的算术平方根为( )A.4B.2C.D.±2【解析】把代入方程组得解得所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.(2012·白银)若方程组的解是求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】(2013·汕头)解方程组:【分析】可以直接把①代入②,消去未知数x,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为方法二:对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.(2012·怀化)方程组的解是__________.3.(2013·滨州)解方程组:考点三由解的关系求方程组中字母的取值范围【例3】若关于x、y的二元一次方程组的解满足x+y<2,则a的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x、y的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+,由x+y<2,得1+<2,解得a<4.故选A.【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x、y满足方程组则x-y的值为__________.考点四二元一次方程组的应用【例4】(2013·临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x元,y元.由题意,得解得答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A. B. C. D.2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知是方程组的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h,乙的速度为y km/h,则得方程组为( )A. B. C. D.6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a、b满足方程组则3a+b的值为( )A.8B.4C.-4D.-88.方程组的解是( )A. B. C. D.9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、ba与b的运算a+2b 2a+b 3a+2b运算的结果 2 412.(2013·咸宁)已知是二元一次方程组的解,则m+3n的立方根为__________.13.孔明同学在解方程组的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)(2013·梅州)(2)17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组与方程组有相同的解,求a,b的值.19.(11分)(2014·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把代入方程组得整理,得∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为4.15.根据题意,得解得6.设应分配x名工人生产脖子上的丝巾,y名工人生产手上的丝巾,由题意得解得答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 15.3516.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为(2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是17.设王叔叔购买甲种人参x棵,乙种人参y棵.根据题意,得解得答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组得将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A饮料生产了x瓶,B饮料生产了y瓶,依题意得解得答:A饮料生产了30瓶,B饮料生产了70瓶.20.(1)①设购进甲种电冰箱x台,购进乙种电冰箱y台,根据题意,得解得故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x台,购进丙种电冰箱z台,根据题意,得解得故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台.③设购进乙种电冰箱y台,购进丙种电冰箱z台,根据题意,得解得不合题意,舍去.故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

2020—2021年新人教版初中数学七年级下册期末复习(四)二元一次方程组.docx

2020—2021年新人教版初中数学七年级下册期末复习(四)二元一次方程组.docx

期末复习(四) 二元一次方程组考点一二元一次方程(组)的解的概念【例1】(2012·菏泽)已知2,1xy==⎧⎨⎩是二元一次方程组8,1mx nynx my+=-=⎧⎨⎩的解,则2m-n的算术平方根为( )A.4B.2C.2 D.±2【解析】把2,1xy==⎧⎨⎩代入方程组8,1mx nynx my+=-=⎧⎨⎩得28,2 1.m nn m+=-=⎧⎨⎩解得3,2.mn==⎧⎨⎩所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.(2012·白银)若方程组,ax y bx by a+=-=⎧⎨⎩的解是1,1.xy==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值.考点二二元一次方程组的解法【例2】(2013·汕头)解方程组:1 28. x yx y=++=⎧⎨⎩,①②由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2. xy==⎧⎨⎩方法二:1, 28. x yx y=++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2. xy==⎧⎨⎩【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.(2012·怀化)方程组25,7213x yx y+=--=⎧⎨⎩的解是__________.3.(2013·滨州)解方程组:3419,4.x yx y+=-=⎧⎨⎩①②【例3】若关于x、y的二元一次方程组31,33x y ax y+=++=⎧⎨⎩①②的解满足x+y<2,则a的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x、y的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a,由x+y<2,得1+4a<2,解得a<4.故选A.【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x、y满足方程组25,24,x yx y+=+=⎧⎨⎩则x-y的值为__________.考点四二元一次方程组的应用【例4】(2013·临泉二中模拟)某中学拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元. 【方法归纳】列方程解决实际问题的解题步骤是: 1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a ”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y 的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( ) A.212x y y z +=-+=⎧⎨⎩ B.53323x y y x-==+⎧⎨⎩ C.512x y xy -==⎧⎨⎩D.2371x y x y -=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组32,x y -=⎧①A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h 可追上乙;若相向而行,1 h相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h,乙的速度为y km/h,则得方程组为( )A.6336x yx y+=+=⎧⎨⎩ B.636x yx y+=-=⎧⎨⎩ C.6336x yx y-=+=⎧⎨⎩D.6 336 x yx y+=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.(2014·抚州)已知a、b满足方程组22,26,a ba b-=+=⎧⎨⎩则3a+b的值为( )A.8B.4C.-4D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩ B.211xyz===⎧⎪⎨⎪⎩ C.281xyz⎧=-==⎪⎨⎪⎩22x y = =⎧⎪⎨⎪9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( ) A.15 000元,12 000元 B.12 000元,15 000元 C.15 000元,11 250元 D.11 250元,15 000元 二、填空题(每小题4分,共20分)11.已知a 、b 是有理数,观察下表中的运算,并在空格内填上相应的数.12.(2013·咸宁)已知1y =⎧⎨⎩是二元一次方程组1nx my -=⎧⎨⎩的解,则m+3n 的立方根为__________.13.孔明同学在解方程组,2y kx b y x =+=-⎧⎨⎩的过程中,错把b 看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,x y =-=⎧⎨⎩又已知3k+b=1,则b 的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________. 15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等数为__________.三、解答题(共50分)16.(10分)解方程组:(1)(2013·梅州)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(2013·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)(2014·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1xy==⎧⎨⎩代入方程组,ax y bx by a+=-=⎧⎨⎩,得1,1.a bb a+=-=⎧⎨⎩整理,得1,1.a ba b-=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13 xy==-⎧⎨⎩,3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1. 把y=1代入③,得x=4+1=5.∴原方程组的解为51. xy==⎧⎨⎩,4.16.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得 70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 14 34 15.3516.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩,(2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨,答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去.故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元), 第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

天津市2020〖人教版〗七年级数学下册期末复习(四) 二元一次方程组

天津市2020〖人教版〗七年级数学下册期末复习(四) 二元一次方程组

天津市2020年〖人教版〗七年级数学下册期末复习(四) 二元一次方程组【例1】已知2,1x y ==⎧⎨⎩是二元一次方程组8,1mx ny nx my +=-=⎧⎨⎩的解,则2m-n 的算术平方根为( ) ±2【解析】把2,1x y ==⎧⎨⎩代入方程组8,1mx ny nx my +=-=⎧⎨⎩得28,2 1.m n n m +=-=⎧⎨⎩解得3,2.m n ==⎧⎨⎩ 所以2m-n=4,4的算术平方根为2.故选B.【方法归纳】方程(组)的解一定满足原方程(组),所以将已知解代入含有字母的原方程(组),得到的等式一定成立,从而转化为一个关于所求字母的新方程(组),解这个方程(组)即可求得待求字母的值.1.若方程组,ax y b x by a +=-=⎧⎨⎩的解是1,1.x y ==⎧⎨⎩求(a+b)2-(a-b)(a+b)的值. 考点二 二元一次方程组的解法 【例2】解方程组:128.x y x y =++=⎧⎨⎩,①② 【分析】可以直接把①代入②,消去未知数x ,转化成一元一次方程求解.也可以由①变形为x-y=1,再用加减消元法求解.【解答】方法一:将①代入到②中,得2(y+1)+y=8.解得y=2.所以x=3.因此原方程组的解为3,2.x y ==⎧⎨⎩ 方法二:1,28.x y x y =++=⎧⎨⎩①②对①进行移项,得x-y=1.③②+③得3x=9.解得x=3.将x=3代入①中,得y=2.所以原方程组的解为3,2.x y ==⎧⎨⎩ 【方法归纳】二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法.如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.2.方程组 25,7213x y x y +=--=⎧⎨⎩的解是__________.3.解方程组:3419,4.x y x y +=-=⎧⎨⎩①② 考点三 由解的关系求方程组中字母的取值范围【例3】若关于x 、y 的二元一次方程组31,33x y a x y +=++=⎧⎨⎩①②的解满足x+y<2,则a 的取值范围为( )A.a<4B.a>4C.a<-4D.a>-4【分析】本题运用整体思想,把二元一次方程组中两个方程相加,得到x 、y 的关系,再根据x+y<2,求得本题答案;也可以按常规方法求出二元一次方程组的解,再由x+y<2求出a 的取值范围,但计算量大.【解答】由①+②,得4x+4y=4+a,x+y=1+4a ,由x+y<2,得1+4a <2,解得a<4.故选A. 【方法归纳】通过观察两个方程,运用整体思想解题,这是中考中常用的解题方法.4.已知x 、y 满足方程组25,24,x y x y +=+=⎧⎨⎩则x-y 的值为__________.考点四 二元一次方程组的应用【例4】某拟组织九年级师生去黄山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5 000元.”小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.”根据以上对话,解答下列问题:(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元?(2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?【分析】(1)根据题目给出的条件得出的等量关系是60座客车每辆每天的租金-45座客车每辆每天的租金=200元,4辆60座一天的租金+2辆45座的一天的租金=5 000元;由此可列出方程组求解;(2)可根据“我们九年级师生租用5辆60座和1辆45座的客车正好坐满”以及(1)的结果来求出答案.【解答】(1)设平安公司60座和45座客车每辆每天的租金分别为x 元,y 元.由题意,得200,425000.x y x y -=+=⎧⎨⎩解得900,700.x y ==⎧⎨⎩ 答:平安客运公司60座和45座的客车每辆每天的租金分别为900元和700元.(2)5×900+1×700=5 200(元).答:九年级师生租车一天共需资金5 200元.【方法归纳】列方程解决实际问题的解题步骤是:1.审题:弄清已知量和未知量;2.列未知数,并根据相等关系列出符合题意的方程;3.解这个方程;4.验根并作答:检验方程的根是否符合题意,并写出完整的答.5.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面.如果正方体相对两个面上的代数式的值相等,求x,y的值.6.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?复习测试一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x yy z+=-+=⎧⎨⎩B.53323x yy x-==+⎧⎨⎩C.512x yxy-==⎧⎨⎩D.2371x yx y-=+=⎧⎨⎩2.方程2x+y=9的正整数解有( )A.1组B.2组C.3组D.4组3.方程组32,3211x yx y-=+=⎧⎨⎩①②的最优解法是( )A.由①得y=3x-2,再代入②B.由②得3x=11-2y,再代入①C.由②-①,消去xD.由①×2+②,消去y4.已知21xy==⎧⎨⎩,是方程组4,ax byax by+=--=⎧⎨⎩的解,那么a,b的值分别为( )A.1,2B.1,-2C.-1,2D.-1,-25.A、B两地相距6 km,甲、乙两人从A、B两地同时出发,若同向而行,甲3 h可追上乙;若相向而行,1 h相遇,求甲、乙两人的速度各是多少?若设甲的速度为x km/h,乙的速度为y km/h,则得方程组为( )A.6336x yx y+=+=⎧⎨⎩B.636x yx y+=-=⎧⎨⎩C.6336x yx y-=+=⎧⎨⎩D.6336x yx y+=-=⎧⎨⎩6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( )A.3场B.4场C.5场D.6场7.已知a、b满足方程组22,26,a ba b-=+=⎧⎨⎩则3a+b的值为( )A.8B.4C.-4D.-88.方程组24,31,7x yx zx y z+=+=++=⎧⎪⎨⎪⎩的解是( )A.221xyz===⎧⎪⎨⎪⎩B.211xyz===⎧⎪⎨⎪⎩C.281xyz⎧=-==⎪⎨⎪⎩D.222xyz===⎧⎪⎨⎪⎩9.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人10.甲、乙二人收入之比为4∶3,支出之比为8∶5,一年间两人各存5 000元(设两人剩余的钱都存入银行),则甲、乙两人年收入分别为( )A.15 000元,12 000元B.12 000元,15 000元C.15 000元,11 250元D.11 250元,15 000元二、填空题(每小题4分,共20分)11.已知a、b12.已知2,1xy==⎧⎨⎩是二元一次方程组7,1mx nynx my+=-=⎧⎨⎩的解,则m+3n的立方根为__________.13.孔明同学在解方程组,2y kx by x=+=-⎧⎨⎩的过程中,错把b看成了6,他其余的解题过程没有出错,解得此方程组的解为1,2,xy=-=⎧⎨⎩又已知3k+b=1,则b的正确值应该是__________.14.已知|x-8y|+2(4y-1)2+|8z-3x|=0,则x=__________,y=__________,z=__________.15.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为__________.三、解答题(共50分)16.(10分)解方程组:(1)251x yx y+=-⎧=⎨⎩,①;②(2)1151.x y zy z xz x y+-=+-=+-⎪⎨=⎧⎪⎩,①,②③17.(8分)(·吉林)吉林人参是保健佳品.某特产商店销售甲、乙两种保鲜人参,甲种人参每棵100元,乙种人参每棵70元.王叔叔用1 200元在此特产商店购买这两种人参共15棵,求王叔叔购买每种人参的棵数.18.(9分)已知方程组53,54x yax y+=+=⎧⎨⎩与方程组25,51x yx by-=+=⎧⎨⎩有相同的解,求a,b的值.19.(11分)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A 、B 两种饮料均需加入同种添加剂,A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A 、B 两种饮料共100瓶,问A 、B 两种饮料各生产了多少瓶?20.(12分)某商场计划拨款9万元从厂家购进50台电冰箱,已知该厂家生产三种不同型号的电冰箱,出厂价分别为:甲种每台1 500元,乙种每台2 100元,丙种每台2 500元.(1)某商场同时购进其中两种不同型号电冰箱共50台,用去9万元,请你研究一下商场的进货方案;(2)该商场销售一台甲种电冰箱可获利150元,销售一台乙种电冰箱可获利200元,销售一台丙种电冰箱可获利250元,在同时购进两种不同型号的方案中,为使销售时获利最多,你选择哪种进货方案?参考答案变式练习1.把1,1x y ==⎧⎨⎩代入方程组,ax y b x by a +=-=⎧⎨⎩,得1,1.a b b a +=-=⎧⎨⎩ 整理,得1,1.a b a b -=-+=⎧⎨⎩∴(a+b)2-(a-b)(a+b)=12-(-1)×1=2.2.13x y ==-⎧⎨⎩, 3.由②,得x=4+y.③把③代入①,得3(4+y)+4y=19.解得y=1.把y=1代入③,得x=4+1=5.∴原方程组的解为51.x y ==⎧⎨⎩, 4.1 5.根据题意,得25,5 1.x y x y -=-=+⎧⎨⎩解得3,1.x y ==⎧⎨⎩ 6.设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾,由题意得70,120021800.x y x y +=⨯=⎧⎨⎩解得30,40.x y ==⎧⎨⎩ 答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.复习测试1.B2.D3.C4.D5.D6.C7.A8.C9.C 10.C11.6 12.2 13.-11 14.2 143415.35 16.(1)①+②,得3x=6.解得x=2.把x=2代入②,得y=1.所以原方程组的解为21.x y ==⎧⎨⎩, (2)①+②+③,得x+y+z=17.④④-①,得2z=6,即z=3.④-②,得2x=12,即x=6.④-③,得2y=16,即y=8.所以原方程组的解是683.x y z ⎧⎪=⎩==⎪⎨,,17.设王叔叔购买甲种人参x 棵,乙种人参y 棵.根据题意,得151********.x y x y +=+=⎧⎨⎩,解得510.x y =⎩=⎧⎨, 答:王叔叔购买甲种人参5棵,乙种人参10棵.18.解方程组53,25x y x y +=-=⎧⎨⎩,得1,2.x y ==-⎧⎨⎩将x=1,y=-2代入ax+5y=4,得a=14.将x=1,y=-2代入5x+by=1,得b=2.19.设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得100,23270.x y x y +=+=⎧⎨⎩解得30,70.x y ==⎧⎨⎩答:A 饮料生产了30瓶,B 饮料生产了70瓶.20.(1)①设购进甲种电冰箱x 台,购进乙种电冰箱y 台,根据题意,得50,1500210090000.x y x y +=+=⎧⎨⎩解得25,25.x y ==⎧⎨⎩ 故第一种进货方案是购甲、乙两种型号的电冰箱各25台.②设购进甲种电冰箱x 台,购进丙种电冰箱z 台,根据题意,得50,1500250090000.x z x z +=+=⎧⎨⎩解得35,15.x z ==⎧⎨⎩ 故第二种进货方案是购进甲种电冰箱35台,丙种电冰箱15台. ③设购进乙种电冰箱y 台,购进丙种电冰箱z 台,根据题意,得 50,2100250090000.y z y z +=+=⎧⎨⎩解得87.5,37.5.y z ==-⎧⎨⎩不合题意,舍去. 故此种方案不可行.(2)上述的第一种方案可获利:150×25+200×25=8 750(元),第二种方案可获利:150×35+250×15=9 000(元),因为8 750<9 000,故应选择第二种进货方案,即购进甲种电冰箱35台,乙种电冰箱15台.。

(完整版)人教版七年级数学下册名校课堂训练:二元一次方程组测试

(完整版)人教版七年级数学下册名校课堂训练:二元一次方程组测试

一、选择题1.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .182.甲、乙两人共同解关于x ,y 的方程组532ax by x cy +=⎧⎨+=⎩①②,甲正确地解得21x y =⎧⎨=-⎩乙看错了方程②中的系数c ,解得31x y =⎧⎨=⎩,则2()a b c ++的值为( )A .16B .25C .36D .493.已知关于x ,y 的方程组451x y ax by -=-⎧⎨+=-⎩和393418x y ax by +=-⎧⎨+=⎩a b +平方根是( ) A .0B .2±C 2D .24.下列方程组中,是二元一次方程组的是( )A .02x y =⎧⎨=⎩B .28x y y z +=⎧⎨+=⎩C .21xy y =⎧⎨=⎩D .2103x x y ⎧-=⎨+=⎩5.已知方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,则a ,b 的值分别为( )A .521a b ⎧=-⎪⎨⎪=⎩B .521a b ⎧=⎪⎨⎪=-⎩C .521a b ⎧=⎪⎨⎪=⎩D .521a b ⎧=-⎪⎨⎪=-⎩6.小王沿街匀速行走,发现每隔12分钟从背后驶过一辆8路公交车,每隔4分钟从迎面驶来一辆8路公交车.假设每辆8路公交车行驶速度相同,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) A .3分钟B .4分钟C .5分钟D .6分钟7.已知关于x ,y 的二元一次方程组343x y ax y a +=-⎧⎨-=⎩,给出下列结论中正确的是( )①当这个方程组的解x ,y 的值互为相反数时,2a =-; ②当1a =时,方程组的解也是方程42x y a +=+的解; ③无论a 取什么实数,2x y +的值始终不变;④若用x 表示y ,则322x y =-+; A .①②③B .①②④C .①③④D .②③④8.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为( ) A .23和12B .12和23C .24和12D .12和249.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( )A .2B .-2C .1D .-110.已知x ,y 互为相反数且满足二元一次方程组2321x y kx y +=⎧⎨+=-⎩,则k 的值是( )A .﹣1B .0C .1D .2二、填空题11.在某一个学校的运动俱乐部里面有三大筐数量相同的球,甲每次从第一个大筐中取出9个球;乙每次从第二个大筐中取出7个球;丙则是每次从第三个大筐中取出5个球.到后来甲、乙、丙三人都记不清各自取过多少次球了,于是管理人员查看发现第一个大筐中还剩下7个球,第二个大筐还剩下4个球,第三个大筐还剩下2个球,那么根据上述情况可以推知甲至少取了______次.12.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________13.若方程组2232x y k x y k +=-⎧⎨+=⎩的解适合x+y=2,则k 的值为_____.14.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________.15.甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k )个,乙每次摸5个或(5-k )个(k 是常数,且0<k <3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球__________个.16.若A ∠与B 互为补角,并且B 的一半比A ∠小30,则B 的度数为_________. 17.关于x ,y 的二元一次方程()()2127m x m y m -++=-,无论m 取何值,所得到的方程都有一个相同解,则这个相同解是______.18.问题解决:糖葫芦一般是用竹签串上山楂.再蘸以冰糖制作而成,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m 根竹签,n 个山楂,若每根竹签串a 个山楂,还剩b 个山楂,则m 、n 、a 、b 满足的等量关系为 (用含m 、n 、a 、b 的代数式表示).19.某年级有学生367人,其中男生比女生人数的2倍少20人,问男女学生各多少人?设女生人数为x 人,男生人数为y 人,可列方程组为 __________________.20.若关于x ,y 的方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2,则k =_____.三、解答题21.如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为()1A m n -,,B 点的坐标为()0n -,,其中,m n 是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,过点A 作x 轴的平行线交y 轴于点C .(1)求点,A B 的坐标;(2)动点P 从点B 出发,以每秒4个单位长度的速度沿射线BO 的方向运动,连接PC ,设点P 的运动时间为t 秒,三角形OPC 的面积为()0S S ≠,请用含t 的式子表示S (不用写出相应的t 的取值范围);(3)在(2)的条件下,在动点P 从点B 出发的同时,动点Q 从点C 出发以每秒1个单位长度的速度沿线段CA 的方向运动.过点O 作直线PC 的垂线,点G 为垂足;过点Q 作直线PC 的垂线,点H 为垂足.当2OG QH =时,求t 的值.22.在平面直角坐标系中,若点P (x ,y )的坐标满足x ﹣2y +3=0,则我们称点P 为“健康点”:若点Q (x ,y )的坐标满足x +y ﹣6=0,则我们称点Q 为“快乐点”. (1)若点A 既是“健康点”又是“快乐点”,则点A 的坐标为 ;(2)在(1)的条件下,若B 是x 轴上的“健康点”,C 是y 轴上的“快乐点”,求△ABC 的面积;(3)在(2)的条件下,若P 为x 轴上一点,且△BPC 与△ABC 面积相等,直接写出点P 的坐标.23.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为(),0A a ,(),4B b ,()2,C c ,//BC x 轴,且a 、b 满足12100a b a b +-+-+=. (1)则a =______;b =______;c =______;(2)如图1,在y 轴上是否存在点D ,使三角形ABD 的面积等于三角形ABC 的面积?若存在,请求出点D 的坐标;若不存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,点(),0N n 在x 轴上,若三角形BCM 的面积小于三角形BMN 的面积,直接写出n 的取值范围是______.24.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.25.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -+.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.历史上的数学巨人欧拉最先把关于x 的多项式用记号f(x)来表示.例如f(x)=x 2+3x -5,把x =某数时多项式的值用f(某数)来表示.例如x =-1时多项式x 2+3x -5的值记为f(-1)=(-1)2+3×(-1)-5=-7.(1)已知g(x)=-2x 2-3x +1,分别求出g(-1)和g(-2);(2)已知h(x)=ax 3+2x 2-ax -6,当h(12)=a ,求a 的值;(3)已知f(x)=2+3kx a -6x bk --2(a ,b 为常数),当k 无论为何值,总有f(1)=0,求a ,b 的值.27.两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数.已知前一个四位数比后一个四位数大990.若设较大的两位数为x ,较小的两位数为y ,回答下列问题: (1)可得到下列哪一个方程组?A .68,1010990.x y x y y x +=⎧⎨+-+=⎩ B .()()68,1010990.x y x y y x +=⎧⎨+-+=⎩C .()()68,100100990.x y x y y x +=⎧⎨+-+=⎩D .()()1068,100100990.x y x y y x +=⎧⎨+-+=⎩(2)解所确定的方程组,求这两个两位数.28.我区防汛指挥部在一河道的危险地带两岸各安置一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 光射线自AM 顺时针旋转至AN 便立即逆时针旋转至AM ,如此循环灯B 光射线自BP 顺时针旋转至BQ 便立即逆时针旋转至BP ,如此循环.两灯交叉照射且不间断巡视.若灯A 转动的速度是a 度/秒,灯B 转动的速度是b 度/秒,且a ,b 满足22(4)(5)0a b a b -++-=.若这一带江水两岸河堤相互平行,即//PQ MN ,且60BAN ∠=︒.根据相关信息,解答下列问题.(1)a =__________,b =__________.(2)若灯B 的光射线先转动24秒,灯A 的光射线才开始转动,在灯B 的光射线到达BQ 之前,灯A 转动几秒,两灯的光射线互相平行?(3)如图2,若两灯同时开始转动照射,在灯A 的光射线到达AN 之前,若两灯射出的光射线交于点C ,过点C 作CD AC ⊥交PQ 于点D ,则在转动的过程中,BAC ∠与BCD ∠间的数量关系是否发生变化?若不变,请求出这两角间的数量关系;若改变,请求出各角的取值范围. 29.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值;丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.30.学校美术组要去商店购买铅笔和橡皮,若购买60支铅笔和30块橡皮,则需按零售价购买,共支付30元;若购买90支铅笔和60块橡皮,则可按批发价购买,共支付40.5元.已知每支铅笔的批发价比零售价低0.05元,每块橡皮的批发价比零售价低0.10元. (1)求每支铅笔和每块橡皮的批发价各是多少元?(2)小亮同学用4元钱在这家商店按零售价买同样的铅笔和橡皮(两样都要买,4元钱恰好用完),共有哪几种购买方案?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比. 【详解】解:根据题意、结合图形可得:330433a b a a b+=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩,∴阴影部分面积223()310300=-=⨯=a b , 整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B . 【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.2.B解析:B 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】把21x y =⎧⎨=-⎩代入得:2562a b c -=⎧⎨-=⎩,解得:c =4,把31x y =⎧⎨=⎩代入得:3a +b =5,联立得:2535a b a b -=⎧⎨+=⎩,解得:21a b =⎧⎨=-⎩,则(a +b +c )2=(2﹣1+4)2=25. 故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.C【分析】根据求解二元一次方程组求出a ,b ,求出a b +计算即可; 【详解】 解:由题意可知:4539x y x y -=-⎧⎨+=-⎩和13418ax by ax by +=-⎧⎨+=⎩有相同的解, 在4539x y x y -=-⎧⎨+=-⎩①②中, ①+②得:2x =-, 将2x =-代入①得:3y =-,∴方程组的解为23x y =-⎧⎨=-⎩,在13418ax by ax by +=-⎧⎨+=⎩①②中, ①×3得:333ax by +=-③, ②-③得:21by =, ∴7b =-, ∴11a =, ∴4a b +=, ∴2=,∴故选:C . 【点睛】本题主要考查了二元一次方程组的求解、算术平方根的计算,准确计算是解题的关键.4.A解析:A 【分析】组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程,据此逐一判断即可得答案. 【详解】A 、符合二元一次方程组的定义,故本选项正确;B 、本方程组中含有3个未知数,故本选项错误;C 、第一个方程式的xy 是二次的,故本选项错误;D 、x 2是二次的,故本选项错误. 故选:A . 【点睛】本题考查的是二元一次方程组的定义,掌握定义判断方程组是否是二元一次方程组是解题5.C解析:C 【分析】先求出第二个方程组的解为21x y =⎧⎨=⎩,再代入方程组46ax by ax by -=⎧⎨+=⎩得出2426a b a b -=⎧⎨+=⎩,再求出方程组的解即可. 【详解】解:解方程组35471x y x y -=⎧⎨-=⎩得:21x y =⎧⎨=⎩,∵方程组46ax by ax by -=⎧⎨+=⎩与方程组35471x y x y -=⎧⎨-=⎩的解相同,∴把21x y =⎧⎨=⎩代入方程组46ax by ax by -=⎧⎨+=⎩得:2426a b a b -=⎧⎨+=⎩,解得:521a b ⎧=⎪⎨⎪=⎩, 故选:C 【点睛】本题考查了方程组的解的定义和解二元一次方程组,理解方程组的解的意义并正确解二元一次方程组是解题关键.6.D解析:D 【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间. 【详解】解:设8路公交车的速度为x 米/分,小王行走的速度为y 米/分,同向行驶的相邻两车的间距为s 米.每隔12分钟从背后驶过一辆8路公交车,则 1212x y s -=①每隔4分钟从迎面驶来一辆8路公交车,则 44x y s +=②由①+②可得6s x =,所以6sx=, 即8路公交车总站发车间隔时间是6分钟. 故选:D . 【点睛】本题考查了二元一次方程组的应用,根据追及问题和相遇问题得到两个等量关系是解题的关键.7.C解析:C 【分析】根据方程组的解法可以得到x +y =2+a ,①令x +y =0,即可求出a 的值,验证即可,②由①得x +y =0,而x +y =4+2a ,求出a 的值,再与a =1比较得出答案,③解方程组可求出方程组的解,再代入x +2y 求值即可,④用含有x 、y 的代数式表示a ,进而得出x 、y 的关系, 【详解】解:关于x ,y 的二元一次方程组343x y a x y a +=-⎧⎨-=⎩①②,①+②得,2x +2y =4+2a , 即:x +y =2+a ,(1)①当方程组的解x ,y 的值互为相反数时,即x +y =0时,即2+a =0, ∴a =﹣2,故①正确,(2)②原方程组的解满足x +y =2+a , 当a =1时,x +y =3,而方程x +y =4+2a 的解满足x +y =6, 因此②不正确,(3)方程组343x y a x y a +=-⎧⎨-=⎩①②,解得,211x a y a =+⎧⎨=-⎩,∴x +2y =2a +1+2-2a =3, 因此③是正确的,(4)方程组343x y a x y a +=-⎧⎨-=⎩①②,由方程①得,a =4﹣x ﹣3y 代入方程②得, x -y =3(4-x -3y ), 即;322x y =-+, 因此④是正确的, 故选:C . 【点睛】本题考查二元一次方程组的解法和应用,正确的解出方程组的解是解决问题的关键.8.A解析:A【分析】设鸡有x 只、兔有y 只,由等量关系:鸡兔35只,共有足94足,列方程组,解之即可.【详解】解:设鸡有x 只、兔有y 只,故居题意得:352494x y x y +=⎧⎨+=⎩, 解得:2312x y =⎧⎨=⎩, 答鸡和兔的数量分别为23和12.故选择:A .【点睛】本题考查列方程组解应用题,掌握列方程组解应用题的方法,抓住等量关系:鸡兔35只,共有足94足列方程组是解题关键.9.A解析:A【详解】(1)−(2)得:6y=−3a ,∴y=−2a , 代入(1)得:x=2a ,把y=−2a ,x=2a 代入方程3x+2y=10, 得:6a−a=10,即a=2.故选A.10.A解析:A【分析】根据x ,y 互为相反数得到0x y +=,然后与原方程组中的方程联立新方程组,解二元一次方程组,求得x 和y 的值,最后代入求值.【详解】解:由题意可得021x y x y +=⎧⎨+=-⎩①②, ②﹣①,得:y =﹣1,把y =﹣1代入①,得:x ﹣1=0,解得:x =1,把x =1,y =﹣1代入2x +3y =k 中,k =2×1+3×(﹣1)=2﹣3=﹣1,故选:A .【点睛】本题考查解二元一次方程组,掌握消元法(加减消元法和代入消元法)解二元一次方程组的步骤是解题关键.二、填空题11.30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k=9a+7=7b+4=5c+2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框解析:30【分析】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得可列方程k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数),然后根据整除的性质解答即可.【详解】设每框球的总数为k ,甲取了a 次,乙取了b 次,丙取了c 次.根据题意得:k =9a +7=7b +4=5c +2(k ,a ,b ,c 都是正整数)∴9a +7=5c +2,∴9a =5(c -1),∴a 是5的倍数.不妨设a =5m (m 为正整数),∴k =45m +7=7b +4,∴b =4533(1)677m m m ++=+, ∵b 和m 都是正整数,∴m 的最小值为6.∴a =5m =30.故答案为:30.【点睛】本题考查了三元一次方程的应用,解答本题的关键是明确题意,列出相应的者方程,会根据整除性进一步设未知数.12.【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可. 【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.13.3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.解析:3【详解】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得 3k-3=6,计算得出k=3,故答案为3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.14.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值. 15.110【详解】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2解析:110【详解】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④3x+16=2y+51,即2353yx+=,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.【点睛】本题主要考查了二元一次方程的整数解,解题时根据实际情况先确定k的值,然后表示出甲取得球的数目和乙取得球的数目,根据最终两人所摸出的球的总个数恰好相等列出二元一次方程,求整数解即可,注意分4种情况.16.【分析】根据与互为补角,并且的一半比小,然后根据题意列出关于、的二元一次方程组,求解即可.【详解】解:根据题意得,①-②得,,解得,把代入①得,,解得.∴,故答案为:100°.解析:100︒【分析】根据A ∠与B 互为补角,并且B 的一半比A ∠小30,然后根据题意列出关于A ∠、B 的二元一次方程组1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②,求解即可. 【详解】 解:根据题意得1801302A B A B ∠+∠=︒⎧⎪⎨∠-∠=︒⎪⎩①②, ①-②得,31502B ∠=︒,解得100B ∠=︒,把100B ∠=︒代入①得,100180A ∠+︒=︒,解得80A ∠=︒. ∴80100A B ∠=︒⎧⎨∠=︒⎩, 故答案为:100°.【点睛】本题考查了二元一次方程组在几何中运用,根据题意列出二元一次方程组是解题的关键. 17.【分析】将方程(m ﹣2)x+(m+1)y =2m ﹣7整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组解析:31x y =⎧⎨=-⎩【分析】将方程(m ﹣2)x +(m +1)y =2m ﹣7整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】解:(m﹣2)x+(m+1)y=2m﹣7,整理,得m(x+y﹣2)+(y﹣2x+7)=0,由方程的解与m无关,得x+y﹣2=0,且y﹣2x+7=0,解得31xy=⎧⎨=-⎩,即这个相同解是31xy=⎧⎨=-⎩.故答案为:31xy=⎧⎨=-⎩.【点睛】本题考查了含参数的二元一次方程有相同解问题,转化思想是解答本题的关键,当然,本题也可以采用特殊值法来求解,即取两个不同的m值,解两次二元一次方程组,但此法比较麻烦,18.竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方解析:竹签有15根,山楂有63个;am+b=n.【分析】设竹签有x根,山楂有y个,根据“如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签”,即可得出关于x,y的二元一次方程组,解之即可得出竹签及山楂的数量;利用山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量,即可找出m、n、a、b之间的等量关系.【详解】问题解决:设竹签有x根,山楂有y个,依题意得:437(6)x yx y+=⎧⎨-=⎩,解得:1563xy=⎧⎨=⎩.答:竹签有15根,山楂有63个.山楂的个数=每根竹签串的山楂个数×竹签数量+剩余山楂的数量∴am+b=n.故答案为:am+b=n.【点睛】本题考查了二元一次方程组的应用,根据题意列出方程组是解题的关键.19.【分析】设女生人数为x人,男生人数为y人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设女生人数为x人,男生人数为解析:367220 x yy x+=⎧⎨=-⎩【分析】设女生人数为x人,男生人数为y人,根据“该年级有学生367人,且男生比女生人数的2倍少20人”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设女生人数为x人,男生人数为y人,∵该年级有学生367人,∴x+y=367;∵男生比女生人数的2倍少20人,∴y=2x﹣20.联立两方程组成方程组367220x yy x+=⎧⎨=-⎩.故答案为:367220x yy x+=⎧⎨=-⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.20.-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组中x的值比y的相反数大2,∴x=﹣y解析:-3【分析】由题意得:x=﹣y+2,代入方程组中的第一个方程可求得y的值,再求出x的值,最后代入到方程组中的第二个方程可求出k的值.【详解】解:∵方程组4510(1)8x y kx k y +=⎧⎨--=⎩中x 的值比y 的相反数大2, ∴x =﹣y +2,∴4(﹣y +2)+5y =10,解得:y =2,把y =2代入4x +5y =10中,得:4x +10=10,解得:x =0,则方程组的解是x=0y=2⎧⎨⎩, ∴﹣(k ﹣1)×2=8,解得:k =﹣3.故答案为:﹣3.【点睛】本题主要考查二元一次方程组的解,解答的关键是理解题意,求出方程组的解.三、解答题21.(1) ()6,7A ()8,0B -;(2)2814(02)1428(2)t t S t t -≤<⎧=⎨->⎩;(3)43或4. 【分析】(1)先求出是二元一次方程组2202m n m n +=⎧⎨-=-⎩的解,然后代入A 、B 的坐标即可解答; (2)先求出OC 的长,分点P 在线段OB 上和OB 的延长线上两种情况,分别利用三角形面积公式计算即可;(3)分两种情况解答:①当点P 在线段OB 上时,连接PQ ,过点M 作PM ⊥AC 交AC 的延长线于M ,可得OP =2CQ ,构建方程解答即可;②当点P 在BO 的延长线上时,同理可解.【详解】解:(1)解二元一次方程组2202m n m n +=⎧⎨-=-⎩,得:68m n =⎧⎨=⎩∴A (6,7),B (-8,0);(2) ①当点P 在线段OB 上时,BP =4t ,OP =8-4t , ∴11(84)7281422S OP OC t t =⋅⋅=⋅-⨯=- ②当点P 在OB 延长线上时,11(48)7142822S OP OC t t =⋅⋅=⋅-⨯=- 综上所述2814(02)1428(2)t t S t t -≤<⎧=⎨->⎩; (3)①当点P 在线段OB 上时,如图:连接PQ ,过点M 作PM ⊥AC 交AC 的延长线于M1122OPC S OP OC PC OG ∆=⋅=⋅, 1122PCQ S CQ PM PC HQ ∆=⋅=⋅ 又2OG QH =2OPC PCQ S S ∆∆∴=2OP CQ ∴=842t t ∴-=43t ∴=; ②当P 在线段BO 延长线上时 同理可得:4t =.综上,满足题意t 的值为43或4. 【点睛】本题主要考查了三角形的面积、二元一次方程组等知识点,学会用分类讨论的思想思考问题以及利用面积法解决线段之间的关系成为解答本题的关键.22.(1)(3,3);(2)272;(3)(32,0)或(152-,0) 【分析】(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0,解23060x y x y -+=⎧⎨+-=⎩即可得答案; (2)设直线AB 交y 轴于D ,求出B 、C 、D 的坐标,根据S △ABC =S △BCD +S △ACD 即可求出答案;(3)设点P 的坐标为(n ,0),根据△PBC 的面积等于△ABC 的面积,即272,列出方程,解之即可.【详解】解:(1)点A 既是“健康点”又是“快乐点”,则A 坐标应该满足x -2y +3=0和x +y -6=0, 解23060x y x y -+=⎧⎨+-=⎩得:33x y =⎧⎨=⎩, ∴A 的坐标为(3,3);故答案为:(3,3);(2)设直线AB 交y 轴于D ,如图:∵B 是x 轴上的“健康点”,在x -2y +3=0中,令y =0得x =-3,∴B (-3,0),∵C 是y 轴上的“快乐点”,在x +y -6=0中,令x =0得y =6,∴C (0,6),在x -2y +3=0中,令x =0得y =32, ∴D (0,32), ∴CD =92, ∴S △ABC =S △BCD +S △ACD =12CD •|x B |+12CD •|x A | =1919332222⨯⨯+⨯⨯ =272; (3)设点P 的坐标为(n ,0),则BP =3n +,∵△BPC 与△ABC 面积相等,∴S △BPC =1362n ⨯+⨯=272, ∴932n +=, ∴32n =或152-, ∴点P 的坐标为(32,0)或(152-,0). 【点睛】本题考查三角形面积,涉及新定义、坐标轴上点坐标特征等知识,解题的关键是理解“健康点”、“快乐点”含义.23.(1)−3,4,4;(2)(0,207)或(0,47);(3)n <−5或n >−1 【分析】(1)根据非负数的性质构建方程组,求出a 和b ,再根据BC ∥x 轴,可得c 的值; (2)当点D 在直线AB 的下方时,如图1−1中,延长BC 交y 轴于E (0,4),连接AE .设D (0,m ).当点D 在直线AB 的上方时,如图1−2中,连接OB ,设D (0,m ).分别构建方程,可得结论.(3)如图2中,当点N 在点A 的右侧时,连接MN ,OB ,设M (a ,b ),利用面积法求出b 的值,再求出S △BNM =S △BCM 时,n 的值,同法求出当点N 在点的左侧时,且S △BNM =S △BCM 时,n 的值,结合图象可得结论.【详解】解:(1)∵12100a b a b +-+-+=, 又∵1a b +-≥0,|2a −b +10|≥0,∴a +b −1=0且2a −b +10=0,∴a =−3,b =4,∵BC ∥x 轴,∴c =4,∴a =−3,b =4,c =4,故答案为:−3,4,4;(2)当点D 在直线AB 的下方时,如图1−1中,延长BC 交y 轴于E (0,4),连接AE .设D (0,m ).∵S △ABD =S △AED +S △BDE −S △ABE =S △ABC ,∴12×(4−m )×3+12×(4−m )×4−12×4×4=12×2×4, ∴m =47; 当点D 在直线AB 的上方时,如图1−2中,连接OB ,设D (0,m ).∵S△ABD=S△ADO+S△ODB−S△ABO=S△ABC,∴12×m×3+12×m×4−12×3×4=12×2×4,∴m=207.综上所述,满足条件的点D的坐标为(0,207)或(0,47).(3)如图2中,当点N点A的右侧时,连接MN,OB.设M(a,b),∵S△BCM=S△OBC−(S△AOB−S△AOM),∴12×2×(4−b)=12×2×4−(12×3×4−12×3×b),解得b=125,当S△BNM=S△BCM时,则有12×(n+3)×4−12×(n+3)×125=12×2×(4−125),解得n=−1,当点N在点A的左侧时,且S△BNM=S△BCM时,同法可得n=−5,观察图象可知,满足条件的n的值为n<−5或n>−1.【点睛】本题属于三角形综合题,考查了三角形的面积,非负数的性质,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用未知数构建方程解决问题,对于初一学生来说题目有一定的难度.24.(1)12xy=⎧⎨=⎩;(2)41mn=-⎧⎨=-⎩;(3)a=3,b=2.【分析】(1)利用加减消元法,可以求得;(2)利用换元法,设m+5=x,n+3=y,则方程组化为(1)中的方程组,可求得x,y的值进一步可求出原方程组的解;(3)把am和bn当成一个整体利用已知条件可求出am和bn,再把bn代入2m-bn=-2中求出m的值,然后把m的值代入3m+n=5可求出n的值,继而可求出a、b的值.【详解】解:(1)两个方程相加得66x=,∴1x =,把1x =代入321x y -=-得2y =,∴方程组的解为:12x y =⎧⎨=⎩; 故答案是:12x y =⎧⎨=⎩; (2)设m +5=x ,n +3=y ,则原方程组可化为321327x y x y -=-⎧⎨+=⎩, 由(1)可得:12x y =⎧⎨=⎩, ∴m+5=1,n+3=2,∴m =-4,n =-1,∴41m n =-⎧⎨=-⎩, 故答案是:41m n =-⎧⎨=-⎩; (3)由方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解可得方程组71am bn am bn +=⎧⎨-=-⎩, 解得34am bn =⎧⎨=⎩, 把bn =4代入方程2m ﹣bn =﹣2得2m =2,解得m =1,再把m =1代入3m +n =5得3+n =5,解得n =2,把m =1代入am =3得:a =3,把n =2代入bn =4得:b =2,所以a =3,b =2.【点睛】本题主要考查二元一次方程组的解法,重点是考查整体思想及换元法的应用,解题的关键是理解好整体思想.25.(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期末复习(四)二元一次方程组01知识结构图02重难点突破重难点1 二元一次方程组的解法【例1】解方程组:24, 215. x yy x+=⎧⎨+=⎩①②【思路点拨】解法一:将①变形为42y x=-,然后代入②,消去y,转化为一元一次方程求解;解法二:2⨯①-②,消去y,转化为一元一次方程求解.【解答】方法指导二元一次方程组有两种解法,我们可以根据具体的情况来选择简便的解法,如果方程中有未知数的系数是1时,一般采用代入消元法;如果两个方程的相同未知数的系数相同或互为相反数时,一般采用加减消元法;如果方程组中的系数没有特殊规律,通常用加减消元法.变式训练1.(2018·天津)方程组10,216x yx y+=⎧⎨+=⎩的解是()A.64 xy=⎧⎨=⎩B.56 xy=⎧⎨=⎩C.36 xy=⎧⎨=⎩D.28 xy=⎧⎨=⎩2.解方程组:3419,4.x yx y+=⎧⎨-=⎩①②重难点2 二元一次方程组的应用【例2】某校组织“大手拉小手,义卖献爱心”活动,购买了黑、白两种颜色的文化衫共140件,进行手绘设计后出售,所获得利润全部捐给山区困难孩子.每件文化衫的批发价和零售价如下表:假设文化衫全部售出,共获利1860元,求购买黑、白两种文化衫各多少件?【思路点拔】根据等量关系“黑色文化衫件数十白色文化衫件数=140,黑色文化衫的利润十白色文化衫的利润=1860元”列方程组求解.【解答】方法指导列方程解决实际间题的解题步骤:①审题:弄清已知量和未知量;②设未知数,并根据等量关系列出符合题意的方程组;③解方程组;④验根并作答:检验方程的根是否符合题意,并写出完整的答.变式训练3.(2018·荆州)《九章算术》是中国传统数学名著,其中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”若设每头牛、每只羊分别值金x两、y两,则可列方程组为()A.5210258x y x y +=⎧⎨+=⎩B.5210258x y x y -=⎧⎨-=⎩C.5210258x y x y +=⎧⎨-=⎩D.5282510x y x y +=⎧⎨+=⎩ 4.在某次亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾? 思想方法 整体思想 【例3】若方程组2313,3530.9a b a b -=⎧⎨+=⎩的解为8.3,1.2,a b =⎧⎨=⎩则方程组2(2)3(1)13,3(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为( ) A.8.31.2x y =⎧⎨=⎩B.10.20.2x y =⎧⎨=⎩C.10.32.2x y =⎧⎨=⎩D. 6.32.2x y =⎧⎨=⎩ 方法指导所谓“整体思想”就是打破从局部常规解决问题的思路,要从整体的结构入手,观察要解决间题与已知条件之间的整体联系,找到解决问题的捷径. 变式训练5.若二元一次方程组3,354x y x y +=⎧⎨-=⎩的解为,,x a y b =⎧⎨=⎩则a b -=( )A.1B.3C.14-D.7403复习自测一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( )A.212x y y z +=-⎧⎨+=⎩B.53323x y y x -=⎧⎨=+⎩C.512x y xy -=⎧⎨=⎩ D.2371x y x y -=⎧⎨+=⎩2.方程529x y +=-与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的是( )A.21x y +=B.543x y +=-C.348x y -=-D.328x y +=-3.方程组32,3211x y x y -=⎧⎨+=⎩①②的最优解法是( )A.由①,得32y x =-,再代入②B.由②,得3112x y =-,再代入①C.由②-①,消去xD.由2⨯+①②,消去y4.方程组24317x y x z x y z +=⎧⎪+=⎨⎪++=⎩的解是( )A.221x y z =⎧⎪=⎨⎪=⎩ B.211x y z =⎧⎪=⎨⎪=⎩ C.281x y z =-⎧⎪=⎨⎪=⎩ D.222x y z =⎧⎪=⎨⎪=⎩5.A ,B 两地相距6km ,甲、乙两人从A ,B 两地同时出发,若同向而行,甲3h 可追上乙;若相向而行,1h 相遇,求甲、乙两人的速度各是多少?若设甲的速度为km /h x ,乙的速度为km /h y ,则得方程组为( ) A.6336x y x y +=⎧⎨+=⎩B.636x y x y +=⎧⎨-=⎩C.6336x y x y -=⎧⎨+=⎩D.6336x y x y +=⎧⎨-=⎩6.在等式y kx b =+中,当1x =-时,2y =-,当2x =时,7y =,则这个等式是()A.31y x=-+ B.31y x=+ C.23y x=+ D.31y x=--+2y=5k+2,7.关于,x y的二元一次方程组252,45x y kx y k+=+⎧⎨-=-⎩的解满足9x y+=,则k的值是()A.1B.2C.3D.48.小明在解关于,x y的二元一次方程组3,31x yx y+⊗=⎧⎨-⊗=⎩时,得到了正确结果,1,xy=⊕⎧⎨=⎩后来发现“⊗”“⊕”处被墨水污损了,请你帮他找出⊗、⊕处的值分别是()A.1,1⊗=⊕=B.2,1⊗=⊕=C.1,2⊗=⊕=D.2,2⊗=⊕=9.已知方程组53,54x yax y+=⎧⎨+=⎩和25,51x yx by-=⎧⎨+=⎩有相同的解,则,a b的值为()A.142 ab=⎧⎨=⎩B.46 ab=⎧⎨=-⎩C.62 ab=-⎧⎨=⎩D.12 ab=⎧⎨=⎩10.某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘缆车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?A.16B.19C.22D.25二、填空题(每小题4分,共20分)11.解二元一次方程组的基本思想方法是“消元”,那么解方程组422,325x yx y-=⎧⎨+=⎩宜用________法;解方程组2,23x yx y=⎧⎨-=⎩宜用________法.12.请写出一个以,x y为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程组的解为1,2.xy=⎧⎨=⎩这样的方程组可以是________.13.已知1,2xy=⎧⎨=-⎩是方程23x ay-=的一个解,则a的值是________.14.一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为________.15.(2019·临沂)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A,B两种型号的钢板共________块.三、解答题(共50分)16.(12分)解方程组:(1)321,37;x yx y-=-⎧⎨+=⎩①②(2)325, 257;x yx y+=⎧⎨+=⎩①②(3)4(1)3(1)2,2.23x y yx y--=--⎧⎪⎨+=⎪⎩17.(8分)对于任意的实数,,,a b c d,我们规定:a bad bcc d=-,根据这一规定,解答以下问题:若,x y同时满足()3413,4(6)5()x yy x-==--,求xy的值.18.(10分)小明同学看了拼木块的魔术后,也找了8个样大小的长方形木块,第1次按如图1那样,恰好可以拼成一个大的长方形,第2次七拼八凑的拼成了如图2所示的正方形,可是中间留下了一个洞,经测量,发现刚好是一个边长为3cm的正方形.你知道小明同学用的小木块的长和宽分别是多少吗?19.(10分)(2019·盐城)体育器材室有,A B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克.(1)每只A型球、B型球的质量分别是多少千克?(2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只?20.(10分)(教材P112复习题T10变式)“五一”期间,步步高超市进行兑换活动,亮亮妈妈的积分卡里有7000分,她看了看兑换方法后(见表),兑换了两种礼品共5件并刚好用完积分,请你求出亮亮妈妈的兑换方法.参考答案【例1】解:解法一:由①,得42y x =-,③ 代入②,得2(42)15x x -+=.解得1x = .把1x =代入③,得 2.y =∴原方程组的解为1,2.x y =⎧⎨=⎩解法二:①×2,得428x y +=③ -③②,得4185x x -=-.解得1x =.把1x =代入①,得 2.y =∴原方程组的解为1,2.x y =⎧⎨=⎩【例2】解:设购买黑色文化衫x 件,白色文化衫y 件.根据题意,得140,(2510)(208)1860,x y x y +=⎧⎨-+-=⎩解得60,80.x y =⎧⎨=⎩答:购买黑色文化衫60件,购买白色文化衫80件. 【例3】D 变式训练 1.A2.解:5,1.x y =⎧⎨=⎩3.A4.解:设应分配x 名工人生产脖子上的丝巾,y 名工人生产手上的丝巾.由题意,得70,120021800.x y x y +=⎧⎨⨯=⎩解得30,40.x y =⎧⎨=⎩,答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾. 5.D 复习自测1.B2.C3.C4.C5.D6.B7.B8.B9.A 10.A11.加减 代入 12答案不唯一,如:31x y x y +=⎧⎨-=-⎩ 13.12 14.35 15.1116.解:(1)1,2.x y =⎧⎨=⎩ (2)1,1.x y =⎧⎨=⎩ (3)2,3.x y =⎧⎨=⎩11 / 1117.解:根据题意,得5613,34 4.x y x y -=⎧⎨+=⎩解得2,11.2x xy y =⎧⎪∴=-⎨=-⎪⎩. 18.解:设小木块的长为x cm 、宽为y cm.根据两个拼图可知35,32,x y x y =⎧⎨+=⎩解得15,9.x y =⎧⎨=⎩答:小明同学用的小木块的长为15cm 、宽为9cm.19.解:(1)设每只A 型球、B 型球的质量分别是x 千克、y 千克,根据题意,得7,313,x y x y +=⎧⎨+=⎩,解得3,4,x y =⎧⎨=⎩答:每只A 型球的质量是3千克,B 型球的质量是4千克.(2)设A 型球有a 只,B 型球有b 只,根据题意,得1743417,3b a b a -+=∴=.又,a b 均为正整数,3,2.a b =⎧∴⎨=⎩答:A 型球有3只,B 型球有2只.20.解:①设亮亮妈妈兑换了x 个电茶壶和y 个书包.由题意,得200010007000,5,x y x y +=⎧⎨+=⎩解得2,3.x y =⎧⎨=⎩②设亮亮妈妈兑换了m 个榨汁机和n 个书包.由题意,得300010007000,5,m n m n +=⎧⎨+=⎩解得1,4.m n =⎧⎨=⎩.③设亮亮妈妈兑换了a 个榨汁机和b 个电茶壶.由题意,得300020007000,5,a b a b +=⎧⎨+=⎩解得3,8a b =-⎧⎨=⎩(不合题意,舍去).答:亮亮妈妈兑换了2个电茶壶和3个书包或1个榨汁机和4个书包.。

相关文档
最新文档