天博羟基磷灰石说明书
羟基磷灰石的制备,实验报告
羟基磷灰石的制备,实验报告实验报告实验名称:纳米羟基磷灰石的制备与表征一、实验目的了解纳米羟基磷灰石的制备及其性质,熟悉其表征方法,了解相关原理和操作流程。
二、实验原理羟基磷灰石,又称羟磷灰石,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化。
羟基磷灰石(HAP)是脊椎动物骨骼和牙齿的主要组成,人的牙釉质中羟基磷灰石的含量在96%以上。
羟基磷灰石具有优良的生物相容性,并可作为一种骨骼或牙齿的诱导因子,在口腔保健领域中对牙齿具有较好的再矿化、脱敏以及美白作用。
实验证明HAP粒子与牙釉质生物相容性好,亲和性高,其矿化液能够有效形成再矿化沉积,阻止钙离子流失,解决牙釉质脱矿问题,从根本上预防龋齿病。
含有HAP材料的牙膏对唾液蛋白、葡聚糖具有强吸附作用,能减少患者口腔的牙菌斑,促进牙龈炎愈合,对龋病、牙周病有较好的防治作用。
以Ca(N03)2.4H2O NH4H2 PO4 为原料,采用化学沉淀法制备HA,CA/P=1.67三、仪器与试剂材料:Ca(N03)2 4H2O 、NH4H2 PO4 、氨水仪器:磁力搅拌机四、实验步骤(1).称取6.9g 磷酸氢二铵和23.6g 硝酸钙。
(2)溶入250ml的蒸馏水中,硝酸钙用1000ml烧杯,磷酸氢二铵溶入250ml蒸馏水,用氨水分别调节PH值10-11。
(3)将磷酸氢二铵滴加到硝酸钙溶液中,控制滴加速度和搅拌速度,反应过程中检测反应的PH值以便及时做出调整。
(4)溶液滴加完后,继续搅拌加热维持1h,反应结束后陈化8h,薄膜覆盖烧杯口。
(5)蒸馏水清洗至中性,40。
C下干燥,研磨成粉状。
五、数据处理表征红外谱图1图1是HA标准红外光谱图。
HA有两个阴离子基团,P043-四面体阴离子基团和OH-基团。
图中P043-的吸收谱线571、602、963、1050和1089cm-1都出现了,OH-基团的谱线则出现在631、3570 cm-1处,证明所制备的晶体是HA晶体。
羟基磷灰石分子式
羟基磷灰石分子式
摘要:
1.羟基磷灰石的定义和基本性质
2.羟基磷灰石的分子式及化学组成
3.羟基磷灰石在生物和工业领域的应用
4.羟基磷灰石的制备方法及其研究进展
正文:
羟基磷灰石(Calcium hydroxyapatite,Ca10(PO4)6(OH)2),是一种常见的无机非金属材料,具有良好的生物相容性和骨组织相似性,因此在医学、生物工程等领域具有重要应用价值。
羟基磷灰石的分子式为Ca10(PO4)6(OH)2,它由钙离子(Ca2+)、磷酸根离子(PO43-)和羟基离子(OH-)组成。
钙离子和磷酸根离子通过离子键结合,而羟基离子与钙离子和磷酸根离子形成氢键,赋予羟基磷灰石良好的生物相容性和骨组织相似性。
羟基磷灰石在生物医学领域的主要应用有骨修复材料、生物活性陶瓷和药物载体等。
在工业领域,羟基磷灰石具有高硬度、高热稳定性和低热膨胀系数等优点,可用于制造高温耐磨材料、涂层和磨料等。
羟基磷灰石的制备方法主要有化学沉淀法、水热法、溶胶-凝胶法和生物矿化法等。
随着科学技术的不断发展,研究者们对羟基磷灰石的制备方法和性能优化进行了深入研究,以满足不同领域的应用需求。
羟基磷灰石pdf标准卡片
羟基磷灰石pdf标准卡片
羟基磷灰石(hydroxyapatite,HA)是一种含有羟基(OH-)离子的磷灰石矿物,化学式为Ca10(PO4)6(OH)2。
羟基磷灰石是人体组织中最常见的无机矿物质之一,它在骨骼和牙齿中占据着重要的地位。
羟基磷灰石具有良好的生物相容性和生物活性,因此在医学领域被广泛应用。
它可以作为骨修复材料、牙科材料和人工关节等方面的成分。
在骨修复中,羟基磷灰石可以直接注入骨骼缺损区域,促进骨骼再生。
在牙科中,它可以用作牙齿充填材料或种植体的表面涂层。
羟基磷灰石的形态多样,可以是粉末状、颗粒状或块状。
其物理性质可以通过X射线衍射、扫描电镜等仪器进行表征。
化学性质上,可以用X射线荧光光谱或核磁共振等技术进行分析。
羟基磷灰石的制备方法多种多样,常见的有湿法合成、溶胶-凝胶法、生物技术法等。
不同的制备方法可以获得具有不同形态和性质的羟基磷灰石材料。
总结起来,羟基磷灰石是一种重要的无机材料,具有广泛的应用前景。
相关的研究和标准可以通过查阅相关的学术文献或标准卡片得到进一步的了解。
羟基磷灰石的制备及表征【可编辑范本】
羟基磷灰石的制备及表征一、实验目的1。
掌握纳米羟基磷灰石的制备及原理2.了解羟基磷灰石的表征方法及生物相容性二实验原理羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。
HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。
HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。
HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。
为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧.纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。
固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末.液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法.水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。
化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。
沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。
金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。
羟基磷灰石(1306-06-5)的应用
羟基磷灰石(CAS:1306-06-5)的应用羟基磷灰石又名骨粉,英文名Hydroxyapatite,广泛存在于人体和牛乳中,人体内主要分布于骨骼和牙齿中,牛乳内主要分布于酪蛋白胶粒和乳清中。
其应用领域广泛,可用作骨替代材料、整形和整容外科、齿科、层析纯化、补钙剂,亦为牙齿和骨骼的主要成份,目前广泛应用于制造认同牙齿或骨骼成份的尖端新素材。
其用途如下:【制备天然羟基磷灰石生物陶瓷】采用微波加热对氮化硅颗粒增强羟基磷灰石进行烧结。
研究不同煅烧温度对羟基磷灰石力学性能的影响以及黏结剂聚乙二醇(PEG-4000)对制得的羟基磷灰石生物陶瓷的性能影响,并且通过测量密度、三点抗弯强度、维氏硬度等对HAP生物陶瓷进行力学性能表征以及由XRD、SEM对制得的羟基磷灰石生物陶瓷进行微观性能表征。
实验表明,没有添加剂时,烧结温度为1250℃、保温时间为10min时HAP陶瓷的力学性能较好。
【制备天然羟基磷灰石生物陶瓷】羟基磷灰石(hydroxyapatite,简称HA)是自然骨无机成分的主要部分,具有良好的生物相容性和生物活性,以及骨传导性。
但是纯HA力学性能较差,强度较低,难以承受负荷或冲击,因而限制了其在人体重骨组织修复的应用。
为了解决这个问题,提高HA的力学性能来满足材料成型要求,使其在临床上有更广泛的应用,把HA与壳聚糖(chitosan,CS)结合制备成复合材料并对其性能作了初步的探讨。
(1)电沉积法制备HA的研究。
首先在压电石英晶振(Piezoelectric quartz crystal,简称PQC)表面电沉积制备磷酸钙盐。
同时采用电化学石英晶体微天平(EQCM)监测不同电流密度下电沉积过程,结果表明:晶体表面沉积的膜层质量和表面致密程度受电流密度的影响,并且确定了最适合的电流密度为0.6mA/cm2。
随后采用压电石英阻抗技术(Piezoelectric quartz crystal impedance,PQCI)在线检测电沉积产物磷酸钙盐在0.1mol.l-1氢氧化钠溶液中的碱处理过程。
羟基磷灰石{Ca10(PO4)6(OH)2,hydroxyapatite,简称HAP}具...
羟基磷灰石{Ca10(PO4)6(OH)2,hydroxyapatite,简称HAP}具有极好的生物相容性和生物活性,被认为是最有前途的陶瓷人工齿和人工骨置换材料。
然而,纯HAP陶瓷的机械性能比较差,例如,断裂韧性(K IC)不超过1.0 MPa·m1/2,而且,在潮湿的环境中Weibull因子较低(n=5~12),作为人工种植体其使用可靠性较差。
到目前为止,HAP陶瓷不能用作承载种植体,它在医学上的应用仅限于小的非承载种植体、粉末、涂层和低承载的多孔种植体。
为了提高HAP陶瓷材料的使用可靠性,近十几年来已经进行了许多研究工作。
本文将结合我们的实验工作,简单探讨在该领域的某些研究进展。
1 HAP粉末的制备制备HAP粉末有许多方法,主要有湿法和固态反应法[1]。
固态反应法往往给出符合化学计量、结晶完整的产品,但是它们要求相对较高的温度和热处理时间,而且。
这种粉末的可烧结性较差。
湿法包括:沉淀法[2,3]、水热合成法[4]和溶胶-凝胶法[5~8]等。
用水热合法成法获得的HAP材料一般结晶程度高,Ca/P 接近化学计量值。
溶胶-凝胶法可以得到无定形、纳米尺寸、Ca/P比接近1.67的HAP粉末。
用沉淀法在温度不超过100 ℃的条件下,可制备纳米尺寸的纤维颗粒粉末[9]。
就HAP粉末的制备而言,制备工艺已经比较成熟。
但是到目前为止在我国还没有形成HAP粉末材料的批量生产能力。
2 HAP陶瓷HAP陶瓷的烧结温度一般为1000~1200 ℃,袁建军等人[10]的研究说明,1300 ℃是HAP陶瓷材料的最佳烧成温度。
如果烧结温度过高可造成HAP分解和颗粒异常长大,导致强度降低。
热压[11]、热等静压烧结可得到具有细晶结构,高密度而且稳定性和机械性能良好的制品。
微波烧结[12]不仅有效地节约时间和能源,而且有利于HAP材料的微观结构和机械强度。
致密HAP陶瓷的机械性能取决于HAP粉末中Cap比值、气孔率和杂质。
羟基磷灰石涂层的制备
羟基磷灰石涂层的制备摘要本文以五氧化二磷、无水乙醇、硝酸钙为原料,通过溶胶-凝胶法制备羟基磷石灰涂层。
选用2mm/s的速度浸渍提拉载玻片,在载玻片上进行涂膜,经60℃干燥后在650℃烧结保温3h,可在载玻片上得到羟基磷灰石涂层。
研究结果表明:制备溶胶合适的配比为Ca(NO3)2•4H2O:P2O5(摩尔比)=10:3,即Ca/P原子比=5:3(约等于1.67)。
关键词羟基磷灰石,涂层,溶胶-凝胶法羟基磷灰石(Hydroxyapatite,简称HA 或HAP,化学式Ca10(PO4)6(OH)2),是人体和动物骨骼的主要无机成分(约占60%)。
它与生物硬骨组织中的磷酸钙盐有着相似的化学成分,具有良好的生物相容性和生物活性,能与骨形成较强的活性连结,植入骨组织后能在界面上与骨形成很强的化学结合;在体液的作用下,会发生降解,游离出钙和磷,并被人体组织吸收,生长出新的组织,具有骨传导和骨诱导性[1],因此羟基磷灰石成为目前植入材料的研究热点。
目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶(sol-gel)法等[2]。
对于制备要求较高、具有表面活性的羟基磷灰石而言,溶胶-凝胶法是较为合适的方法。
1实验部分`1.1 实验仪器及试剂主要仪器:BDX3200型自动X射线粉末衍射仪、RJX-5-13高温箱或电阻炉、DL-102型电热鼓风干燥箱、HJ-3恒温磁力搅拌器。
试剂:五氧化二磷(P2O5)、无水乙醇(C2H5OH)、硝酸钙(Ca(NO3)2•4H2O) (均为分析纯)。
1.2 溶胶制备将1g五氧化二磷(0.007mol)和26ml无水乙醇反应,冷却后得到磷酸三乙酯[(CH3CH2O)3PO4]。
再将5.5g硝酸钙[Ca(NO3)2•4H2O](0.023mol)和上述反应产物磷酸三乙酯进行作用得到溶胶。
1.3 涂膜制备将用丙酮清洗过的洁净载玻片放入制备好的溶胶中,用浸渍提拉法在载玻片上制成涂膜,放入60℃电热鼓风干燥箱中干燥3h,然后放入电阻炉中,以10℃/min的速度升温至650℃并保温4h,自然冷却,即在载玻片上获得羟基磷灰石涂层。
羟基磷灰石填料说明书(3篇)
第1篇一、产品概述羟基磷灰石(Hydroxyapatite,简称HA)是一种天然存在于骨骼和牙齿中的无机非金属材料,具有优异的生物相容性、生物降解性和生物活性。
本说明书所介绍的羟基磷灰石填料,是一种经过特殊处理和纯化的HA粉末,广泛应用于生物医学材料、药物载体、陶瓷材料等领域。
二、产品规格1. 纯度:≥99.5%2. 粒径分布:0.5-5μm3. 比表面积:≥50m²/g4. 水份含量:≤0.5%5. 灼烧失重:≤0.5%6. 氧化钙含量:≤0.1%7. 磷酸钙含量:≥98.5%三、产品特性1. 生物相容性:羟基磷灰石填料具有良好的生物相容性,与人体骨骼和牙齿具有良好的亲和力,可促进骨组织的生长和修复。
2. 生物降解性:HA填料在人体内可被逐步降解,降解产物对人体无毒、无害,可被人体吸收。
3. 生物活性:HA填料能够诱导成骨细胞的增殖和分化,促进骨组织的生长。
4. 机械性能:HA填料具有较好的机械性能,可满足一定程度的力学要求。
5. 化学稳定性:HA填料在生理条件下具有良好的化学稳定性,不易被酸、碱等物质腐蚀。
四、应用领域1. 生物医学材料:HA填料可用于制备骨水泥、骨植入物、人工关节、牙科材料等生物医学材料。
2. 药物载体:HA填料可作为药物载体,提高药物的生物利用度和靶向性。
3. 陶瓷材料:HA填料可用于制备生物陶瓷材料,如生物陶瓷涂层、生物陶瓷支架等。
4. 纳米材料:HA填料可作为纳米材料的制备原料,提高纳米材料的生物相容性和生物活性。
5. 其他领域:HA填料还可应用于化妆品、食品添加剂、环保材料等领域。
五、使用方法1. 储存:羟基磷灰石填料应储存在干燥、通风、阴凉的环境中,避免受潮、受热和阳光直射。
2. 混合:在使用过程中,HA填料应与树脂、聚合物等材料充分混合,以确保材料性能的均匀性。
3. 制备:根据具体应用需求,将HA填料与其他材料按照一定比例混合,制备成所需形态的产品。
4. 处理:在制备过程中,可对HA填料进行表面处理,以提高其与基体的结合强度。
羟基磷灰石纯度计算__概述说明以及解释
羟基磷灰石纯度计算概述说明以及解释1. 引言1.1 概述羟基磷灰石是一种重要的生物材料,广泛应用于医学和牙科领域。
其纯度是评价其质量和性能的关键参数之一。
精确计算羟基磷灰石的纯度对于保证其在医药和牙科领域的应用效果具有重要意义。
1.2 文章结构本文将详细介绍羟基磷灰石纯度的计算方法及相关实验设计和步骤。
首先,我们将介绍纯度概念,解释纯度在羟基磷灰石评价中的重要性。
然后,我们将介绍两种常用的计算方法,并逐步讲解其原理和应用。
接下来,我们将描述实验设计和步骤,包括样品准备、分析仪器和试剂准备以及实验操作过程。
最后,我们将展示结果并进行数据处理、统计分析、结果解读与讨论。
1.3 目的本文旨在提供一个全面而清晰的指导,帮助读者了解羟基磷灰石纯度计算的方法及实验流程。
通过阅读本文,读者将能够掌握如何准确计算羟基磷灰石的纯度,并理解纯度评价对于其在医学和牙科领域的应用意义。
此外,本文还将讨论当前计算方法存在的局限性,并展望未来在羟基磷灰石纯度计算方面的研究发展方向。
通过本文的阅读,读者将能够更好地了解和应用羟基磷灰石,并为相关领域的进一步研究提供指导和启示。
2. 羟基磷灰石纯度计算方法:2.1 纯度概念:羟基磷灰石(Hydroxyapatite,简称HAP)是一种重要的无机生物陶瓷材料,在医学、生物工程和材料科学等领域有广泛的应用。
然而,制备过程中会产生一定量的杂质,因此需要对其纯度进行评估。
羟基磷灰石的纯度是指其化学组分中HAP所占比例。
2.2 计算方法一:第一种计算羟基磷灰石纯度的方法是通过元素分析得到样品中钙(Ca)和磷(P)元素的含量,并根据化学组成将其与总样品质量相比较。
计算公式如下:纯度(%)= (HAP样品中Ca和P元素质量之和/ 总样品质量)×100%该方法可以通过常规的化学分析仪器如电感耦合等离子体发射光谱法(ICP-OES)、原子吸收光谱法(AAS)或X射线荧光光谱法(XRF)来进行实验测定。
羟基磷灰石的使用方法
羟基磷灰石的使用方法(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--羟基磷灰石填料——纯化蛋白、多肽、核酸分离机理:羟基磷灰石具有独特的分离机理,是唯一直接用于蛋白质和核酸纯化的无机层析填料,高度耐碱,生物安全性最高。
其中磷酸离子与带正电的蛋白质以离子键结合,具有离子交换特性,可由NaCl浓度梯度或磷酸钠浓度梯度洗脱,其中的Ca2+离子与带负电蛋白质的自由羧基以金属螯合方式结合,该结合方式对NaCl不敏感,可由磷酸钠浓度梯度洗脱。
因此该填料既可以用磷酸钠单梯度洗脱,也可以采用NaCl梯度洗脱后以低浓度磷酸钠缓冲液平衡,再以磷酸钠浓度梯度洗脱的双梯度洗脱模型,以达到更高的分辨率。
羟基磷灰石类型选择:羟基磷灰石因陶瓷化工艺不同分为2种类型:I型和II 型,I型对蛋白质具有更大的保留,对普通蛋白质具有更大的动态载量,主要纯化大部分蛋白质(分子量一般在100kd一下);II型由于孔径较I型大,因而对抗体和部分重组疫苗等大分子量蛋白质的动态载量更高,而对HSA几乎无保留,因而更适合于抗体的纯化,同时II型对核酸具有更大的保留,能够分辩单、双链、超螺旋等各种高级结构的DNA,因而也适合纯化核酸。
●高动态载量、高流速、高产率●更好的化学稳定性和机械强度,更长的寿命●刚性结构,保证了其在PH>的范围内使用,可用NaOH清洗●良好的批次重现性,容易放大化●可随意选用阳离子和金属螯合两个模式分离纯化蛋白或其他分子●能用于层析系统、重力流柱、AcroPrep多孔板等应用●碱性蛋白的纯化(免疫球蛋白)●抗体纯化●酸性蛋白(白蛋白)●去除DNA和内毒素●纯化磷多肽●分离纯化复杂的蛋白混合物●纯化质粒流动相:平衡液:5mM的磷酸钠缓冲液,PH=洗脱液:的磷酸钠缓冲液,或2M的氯化钠缓冲液,PH=使用步骤:建议使用干法填柱Step 1:setup take a cell lysate and draw it into the syringe through the tubing tipDraw any residual sample into syringeAttach syringe and tubing tip to a pre-equilibratedBio-canal column步骤1:平衡安装首先用至少5倍柱体积的平衡液预平衡柱子,将细胞裂解吸入注射器,并安装在柱头上。
陶瓷羟基磷灰石(CHT)应用及放大指南(中文)
羟基磷灰石
羟基磷灰石
产品名称:羟基磷灰石Hydroxyapatite;hydroxylapatite
分子式:Ca10(PO4)6(OH)2
分子量:1004
理化性质:熔点:1650°C,比重:3.16g/cm,溶解度:0.4ppm,Ca/P:1.67
结晶构造:六方晶系
规格:粉末、多孔颗粒、块状(非标定型)产品
羟基磷灰石的介绍:羟磷灰石是磷灰石中含氢氧根的纯正端元(endmember),羟磷灰石的晶系为六方晶系,比重为3.08,摩氏硬度为5。
纯的羟磷灰石粉末是白色,但天然的羟磷灰石会夹杂着棕色、黄色或绿色。
也可以用人工的方式合成,应用于骨组织修复。
羟磷灰石是人体骨骼组织主要成分。
植入体内后,钙和磷会游离出材料表面被身体组织吸收,并生长出新的组织。
有研究证明羟磷灰石的晶粒越细,生物活性越高。
牙齿表面的珐琅质的主要成份亦是羟磷灰石。
羟基磷灰石可由自己制作的方式来取得。
制作羟磷灰石粉末的方法很多,比较常见的方法有沉淀法、水解法、水热法及固相法等。
其中水热法的设备适比较复杂而且昂贵。
相较于水热法,沉淀法则是操作简单、设备便宜、产能大,目前大多数以此种方法为主。
但是沉淀法有一些缺点,像是粉末容易聚集在一起、质量不稳定等等。
羟基磷灰石的功效:
★健康亮白
★去除牙菌斑
★改善牙龈问题
★防止蛀牙
★清新口气
包装方式:25公斤/纸板桶或铝箔袋。
存储条件:本品应密封遮光,贮存在干燥、阴凉、通风良好的地方。
第十章注射-羟基磷灰石5
(四)注意事项 1、置入的最佳位置: 颞部充填最佳位置:颞深筋膜与浅筋膜之间 颏部充填最佳位置:下颌骨颏部骨膜下 鼻部充填最佳位置:鼻背筋膜下隧道 2、羟基磷灰石只能用于鼻根部充填,不能用于鼻尖成 形 3、分离隧道时应紧贴中线,在鼻背骨膜下分离,不宜 过宽。 4、鼻根部的起点即眉间点,充填物不能超过该点,以 免充填效果不自然,应少量多次进行充填。
5、局部浸润麻醉量不宜使用,否则不宜观察 注射效果 6、氰基磷灰石人工骨早期成形困难,术后最 好不用外包扎 7、注射量宁少勿多,多次注射 8、注射时,针尖斜面方向应向上 9、不能注入皮内,以免产生硬结等 10、注重术前设计
(五)并发症与处理 ①术后非炎症反应:人工骨粉为浮白色膏状物, 对人体本身不会引起免疫反应或排异反应,机体需 要一个相容过程,但注射隆鼻术后其肿胀持续时间 稍长,一般10天左右肿胀才逐渐消失。 ②外形不理想或感染:人工骨粉注入隆鼻,有可 能因经验不足,或无菌操作不严造成外形不美、感 染等,此时必须尽快取出,否则,等半年后,一旦 新生骨长入或人工骨与原来的基骨融合在一起,取 出就较麻烦费时。
羟基磷灰石人工骨 注射术
美容教研室——周宁
• (一)概述
• 羟基磷灰石人工骨是一种磷酸钙材料,其化学 成分、物化性能等99.9%与人体骨相同。目前临床上 多用起基磷灰石超微粒分子的人工骨。羟基磷灰石 超微粒分子粉末颗粒小于9微米,结晶体极细,制成 悬浮于生理盐水中之糊状,可使用最小的特制或自 备针头,采用经皮肤直接注射方式注入需要部位。
End
主要用于鼻根部凹陷者,不能用于提高鼻尖。
• 作为人工骨替代材料的优势: • 1、生物相容性极好 • 2、可替代硅胶 • 3、骨引导再生作用
(二)适应证 适应于鼻根部低或偏低的轻度鞍鼻者,以及鼻 梁外形凸凹不平的患者。但不适应于重度鞍鼻 者。
羟基磷灰石PPT课件
Page 13
(a)实验室自制的 HAP的IR光谱
(b)纳米HAp/cof 蛋白复合材料的IR
谱 (c)胶原蛋自的lR
光谱
通过对复合物的红外光谱分析可知,HAP与胶原蛋白纤维间 发生了化学键合,羧基和羰基是HAP在胶原蛋白纤维上的 主要成核位点,在成核过程中,发生了与天然骨类似的碳酸 化过程。
化学化工学院 化学11-2班 冯波
随着社会的进步与人们生活水平的提高,人们的平均寿命不断延 长,但人体本身的老化却不可避免,世界人口老龄化问题日益突显。人 体的老化过30岁就开始了,人体的结缔组织,特别是保持人体直立姿势 的骨骼组织随之开始劣化,随着年龄的增长,由于骨组织的变化,其强 度逐渐降低,发生骨折的几率增大,此外,由于某种如外伤、感染、肿 瘤、事故或矫形手术等因素而使骨丧失了一些骨质,形成较大的间隙, 称为骨缺损,由于缺损间隙大,绝大多数骨缺损难以自行愈合,最后形 成骨不连。
Page 3
羟基磷灰石/胶原蛋白复合生物材料
以胶原蛋白与HAP复合则较好地利用了胶原蛋白的 粘结性而克服了HAP颗粒的流动性。
胶原蛋白和羟基磷灰石为主要原料,制成了羟基磷灰 石和胶原蛋白复合多孔支架材料,利用胶原蛋白的粘结性, 通过物理发泡,形成多孔的三维立体网状结构,这将有利于 成骨细胞在支架材料上的附着和繁殖。
Page 7
根据胶原蛋白含量不同制得的多孔羟基磷灰石/胶原蛋白支架材料的体外生物 溶解降解性曲线可以得出,随着胶原蛋白含量的增加,多孔支架材料的生物降解 性也相相应提高,这基本表明胶原蛋白的生物溶解降解性较羟基磷灰石高,因此, 可能通过调整羟基多孔支架材料中胶原蛋白的相对含量,从而达到调节多孔支架 材料的生物降解性的目的。
羟基磷灰石医用材料
羟基磷灰石医用材料
摘要:
一、羟基磷灰石医用材料的背景和定义
二、羟基磷灰石的医用特性
三、羟基磷灰石在医疗领域的应用
四、羟基磷灰石医用材料的发展前景
正文:
羟基磷灰石医用材料是一种广泛应用于医疗领域的无机非金属材料,具有良好的生物相容性和生物活性。
它主要由钙、磷、氢氧根离子等组成,能够与人体组织实现化学键性结合,对缺损组织具有修复和再生作用。
羟基磷灰石的医用特性主要表现在以下几个方面:
1.良好的生物相容性:羟基磷灰石与人体组织接触后,不会引起明显的组织反应,可以安全地用于人体内部。
2.生物活性:羟基磷灰石可以与人体骨骼中的羟基磷灰石晶体相互溶解,促进骨组织的修复和再生。
3.降解性:羟基磷灰石在体内具有一定的溶解度,可以随着时间逐渐降解,对人体无害。
羟基磷灰石在医疗领域有广泛的应用,主要包括以下几个方面:
1.骨科应用:羟基磷灰石可以用于骨缺损、骨折、骨肿瘤等骨病治疗的修复和再生,促进骨组织愈合。
2.口腔科应用:羟基磷灰石具有良好的生物相容性和生物活性,可以用于
制作人工骨、牙科种植体等口腔修复材料。
3.整形外科应用:羟基磷灰石微球可以用于填充和修复皮肤、软组织缺损,改善皮肤外观。
4.药物载体:羟基磷灰石可以作为药物载体,提高药物的稳定性和生物利用度。
随着科技的发展,羟基磷灰石医用材料在医疗领域的应用将越来越广泛。
未来,研究人员将继续优化羟基磷灰石材料的制备工艺,提高其性能,拓展其在医疗领域的应用范围。
羟基磷灰石医用材料
羟基磷灰石医用材料羟基磷灰石(Hydroxyapatite,HA)是一种重要的医用材料,具有生物相容性、生物活性和天然骨组织的相似性等特点,被广泛应用于医学领域。
在手术修复、植入和再生医学等方面发挥着重要的作用。
首先,羟基磷灰石具有良好的生物相容性。
生物相容性是评价医用材料是否适合在人体内使用的重要指标之一。
羟基磷灰石能够与人体组织接触时不引起明显的组织反应,不产生毒性和变异,不会引发免疫抗原性反应。
因此,它可以安全地被植入人体,不会对人体产生任何负面影响。
其次,羟基磷灰石具有优异的生物活性。
生物活性是指材料能够与人体组织主动交互,与骨组织发生结合,促进骨再生和愈合的能力。
羟基磷灰石与骨组织具有相似的化学成分和晶体结构,能够与人体骨组织形成牢固的结合。
此外,羟基磷灰石表面有一层含有钙离子的磷酸钙层,可吸附人体液中的钙离子,通过骨组织发生钙磷离子交换反应,进一步促进骨的再生和愈合过程。
羟基磷灰石的应用领域广泛。
在手术修复方面,羟基磷灰石可以用作填充材料,填补骨缺损,支持和稳定骨结构。
在颌面外科、骨科和耳鼻喉科等领域,羟基磷灰石能够实现骨缺损修复,并成为人工植入物的基础材料。
在植入医学方面,羟基磷灰石常被用于制作骨修复和韧带修复的植入物,能够快速与人体骨组织结合,恢复受损组织的形态和功能。
此外,羟基磷灰石还广泛应用于再生医学领域,如组织工程、干细胞培植等,为再生医学研究提供基础支持。
要正确应用羟基磷灰石,需要遵循相关操作规程。
在使用过程中,需要注意灭菌消毒,保持术中无菌操作,防止感染。
同时,应根据个体情况选择合适的羟基磷灰石材料,避免材料与人体组织的不匹配导致术后并发症。
此外,对于需要再生医学和生物相容性研究的领域,还需要注意材料的表面改性和处理,以提高粘附性和生物活性。
综上所述,羟基磷灰石作为医用材料在临床应用中发挥重要作用。
它具有良好的生物相容性和生物活性,可用于手术修复、植入和再生医学等领域。
CHT羟基磷灰石 说明书
T able of ContentsSection 1Introduction (1)Section 2Product Description (1)2.1 What is CHT™ Ceramic Hydroxyapatite? (1)2.2 Specifications (2)2.3Characteristics (2)2.4General Handling and Packing (3)Section 3Chromatography (3)3.1 CHT™ Ceramic Hydroxyapatite Mechanism (3)3.1.1Buffers (4)Table I: CHT Stability in Various Buffers (4)3.1.2Elution (4)3.1.3Trace Metal Contamination (5)3.1.4Phosphate (5)3.1.5Calcium (5)3.1.6Chemical Compatibility/Load Preparation (5)3.2Method Development (6)3.2.1Protocol I: IgG Monoclonal Antibodies (8)3.2.2Protocol II: Globular Proteins (10)3.2.3Protocol III: Plasmids (12)3.2.4Protocol IV: Acidic Proteins (14)3.2.5Scouting Tips (14)Section 4Regeneration, Sanitization, and Storage (15)4.1Regeneration (15)4.2Sanitization (15)4.3Storage (15)Section 5Column Packing Protocols (15)5.1General Handling and Powder Preparation (15)5.2Guidelines for Packing Low-Pressure Process Columns (15)5.2.1Recommended Column Packing Solutions (17)5.3Open-Column Methods (17)5.3.1Gas-Assisted Axial Compression Packing of Open Columns with Motorized Adjustable Inlet Adaptors (17)5.3.2Gas-Assisted Flow Packing of Open Columns With Adjustable Adaptorsat Less Than 700 cm/hr Flow Rate (19)5.3.3Gas-Assisted Flow Packing of Open Columns With Adjustable Inlet Adaptors Capable of 700 cm/hr (22)5.4Media Transfer Station Methods (24)5.4.1Axial Compression Packing of Closed Columns With Motorized Adjustable Inlet Adaptors (24)5.5Media Packing Station Methods (26)5.6Unpacking for Disposal (28)5.7Packed Column Qualification (28)5.8Comments on Column Packing (29)5.8.1Comments on Column Qualification for Columns With Adjustable Inlet Adaptors (29)5.8.2Comments on Column Qualification for Contained Operating System Pressure-PackedClosed Columns (30)5.8.3Comments on Column Qualification on Columns Used in Purification Campaigns (30)5.8.4Conditioning the Column for the Purification Application (30)Section 6Case Studies (30)6.1Packing Results —Custom GE Healthcare Chromaflow 900/200–400 (30)6.2Packing Results —Prototype Milipore IsoPak IPP350/500 (32)6.3Table 3: Summary for Packing CHT Type I, 40 µm (32)6.4Table 4: Summary for Packing CHT Type I, 80 µm (33)Section 7Appendices (33)7.1CHT to Buffer for Packing 50 cm High Open Columns (34)7.2CHT to Buffer for Packing 60 cm High Open Columns (35)7.3CHT to Buffer for Packing 70 cm High Open Columns (36)7.4 CHT to Buffer for Packing 90 cm High Open Columns (37)7.5CHT to Buffer Guide for Contained Operating System Columns (38)Section 8Reference (39)Section 9Ordering Information (40)Section 1IntroductionCHT™ ceramic hydroxyapatite is a leading purification medium of biomolecules in today’s demanding downstream process industry. Its mixed-mode support offers unique selectivities and often separates biomolecules that appear homogeneous using other chromatographic methods. The diverse binding capabilities of CHT for host cell proteins, leached protein A, antibody dimmers and aggregates, nucleic acids, and viruses allow its use at any stage from initial capture to final polishing.The robust properties of CHT ceramic hydroxyapatite improve efficiency, yield, and financial value through:•Excellent capture at elevated flow rates enabling processing at all scales•Large capacity for higher-titer upstream feedstocks•Exceptional selectivity allowing for a two-step chromatographic processThis manual is a guide for the use of CHT as a media support in your purification process. The manual is organized into four main topics:•Product Description•Chromatography•Regeneration, Sanitization, and Storage•Column Packing Protocols•Case StudiesThroughout this manual, we have incorporated recommendations ranging from method scouting and optimization to column packing techniques that represent feedback from process chromatographers globally. Should you have further questions, contact either your local Bio-Rad process chromatography sales representative or the Bio-Rad chromatography technical support department for further assistance at 1-510-741-6563.Section 2Product Description2.1 What is CHT™ Ceramic Hydroxyapatite?Hydroxyapatite (Ca5(PO4)3OH)2is a form of calcium phosphate used in the chromatographic separation of biomolecules. Sets of five calcium doublets (C-sites) and pairs of –OH containing phosphate triplets (P-sites) are arranged in a repeating geometric pattern. Repeating hexagonal structures can be seen in electron micrographs of the material. Space-filling models and repeat structure from Raman spectroscopy have also been constructed. Hydroxyapatite has unique separation properties and unparalleled selectivity and resolution. It often separates proteins shown to be homogeneous by electrophoretic and other chromatographic techniques. Applications of hydroxyapatite chromatography include the purification of different subclasses of monoclonal and polyclonal antibodies, antibodies that differ in light chain composition, antibody fragments, isozymes, supercoiled DNA from linear duplexes, and single-stranded from double-stranded DNA.CHT ceramic hydroxyapatite is a spherical, macroporous form of hydroxyapatite. It has been sintered at high temperatures to modify it from a crystalline to a ceramic form. The ceramic material overcomes many of the limitations of traditional crystalline hydroxyapatite that prevent its use in industrial-scale applications. The ceramic material retains the unique separation properties of crystalline hydroxyapatite, but can be used reproducibly for many cycles at high flow rates and in large columns. Unlike most other chromatography adsorbents, CHT is both the ligand and the support matrix. Separation protocols originally developed on crystalline hydroxyapatite can often be transferred directly to the ceramic material with only minor modifications. Two types of CHT ceramic hydroxyapatite, Type I and Type II, are available in three particle sizes, 20, 40, and 80 µm. Both types have elution characteristics similar to crystalline hydroxyapatite, but also have some important differences. CHT Type I has a higher protein binding capacity and better capacity for acidic proteins. CHT Type II has a lower protein binding capacity but has better resolution of nucleic acids and certain proteins. The Type II material also has a very low affinity for albumin and is especially suitable for the purification of many species and classes of immunoglobulins.2.2 SpecificationsType IType IIFunctional groupsCa 2+, PO 4, OHCa 2+, PO 4, OHObserved dynamic binding capacitylysozyme (Lys)≥25 mg Lys/g CHT≥12.5 mg Lys/g CHTNominal pore diameter 600–800 Å800–1,000 ÅMaximum backpressure 100 bar (1,500 psi)100 bar (1,500 psi)Nominal mean particle size 20 ± 2, 40 ± 4, and 80 ± 8 µm 20 ± 2, 40 ± 4, and 80 ± 8 µm Bulk density 0.63 g/ml0.63 g/ml2.3 CharacteristicsType IType IIObserved dynamic binding capacityIgG25–60 mg IgG/ml CHT* 15–25 mg IgG/ml CHT**Typical linear flow rate range 50–1,000 cm/hr pH stability*** 6.5–14 pHBase stability at least 21 months in 1 N NaOH Regeneration500 mM sodium phosphate, pH 71,000 mM trisodium phosphate, pH 11–12Autoclavability (bulk) 121°C, 20 min in phosphate buffer, pH 7Sanitization1–2 N NaOH Recommended column storage 0.1 M NaOHShelf life (dry, unused material)85 months stored dry, sealed, and at room temperature* 40 µm particles, 300 cm/hr, 5 mM sodium phosphate, pH 6.5** 40 µm particles, 300 cm/hr, 5 mM sodium phosphate, pH 6.5*** For pH 5.5–6.0, see Section 3.1.1 Buffers and Table 1PurityIn the preparation of ceramic hydroxyapatite, use of high-purity raw materials results in low levels of contaminants as determined by ICP mass spectrometry for metal analysis and ion chromatography for anions.Impurity Levels Chloride 0.005%Sulfate 0.01%Carbonate 0.01%Lead 0.001%Cadmium 0.0001%Barium 0.001%Arsenic0.001%£££££££2.4 General Handling and PackingCHT ceramic hydroxyapatite is a rigid support and can operate under high flow rates and pressures. However, excessive physical forcebeyond typical operating conditions can result in bead damage. In order to optimize the chromatographic properties of CHT, avoid excessive stirring or agitation that may lead to mechanical damage and bead fracture.See General Handling and Powder Preparation, Section 5.1, for more details.Section 3Chromatography3.1 CHT™ Ceramic Hydroxyapatite MechanismHydroxyapatite contains two types of binding sites, positively charged calcium and negatively charged phosphate groups. These sites are distributed regularly throughout the crystal structure of the matrix. Solute species dominantly interact through cation exchange via the phosphate groups and/or metal affinity via the calcium atoms.Cation exchange occurs when protein amino groups interact ionically with the negatively charged phosphates. The amino groups are similarly repelled by the calcium sites. Binding depends upon the combined effects of these interactions. These ion exchange interactions can be disrupted by adding neutral salts such as sodium chloride or buffering species such as phosphate to the mobile phase. Cation exchange interactions also weaken with increasing pH. Hence, the addition of salt or phosphate, or an increase in pH, can be used toweaken the interaction. Studies with model proteins have demonstrated that anion exchange, which might be expected from interactions of negatively charged surface residues with calcium, does not make a significant contribution.Calcium affinity occurs via interactions with carboxyl clusters and/or phosphoryl groups on proteins or other molecules (e.g., nucleic acids); these groups are simultaneously repelled by the negative charge of the CHT phosphate groups. The affinity interaction is between 15 and 60 times stronger than ionic interactions alone and, like classical metal-affinity interactions, is not affected by increasing ionicstrength using typical elution ions (e.g., chloride). Species binding through calcium affinity may adsorb more strongly as the ionic strength increases due to ionic shielding of the charge repulsion from the CHT phosphate sites. Metal affinity interactions can be dissociated by phosphate in the mobile phase.Most large proteins bind by a combination of mechanisms (Figure 1):Dominantly acidic proteins , such as albumin, bind chiefly by metal affinity interactions. Sodium chloride at 1.0 M reduces retention time by approximately 10% in the presence of phosphate gradients, indicating a minor contribution by cation exchange. To elute acidic proteins,phosphate buffers are required.Dominantly basic proteins , such as IgG, bind chiefly by cation exchange interactions. Sodium chloride reduces retention time in the presence of phosphate gradients, indicating a minor contribution by metal-affinity. Basic proteins may be selectively eluted with either phosphate or salts.Cation exchangeMetal affinity Metal affinity carboxyl clustersphosphoryl groups on nucleic acidsFig. 1. Schematic Representation of CHT binding mechanisms.RepulsionAttraction Metal affinity3.1.1 BuffersA key advantage to CHT is its compatibility with a wide range of salts and buffers.While phosphate buffers are the most widely used with CHT, buffer systems composed of, for example, MES, HEPES, Tris, imidazole, or acetate can support at least 50 life cycles of use. Table 1 highlights a variety of buffer conditions that optimize CHT sustainability. Prolonged exposure to pH 6.5 reduces the cycle life of CHT. This is attributed to the breakdown of the CHT matrix.In order to promote the stability of CHT, we recommend that low concentrations of either phosphate or calcium be included in buffers.Calcium may improve binding of weakly acidic proteins.Table 1. CHT Stability in Various Buffers.*CHT SuitabilitypH Buffer10 cycles50 cycles5.0Acetate + 5 mM PO 4—n/a 5.5Acetate + 5 mM PO 4-—6.0Acetate + 5 mM PO 4+-6.0Succinate + 5 mM PO 4-—6.5Succinate + 5 mM PO 4+/-+/-6.5Acetate + 5 mM PO 4+n/a 6.5Phosphate (5 mM)+n/a 6.5Acetate + 5 mM PO 4++6.5MES + 5 mM PO 4++6.5Imidazole + 5 mM PO 4++/-6.5Glycine + 5 mM PO 4++6.5Arginine + 5 mM PO 4++6.5Tris + 5 mM PO 4+n/a7.0Phosphate (5 mM)++7.0MES + 5 mM PO 4+n/a 7.0Acetate + 5 mM PO 4+n/a 7.0Imidazole + 5 mM PO 4++7.0Glycine + 5 mM PO 4+n/a 7.0Arginine + 5 mM PO 4+n/a 7.0HEPES + 5 mM PO 4+n/a 7.0Tris + 5 mM PO 4+n/a 7.5Phosphate (5 mM)+n/a 7.5MES + 5 mM PO 4+n/a 7.5Imidazole + 5 mM PO 4++7.5Acetate + 5 mM PO 4+n/a 7.5HEPES + 2 mM PO 4+n/a 7.5HEPES + 5 mM PO 4+n/a 7.5Tris + 2 mM PO 4+n/a 7.5Tris + 5 mM PO 4++8.5Tris + 5 mM PO 4+n/a* All experiments performed in small scale columns. Each cycle used approximately 35 column volumes of buffer to simulate an equilibration and long gradient, as well as five column volumes of 1 N NaOH to simulate regeneration.3.1.2 ElutionDuring the course of operation any step change in the buffer conditions (increase or decrease in salt, buffering species, or othercomponents) can lead to a transient change in the pH of the mobile phase. This phenomenon can be attributed to the interaction of the mobile phase ions with the phosphate surface groups of CHT. The extent of this pH shift, generally less than 0.5 units, depends on the degree to which components are increased or decreased. The addition of nonphosphate buffer can be used to stabilize pH shift.+No statically significant mass loss observed +/-Slight (0–1%) loss -Small (1–2%) loss —Significant (>2%) loss n/aNot applicable3.1.3 Trace Metal ContaminationCHT will also bind to trace metals, such as iron, that may be present in buffer solutions. The metal contaminants may originate from production media, buffers and salts, process water, and/or corroded stainless steel. The degree of trace-metal deposition will manifest itself as a visible discoloration at the top of the column over time. If this becomes an issue, two potential solutions are to either pretreat buffers by incubating with a small amount of CHT prior to filtration, or to install a CHT guard column for use during buffer and/or load application. If bulk buffer pretreatment with CHT incubation is used, take care to avoid damage to pumps and tubing due to abrasion by CHT particles. Vessel cleaning can be accomplished by an acid wash, which will completely solubilize CHT.3.1.4 PhosphateGenerally, 5 mM phosphate should be included in all buffer solutions. When operating at pH >7.0, lower amounts of phosphate down to2 mM may suffice. Phosphate concentrations above 5 mM in these buffers will not improve stability and may decrease protein binding. As illustrated in Figure 2, CHT binding capacity decreases in 50 mM MES with increasing phosphate concentration.Fig. 2. IgG binding capacity of CHT vs. phosphate concentration and pH.Hydrated phosphate salts should be used in all buffer preparations. Nonhydrated phosphates should not be used because the manufacturing process for these salts leads to pyrophosphate formation. Pyrophosphates inhibit the binding of some macromolecules and reduce CHT selectivity. Avoid back-titrating buffer pH as this increases conductivity and may reduce target protein binding on CHT.3.1.5 CalciumCalcium chloride can be used as a CHT stabilizing agent at a general concentration of 3 mM. More or less calcium chloride may be used dependent on phosphate concentration. Note that calcium deposits onto the matrix and precipitates with other solution species, especially phosphate.3.1.6 Chemical Compatibility/Load PreparationLoads should be free of agents such as citrate or EDTA that could degrade CHT via chelation. CHT is chemically compatible with the following solutions at pH 6.5–14 in the presence of calcium or phosphate.2 M NaOH* 1% SDS and other surfactants6 M Guanidine-HCl 4 M NaCl8 M Urea 1 M Potassium phosphate100% Acetonitrile0.5 M Sodium phosphate100% Ethanol/methanol* No Ca or PO4required3.2.1 Protocol I: IgG Monoclonal AntibodiesFlow rate: 300 cm/hrBuffer A: 10 mM NaPO4, pH 6.5Buffer B: 10 mM NaPO4, 2 M NaCl, pH 6.5Buffer C: 500 mM NaPO4, pH 6.5Equilibrate the column with approximately 10 column volumes of buffer A. Prepare the sample, adjusting the pH and conductivity to those of buffer A. Load the sample in 5 mM NaPO4; wash the column with approximately 5 column volumes of buffer A; and elute with 20 column volumes of buffer B linear gradient. The target protein will usually elute within the NaCl gradient. Buffer at higher pH decreases binding and retention time; conversely, lower pH increases binding capacity and sample retention times. If elution does not occur, increase the phosphate concentration. Slope and amplitude can be adjusted based on initial results. Flow rate may also be converted to a step format or run in flow-through mode. A typical chromatograph using NaCl for the elution of a protein A purified mouse IgG chimera is shown in Figure 3. After elution clean the column with 5 column volumes of buffer C followed by a sanitation step using 5 column volumes of1 M NaOH.Protocol Optimization1.Start with 10 mM NaPO4in buffer A. Titrate buffer B down to 5 mM NaPO4or up to 15 mM NaPO4depending on desired results. RareIgGs may require 40 mM NaPO4.2.Select the lowest phosphate concentration that supports NaCl elution, but do not use concentrations lower than 5 mM.Fig. 3. Elution of monoclonal antibody in a 40 column volume linear gradient to 1 M NaCl.3.2.2 Protocol II: Globular ProteinsFlow rate: 300 cm/hrBuffer A: 5 mM NaPO4, 150 mM NaCl, pH 6.8Buffer B: 500 mM NaPO4, 150 mM NaCl, pH 6.8Buffer C: 500 mM NaPO4, pH 6.8Equilibrate the column with approximately 10 column volumes of buffer A. Prepare the sample, adjusting the pH and conductivity to those of buffer A. Load the sample in 5 mM NaPO4, pH 6.8; wash the column with approximately 5 column volumes of buffer A; and elute with approximately 20 column volumes of buffer B linear gradient. Slope and amplitude can be adjusted based on initial results. After elution clean the column with approximately 5 column volumes of buffer C followed by a sanitation step using approximately 5 column volumes of 1 M NaOH.Protocol Optimization1.Start with 150 mM NaCl in buffer A. Titrate buffer B down to 50 mM NaCl or up to 100 mM NaCl depending on desired results.2.If 500 mM NaPO4is not sufficient for protein elution (this is rare), try 500 mM KPO4.3.2.3 Protocol III: PlasmidsFlow rate: 300 cm/hrBuffer A: 10 mM NaPO4, 1 mM EDTA, pH 7.0Buffer B: 400 mM NaPO4, 1 mM EDTA, pH 7.0Equilibrate the column with approximately 10 column volumes of buffer A. Prepare the sample, adjusting the pH and conductivity to those of buffer A. Load the sample in 0.5 M NaCl pH 7.0; wash the column with approximately 5 column volumes of buffer A; and elute with approximately 20 column volumes of buffer B linear gradient. Slope and amplitude can be adjusted based on initial results. After elution clean the column with approximately 5 column volumes of buffer A followed by a sanitation step using approximately 5 column volumes of 1 M NaOH.Protocol Optimization1.Alkaline cell lysate containing plasmid DNA should be acidified by a mineral acid in the presence of inorganic salt. The use of mineralacid and inorganic salts avoids the use of acetate ion, which degrades CHT ceramic hydroxyapatite.For detailed methods and protocol optimization refer to Tech Note 2731: Plasmid Purification Using CHT Ceramic Hydroxyapatite Support. Acetate-Free Purification of Plasmid DNA On Hydroxyapatite. Patent No.: US 6,406,892 B1, EU 02771845.1-2404-US0215705.3.2.4 Protocol IV: Acidic ProteinsFlow rate: 300 cm/hrBuffer A: 5 mM NaPO4, pH 6.8Buffer B: 500 mM NaPO4, pH 6.8Equilibrate the column with approximately 10 column volumes of buffer A. Prepare the sample, adjusting the pH and conductivity to those of buffer A. Load the sample in 5 mM NaPO4, pH 6.8; wash the column with approximately 5 column volumes of buffer A; and elute with approximately 20 column volumes of buffer B linear gradient. After elution clean the column with approximately 5 column volumes of buffer B followed by a sanitation step using approximately 5 column volumes of 1 M NaOH.Protocol Optimization1.If binding capacity is not sufficient, replace phosphate with MES and add 1–10 mM calcium chloride to load and buffer solutions.2.To increase the binding efficiency of acidic proteins, calcium chloride may be added to the mobile phase. Due to the low solubility ofcalcium phosphate, however, extra care is required. Do not exceed the following concentrations of calcium chloride in phosphate buffers: 0.3 mM calcium chloride for 10 mM phosphate, 0.01 mM calcium chloride for 300 mM phosphate, and 0.0075 mM calcium chloride for 400 mM phosphate. At higher concentrations of calcium chloride, calcium phosphate will precipitate. Calcium phosphate is extremely difficult to dissolve and will appear white and cloudy in the supernatant. If higher levels of calcium are desired then a compatible buffering system must be used. However, high calcium levels can lead to additional calcium deposition onto CHT; the effects of this have not been fully elucidated.3.2.5 Scouting TipsThe target protein will usually elute within the phosphate gradient. Slope and amplitude can be adjusted based on initial results. Flow rate may also be converted to a step format or run in flow-through mode. We studied protein retention using the phosphate elution procedure. Fourteen purified proteins were loaded and eluted with a linear gradient of sodium phosphate at pH 6, 7, 8, and 9. In general, retention time of proteins increase with increasing pI.Optimizing Tips for Protocols I-IV1.Select the optimum buffering agent (Table 1) making sure to add phosphate to stabilize the CHT matrix.2.The ionic strength in samples containing a high concentration of salt should be reduced to be equivalent to the starting buffer.Dilution, diafiltration, or buffer exchange using Bio-Gel P-6DG gel may also be used.3.As with any chromatographic step, buffer solutions and samples should be filtered through a 0.20–0.45 µm filter before use.4.If 500 mM sodium phosphate is not sufficient for protein elution (this is rare), try 500 mM potassium phosphate.5.If the elution peak is not sharp enough, try 40 CV linear gradient elution.6.Where appropriate, convert linear gradient elution to step elution. Use the information from the gradient to devise an intermediatewash step if desired for increased purity.7.Determine the pH that gives the highest binding capacity at a phosphate concentration of 5 mM.Section 4Regeneration, Sanitization, and Storage4.1 RegenerationCHT™ ceramic hydroxyapatite columns should be regenerated at the completion of each run with 3–5 column volumes of 500 mM potassium or sodium phosphate buffer at neutral pH, or 400 mM trisodium phosphate, pH 11–12. The column can also be stripped with other cleaning solutions (1–2 M KCl or NaCl, 6 M urea, or 8 M guanidine-HCl) containing 5 mM phosphate at neutral pH.4.2 SanitizationThe column can be sanitized in up to 2 N NaOH and stored in 0.1–1.0 N NaOH if desired. For sanitization, a contact time in sodium hydroxide of at least 1 hour is recommended.Carbonate reacts with small amounts of calcium ions released from hydroxyapatite to form a precipitate. The reaction could result in a crust of calcium carbonate at the top of the column or as an opaque white layer if the eluate is collected during the cleaning cycle. This carbonate reaction can occur in a CIP/SIP cycle with base since NaOH has a high affinity for carbonate. To minimize this reaction a 25 mM phosphate rinse is recommended whenever NaOH is used in the cleaning cycle.4.3 StorageUnused CHT ceramic hydroxyapatite should be stored in the original container at room temperature. Once wetted, CHT may be stored at room temperature in 0.1 M NaOH. Higher concentrations of NaOH may be used if desired. Used CHT, after being regenerated and sanitized, can be stored in solution up to 1.0 N NaOH in room temperature and away from direct light.Section 5Column Packing ProtocolsThis section offers guidelines for packing process scale columns. Topics include handling and column packing of CHT™ ceramic hydroxyapatite into a limited number of commercially available process columns, considerations for packing an open column or a closed system, and whether a media transfer device is being used for packing. Please read over the protocols carefully and follow the protocol for packing your specific column. Should you have further questions, contact either your local process chromatography sales representative or the chromatography technical support department for further assistance (1-510-741-6563). Not following the protocols may lead to poor chromatographic performance such as shortened column lifetimes or damaged ceramic hydroxyapatite particles.5.1 General Handling and Powder PreparationCHT ceramic hydroxyapatite is supplied as a dry powder. A dust mask, gloves, and laboratory coat are advisable while transferring the powder. The 5 kg containers of CHT have a plastic seal covering the container and screw closure. The seal ensures that the container has not been opened after it was filled. The screw closure is a secondary closure that secures a powder seal onto the container’s opening. Clean the container surface if it has accumulated dust. Wipe it with a clean damp cloth and dry it with a clean dry cloth. Remove the plastic seal. Reclean the container surface by wiping with a clean damp cloth and dry it with a clean dry cloth.Invert the container several times to loosen the CHT into a dry free-flowing powder. Repeat this step just prior to dispensing the powder. 5.2 Guidelines for Packing Low-Pressure Process ColumnsSeveral methods exist for packing columns with CHT that depend on the type of column and equipment used. Always read the relevant column instruction and associated media transfer skid or media packing skid manuals carefully. Where appropriate, make the recommended changes according to the guidelines.CHT ceramic hydroxyapatite is rigid and exhibits high flow rates at low pressure relative to its average particle size; refer to Figure 4 for40 µm CHT and Figure 5 for 80 µm CHT. Bead damage through excessive physical force is possible. Fine particles generated in this manner may clog the column and increase backpressure. The following packing methods are used for packing CHT ceramic hydroxyapatite:•Gas-assisted axial compression packing of open columns with motorized adjustable inlet adaptors•Gas-assisted flow packing of open columns with adjustable adaptors at less than 700 cm/hr flow rate•Gas-assisted flow packing of open columns with adjustable inlet adaptors capable of 700 cm/hr•Axial compression packing of closed columns with motorized adjustable inlet adaptors (media transfer stations)•Pressure packing of closed columns (media packing stations)Fig. 4. Estimated pressure for 40 µm CHT packed to 20.0 cm bed height vs. 1.0 M NaOH (1.80 cps), 0.5 M sodium phosphate buffer, pH 6.8 (1.27 cps), and phosphate buffered saline (1.18 cps).Fig. 5. Estimated pressure for 80 µm CHT packed to 20.0 cm bed height vs. 1.0 M NaOH (1.80 cps), 0.5 M sodium phosphate buffer, pH 6.8 (1.27 cps), and phosphate buffered saline (1.18 cps).Well-packed columns, in which the beds are homogeneous and continuous from top to bottom, exhibit the best chromatographic separations. It is therefore very important to pack your columns according to these guidelines.Each packing method covers packing, repacking, and unpacking using sequential steps to aid the technician. The following sections discuss recommended packing solutions, packed column qualification, and column conditioning for the purification application.Best PracticesOpen-column methods: Whenever possible, mix the slurry iof powder and buffer in the column. Mixing with a one-piece polypropylene paddle or with gas sparging minimizes mechanical damage. Slurries up to 47% v/v (29.6% w/v) in composition can be mixed with either method.Media transfer stations: Media transfer stations can be used to transfer dense slurries from a mixing tank to the column through large orifices. When transferring the CHT slurry to the column the concentration should be less than 47% v/v (29.6% w/v). Lower concentrations ensure more efficient packing of columns; however, a further increase in efficiency is negligible below 15% v/v (9.5% w/v). Damage to the chromatography medium due to excessive physical force is possible. Excessive mixing or use of impellers other than low-shear hydrofoil。
羟基磷灰石 强度
羟基磷灰石强度
摘要:
1.羟基磷灰石的基本信息
2.羟基磷灰石的强度特性
3.羟基磷灰石强度的影响因素
4.提高羟基磷灰石强度的方法
5.羟基磷灰石在我国的应用
正文:
羟基磷灰石,化学式为Ca10(PO4)6(OH)2,是一种常见的磷酸盐矿物,具有良好的生物相容性和骨整合性,被广泛应用于医疗、生物材料等领域。
羟基磷灰石的强度是其应用的关键特性之一。
羟基磷灰石的强度受其结晶形态、晶体大小、孔隙率、杂质含量等因素影响。
其中,结晶形态和晶体大小是影响羟基磷灰石强度的关键因素。
在生产过程中,通过控制温度、压力、pH 值等条件,可以有效地调节羟基磷灰石的结晶形态和晶体大小,从而提高其强度。
此外,通过添加合适的增强剂、减小孔隙率、降低杂质含量等方法,也可以提高羟基磷灰石的强度。
在我国,羟基磷灰石被广泛应用于人工骨、牙科材料、生物陶瓷等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天博羟基磷灰石说明书
天博羟基磷灰石是一种生物陶瓷骨粉,由天然优质珊瑚为原料,经过一系列复杂的热液置换反应转化而成。
这种骨粉的化学成分和空间结构与人骨相似,可以提供骨引导支架,有利于新骨组织的长入。
其多孔结构保证新骨组织的新陈代谢,生物活性高,愈合时间和自体骨相同,愈合后生物力学特性与周围自体骨一致。
天博羟基磷灰石骨粉主要用于口腔颌面外科、种植、牙周病治疗中的骨移植术及填充骨缺损。
这种骨粉是一种安全有效的生物材料,用于各种骨缺损的填充和修复,为医生提供了一个理想的植骨材料,为患者带来更健康的治疗效果。
为了获得最佳的治疗效果,医生在使用天博羟基磷灰石骨粉时应注意以下几点:
1. 医生应掌握骨粉的特性和使用方法,确保正确使用该产品。
2. 在手术前,医生应评估患者的状况和适应症,以确保该产品适用于患者。
3. 在使用过程中,医生应遵守手术规程,正确操作并确保患者安全。
4. 在手术后,医生应定期进行随访,监测患者的恢复情况。
总之,天博羟基磷灰石是一种理想的生物材料,适用于各种骨缺损的填充和修复。
在医生的正确操作和患者的积极配合下,这种产品将为患者带来最佳的治疗效果。