周期数列参数(大全)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期数列参数(大全)
这个是斐波那契数列,还有一个鲁卡斯数列我感觉到有时更好用!特别是7天线更神奇!用传统的5,10,有时破了5天线,还没到10天线就回头了呢,其实是7天线在起作用。

19世纪时法国一个数学家鲁卡斯(E.Lucas)在研究数论的素数分布问题时发现和斐波那契数有些关系,而他又发现一种新的数列:1,3,4,7,11,18,29,47,76,123,199,322,521等等。

这数列和斐波那契数列有相同的性质,第二项以后的项是前面二项的和组成。

数学家们称这数列为鲁卡斯数列。

斐波纳契数列与解鲁卡斯数列都与黄金分割比有密切的关系.
鲁卡斯数列与费波纳茨数列的关系
费波纳茨数列Fn:0、1、1、2、3、5、8、13、21、34、55、89、144、233……….
鲁卡斯数列…L n:1、3、4、7、11、18、29、47、76、123、199、322……..
鲁卡斯数列的构成为相邻两费波纳茨数之和的集合,即Ln=Fn-1+Fn+1。

1876年鲁卡斯在研究一元二次方程POW(X,2)-X-1=0的两个根X1=(1+SQRT(5))/2,X2=(1-SQRT(5))/2时{1/X=X/(1-X)}得出了两个重要的推论结果:
Fn=(1/SQRT(5))*POW((1+SQRT(5))/2,n)-
(1/SQRT(5))*POW((1-SQRT(5))/2,n)
Ln=POW((1+SQRT(5))/2,n)+POW((1-SQRT(5))/2,n)
方程1/X=X/(1-X)的正根,为无理数∮=(1+SQRT (5))/2≈1.618,即著名的黄金分割比。

由黄金分割比按0.38(∮平方分之一)的乘率递减求出的正方形,所作圆弧的连线,即黄金螺旋线。

螺旋线是宇宙构成的基本形态,也是股市起伏时间序的基本形态,
而其本质的参数即是黄金分割比∮。

比较费波纳茨数列与鲁卡斯数列,对相邻两数的比值取n趋向无穷大的极限,比值趋向黄金分割比∮
Fn+1/Fn------->?∮
Ln+1/Ln------->?∮
因此,结论是两数列的本质是一致的,都与黄金分割比有着密切的关系。

相关文档
最新文档