六年级下册奥数试题行程问题(一)全国通用(含答案)

合集下载

小学六年级奥数行程问题练习题及解析

小学六年级奥数行程问题练习题及解析

小学六年级奥数行程问题练习题及解析在进行小学奥数学习的时候,各位家长要时不时地抽查孩子,让他们给你讲题,看看是否思路清晰。

下面小编给大家分享了有关行程问题的奥数题,一起来看看吧!简单的行程问题:1.甲乙两地相距6千米.陈宇从甲地步行去乙地,前一半时间每分钟走80米,后一半的时间每分钟走70米.这样他在前一半的时间比后一半的时间多走()米.分析:解:设陈宇从甲地步行去乙地所用时间为2X分钟,根据题意,前一半时间和后一半的时间共走(0.07+0.08)X千米,已知甲乙两地相距6千米,由此列出方程(0.07+0.08)X=6,解方程求出一半的时间,因此前一半比后一半时间多走:(80-70)×40米,解决问题.解答:解:设陈宇从甲地步行去乙地所用时间为X分钟,根据题意得:(0.07+0.08)X=6,0.15X=6,X=40;前一半比后一半时间多走:(80-70)×40,=10×40,=400(米).答:前一半比后一半的时间多走400米.故答案为:400.点评:根据题目特点,巧妙灵活地设出未知数,是解题的关键.行程问题:2.同一条公路上依次排列着A、B、C、D四个车站,B、C两站相距32千米,从B站开出一辆客车,开向A站,每小时行48千米,同时从C站开出一辆货车开向D站,每小时行45千米.经过2小时后,两车相距多少千米?分析:先求出两车的速度和,用速度和乘上行驶的时间,求出两车一共行驶的路程,然后再加上BC之间的路程即可.解答:解:(48+45)×2+32,=93×2+32.=186+32,=218(千米);答:经过2小时后,两车相距218千米.点评:本题是相背行驶,两车之间的距离=两车行驶的路程+原来之间的距离.多人行程问题:3.甲乙丙三个小分队都从A地到B地进行野外训练,上午6时,甲乙两个小队一起从A地出发,甲队每小时走5千米,乙队每小时走4千米,丙队上午8时才从A地出发,傍晚6时,甲丙两队同时到达B地,那么丙队追上乙队的时间是上午()时.分析:从上午6时到下午6时共经过12小时,则A、B两地的距离为5×12=60千米,丙上午8时出发,则全程比甲少用8时-6时=2小时,所以丙的速度为每小时60÷(12-2)=6千米.由于丙出发时,乙已行了4×2=8千米,两人的速度差为每小时6-4=2千米,则丙追上乙需要8÷2=4小时,所以丙追上乙的时间是8时+4小时=12时.解答:解:6时+6时=12时,8时-6时=2时;5×12÷(12-2)=60÷10,=6(千米);2×4÷(6-4)=8÷2,=4(小时).8时+4小时=12时.即丙在上午12时追上乙.故答案为:12.点评:首先根据甲的速度及所用时间求出两地的距离进而求出丙的速度是完成本题的关键.追及问题:4.甲乙两人同时从相距36千米的A、B两城同向而行,乙在前甲在后,甲每小时行15千米,乙每小时行6千米.几小时后甲可追上乙?分析:由题意可知甲的速度快,甲乙两人同时从相距36千米的A、B两城同向,说明用的时间相同,甲追上乙时,甲比乙多行相距的36千米,再求出甲比乙每小时多行的路程是15-6=9千米,再求出追及时间是36÷9=4小时即可.解答:解:36÷(15-6),=36÷9,=4(小时),答:4小时后甲可追上乙.求速度:5.甲、乙两地公路长74千米,8:15一辆汽车从甲地到乙地,半个小时后,又有一辆同样速度的汽车从甲地开往乙地。

小学六年级奥数题行程问题及答案(两车相遇)

小学六年级奥数题行程问题及答案(两车相遇)

小学六年级奥数题行程问题及答案(两车相遇)教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.
小编小学生频道为网友整理的《小学六年级奥数题行程问题及答案(两车相遇)》,供大家参考学习。

相关年级最新信息:小学英语小学奥数一年级二年级三年级四年级五年级六年级
甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点_千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点_千米.甲车原来每小时行多少千米?
【答案解析】
小学六年级奥数题行程问题及答案(两车相遇).到电脑,方便收藏和打印:。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级下册数学试题-奥数专题:行程问题(1)变速问题(含答案)全国通用

六年级下册数学试题-奥数专题:行程问题(1)变速问题(含答案)全国通用

变速问题【例题1】小红上学,每分钟行60米,需要30分钟,如果速度提高,可以提前几分钟?【思路一】可以从如下方面进行来分析:1.先算出路程。

60×30=1800米。

2.再算后来的速度。

60×+60=72米/分。

3.接着算后来需要的时间。

1800÷72=25分。

4.最后算提前的时间。

30-25=5分钟。

【思路二】利用工程问题思想分析:设原来每分钟行1份的路程,后来每分钟行1+=1.2份的路程,原来30分钟就行30份,提高速度后只需要30÷(1+)=25分。

则提前30-25=5分钟。

【练习1】小明乘车去公园,每小时行45千米,需要3.6小时,如果速度提高,可以提前多少小时到达?【解答】3.6-3.6÷(1+)=0.9小时【例题2】甲从A地去B地,每小时行15千米。

返回时速度提高,结果少用3小时。

请问A、B两地的距离是多少千米?【思路一】盈亏问题思想返回每小时多行15×=3千米,返回每小时行15+3=18千米,如果继续行3小时,可以多行3×18=54千米,说明去的时间是54÷3=18小时。

因此两地之间的距离是15×18=270千米。

【思路二】工程问题思想去的时间看作单位1,返回的时间是1÷(1+)=,3小时就相当于1-=,则去用的时间是3÷=18小时。

两地之间的距离是15×18=270千米。

返回每小时行15×(1+)=18千米,往返1千米少用-=小时,现在少用3小时,需要往返3÷=270千米。

【练习2】小芳放学回家,每分钟行75米。

原路去上学,每分钟比原来慢,结果多用2分钟。

小芳家到学校有多少米?【解答】上学的速度75×(1-)=60米/分,小芳家到学校有2÷(-)=600米。

【例题3】王师傅用3.2小时在家和工厂之间往返了一次,去时每小时25千米,返回时减速,求他家到工厂相距多少千米?【解答】返回的速度是25×(1-)=15千米/时,往返1千米需要+=小时,现在用3.2小时可以往返3.2÷=30千米。

小学六年级数学奥数行程问题20道详解(含答案)全国通用

小学六年级数学奥数行程问题20道详解(含答案)全国通用

行程问题50道详解一1、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.解:第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。

2、甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

3、A,B两地相距540千米。

甲、乙两车往返行驶于A,B两地之间,都是到达一地之后立即返回,乙车较甲车快。

设两辆车同时从A地出发后第一次和第二次相遇都在途中P地。

那么两车第三次相遇为止,乙车共走了多少千米?解:根据总结:第一次相遇,甲乙总共走了2个全程,第二次相遇,甲乙总共走了4个全程,乙比甲快,相遇又在P点,所以可以根据总结和画图推出:从第一次相遇到第二次相遇,乙从第一个P点到第二个P点,路程正好是第一次的路程。

所以假设一个全程为3份,第一次相遇甲走了2份乙走了4份。

第二次相遇,乙正好走了1份到B地,又返回走了1份。

这样根据总结:2个全程里乙走了(540÷3)×4=180×4=720千米,乙总共走了720×3=2160千米。

4、小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

六年级奥数:行程问题_(1)间隔发车

六年级奥数:行程问题_(1)间隔发车

行程问题之间隔发车问题由李老师收集整理而成、2、小明放学回家,他沿一路电车的路线步行,他发现每搁六分钟,有一辆一路电车迎面开来,每搁12分钟,有一辆一路电车从背后开来,已知每辆一路电车速度相同,从终点站与起点站的发车间隔时间也相同,那么一路电车每多少分钟发车一辆?同向时电车12分钟走的路程-小明12分钟走的路程=发车间隔时间*车速电车6分钟走的路程+小明6分钟走的路程=发车间隔时间*车速则:电车6分钟走的路程=小明18分钟走的路程小明12分钟走的路程=电车4分钟走的路程电车12分钟走的路程-小明12分钟走的路程电车12分钟走的路程-电车4分钟走的路=电车8分钟走的路程=发车间隔时间*车速所以,发车间隔时间为8分钟3、一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?分析:要求汽车的发车时间间隔,只要求出汽车的速度和相邻两汽车之间的距离就可以了,但题目没有直接告诉我们这两个条件,如何求出这两个量呢?由题可知:相邻两汽车之间的距离(以下简称间隔距离)是不变的,当一辆公共汽车超过步行人时,紧接着下一辆公共汽车与步行人之间的距离就是间隔距离,每隔6分钟就有一辆汽车超过步行人,这就是说:当一辆汽车超过步行人时,下一辆汽车要用6分钟才能追上步行人,汽车与行人的路程差就是相邻两汽车的间隔距离。

对于骑车人可作同样的分析.因此,如果我们把汽车的速度记作V汽,骑车人的速度为V自,步行人的速度为V人(单位都是米/分钟),则:间隔距离=(V汽-V人)×6(米),间隔距离=(V汽-V自)×10(米),V自=3V人。

综合上面的三个式子,可得:V汽=6V人,即V人=1/6V汽,则:间隔距离=(V汽-1/6V汽)×6=5V汽(米)所以,汽车的发车时间间隔就等于:间隔距离÷V汽=5V汽(米)÷V汽(米/分钟)=5(分钟)。

六年级奥数行程问题一

六年级奥数行程问题一

六年级奥数行程问题(一)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距_________千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了_________公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的_________倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用_________秒.5.A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经_________小时,乙在甲丙之间的中点?6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了_________步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走_________米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟.那么需要_________分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有_________公里.10.如图,是一个边长为90米的正方形,甲从A出发,乙同时从B出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在_________边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A地到B地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.他们三人决定:第一个人和第二个人同乘自行车,第三个人步行.这三个人同时出发,当骑车的二人到达某点C时,骑车人放下第二个人,立即沿原路返回去接第三个人,到某处D与第三个人相遇,然后两人同乘自行车前往B;第二个人在C处下车后继续步行前往B地.结果三个人同时到达B地.那么,C距A处多少千米D距A处多少千米13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A、B、C三镇.A、B两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B、C两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A、C两镇水路相距50千米,水流速度为每小时1.5千米.某人从A镇上乘汽船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A、B两镇的水路路程是多少米.15. 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离.16. A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.17. 甲村、乙村相距6千米,小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回).在出发后40分钟两人第一次相遇.小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇.问小张和小王的速度各是多少18. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)19. 绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10分钟.问:两人出发多少时间第一次相遇?20. 一个圆周长90厘米,3个点把这个圆周分成三等分,3只爬虫A,B,C分别在这3个点上.它们同时出发,按顺时针方向沿着圆周爬行.A的速度是10厘米/秒,B的速度是5厘米/秒,C的速度是3厘米/秒,3只爬虫出发后多少时间第一次到达同一位置3只爬虫第二次到达同一位置是出发后多少秒21. 正方形ABCD是一条环形公路.已知汽车在AB 上的速度是90千米/小时,在BC上的速度是120千米/小时,在CD上的速度是60千米/小时,在DA上的速度是80千米/小时.从CD上一点P,同时反向各发出一辆汽车,它们将在AB中点相遇.如果从PC中点M,同时反向各发出一辆汽车,它们将在AB上一点N处相遇.求22. 小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到A BCD P N甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?23. 快车和慢车分别从A,B两地同时开出,相向而行.经过5小时两车相遇.已知慢车从B到A 用了12.5小时,慢车到A停留半小时后返回.快车到B停留1小时后返回.问:两车从第一次相遇到再相遇共需多少时间?24. 小玲和小华姐弟俩正要从公园门口沿马路向东去某地,而他们的家要从公园门口沿马路往西.小华问姐姐:“是先向西回家取了自行车,再骑车向东去,还是直接从公园门口步行向东去快”姐姐算了一下说:“如果骑车与步行的速度比是4∶1,那么从公园门口到目的地的距离超过2千米时,回家取车才合算.”请推算一下,从公园到他们家的距离是多少米?25. 一只小船从A地到B地往返一次共用2小时.回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米.求A至B 两地距离.26. 从甲市到乙市有一条公路,它分成三段.在第一段上,汽车速度是每小时40千米,在第二段上,汽车速度是每小时90千米,在第三段上,汽车速度是每小时50千米.已知第一段公路的长恰好是第三段的2倍.现有两辆汽车分别从甲、乙两市同时出发,相向而行.1小时20分后,在第二段的1/3处(从甲到乙方向的1/3处)相遇,那么甲乙两市相距多少千米?27. 一辆车从甲地开往乙地.如果车速提高20%,可以比原定时间提前一小时到达;如果以原速行驶120千米后,再将速度提高25%,则可提前40分钟到达.那么甲、乙两地相距多少千米?28. 甲乙两个人同时从AB 两地相向而行,甲行完全程需要6小时,两人相遇时所行的时间之比是3:2,这时甲比乙多行了 18千米,求乙的速度?29. 一段路分成了上坡、平路、下坡,上坡路驶平路长的一半,下坡路是上坡路长的3倍。

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

奥数思维训练题库---行程问题【基础】【2】从A到B有两条路可走,小王骑车从A过C到B比走另一条路少用3分钟,而从A出发到B,再经过C返回到A要53分钟,小王骑车速度为每小时36千米。

求:小王从A经过C到B所走过的路程。

【答案】15千米【基础】【2】从小明的家到长途汽车站有3千米。

现在从家往车站去,如果用每小时4千米的速度行走,在汽车发车前17分钟到达车站;如果想在汽车发车前2分钟到达车站,那么需用每小时多少千米的速度行走?【答案】每小时3千米【基础】【1】小明以一固定的速度从甲地跑到乙地,上午8时,他离乙地20千米,上午9时半他离乙地8千米,小明几点到达乙地?【答案】十点半【相遇追及】【2】兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少分钟?【答案】10分钟【相遇追及】【3】如图,有两只蜗牛同时一个等腰三角形的顶点A出发,分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,则线段BP的长度是多少?【答案】2米(2.5-2)×8=4米,6-4=2米。

则BP长是2米。

【相遇追及】【2】甲、乙二人练习跑歩,若甲让乙先跑10米则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是________、________。

【答案】6米/秒,4米/秒【相遇追及】【2】甲走一段路用40分钟,乙走同样一段路用30分钟。

从同一地点出发,甲先走5分钟,乙再开始追,乙________分钟才能追上甲。

【答案】20【多次相遇】【1】甲乙两车同时从A、B两地相向而行,甲车每小时行驶36千米,乙车每小时行驶34千米,两车分别到达目的地后立即返回,第二次相遇时共行驶了12小时,两地相距________米。

【答案】280【多次相遇】【2】甲,乙两车分别同时从A,B两地相对开出,第一次在离A地95千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇,AB两地间距离为________。

小学奥数题库《行程问题》基础行程平均速度4星题(含详解)全国通用版

小学奥数题库《行程问题》基础行程平均速度4星题(含详解)全国通用版

行程-基础行程-平均速度-4星题课程目标知识提要平均速度•概念平均速度是描述一个物体运动平均快慢程度的一个量。

•平均速度的求法当时间不相等时,平均速度=总路程÷总时间当时间相等时,平均速度=(速度1+速度2)÷2•“平均速度”和“速度的平均”的区别平均速度是指在整个过程的快慢程度;速度的平均是指速度的整体水平,是把所有速度加起来再除以它们的个数,得到的是一个平均数。

精选例题平均速度1. 一条路上有上坡,平路,下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了小时.【答案】0.6【分析】时间比为1 3:24:35=20:30:36=10:15:18,下坡路时间为12660÷(10+15+18)×18=0.6(小时).2. 小龙从家到学校的路上经过一个商店和一个游乐场,从家到商店的距离是500米,用了7分钟;从商店到游乐场以80米/分的速度要走8分钟;从游乐场到学校的距离是300米,走的速度是60米/分.那么小龙从家到学校的平均速度是米/分.【答案】72【分析】商店到游乐场:S1=80×8=640(m),游乐场到学校:t1=300÷60=5(min),所以S总=500+640+300=1440m;t总=7+8+5=20(min).平均速度:1440÷20=72(m/min).3. A、B两人同时自甲地出发去乙地,A、B步行的速度分别为100米/分、120米/分,两人骑车的速度都是200米/分,A先骑车到途中某地下车把车放下,立即步行前进;B走到车处,立即骑车前进,当超过A一段路程后,把车放下,立即步行前进,两人如此继续交替用车,最后两人同时到达乙地,那么A从甲地到乙地的平均速度是米/分.【答案】10007【分析】在整个行程中,车是从甲地到乙地,恰好过了一个全程,所以A、B两人步行的路程合起来也恰好是一个全程.而A步行的路程加上A骑车的路程也是一个全程,所以A步行的路程等于B骑车的路程,A骑车的路程等于B步行的路程.设A步行x米,骑车y米,那么B步行y米,骑车x米.由于两人同时到达,故所用时间相同,得:x100+y200=y120+x200,可得x:y=2:3.不妨设A步行了200米,那么骑车的路程为300米,所以A从甲地到乙地的平均速度是(200+300)÷(200100+300200)=10007(米/分).4. 灰太狼爬一座山,上山速度是每小时6千米,下山速度是每小时12千米.它上下山的平均速度是每小时9千米吗?如果不是,那应该是多少?【答案】8千米/时.【分析】不是.假设山路12千米,总路程是24千米,上山2小时,下山1小时,总时间3小时,平均速度为24÷3=8(千米/时).5. 小王每天用每小时15千米的速度骑车去学校,这一天由于逆风,开始三分之一路程的速度是每小时10千米,那么剩下的路程应该以怎样的速度才能与平时到校所用的时间相同?【答案】20千米/小时【分析】由于要求大风天和平时到校时间所用时间相同,在距离不变的情况下,平时的15千米/小时相当于平均速度.若能再把总路程“任我意”出来,在已知总距离和平均速度的情况下,总时间是可求的,例如假设总路程是30千米,从而总时间为30÷15=2小时.开始的三分之一路程则为10千米,所用时间为10÷10=1小时,可见剩下的20千米应用时1小时,从而其速度应为20千米/小时.6. 倒霉熊开汽车从自己家A到企鹅家D,需先走一段平路再翻过一座山,其中A到B为平地(见下图),车速是30千米/时;从B到C为上山路,车速是22.5千米/时;从C到D为下山路,车速是36千米/时.已知下山路是上山路的2倍,从A到D全程为72千米,倒霉熊开车从自己家A到企鹅家D共需要多少时间?【答案】 2.4小时【分析】设上山路为90千米,下山路为180千米,则上、下山的平均速度是:\[(90 + 180) \div (90 \div 22.5 +180 \div 36) = 30(千\dfrac 米时 ),\]正好是平地的速度,所以行A、D总路程的平均速度就是30千米/时,与平地路程的长短无关.因此共需要72÷30=2.4(小时).7. 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,15千米下坡路.他上坡时每小时走4千米,下坡时每小时走5千米,邮递员什么时候可以到对面山里?【答案】下午1时【分析】邮递员走了12千米的上坡路,走了15千米的下坡路,所以在路上共用时间为:12÷4+15÷5=6(小时),邮递员是下午7+6−12=1(时)到对面山里.8. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?【答案】12【分析】上山3千米/小时,平路4千米/小时,下山6千米/小时.假设平路与上下山距离相等,均为12千米,则首先赵伯伯每天共行走12×4=48千米平路用时12×2÷4=6小时上山用时12÷3=4小时下山用时12÷6=2小时共用时6+4+2=12小时是实际3小时的4倍,则假设的48千米也应为实际路程的4倍,可见实际行走距离为48÷4=12千米方法二:设赵伯伯每天走平路用a小时,上山用b小时,下山用c小时,因为上山和下山的路程相同,所以3b=6c,即b=2c.由题意知a+b+c=3所以a+2c+c=a+3c=3因此,赵伯伯每天锻炼共行4a +3b +6c =4a +3×2c +6c =4a +12c =4(a +3c)=4×3=12(千米)平均速度是12÷3=4(千米/时)【解】9. 从甲地到乙地的公路,只有上坡路和下坡路,没有平路,一辆汽车上坡时每小时行驶 20 千米,下坡时每小时行驶 35 千米,车从甲地开往乙地需 9 小时,从乙地到甲地需 712 小时.问:甲、乙两地间的公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【答案】 210;140【分析】 汽车往返甲乙两地共用时为 9+7.5=16.5(小时),且上坡的总路程与下坡的总路程相同都等于甲乙两地间的路程.由于每千米上坡路费时 120 小时,每千米下坡路费时 135 小时,从而从甲地到乙地的路程等于1612÷(120+135)=210(千米),如果从甲地开往乙地全为上坡,9 小时只走 20×9=180(千米).少 210−180=30(千米).每小时下坡比上坡多行 35−20=15(千米),多行 30 千米需要 30÷15=2(小时),因此从甲地到乙地,下坡用 2 小时,上坡用 9−2=7(时),行 20×7=140(千米).即甲乙两地间公路长为 210 千米,从甲地到乙地须走 140 千米上坡路.【注】本题自然也可用方程的办法求解,设从甲地到乙地的上坡路为 x 千米,下坡路为 y 千米.依题意 {x 20+y 35=9 ①x 35+y 20=712 ②解之得:x =140.10. 切斯特要从花莲赴彰化鹿港参加华罗庚金杯数学竞赛,爸爸开车出门前看了一下车子的里程表,刚好是一个回文数 69696 公里(回文数:从左到右,或从右到左读到的数字结果都一样)。

六年级下册数学试题-奥数专题讲练:钟表上的行程(含答案)全国通用

六年级下册数学试题-奥数专题讲练:钟表上的行程(含答案)全国通用

六年级下册数学试题-奥数专题讲练:钟表上的行程(含答案)全国通用钟表上的行程时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟对于正常的时钟,具体为:整个钟面为360度,上面有12个大格,每个大格为30度;60个小格,每个小格为6度。

分针速度:每分钟走1小格,每分钟走6度1时针速度:每分钟走1 【例1】⑴现在是4点,至少再经过多少分钟,时针与分针重合?2小格,每分钟走0.5度【例1】⑵2点钟以后,什么时刻分针与时针第一次成直角?【例2】小红在9点与10点之间开始解一道数学题,当时时针和分针正好成一条直线,当小红解完这道题时,时针和分针刚好第一次重合,小红解这道题用了多少时间?【例3】一部动画片放映的时间不足1时,小明发现结束时手表上时针、分针的位置正好与开始时时针、分针的位置交换了一下。

这部动画片放映了多长时间?【例4】(北京市第11届迎春杯小学数学竞赛决赛试题)有一座时钟现在显示10时整,那么,经过多少分钟,分针与时针第一次重合?再经过多少分钟,分针与时针第二次重合?经典例题妙解【例5】钟面上3点几分钟时,时针与分针到3 的距离相等?测试题1.2点几分时,分针与时针的夹角是150 ?2.小明在两点到三点之间解一道题目,开始时时针与分针正好重合,解完题时时针与分针正好在一条直线上。

求小明解题用了多少时间?3.钟面上5点到6点之间,分针与时针夹角是直角的是什么时候?4.星期天,豆豆和爸爸、妈妈去动物园。

上午8点多从家里出发,临出门,豆豆看了墙上的挂钟,钟面上的时针和分针恰好重合。

下午3点多,豆豆回家后,又看了看挂钟,这时,时针和分针恰好反向成一条直线。

问:他们是几点从家出发,几点回家的?共出去了多长时间?5.吴老师看一集电视剧,他在刚播出时看了一下手表,结束时又看了一下手表,他发现时针与分针刚好交换了一下位置。

已知电视剧时间不足一个小时,求电视剧播出了多长时间?答案1.答案:从两点开始计算,此时夹角是60 ,那么分针需要比时针多走150 + 60 = 210度或者是360 - (150 - 60) = 270度,2 1 2 1分针与时针的夹角是150 。

六年级下册数学素材奥数行程问题通用版

六年级下册数学素材奥数行程问题通用版

六年级下册数学素材奥数行程问题通用版类型多:行程分类细,变化多,工程抓住任务效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓标题难:了解标题、静态归结推理——静态知识容易学,静态剖析需求较高的了解才干、逻辑剖析和概括才干跨度大:从三年级到六年级都要学行程——四年的跨度,需求不时的温习稳固来加深了解、夯实基础2、那么想要学好行程效果,需求掌握哪些要诀呢?要诀一:大局部标题有规律可依,要诀是"学透"基本公式要诀二:无规律的标题有"攻略",一画〔画图法〕二抓〔比例法、方程法〕3、行程模块中包括哪些知识点,有何解题技巧?例题解说?行程效果包括多人行程、二次相遇、屡次相遇、火车过桥、流水行船、环形跑道、钟面行程、走走停停、接送效果、发车效果、电梯行程等更新目录:多人行程的要点及解题技巧例题及答案〔一〕例题及答案〔二〕二次相遇的要点及解题技巧例题及答案〔一〕例题及答案〔二〕追及效果的要点及解题技巧例题及答案〔一〕例题及答案〔二〕火车过桥的要点及解题技巧例题及答案〔一〕例题及答案〔二〕流水行船的要点及解题技巧例题及答案〔一〕例题及答案〔二〕环形跑道的要点及解题技巧例题及答案〔一〕例题及答案〔二〕钟面行程的要点及解题技巧例题及答案〔一〕例题及答案〔二〕走走停停的要点及解题技巧例题及答案〔一〕例题及答案〔二〕接送效果的要点及解题技巧例题及答案〔一〕例题及答案〔二〕发车效果的要点及解题技巧例题及答案〔一〕例题及答案〔二〕电梯行程的要点及解题技巧例题及答案〔一〕例题及答案〔二〕猎狗追兔的要点及解题技巧例题及答案〔一〕例题及答案〔二〕平均速度的要点及解题技巧例题及答案〔一〕例题及答案〔二〕奥数行程:多人行程的要点及解题技巧行程效果无论怎样变化,都离不开〝三个量,三个关系〞:这三个量是:路程(s)、速度(v)、时间(t)三个关系:1.复杂行程:路程=速度×时间2.相遇效果:路程和=速度和×时间3.追击效果:路程差=速度差×时间牢牢掌握住这三个量以及它们之间的三种关系,就会发现处置行程效果还是有很多方法可循的。

六年级行程问题(含答案)

六年级行程问题(含答案)

六年级奥数.行程. 比例解行程问题(ABC 级).学生版Page 1 of 32 比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。

从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。

比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。

我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,;;来表示,大体可分为以下两种情况:1.当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的速度之比。

s v ts v t =´ìí=´î甲甲甲乙乙乙,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲,得到s s t v v ==甲乙乙甲,s vs v =甲甲乙乙,甲乙在同一段时间t 内的路程之比等于速度比2.当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,22个物体所用的时间之比等于他们速度的反比。

s v t s v t =´ìí=´î甲甲甲乙乙乙,这里因为路程相同,即s s s ==乙甲,由s v t s v t =´=´乙乙乙甲甲甲,得s v t v t =´=´乙乙甲甲,v t v t =甲乙乙甲,甲乙在同一段路程s 上的时间之比等于速度比的反比(1)理解行程问题中的各种比例关系理解行程问题中的各种比例关系. .(2)掌握寻找比例关系的方法来解行程问题.重难点知识框架比例解行程问题【例 1】 甲、乙两车从相距330千米的A 、B 两城相向而行,甲车先从A 城出发,过一段时间后,乙车才从B 城出发,并且甲车的速度是乙车速度的。

六年级奥数简单行程问题试题及答案【三篇】

六年级奥数简单行程问题试题及答案【三篇】

愿你信心满满,尽展聪慧才华; 妙笔生花,谱下锦绣第几篇。

学习的仇敌是自己的满足,要使自己学一点东西,必要从不自满开始。

【第一篇】甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一半时间每分钟走 80 米,后一半的时间每分钟走 70 米.这样他在前一半的时间比后一半的时间多走米.考点简单的行程问题.剖析解设陈宇从甲地步行去乙地所用时间为2 分钟,依据题意,前一半时间和后一半的时间共走 007+008 千米,已知甲乙两地相距 6 千米,由此列出方程007+008=6,解方程求出一半的时间,所以前一半比后一半时间多走 80- 70×40 米,解决问题.解答解设陈宇从甲地步行去乙地所用时间为分钟,依据题意得007+008=6,015=6,=40;前一半比后一半时间多走80- 70×40,=10×40,=400 米.答前一半比后一半的时间多走400 米.故答案为 400.评论依据题目特色,奇妙灵巧地设出未知数,是解题的重点.【第二篇】 1 甲乙两地相距 6 千米.陈宇从甲地步行去乙地,前一半时间每分钟走 80 米,后一半的时间每分钟走70 米.这样他在前一半的时间比后一半的时间多走米.剖析解设陈宇从甲地步行去乙地所用时间为 2 分钟,依据题意,前一半时间和后一半的时间共走007+008 千米,已知甲乙两地相距 6千米,由此列出方程007+008=6,解方程求出一半的时间,所以前一半比后一半时间多走80- 70×40 米,解决问题.解答解设陈宇从甲地步行去乙地所用时间为分钟,依据题意得007+008=6,015=6,=40;前一半比后一半时间多走80- 70×40,=10×40,=400 米.答前一半比后一半的时间多走400 米.故答案为 400.评论依据题目特色,奇妙灵巧地设出未知数,是解题的重点.【第三篇】例 1 甲、乙二人沿体育场的跑道跑步,甲每分钟跑290 米,乙每分钟跑 270 米,跑道一圈长 400 米.假如两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?剖析这是一道关闭线路上的追及问题.甲和乙同时同地起跑,方向一致.所以,当甲第一次追上乙时,比乙多跑了一圈,也就是甲与乙的行程差是400 米.依据行程差÷速度差=追实时间即可求出甲追上乙所需的时间.解答解 400÷290-270=400÷20,=20 分钟;答甲经过 20 分钟才能第一次追上乙.评论此类题依据追及拉开行程÷速度差=追及拉开时间,代入数值计算即可.【六年级奥数简单行程问题试题及答案【三篇】】。

六年级下册奥数试题行程问题(一)全国通用(含答案)

六年级下册奥数试题行程问题(一)全国通用(含答案)

第11讲行程问题(一)在人们的生活中离不开“行”,“行”中有三个重要的量:路程、速度、时间。

研究这三个量的典型应用题叫做行程问题。

这三个量之间的关系可以用下面的公式来表示:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题和追及问题是行程问题的两个重要的类型。

相遇问题是指两个物体在行进过程中相向而行,然后在途中某点相遇的行程问题。

其主要数量关系式为:总路程=速度和×相遇时间追及问题是指两个物体在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

其主要数量关系式为:路程差=速度差×追及时间例1 姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?分析:经过12分钟,姐姐到达A地,妹妹骑车回家。

如下图所示:从图中可以看出妹妹从出发到追上姐姐这段时间里,妹妹要比姐姐多行的路程就是姐姐12分钟所走的路程,也就是妹妹与姐姐的路程差。

有了路程差,再求出速度差,根据追及问题的数量关系式追及时间=路程差÷速度差就可求出妹妹追上姐姐的时间。

解答:妹妹与姐姐的路程差80×12=960(千米)妹妹与姐姐的速度差240-80=160(千米)妹妹追上姐姐的时间960÷160=6(分)答:经过6分钟妹妹追上姐姐。

例2 一辆公共汽车和一辆小轿车同时从相距360千米的两地相向而行,公共汽车每小时行35千米,小轿车每小时行55千米,几小时后两车相距90千米?分析:两车从相距360千米的两地同时出发相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米。

如下图这时两车共行的路程为360-90=270(千米)值得注意的是,当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米。

如下图所示从图中可知,这时两车共行的路程为360+90=450(千米)根据相遇问题的数量关系式相遇时间=总路程÷速度和所求的问题就可以解答。

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展含答案

(奥数典型题)行程问题-2023-2024学年六年级下册小升初数学思维拓展第8讲行程问题【知识点归纳】1.、速度:指单位时间内所行的路程。

因为速度=路程÷时间,所以速度的单位名称是路程单位/时间单位,即千米/时,米/分,米/秒,千米/分……2、路程、时间与速度的关系:(1)已知路程和时间,求速度:速度=路程÷时间;(2)已知路程和速度,求时间:时间=路程÷速度;(3)已知速度和时间,求路程:路程=速度×时间。

在路程、时间和速度三个量中,知道其中的任何两个量,都能求出第三个量。

【方法总结】1、路程、时间和速度之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间1.客车和货车分别从甲、乙两地同时出发,相向而行,3h相遇,相遇后客车又行驶2h到达乙地,已知货车每时行驶50km,问甲、乙两地相距多少千米?2.甲乙两列火车分别从南、北两地同时相对开出,6小时后相遇。

甲车的速度是120千米/时,乙车的速度是130千米/时。

求南、北两地的路程。

(先画图整理条件和问题,再解答。

)3.客、货两车同时从甲乙两地相对开出在离乙地80千米的地方第一次相遇,相遇后继续行驶,到达对方出发点后立即返回,第二次在距离甲地50千米的地方相遇。

求甲、乙两地间相距多少千米?(画图可以帮助理解!)4.甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。

求甲原来的速度。

5.从电车总站每隔一定时间开出一辆电车。

甲和乙两人在一条街上沿着同一方向步行,甲每分钟步行82米,每隔10分钟遇上一辆迎面开来的电车;乙每分钟步行60米,每隔10分15秒遇上迎面开来的一辆电车。

则电车总站每隔多少分钟开出一辆电车?6.甲乙两地相距1200千米。

一辆大客车和一辆小客车分别从两地同时出发,相向而行,6小时相遇。

六年级下册数学试题-行程问题综合知识精讲 练习题(含答案)全国通用

六年级下册数学试题-行程问题综合知识精讲 练习题(含答案)全国通用

行程问题综合【知识精讲】1、基本行程问题2、相遇与追及问题3、其他经典的行程问题一、基本行程问题1. 行程三要素:路程、时间、速度;2. 三要素的关系:路程=时间×速度时间=路程÷速度速度=路程÷时间例1.(1) 一辆汽车从甲地往乙地送货,去时每小时行驶44千米,用了6小时,回来时用了5.5小时,汽车回来时每小时行驶多少千米?(2) 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达,但汽车行驶到53的路程时,出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?二、相遇与追及问题1.相遇问题:路程和=相遇时间×速度和相遇时间=路程和÷速度和速度和=路程和÷相遇时间2.追及问题:路程差=追及时间×速度差追及时间=路程差÷速度差速度差=路程差÷追及时间3.多次往返问题(1)从两端出发,相向而行:第1,2,3,4,......次迎面相遇的路程和分别为1,3,5,7,......个全程;(2)从两端出发,相向而行:第1,2,3,4,......次背后追及的路程差分别为1,3,5,7,......个全程;(3)从同一端点出发,同向而行:第1,2,3,4,......次迎面相遇的路程和为2,4,6,8,......个全程;(4)从同一端点出发,同向而行:第1,2,3,4,......次背后追及的路程差为2,4,6,8,......个全程;(5)特别地:在端点处相遇,既算迎面相遇也算追及.例2.快、慢两车分别从甲、乙两站同时开出,相对而行.经过2.5小时相遇,相遇地点距离中点25千米,已知慢车每小时行驶40千米,问快车走到乙站还需要多长时间?例3.小强每分钟走70米,小李每分钟走60米,两人同时从同一地点背向走了3分钟后,小强掉头去追小李,追上小李时小强共走了多少米? 例4.A、B两地相距13.5平米,甲、乙两人分别由A、B两地同时相向而行,各在A、B之间往返一次,甲比乙先返回原地,途中两人第一次迎面相遇于点C, 第二次迎面相遇遇于点D,已知两次相遇时间间隔为3小时,C.、D两地相距3千米,则甲和乙的速度分别是多少?三、其他经典的行程问题1.火车行程问题:(完全通过)火车车长+桥(隧道)长度=火车速度×通过的时间;2.流水行船问题:(1) 顺水速度=船速+水速;逆水速度=船速-水速;(2) 船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.3.环形路线问题:(1) 从同一点出发反向而行:相遇的路程和为环形路线一圈的长度;(2) 从同一点出发同向而行:追及的路程差为环形路线一圈的长度;(3) 在环形问题中,运动总是呈现出很强的周期性.例5.(1) 一辆列车通过300米长的隧道用15秒,通过180米长的桥梁用12秒,那么这辆列车的车身长是多少米?(2)轮船从甲地到乙地,顺水每小时行驶25千米,逆水每小时行驶15千米,来回一次共行驶4小时,甲、乙两地相距多少千米?例6.绕小山一周的公路长1920米,甲、乙两人沿公路竞走,两人同时同地出发,反方向行走,甲比乙走得快,12 分钟后两人相遇,如果两人每分钟多走16米,则相遇地点与上次相差20米。

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

六年级下册数学试题-奥数思维训练习题---行程问题(解析版)全国通用

奥数思维训练题库---行程问题【基础】【2】从A到B有两条路可走,小王骑车从A过C到B比走另一条路少用3分钟,而从A出发到B,再经过C返回到A要53分钟,小王骑车速度为每小时36千米。

求:小王从A经过C到B所走过的路程。

【答案】15千米【基础】【2】从小明的家到长途汽车站有3千米。

现在从家往车站去,如果用每小时4千米的速度行走,在汽车发车前17分钟到达车站;如果想在汽车发车前2分钟到达车站,那么需用每小时多少千米的速度行走?【答案】每小时3千米【基础】【1】小明以一固定的速度从甲地跑到乙地,上午8时,他离乙地20千米,上午9时半他离乙地8千米,小明几点到达乙地?【答案】十点半【相遇追及】【2】兄弟两人同时从家里出发到学校,路程是1400米。

哥哥骑自行车每分钟行200米,弟弟步行每分钟行80米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇。

从出发到相遇,弟弟走了多少分钟?【答案】10分钟【相遇追及】【3】如图,有两只蜗牛同时一个等腰三角形的顶点A出发,分别沿着两腰爬行。

一只蜗牛每分钟行2.5米,另一只蜗牛每分钟行2米,8分钟后在离C点6米处的P点相遇,则线段BP的长度是多少?【答案】2米(2.5-2)×8=4米,6-4=2米。

则BP长是2米。

【相遇追及】【2】甲、乙二人练习跑歩,若甲让乙先跑10米则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙.问:甲、乙二人的速度各是________、________。

【答案】6米/秒,4米/秒【相遇追及】【2】甲走一段路用40分钟,乙走同样一段路用30分钟。

从同一地点出发,甲先走5分钟,乙再开始追,乙________分钟才能追上甲。

【答案】20【多次相遇】【1】甲乙两车同时从A、B两地相向而行,甲车每小时行驶36千米,乙车每小时行驶34千米,两车分别到达目的地后立即返回,第二次相遇时共行驶了12小时,两地相距________米。

【答案】280【多次相遇】【2】甲,乙两车分别同时从A,B两地相对开出,第一次在离A地95千米处相遇,相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇,AB两地间距离为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲行程问题(一)在人们的生活中离不开“行”,“行”中有三个重要的量:路程、速度、时间。

研究这三个量的典型应用题叫做行程问题。

这三个量之间的关系可以用下面的公式来表示:路程=速度×时间速度=路程÷时间时间=路程÷速度相遇问题和追及问题是行程问题的两个重要的类型。

相遇问题是指两个物体在行进过程中相向而行,然后在途中某点相遇的行程问题。

其主要数量关系式为:总路程=速度和×相遇时间追及问题是指两个物体在行进过程中同向而行,快行者从后面追上慢行者的行程问题。

其主要数量关系式为:路程差=速度差×追及时间例1 姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?分析:经过12分钟,姐姐到达A地,妹妹骑车回家。

如下图所示:从图中可以看出妹妹从出发到追上姐姐这段时间里,妹妹要比姐姐多行的路程就是姐姐12分钟所走的路程,也就是妹妹与姐姐的路程差。

有了路程差,再求出速度差,根据追及问题的数量关系式追及时间=路程差÷速度差就可求出妹妹追上姐姐的时间。

解答:妹妹与姐姐的路程差80×12=960(千米)妹妹与姐姐的速度差240-80=160(千米)妹妹追上姐姐的时间960÷160=6(分)答:经过6分钟妹妹追上姐姐。

例2 一辆公共汽车和一辆小轿车同时从相距360千米的两地相向而行,公共汽车每小时行35千米,小轿车每小时行55千米,几小时后两车相距90千米?分析:两车从相距360千米的两地同时出发相向而行,距离逐渐缩短,在相遇前某一时刻两车相距90千米。

如下图这时两车共行的路程为360-90=270(千米)值得注意的是,当两车相遇后继续行驶时,两车之间的距离又从零逐渐增大,到某一时刻,两车再一次相距90千米。

如下图所示从图中可知,这时两车共行的路程为360+90=450(千米)根据相遇问题的数量关系式相遇时间=总路程÷速度和所求的问题就可以解答。

解答:相遇前(360-90)÷(35+55)=270÷90=3(时)相遇后(360+90)÷(35+55)=450÷90=5(时)答:两车在出发后3小时相距90千米,在出发后5小时再一次相距90千米。

说明:本题中两车没有相遇,从表面上看虽然不是相遇问题,但是两车所有的时间是相同的,因此可以当做相遇问题来解答。

例3 兄弟两人骑自行车同时从学校出发回家。

哥哥每小时行15千米,弟弟每小时行10千米。

出发半个小时后哥哥因事返回学校,到学校后又耽搁了1小时,然后动身去追弟弟。

当哥哥追上弟弟时,距学校多少千米?分析:本题可以分段考虑,从开始一步步分析。

出发半个小时后,哥哥因事返回学校,在这个过程中哥哥和弟弟各行了1小时,到学校后哥哥又耽搁了1小时,这时弟弟又行了1小时。

因此可以看作当哥哥准备从学校追弟弟时,弟弟共行了2小时,弟弟2小时所行的路程就是哥哥与弟弟的路程差,由此可求出追及时间。

解答:哥哥从学校开始追弟弟的路程差10×(0.5×2+1)=20(千米)哥哥追上弟弟的时间20÷(15-10)=4(时)哥哥在追上弟弟时离学校的距离15×4=60(千米)答:哥哥在追上弟弟时离学校60千米。

例4 小张、小明两人同时从甲、乙两地出发相向而行,两人在离甲地40米处第一次相遇,相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15米处第二次相遇。

甲、乙两地相距多少米?分析:根据题意画图如下从图中可知,小张、小明两人第一次相遇时,共行的路程即是甲、乙两地之间的距离,这时,小张行了40米。

当他们第二次相遇时,小张行了甲、乙间距离还多15米,小明行了两个甲、乙间距离少15米,合起来两个人共行了甲、乙间距离的3倍。

因此小张从出发到第二次相遇所行的路程应是他从出发到第一次相遇所行的路程的3倍,即可求出他从出发到第二次相遇所行的路程。

又知这段路程比甲、乙间距离多15米,甲、乙间距离就可求出了。

解答:小张从出发到第二次相遇所行的路程40×3=120(米)甲、乙间距离120-15=105(米)答:甲、乙两地相距105米。

例5 在周长为400米的圆形跑道的一条直径的两端,甲、乙两人分别以每秒6米和每秒4米的速度骑自行车同时同向出发(顺时针)沿圆周行驶,经过多长时间,甲第二次追上乙?分析:如图,在出发的时候,甲、乙两人相距半个周长,根据路程差÷速度差=追及时间,就可求出甲第一次追上乙的时间。

当甲追上乙后,两人就可以看作同时同地出发,同向而行。

甲要追上乙,就要比乙多骑一圈400米,从而可求出甲第二次追上乙的时间。

解答:甲第一次追上乙的时间400÷2÷(6-4)=100(秒)甲第二次追上乙的时间400+(6-4)=200(秒)一共所用的时间100+200=300(秒)答:经过300秒后甲第二次追上乙。

说明:在环形跑道上行驶,两车同时同地同向出发,若再一次相遇,快行者必须比慢行者多行一圈,即路程差为环形跑道的周长。

例6 客车、货车、卡车三辆车,客车每小时行60千米,货车每小时行50千米,卡车每小时行55千米。

客车、货车从东镇,卡车从西镇,同时相向而行,卡车遇上客车后,10小时后又遇上了货车。

东西两镇相距多少千米?分析:根据题意画图当卡车与客车在A点相遇时,而货车行到B点,10小时后,卡车又遇到货车,说明在10小时内卡车与货车合行路程是(卡车与客车相遇时)客车与货车所行的路程差。

客车与货车相差AB的路程所用的时间就是卡车与客车的相遇时间。

解答:AB间距离(客车与货车路程差)(55+50)×10=1050(千米)客车与卡车相遇时间1050÷(60-50)=105(时)两镇间距离(60+55)×105=12075(千米)答:两镇相距12075千米。

说明:这是一道相遇问题与追及问题相结合的应用题。

客车与货车相差1050千米所用的时间就是卡车与客车的相遇时间,这一点是解题的关键。

阅读材料轮船相遇斯图姆是法国数学家,在数学的许多领域都作出了开创性的工作。

一次,斯图姆去参加一个国际学术会议,一位朋友向他请教了如下一个问题:每天中午有一艘轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛,轮船在途中均要航行七天七夜,试问,每条从哈佛开出后的轮船在到达纽约前能遇上几艘从纽约开来的轮船?你能试着给出解答吗?练习题1.A、B两城相距450千米,甲、乙两辆汽车同时从A城开往B城,甲车每小时行52千米,乙车每小时行38千米,甲车到达B城后立即返回,两车从出发到相遇共需多少小时?分析:根据题意画图如下从图中可知,两车从出发到相遇所走的路程正好是两个A、B城之间的距离,所以两车从出发到相遇所用的时间相当于两车行了两个450千米所需的时间。

解答:450×2÷(52+38)=900÷90=10(时)答:两车从出发到相遇共需10小时。

2.哥哥以每分钟50米的速度从学校步行回家,12分钟后弟弟从学校出来骑车追哥哥,结果在距学校800米处追上哥哥。

求弟弟骑车的速度。

分析:根据题意画图如下当弟弟追上哥哥时,距学校800米。

这800米是哥哥两次所行路程的和,一次是12分钟内行的路程,另一次是弟弟从出发到追上哥哥所用时间内(追及时间)哥哥行的路程。

解答:弟弟追上哥哥的时间(追及时间)(800-12×50)÷50=(800-600)÷50=200÷50=4(分)弟弟的速度800÷4=200(米)答:弟弟骑车每分钟行200米。

3.东、西两镇相距100千米,甲、乙两车分别从两镇同时出发相向而行,4小时后相遇。

已知甲比乙每小时快3千米,甲、乙两车的速度是多少?分析:100千米是两车所行的总路程,4小时为相遇时间。

根据相遇问题的数量关系式,就可求出两车的速度和。

又已知两车的速度差,根据和差问题,两车速度就解决了。

解答:两车速度和100÷4=25(千米)甲的速度(25+3)÷2=14(千米)乙的速度25-14=11(千米)答:甲的速度为每小时14千米,乙的速度为每小时11千米。

4.一辆货车以每小时65千米的速度前进,一辆客车在它的后面1500米处,以每小时80千米的速度同向行驶,客车在超过货车前2分钟,两车相距多少米?分析:客车超过货车的一瞬间,也就是客车追上货车,这时两车所行的路程是相等的。

客车超过货车前2分钟两车相距的路程即客车与货车2分钟内的路程差。

解答:客车与货车1小时的路程差80-65=15(千米)客车与货车2分钟的路程差15×1000÷60×2=500(米)答:客车在超过货车前2分钟,两车相距500米。

说明:做完题后回过头来再想一想,发现已知条件客车在货车后面1500米是多余的,不管开始两车相距多远,客车在超过货车前2分钟,两车相距的路程是不变的。

本题还要注意单位的互化。

5.甲乙两人骑车同时从南北两地相向而行,甲每小时行23千米,乙每小时行18千米,两人在距两地中点10千米处相遇,南北两地相距多少千米?分析:根据题意画图如下从图中可以看出,甲走了南北距离的一半多10千米,乙走了南北距离的一半少10千米。

从出发到相遇,甲比乙多走了两个10千米。

又已知甲每小时比乙多行23-18=5(千米)多少小时后甲就比乙多行20千米?这个时间就是甲乙相遇时间,有了相遇时间,南北两地的距离就可求出了。

解答:甲乙相遇时间10×2÷(23-18)=20÷5=4(时)南北全程(23+18)×4=41×4=164(千米)答:南北两地相距164千米。

说明:本题表面现象是相遇,实质上有追及的特点。

因此可以按照追及问题来解答。

在做题过程中要抓住题目的本质,究竟考虑速度和,还是考虑速度差,要针对题目中的条件认真思考。

千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”。

6.小红和小蓝练习跑步,若小红让小蓝先跑20米,则小红跑5秒就可追上小蓝。

若小红让小蓝先跑4秒钟,则小红6秒钟追上小蓝,小红、小蓝的速度各是多少?分析:小红让小蓝先跑20米,则20米就是小红、小蓝的路程差,小红跑5秒钟追上小蓝,5秒就是追及时间,由此可求出他们的速度差。

若小红让小蓝先跑4秒钟,则小红6秒钟追上小蓝,在这个过程中,6秒为追及时间。

根据上一个条件,由速度差和追及时间可求出在这个过程中的路程差。

这个路程差即是小蓝4秒钟所行的路程,因此可求出小蓝的速度。

相关文档
最新文档