精选模拟集成电路设计复习提纲讲义.(ppt)

合集下载

模拟CMOS集成电路设计复习提纲(课堂PPT)

模拟CMOS集成电路设计复习提纲(课堂PPT)

Summary # 20
西电微电子:模拟集成电路设计
共源共栅级的输出阻抗(3)
Rup gm3ro3ro4
Rup
Rdown gm2ro2ro1
Rdown
Rout Rup || Rdown
Av0 g R m1 out
gm1 gm2ro2ro1 || gm3ro3ro4
Summary # 21
gm1 ro2 || ro1
Summary # 13
西电微电子:模拟集成电路设计
二极管接法MOSFET负载的共源级
Rup Rdown
Rup
1 gm2
Rdown ro1
Rout
Rup
|| Rdown
1 gm2
|| ro1
ro1 1 gm2ro1
1 gm2
(
1 gm2
ro1 )
Av0
Vout Vin
Summary #2
西电微电子:模拟集成电路设计 华大微电子:模拟集成电路设计
MOSFET的I-V特性
饱和区:I D
1 2
Cox
W L
VGS
Vth 2
沟长调制:I D
1 2
Cox
W L
VGS
Vth
21
VDS
线性区:I D
Cox
W L
VGS
Vth VDS
1 2
VD2S
深线性区:I D
Rout Rup || Rdown (RD || ro )
Vout Vin
gmRout
gm (RD
|| ro )
gmRD (RD ro )
Summary # 12
西电微电子:模拟集成电路设计

模拟集成电路设计_复习大纲

模拟集成电路设计_复习大纲

《模拟集成电路设计》复习大纲一、 概念:1. 密勒定理:如果将图(a )的电路转换成图(b )的电路,则Z 1=Z/(1-A V ),Z 2=Z/(1-A V -1),其中A V =V Y /V X 。

这种现象可总结为密勒定理。

2. 沟道长度调制效应:当栅与漏之间的电压增大时,实际的反型沟道长度逐渐减小,也就是说,L 实际上是V DS 的函数,这种效应称为沟道长度调制。

3. 等效跨导Gm :对于某种具体的电路结构,定义inDV I ∂∂为电路的等效跨导,来表示输入电压转换成输出电流的能力,跨导的表达式4. N 阱:CMOS 工艺中,PMOS 管与NMOS 管必须做在同一衬底上,若衬底为P 型,则PMOS 管要做在一个N 型的“局部衬底”上,这块与衬底掺杂类型相反的N 型“局部衬底”叫做N 阱。

5. 亚阈值导电效应:实际上,V GS =V TH 时,一个“弱”的反型层仍然存在,并有一些源漏电流,甚至当V GS <V TH 时,I D 也并非是无限小,而是与V GS 呈指数关系,这种效应叫亚阈值导电效应。

6. 有源电流镜:像有源器件一样用来处理信号的电流镜结构叫做有源电流镜。

7. 输出摆幅:输出电压最大值与最小值之间的差。

8. 放大应用时,通常使MOS 管工作在饱和区,电流受栅源过驱动电压控制,我们定义跨导来表示电压转换电流的能力。

9. 在模拟集成电路中MOS 晶体管是四端器件 10. 源跟随器主要应用是起到什么作用?11. λ为沟长调制效应系数,λ值与沟道长度成反比,对于较长的沟道,λ值较小。

12. 饱和区NMOS 管的电压条件及其其沟道电流表达式。

13. 共源共栅放大器结构的一个重要特性就是输出阻抗很高,因此可以做成恒定电流源。

14. MOS 管的主要几何参数15. 共模输入电平的变化会引起差动输出发生改变的因素有哪些? 16. MOS 管的电路符号17. 增益小于1的单级放大器 18. N 阱和P 阱的概念19. MOS 管的二级效应的表达式,比如沟道长度调制效应、体效应、亚阈值效应 20. 按比例缩小理论:恒定电场、恒定电压、准恒压21. 采用电阻负载的共源级单级放大器其小信号增益Av 表达式 22. 在差动放大器设计中CMRR23. 带源极负反馈的共源级其小信号增益的表达式 24. 图示电路的小信号增益表达式。

模拟CMOS集成电路设计精粹ppt1

模拟CMOS集成电路设计精粹ppt1

低电流时MOST工作在弱反型区说明沟道电导率很小。实际上此时沟道已经不存在了。 流过沟道的漂移电流,现在变成了扩散电流,这时的模型变得截然不同。模型的表达 式是指数特性,而不是平方率特性。更重要的是,要知道在什么区域弱反型区逐渐代 替强反型区。实际上这个区域很宽,也叫中等-反型区。对于设计者来说,知道两个 区域转变时VGS-VT的值,特别是电流的大小很重要。
通常需要用多大的VGS值?在高端,不让器件进入大电流区或速度饱和区,要远离速度饱和区的 转变点。后面将计算该转变点VGS-VT的近似值,当前的工艺大约为0.5V。在低电流端,也不想使用弱 反型区。∵该区域中电流和跨导的绝对值变得特别小,这时noise很大,另外电路速度也很低。在某 种情况下可能允许低信噪比和低速度,如生物学应用和生医探头。在其它大部分应用中,需要更好的 信噪比,更高的速度,这时希望器件工作在接近弱反型区的地方,但不是弱反型区里面,典型值VGSVT为0.15~0.2V。下面给出这样设计的原因。
先来研究一下线性区。 在很多应用场合,MOST只是用于简单的开关。VDS很小,MOST工作在线性区(也称欧姆区)。在 这个区域,MOST晶体管实际上是一个小电阻,提供了线性的V-A特性。此时沟道两端即源端和漏端有 相同的导电能力。 接下来研究一下这个电阻的精确阻值是多少?
对于很小的VDS,看一下图中的左下角,IDS~VDS曲线是线性的,MOST工作特性表现为电阻。 KP:工艺参数,属于特定的CMOS工艺 A/V2
既然我们已知如何描述一个处在中间电流区(强反型区)的MOST管,下面重点研究低电流区(弱 反型区)和大电流区(速度饱和区)的晶体管,希望找出在这些区域转变时的VGS的临界值。在低电 流时得到了弱反型区,也叫低阈值区,∵大多数情况下,它的输入电压<VT。亦叫指数区,∵电流-电 压特性呈指数关系,比例系数是nkT/q,很接近于双极型管的kT/q。k是玻尔兹曼常数,q是电子的电 量,∴在300k(27℃),kT/q≈26mv。和双极型管的区别还是前面提得的n,n取决于偏置电压,其值 不精确,这与双极型器件相比时,MOST的一个不利因素。

模拟CMOS集成电路设计复习提纲

模拟CMOS集成电路设计复习提纲

物理验证与DRC/LVS检查
01
02
03
物理验证
检查版图是否符合工艺要 求,确保可制造性。
DRC检查
进行设计规则检查,确保 版图满足工艺要求。
LVS检查
进行电路原理图与版图一 致性检查,确保两者匹配。
03
CMOS集成电路的模拟技 术
SPICE模拟器简介
1
SPICE(Simulation Program with Integrated Circuit Emphasis):一种用于模拟和分析集成 电路性能的软件工具。
新工艺
新型工艺技术如纳米压印、电子束光刻等不断涌现,这些新工艺能够制造更小尺寸的集成电路,提高集成度并降 低制造成本。
集成电路的可扩展性挑战
制程节点
随着集成电路制程节点不断缩小,制 程技术面临物理极限的挑战,如量子 隧穿效应、漏电等问题,需要探索新 的物理机制和制程技术。
异构集成
为了实现更高效能、更低功耗的集成 电路,需要将不同材料、不同工艺的 芯片集成在一起,形成异构集成技术, 这需要解决不同芯片之间的互连、兼 容等问题。
功耗优化
总结词
功耗优化旨在降低CMOS集成电路的功 耗,以提高芯片的能效和延长电池寿命 。
VS
详细描述
功耗优化主要通过降低晶体管导通电阻、 减小时钟信号功耗和优化电路结构来实现 。例如,采用低阻抗材料和工艺技术来降 低导通电阻,采用时钟门控技术来减小时 钟信号功耗,优化电路逻辑和结构等。这 些措施有助于降低功耗,提高能效,延长 电池寿命。
和规范,如元件选择、布线规则、版图设计等。
设计实践
02
结合具体的设计案例,分析可靠性设计的实际应用和效果,总
结经过实验和仿真等方法,对设计的可靠性进行验证和评估,确

模拟集成电路设计.ppt

模拟集成电路设计.ppt
1.物理图
§3-3: 其他MOS管大信号模型的参数
17
二、MOS电容
2. 耗尽结电容:CBD, CBS
P65 上式S→D 则 CBS→ CBD
18
§3-3: 其他MOS管大信号模型的参数
3.电荷存储电容: CGD, DGS ,CGB
交叠电容: C1、C3 、C5 珊-源/漏 C1 C3 LD Weff Cox CGXO Weff
25
§3-4: MOS管的小信号模型
1. gm,gmbs , gds 在饱和区:
gm (2K'W / L) ID (1 VDS ) (2K'W / L) ID
gmbs
iD vBS
iD vSB
( iD VT
)( VT ) vSB
iD iD VT vGS
gmbs gm 2(2 F
VSB )1/ 2
(a) (b)
多个器件的表示, 从匹配角度看更好。
37
§3-7: MOS电路的SPICE模拟
三、MOS模型描述
.MODEL < 模型名> <模型类型> <模型参数>
例如: .MODEL NCH NMOS LEVEL=1 VT0=1 KP=50U GAMMA=0.5 +LAMBDA=0.01
四、分析实例
vGS
VT
n
kT q
(简化模型,适合手工计算)
第3章第7节
35
3.7 MOS电路的SPICE模拟
36
§3-7: MOS电路的SPICE模拟
一、SPICE 模拟文件的一般格式
● 标题 ● 电路描述 (器件描述和模型描述) ● 分析类型描述 ● 输出描述

第六章模拟集成电路设计1PPT课件

第六章模拟集成电路设计1PPT课件
推得 T3~T6的电流分别 1、 2、 为 4、 8毫 :安
T1电流放大,以减少从参考电流中分出的基极电流。 使一个参考电流较准确地控制多个电流源
2020/8/2
专用集成电路设计实验室
20
四川大学物理科学与技术学院
3、微电流恒流源(Widlar源)
V B1 E V B2 EIE2R e2
Re2
VBE1VBE2 IE2
16
四川大学物理科学与技术学院
基本型恒流源 r
1. 镜像电流源
基准电流:
IREF=Ir
VCCVBE R
V CC R
因为:VB E2=VB E1 IE2 = IE1
所以:IC2 =IC1 IREF
最后得到公式6-29
R上 r 电流I的 r T 变 管 2化 基极 I变 2 r 化
增加了双极型晶体管工作点的稳定性
四川大学物理科学与技术学院
模拟集成电路
2020/8/2
专用集成电路设计实验室
1
四川大学物理科学与技术学院
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
专用集成电路设计实验室
2
四川大学物理科学与技术学院
集成电路概述
• 模拟IC就是能对模拟量进行运算和处理的一种IC, 直接对连续可变的模拟量进行计算与处理
• 模拟集成电路的种类
– 根据输入、输出电压的变化关系分类
• 线性IC:输出信号随输入信号的变化成线性关系 • 非线性IC:具有非线性的传输特点 • 接口电路:AD/DA转换器
– 按工作频率分类
• 低频、高频、射频、微波、毫米波

模拟CMOS集成电路设计精粹1PPT课件

模拟CMOS集成电路设计精粹1PPT课件
Analog Design-Current Mode
1
整体 概述
一 请在这里输入您的主要叙述内容

请在这里输入您的主要 叙述内容
三 请在这里输入您的主要叙述内容
2

Contents
1. Comparison of MOST and Bipolar transistor models 2. Amplifiers,Source followers & Cascodes 3. Differential Voltage & Current amplifer 4. Stability of Operational amplifier 5. Systematic Design of Operational Amplifier 6. Important opamp configerations 7. Fully-differential amplifiers 8. Current-input Operational Amplifers 9. Rail-to-rail input and output amplifers 10. Class AB and driver amplifier 11. Feedback Voltage & Transconductance Amplifier 12. Feedback Transmpedance & Current Amplifier 13. Bandgap and current reference circuits 14. Switched-capacitor filters 15 Continuous-time filter
3
模拟电路设计是艺术性与科学性的结合。 之所以称之为艺术,是因为设计时要在必须的规范和可以忽略的规范间寻求适当的折中,而这需 要创造力。 之所以称为科学,是因为需要一定的设计水平和设计方法来指导设计,就必然需要更深入地研究 设计时的折中。 本课程指引学生进入这个崭新的艺术与科学的世界,它将指导学生学习模拟电路设计的各个方面 ,这是了解电路设计艺术性与科学性的基础。 所有的设计都是关于电路的,而所有的电路都包括晶体管,器件的各种模型又是分析电路特性所 必需的。本课程不断地采用实际中所采用的反馈闭环形式设计。

模拟集成电路.ppt

模拟集成电路.ppt

采用差分式放大电路
6.2.0 概述
4. 差分式放大电路中的一般概念
vi d=vi 1vi 2 差模信号 两个输入信号的差值
1 vic =2(vi1vi2)
共模信号
两个输入信号的算术平均值
根据以上两式可以得到
vi1 = vic
vi2 = vic
AVD AVC
= =
vod vviodc v ic
vid
+
ro
Io
-
+
ro v
_
6.1.1.1 镜像电流源(P258)
一、电路组成
三极管T1、T2对称
二、恒流特性
当较大(>>2)时:
VB E2=VB E1 IE2 = IE1
IC2 =IC1IREF2IREF
= VCC VBE V CC
R
R
结论:
无论Rc值如何, IC2电流值保持不变(前提:电源要稳定)
概述
一、集成电路(integrated circuit): 在半导体制造工艺基础上,把整个电
路中的器件(电阻、电容、三极管等)制 造在一块Si 基片上,并引出相应的引线, 构成特定功能的电子电路。 如:运放、各种芯片等。
二、按功能分类:
模拟集成电路
数字集成电路
三、集成度:
小规模集成电路(SSI)<102
可以放大直流信号
# 为什么一般的集成运 算放大器都要采用直接 耦合方式?
2.直接耦合放大电路 的零点漂移
零漂:输入短路时,输出仍有缓慢 变化的电压产生。
主要原因:主要由温度变化引起,也称温漂。
温漂指标:温度每升高1度时,输出漂移电压按电压增益折算 到输入端的等效输入漂移电压值。

模拟电路复习提纲PPT课件

模拟电路复习提纲PPT课件

5.对于电压放大器来说,( )越小,电路的带负载能力越强。
A、输入电阻 B、输出电阻 C、电压增益
D、电流增益
6.在共射、共集和共基三种基本放大电路中,输出电阻最小的是( )放大电路。
A、共射极
B、共集电极 C、共基极
D、共射-共基
第2章 自测题(三)
7.为了提高输入电阻,对于结型场效应管,栅源极之间的PN结【 】。 A、必须正偏 B、必须反偏 C、可以任意偏置 D、与漏源电压极性一致 8.某场效应管的转移特性如下图所示,则该管是【 】场效应管 。 A、增强型NMOS B、耗尽型NMOS C、增强型PMOS D、耗尽型PMOS
则电流ID约 为( )。
A、11mA
B、20mA
C、10.1mA
D、20.1mA
6.如右图所示电路中,已知电源电压 E=4V 时,I=1mA。那么当电源电压 E=8V 时,
电流I的大小将是( )。
A、I =1mA B、I >1mA C、1mA <I <2mA D、I >2mA
7.二极管整流电路是利用(
PCM,最大集电极电流ICM和极间反向击穿电压UCBO、UCEO、UEBO
第2章 三极管及其放大电路基础
放大电路:放大电路放大的本质是能量的控制与转换,是在输入信号的作用下, 通过放大电路将直流电源的能量转换成负载所获得的能量。放大的前提是不失 真,即只有在不失真的情况下放大才有意义。能够控制能量的元件称为有源器 件。
8.场效应管按结构可分

料可分为


;从工作性能可分 、
;从基片材
9.结型场效应管利用栅源极间所加的 (反偏电压、反向电流、正偏电压)来改变 导电沟道的电阻;P沟道结型场效应管的夹断电压UGS为 (正值、负值、零) 。

第六章 模拟集成电路 59页PPT

第六章    模拟集成电路 59页PPT


( Rc
//
1 2
RL
)
rbe (1)Re
Rid 2[rbe(1)Re]
单端输出共模增益
AVC1


Rc // RL 2ro Re
6.4 集成运算放大器
一. 集成运放的总体结构
二. 简单的集成运放
集成运算放大器符号
国内符号:
反相输入端 u- 同相输入端 u+





输出端 uo
算到输入端的等效输入漂移电压值。
例如
漂移 10 mV+100 μV
假设 AV1=100,
AV2=100AV ,3=1。
若第一级漂移了100μ V,
则输出漂移1v。
漂了 100 μV
若第二级也漂了100μ V,
则输出漂移 10mV。 3. 减小零漂的措施
第一级是关键
漂移 1 V+ 10 mV
漂移 1 V+ 10 mV
Rb rbe
可以看出:加大Re,可以提
高共模抑制比。为此可用恒流源
T3来代替Re 。
恒流源相当于阻值很大的电阻。
恒流源使共模放大倍数减小,从 而增加共模抑制比。理想的恒流源 相当于阻值为无穷大的电阻,所以 共模抑制比无穷大。
恒流源的直流电流数值为
IE3 =(VZ - VBE3 )/ Re
1. 差动放大电路如图所示。分 析下列输入和输出的相位关系:
E 1 ES
U T
ES
iE1iE2(ie1IE1)(IE2ie2)
vB2 E
vB2 E IE1IE2IO
iE 2IE(S e U T1 )IEeS U T

模拟CMOS集成电路设计精粹ppt 第二章

模拟CMOS集成电路设计精粹ppt 第二章

只要L和C串联损耗阻抗为0,L和C就不产生noise,在无源器件中,只有电阻产生额外的noise。电路 中加入了L就会使得gm和输出电阻都与f有关。如果不含串联的R or L,输入阻抗ZinL是容性的,现在 则变成了纯阻性的,其值为gmLS/CGS,或LSω T,原因是输入CGS被电感抵消了。这样输入电阻可以很容 易地被设计成50 ,从而与50传输线(同轴电缆,天线等)相匹配。这种方法可设计出一个超高f低 noise放大器。
采用两种相同的电流偏置,但右边电路(2)中M2和M1并联,哪一种更好呢?(2)放大器中,输出电 阻较大,∴增益相对较高,相应的带宽窄一些。可用另一个晶体管构成电流源,这个晶体管是PMOST 器件,它的栅极与参考电压相连,产生直流偏置电流。还存在下面两种电路形式。
第一种放大器有一个恒定的直流偏置电流,∵作为电流源的M2的栅极与一个直流参考电压相连。低f 情况下,负载CL不起作用, 此时,M1和M2的直流电流不随信号电平而变化。被定义为A类放大器。第 二种,连接并同时驱动两个管的栅极,结果完全不同。根据所输入信号电平的不同,流过两个管的电 流变化非常大。这就是AB类放大器。实际上,在数字输入信号和模拟输入信号中都有可能采用第二种 放大器。
实现这样一种串联反馈电阻的一个简单方法是采用一个nMOST管,让其工作在线性区。但只有当VDS2很 小,在100mV~200mV之间才有可能。两个晶体管的VGS也不同。 MOST M1工作在饱和区,包含一个参数 K‘,而M2是作为一个电阻使用,包含参数KP,它们的参数n不同,n本身也是一个不确定的值
在增益表达式中,保留输出电阻,能较好地理解同样的输出电阻是怎样来决定输出极点或者带宽的。 在计算GBW时,这个输出电阻被消去,这和单管情况一样。但GBW变成了2倍,∵单管的跨导增大了2倍, ∴这是电流复用的一个简单例子。GBW是最重要的技术指标,它表明在任意f下,可以获得多大的电压 增益。它通过gm取决于电流。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
2
C
ox
W L
ID
1 L
华大微电子:模拟集成电路设计
MOSFET小信号模型(1)
• VBS=0时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
华大微电子:模拟集成电路设计
MOSFET小信号模型(2)
• 考虑衬偏效应时的低频小信号模型 • 用于计算输出电阻、低频小信号增益
完整的MOSFET小信号模型
Av0
1 R S || ro
gm g m g mb
共栅管的输入电阻
V1 0 VX
Vbs 0 VX
RDIX ro IX (gm gmb)VX VX
VX
RD ro
IX 1 (gm gmb)ro
共栅管用做电流放大器 没必要计算其电压放大倍数
共栅管的输出电阻
参考源极负反馈电阻的
I out
V out ro
R out r o 单管增益
V out V in
g m ro
二极管接法的MOSFET
R out
1 gm
1 ro
1 gm
(g m ro 1 )
带电阻负载的共源级
Rup Rdown
Rup R D
R down ro
R out R up || R down ( R D || ro )
• 用于计算各节点的时间常数 • 找出极点
第三章 单级放大器
• 共源级 • 共漏级 • 共栅级 • 共源共栅级
共源级
• 电阻负载 • 电流源负载 • 二极管接法的MOSFET负载 • 源级负反馈
共源MOSFET
V gs V 1 V in
R out
V out I out
| V in 0
V in 0 时,
Rup g m 3ro3ro 4
Rup
Rdown g m 2 ro 2 ro1
Rdown
Rout Rup || Rdown
Av0 g m1Rout
g m1 g m 2ro2ro1 || g m3ro3ro4
折叠共源共栅的输出电阻与增益
R ou trI1||gm 2ro2ro1
带源极负反馈的共源级
Rup Rdown
Gm
gm 1 gmRS
Rup RD
Rdown gm1ro1RS
Rout Rup || Rdown RD (Rdown Rup)
Av0
GmRo
u
t
gm 1 gmRS
RD
RD RS
(gmRS 1)
共漏MOSFET(源跟随器)
RS||ro
Rout
gm
1 g mb
共源级
Rup Rdown
R out
VX IX
R up
|| R down
R up R D
R down R S ro ( g m g mb ) ro R S
( g m g mb ) ro R S
共源共栅级的输出阻抗(1)
参考源极电阻负反共 馈源 的级电路 Rout ro1 ro2 (gm2 gmb2)ro2ro1 (gm2 gmb2)ro2ro1 gm2ro2ro1 (忽略衬偏效应)
g m1Rout
g r m1 o1RD RD ro1
gm1RD (ro1 RD )
Rou= t g1m3
||
ro1
1 gm3
Av0
gm1Rout
gm1 gm3
( ro1
1 gm3
)
差分放大器的输出阻抗与增益(2)
Routro1 ||ro3
Av0 gm1 ro1 ||ro3
共源共栅差分对
V out V in
g m Rout
gm (RD
|| ro )
g m R D (R D ro )
电流源负载的共源级
R up ro 2
R down ro1
Rup Rdown
R out R up || R down ro 2 || ro1 Av0 g m1Rout
g m1 ro 2 || ro1
R on
C ox
W L
1 V GS
V th
华大微电子:模拟集成电路设计
几个常用的表达式
饱和区:
ID
1 2
C
ox
W L
V GS
V th 2
V dsat V GS V th
gm
C ox
W L
V dsat
2ID V dsat
ro
1 ID
2 I D C ox
W L
g m ro
2 V dsat
Rout gm3ro3ro1 ||gm5ro5ro7
Av0gm 1Ro u t
第六章 频率特性
• Miller效应 • 极点与结点的关联
第七章 噪声
• 噪声类型:热噪声、闪烁噪声 • 总输出噪声 • 输入参考噪声 • 单级放大器的噪声
精选模拟集成电路 设计复习提纲讲义
.(ppt)
华大微电子:模拟集成电路设计
第二章 器件模型
• MOSFET的I-V特性
– 饱和区电流公式 – 线性区电流公式 – 沟道长度调制效应
• MOSFET的小信号模型
– 低频小信号模型:图2.36
• gm、ro的表达式
– 完整小信号模型:图2.38
华大微电子:模拟集成电路设计
共源共栅级的输出阻抗(2)
参考源极电阻负反馈的 共源级电路
Rt ro1 ro2 ( g m2 g mb2 )ro2ro1
Rt
( g m2 g mb2 )ro2ro1
gm2ro2ro1 (忽略衬偏效应)
Rout g m3ro3 Rt
g m3ro3 g m2ro2ro1
共源共栅级的输出阻抗(3)
MOSFET的I-V特性
饱和区:
ID
1 2
C ox
W L
V GS
V th 2
沟长调制:
ID
1 2
C ox
W L
V GS
V th 2 1
V DS
Hale Waihona Puke 线性区:IDC ox
W L
V
GS
V th V DS
1 2
V
2 DS
深线性区:
I D
C ox
W L
V GS V th V DS
线性电阻:
R ou trI1||gm 2ro2ro1||rI2
折叠点看ro 进 1||rI2 去的电阻为
A v0gm 1R out
第四章 差分放大器
• 差分放大器的输出电阻 • 差分放大器的增益 • 输入共模电平Vin,CM的范围
差分放大器的输出阻抗与增益(1)
Rout=RD || ro1
Av 0
二极管接法MOSFET负载的共源级
Rup Rdown
1 R up g m 2
R down r o 1
R out R up | R down
1 g m2
| ro1
ro1
1 g m 2 ro1
1 g m2
( 1 g m2
ro1 )
A v0
V out V in
g m 1 R out
g m1 g m2
相关文档
最新文档