集合之间的关系(一)
第二讲 集合之间的基本关系及其运算
第二讲 集合之间的基本关系及其运算一.知识盘点知识点一:集合间的基本关系注意:1.A B A B B AA B A B A B A B =⇔⊆⊆⎧⊆⎨⊂⇔⊆≠⎩且且2.涉及集合间关系时,不要忘记空集和集合本身的可能性。
3.集合间基本关系必须熟记的3个结论(1)空集是任意一个集合的子集;是任意一个非空集合的真子集,即,().A B B Φ⊆Φ⊂≠Φ(2)任何一个集合是它自身的子集,空集只有一个子集即本身 (3)含有n 个元素的集合的子集的个数是2n 个,非空子集的个数是21n - ;真子集个数是21n - ,非空真子集个数是22n -。
知识点二:集合的基本运算运算 符号语言 Venn 图 运算性质交集{}|A B x x A =∈∈且x B()(),AB A A B B ⊆⊆ (),AA A AB B A ==A B A A B =⇔⊆ A Φ=Φ并集{}|A B x x A x B =∈∈或()(),A A B B A B ⊆⊆ (),A A A A B B A ==,A B B A B A A =⇔⊆Φ=补集{}|U C A x x U x A =∈∉且,U U C U C U =ΦΦ=()(),U U U C C A A A C A U ==()U AC A =Φ()()()U U U C A B C A C B = ()()()U U U C A B C A C B =二.例题精讲Ep1.下列说法正确的是A. 高一(1)班个子比较高的同学可以组成一个集合B. 集合{}2|,x N x x ∈= 则用列举法表示是{}01,UAC. 如果{}264,2,m m ∈++2, 则实数m 组成的集合是{}-22,D. {}{}(){}222||,|x y xy y x x y y x =====解析:A.与集合的确定性不符;B.对;C.与集合的互异性不符;D 。
{}2|x y x R == ,{}{}2||0y y x y y ==≥ ,(){}2,|x y y x = 是二次函数2y x = 的点集Ep2.已知集合A={}2|1log ,kx N x ∈<< 集合A 中至少有三个元素,则A.K>8B.K ≥ 8C.K>16D.K ≥ 16解析:由题设,集A 至少含有2,3,4三个元素,所以2log 4k> ,所以k>16.Ep3.已知集合M={}{}2|,|,x y x R N x x m m M =∈==∈ ,则集合M 、N 的关系是A.M N ⊂B.N M ⊂C.R M C N ⊆D.R N C M ⊆ 解析:[]1,1M =- ,{}|01N x x =≤≤ ,故选B.Ep4.已知集合M={}0,1 ,则满足M N M = 的集合N 的个数是 A.1 B.2 C.3 D.4 解析:M N M =,故N M ⊆ ,故选D.Ep5已知集合{}{}2|1,|1M x x N x ax ==== ,如果N M ⊆ ,则实数a 的取值集合是{}.1A {}.1,1B - {}.0,1C {}.1,0,1D -解析:{}1,1M =- , N M ⊆,故N 的可能:{}{}{},1,1,1,1Φ-- ,故a 的取值集合{}1,0,1-Ep6.已知集合{}{}2|20180,|lg(3)A x x x B x N y x =-+≥=∈=- ,则集合A B 的子集的个数是解析:{}|02018A x x =≤≤ ,{}{}|3-x>00,1,2B x N =∈= ,故{}0,1,2A B = 故子集个数328=A.4B.7C.8D.16Ep7.已知集合{}{}2|2,|M x x x N x x a =<+=> ,如果M N ⊆ ,则实数a 的取值范围是.(,1]A -∞- .(,2]B -∞ .[2,)C +∞ .[1,)D -+∞解析:{}|12M x x =-<< ,M N ⊆,故1a ≥-Ep8.已知集合{}2|30A x N x x *=∈-< 则满足B A ⊆ 的集合B 的个数是 A.2 B.3 C.4 D.8 解析:{}{}|03=12A x N x *=∈<<, ,故选CEp9.已知集合{}{}|12,|13,M x x N x x M N =-<<=≤≤=则.(1,3]A - B.(1,2]- .[1,2)C D.(2,3]解析:选CEp10.如果集合{}{}(1)2|10,|log 0,x A x x B x -=-≤≤=≤则A B={}.|11A x x -≤< {}.|11B x x -<≤ {}.0C {}.|11D x x -≤≤ 解析:{}10||0111x B x x x x ⎧->⎫⎧==≤<⎨⎨⎬-≤⎩⎩⎭,故选D.Ep11.设集合 {}{}2|11,|,,()R A x x B y y x x A A C B =-<<==∈=则{}.|01A x x ≤< {}.|10.B x x -<< {}|01C x x =<< {}.|11D x x -<<解析:{}|01B y y =≤<,则{}|01R C B y y =<≥或y,(){}{}{}|11|01|10R AC B x x y y y x x =-<<<≥=-<<或 选B.Ep12.已知集合{}{}2|11,|20,A x x B x x x =-<<=--<则 )R C A B =(.(1,0]A - .[1,2)B - .[1,2)C .(1,2]D解析:{}|12B x x =-<< ,{}|11R C A x x x =≤-≥或 (){}|12R C A B x x =≤< ,选C.三.总结提高1.题型归类(1)2个集合之间的关系判断(2)已知2个集合之间的关系,求参数问题 (3)求子集或真子集的个数问题 (4)2个有限集之间的运算(5)1个有限集和1个无限集之间的运算 (6)2个无限集之间的运算(7)已知集合的运算结果,求参数问题 2.方法总结(1)判断集合间关系的方法a.化简集合,从表达式中寻找两个集合之间的关系b.用列举法表示集合,从元素中寻找关系c.利用数轴,在数轴上表示出两个集合(集合为数集),比较端点之间的大小关系,从而确定两个集合之间的关系。
集合间的基本关系及运算
1.2集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆B或B⊇A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B。
3、真子集:如果A ⊆B,且A ≠B,那么集合A称为集合B的真子集,A⊂≠B .4、设A ⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作S C A5、元素与集合、集合与集合之间的关系6、有限集合的子集个数(1)n个元素的集合有n2个子集(2)n个元素的集合有n2-1个真子集(3)n个元素的集合有n2-1个非空子集(4)n个元素的集合有n2-2个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A⋂B。
8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A⋃B。
9、集合的运算性质及运用【知识应用】1.理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x∈A能推出x∈B。
【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1},B=Z (2)A={1,3,5,15},B={x|x是15的正约数}【L】例2.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B⊆A,求实数m取值范围。
【C】例3. 已知集合A⊆{0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一一写出。
2.解题方法:证明2个集合相等的方法:(1)若A、B两个集合是元素较少的有限集,可用列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足的条件是否一致,若均一致,则两集合相等。
(2)利用集合相等的定义证明A⊆B,且B⊆A,则A=B.【J】例1.下列各组中的两个集合相等的有()(1)P={x|x=2n,n∈Z}, Q={x|x=2(n-1),n∈Z}(2)P={x|x=2n-1,n∈N+}, Q={x|x=2n+1,n∈N+}(3) P={x|2x-x=0}, Q={x|x=1(1)2n+-,n∈Z}【L】例2.已知集合A={x|x=12kπ+4π,k∈Z},B={x|x=14kπ+2π,k∈Z},判断集合A与集合B是否相等。
1.2.1集合之间的关系[1]
记作:A B A B, B A A B A B, A B A B
四.集合的维恩( venn)图表示法:
A B
A B /
B
A
A
B
1.集合 { 1 } 则A的子集有多少个? A 21
22 2.集合A { 1,2 } 则A的子集有多少个?
3.集合A { 1,2,3 }则A的子集有多少个? 23
(6) x x2 2x 1 0
x x
2
4
练习
1 1.下列命题:空集没有子集;2任何集合至少有两个子 集; 3空集是任何集合的真子集;4若 A,则 A
1 其中正确的有______个
2, ______ 2.下列各式中,正确的是________3
E {x ( x 1)( x 2) 0}, F {x | 3 x 0, x Z }
三 .集 合 相 等 如 果 集 合 的 每 一 个 元 素都 是 集 合的 元 素 , 反 过 来 A B 集 合B的 元 素 也 都 是集 合 的 元 素 , 就 说 集 合 等 于 集 A A 合B .
(2). 特殊性 : 规定) A (
(3) 传递性: B, B C则A C A
引例:观察下列几个集 合,找出它们每组之 间的关系 1.A {1,3}, {1,3,5,6} B 2.C {x x是长方形},D {x x是平行四边形} 3.S {x x 3},Q {x 3x 6 0} 4.M {x x是沈阳人},N {x x是中国人} 5.E {x(x 1)(x 2) 0},F {x| 3 x 0,x Z}
反之,如果p(x) q(x), 则A一定是B的子集, B 即A
1.3集合之间的关系1(子集、真子集)
江苏省技工院校教案首页授课日期第二周第二周第二周第二周班级1614 1615 1616 1617课题: 1.3集合之间的关系(子集、真子集)教学目的要求:知识目标:(1)掌握子集、真子集的概念;(2)会判断集合之间的关系.能力目标:通过集合语言的学习与运用,培养学生的数学思维能力教学重点、难点:教学重点:集合与集合间的关系及其相关符号表示.教学难点:真子集的概念.授课方法:讲授法问题教学法范例教学法练习法教学参考及教具(含多媒体教学设备):教材教参讲义授课执行情况及分析:好板书设计或授课提纲1.3集合之间的关系1.3.1子集1、子集的概念2、子集的符号表示1.3.2真子集1、真子集的概念2、真子集的符号表示教学环节主要教学内容及师生互动组织教学揭示课题创设情景兴趣导入一、复习知识、揭示课题前面学习了集合的相关问题,试着回忆下面的知识点:1.集合由某些确定的对象组成的整体.元素组成集合的对象.2.常用数集有哪些?用什么字母表示?3.集合的表示法(1)列举法:在花括号内,一一列举集合的元素;(2)描述法:{代表元素|元素所具有的特征性质}.4.元素与集合之间有属于或不属于的关系.完成下面的问题:用适当的符号“∈”或“∉”填空:(1) 0 ∅; (2) 0 N; (3) 3R; (4) 0.5 Z;(5) 1 {1,2,3}; (6) 2 {x|x<1};(7)2 {x|x=2k+1, k∈Z}.那么集合与集合之间又有什么关系呢?二、创设情景兴趣导入问题1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,集合A与集合B之间存在什么关系呢?2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学}, N={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N之间存在什么关系呢?3.自然数集Z与整数集N之间存在什么关系呢?解决显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素(自然数)肯定是集合Z的元素(整数).归纳当集合B的元素肯定是集合A的元素时称集合A包含集合B.两讲授新课个集合之间的这种关系叫做包含关系.三、讲授新课1.3.1子集概念:一般地,如果集合B的元素都是集合A的元素,那么称集合A包含集合B,并把集合B叫做集合A的子集.表示:将集合A包含集合B记作A B⊇或B A⊆(读作“A包含B”或“B包含于A”).可以用下图表示出这两个集合之间的包含关系.拓展:由子集的定义可知,任何一个集合A都是它自身的子集,即A A⊆.规定:空集是任何集合的子集,即A∅⊆.巩固知识典型例题例1 用符号“⊆”、“⊇”、“∈”或“∉”填空:(1){},,,a b c d{},a b;(2) ∅{}1,2,3;(3) N Q; (4) 0R;(5) d{},,a b c;分析“⊆”与“⊇”是用来表示集合与集合之间关系的符号;而“∈”与“∉”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.解(1)集合{},a b的元素都是集合{},,,a b c d的元素,因此{},,,a b c d⊇{},a b;(2)空集是任何集合的子集,因此∅⊆{}1,2,3;(3)自然数都是有理数,因此N⊆Q;AB例题讲解布置作业(4)0是实数,因此0∈R;(5)d不是集合{},,a b c的元素,因此d∉{},,a b c;范例讲解书上P9 互动环节:学生随堂练习1.3.2真子集概念如果集合B是集合A的子集,并且集合A中至少有一个元素不属于集合B,那么把集合B叫做集合A的真子集.表示:记作错误!未找到引用源。
1.2集合之间的关系
典型例题
例1:用适当的符号(,, , 或=)填空.
(1){, , , }
{ , };
(2) { };
(3)N
Z;
(4)0 ;
(5){1} =
{x | x-1=0};
(6){x|-2<x<3}
{ x|x≥-3 };
典型例题
例2:写出集合 = {, , }的所有子集,并指出哪些是它的真子集.
(2)该集合的所有真子集个数是 .
问题:如果一个集合中有 n 个元素,那么它的所有非空子集个数有多少?
它的非空真子集又有多少个?
结论2:如果一个集合中有 n 个元素;
(1)该集合的所有非空子集个数是 − ;
(2)该集合的所有非空真子集个数是 .
集合M={0,1,3}中,子集个数是 8
{, , }; {, , };
{, , , }
∅, {}
∅; {}; {}; {, }
∅
∅;{}; {};
子集个数
真子集个数
2
=21
1 =21-1
4
=22
3 =22-1
8Байду номын сангаас
=23
7 =23-1
16 =24
15 =24-1
结论1:如果一个集合中有 n 个元素;
(1)该集合的所有子集个数是 ;
练习:判断集合是否为集合的真子集,若是打√, 若不是打×.
(1) = {, , }, = {, , , , , }
(
√
)
(2) = {, , }, = {, , , }
(
×
)
(3) = ∅, = {}.
1.2(1)集合之间的关系
作 A B
B
A
子集的性质
(1)规定:空集是任意集合的子集;
(2)任意集合是其身的子集;
(3) 若A B, B C, 则A C
例题讲解 例1 写出{0,1,2}的所有子集,并 指出其中哪些是它的真子集.
例题讲解
例2.确定整数x, y, 使2 x, x y 7,4
课堂小结
1.子集,真子集的概念与性质;
ห้องสมุดไป่ตู้
2. 集合的相等;
记作
B(或B A) 也说集合A是集合B的子集.
A
定 义(相等)
一般地,对于两个集合A与B, 如果集合A中的任何一个元素都是 集合B的元素,同时集合B中的任何 一个元素都是集合A的元素,则称集 合A等于集合B,记作
A=B 若A B且 B A, 则A=B;
定 义(真子集)
对于两个集合A与B,如果A B, 并且B中至少有一个元素不属于A, 则称集合A是集合B的真子集.记
例3. 设A={x,x2,xy}, B={1,x,y}, 且 A=B,求实数x,y的值.
例题讲解
例4.已知A x | x x 6 0 B x | ax 1 0
2
且B A, 求实数a的值.
规定:空集是任意集合的子集; 空集是任意非空集合的真子集;
例题讲解
例5.已知A x | 3 x 4 B x | 2m 1 x m 1 且B A, 求实数m的取值范围 .
说明: 本系列课件,经多次使用,修改,其中有部分 来自网络,它山之石可以攻玉,希望谅解。 为了一个课件,我们仔细研磨; 为了一个习题,我们精挑细选; 为了一点进步,我们竭尽全力; 没有更好,只有更好! 制作水平有限,错误难免,请多指教: 28275061@
高一数学集合间的基本关系(一)
高一数学集合间的基本关系(一)高一数学集合间的基本关系1. 包含关系•定义:集合A包含集合B,表示为A ⊃ B。
•解释:如果B中的所有元素都属于A,则称A包含B。
2. 等于关系•定义:集合A等于集合B,表示为A = B。
•解释:如果A和B具有相同的元素,则称A等于B。
3. 不相交关系•定义:集合A与集合B不相交,表示为A ∩ B = ∅。
•解释:如果A和B没有相同的元素,则称A与B不相交。
4. 交集关系•定义:集合A与集合B的交集,表示为A ∩ B。
•解释:集合A与集合B的交集是包含A和B共有元素的新集合。
5. 并集关系•定义:集合A与集合B的并集,表示为A ∪ B。
•解释:集合A与集合B的并集是包含A和B所有元素的新集合。
6. 差集关系•定义:集合A与集合B的差集,表示为A - B。
•解释:集合A与集合B的差集是包含A中但不包含B中元素的新集合。
7. 互斥关系•定义:集合A与集合B互斥,表示为A ∩ B = ∅。
•解释:如果A和B没有相同的元素,则称A与B互斥。
8. 超集关系•定义:集合A是集合B的超集,表示为A ⊇ B。
•解释:如果B中的所有元素都属于A,则称A是B的超集。
9. 子集关系•定义:集合A是集合B的子集,表示为A ⊆ B。
•解释:如果A中的所有元素都属于B,则称A是B的子集。
以上是高一数学集合间的基本关系的简述和解释。
理解这些关系是数学学习的基础,也是解决相关问题的前提。
在实际应用中,通过运用这些集合关系,可以对数据进行分类、比较和分析,进而推导出更深层次的结论。
数学的集合理论对于求解实际问题非常重要。
集合间的关系
集合间的关系什么是集合间的关系?集合间的关系指的是两个或多个集合之间的关系。
在数学中,集合间的关系是一种可以描述不同集合之间联系的方式。
它可以用来表示集合间的相互影响,或者说集合间的特征性质的抽象概念。
一般来说,集合间的关系可以有四种:包含关系、相等关系、并集关系和交集关系。
1、包含关系(Containment Relationship)是指一个集合A包含另一个集合B时就形成了包含关系,即A⊂B。
如果A=B,则称两个集合相等。
此外,如果A⊂B,而B⊂A,则A=B。
2、相等关系(Equality Relationship),当两个集合的元素完全相同时,则这两个集合就成为相等关系。
即A=B。
3、并集关系(Union Relationship),当两个集合中的元素都可以找到时,则称两个集合形成并集关系,即A∪B。
4、交集关系(Intersection Relationship),当两个集合中的元素都具有相同的特征时,则称两个集合形成交集关系,即A∩B。
上述四种关系是集合间关系的基本形式,但实际上,集合间的关系可以根据不同情况而发生变化。
例如,可以把集合A看作是集合B的子集,此时A⊆B,也就是A的元素都可以在B中找到。
也可以把集合A看作是集合B的超集,此时A⊇B,也就是B的元素都可以在A中找到。
此外,集合间的关系还可以根据不同的集合进行划分,例如有序集合、无序集合、离散集合、连续集合等。
最后,除了上述四种基本关系外,还有一些更复杂的关系,如偏序关系、拓扑关系、伴随关系、概率关系等。
它们可以用来描述两个或多个集合之间的更复杂的关系。
综上所述,集合间的关系可以用来描述不同集合之间的相互影响,或者说集合间的特征性质的抽象概念。
它可以有四种基本关系:包含关系、相等关系、并集关系和交集关系。
此外,还有一些更复杂的关系,如偏序关系、拓扑关系、伴随关系、概率关系等。
高一数学集合之间的关系与运算知识精讲
高一数学集合之间的关系与运算【本讲主要内容】集合之间的关系与运算子集、全集、补集、交集、并集等概念,集合的运算性质。
【知识掌握】 【知识点精析】1. (1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 。
记作:A B B A ⊇⊆或,A ⊂B 或B ⊃A当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作:A ⊆/B 或B ⊇/A注:B A ⊆有两种可能: (1)A 是B 的一部分;(2)A 与B 是同一集合。
(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A =B 。
(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集。
记作:A B 或B A ,读作A 真包含于B 或B 真包含A 。
注:空集是任何集合的子集。
Φ⊆A空集是任何非空集合的真子集。
Φ A 若A ≠Φ,则Φ A任何一个集合是它本身的子集。
A A ⊆ 易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系。
如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合。
如Φ⊆{0}。
不能写成Φ={0},Φ∈{0}2. 全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示。
3. 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A =},|{A x S x x ∉∈且4. 交集:一般地,由所有属于A 且属于B 的元素所组成的集合,叫做A ,B 的交集。
集合的四种基本关系
集合的四种基本关系集合的四种基本关系集合是数学中的一个重要概念,它可以用来描述一组具有某种特定属性的对象。
在集合论中,有四种基本关系,分别是包含关系、相等关系、交集和并集。
下面将对这四种关系进行详细介绍。
一、包含关系包含关系是指一个集合包含另一个集合的所有元素。
如果A和B是两个集合,且A中的每个元素都同时属于B,则称A是B的子集,或者说B是A的超集。
用符号表示为:A⊆B或者B⊇A。
例如,假设有两个集合A={1,2,3}和B={1,2,3,4},则可以得出:- A⊆B- B⊇A二、相等关系相等关系是指两个集合具有完全相同的元素。
如果两个集合A和B互相包含,则它们就相等。
用符号表示为:A=B。
例如,假设有两个集合C={a,b,c}和D={c,b,a},则可以得出:- C=D三、交集交集是指两个或多个集合共同拥有的元素构成的新的一个集合。
用符号表示为:A∩B或者AB。
例如,假设有两个集合E={1,2,3,4}和F={3,4,5,6},则可以得出:- E∩F={3,4}四、并集并集是指两个或多个集合中所有元素的总和构成的一个新的集合。
用符号表示为:A∪B或者A+B。
例如,假设有两个集合G={1,2,3}和H={4,5,6},则可以得出:- G∪H={1,2,3,4,5,6}总结以上就是集合的四种基本关系。
包含关系是指一个集合包含另一个集合的所有元素;相等关系是指两个集合具有完全相同的元素;交集是指两个或多个集合共同拥有的元素构成的新的一个集合;并集是指两个或多个集合中所有元素的总和构成的一个新的集合。
在实际应用中,这些基本关系经常被用来描述数据之间的联系。
集合之间的关系(一)
第一章集合及其运算
1.1.3 集合之间的关系(一)
【教学目标】
1. 理解子集、真子集概念;掌握子集、真子集的符号及表示方法;会用它们表示集合间的关系.
2. 了解空集的意义;会求已知集合的子集、真子集并会用符号及Venn图表示.
3. 培养学生使用符号的能力;建立数形结合的数学思想;培养学生用集合的观点分析问题、解决问题的能力.
【教学重点】
子集、真子集的概念.
【教学难点】
集合间包含关系的正确表示.
【教学方法】
本节课采用讲练结合、问题解决式教学方法,并运用现代化教学手段辅助教学.设计典型题目,并提出问题,层层引导学生探究知识,让学生在完成题目的同时,思维得以深化;切实体现以人为本的思想,充分发挥学生的主观能动性,培养其探索精神和运用数学知识的意识.
【教学过程】
8
数学基础模块上册
9
第一章集合及其运算
10。
数学人教B必修1第一章121 集合之间的关系
1、2、1 集合之间的关系1。
子集一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A、读作“A包含于B",或“B包含A".理解子集的定义要注意以下七点:(1)“A是B的子集”的含义:集合A中的任意一个元素都是集合B中的元素,即由任意x∈A,能推出x∈B、例如:{1,2,3}⊆N,N⊆R,{x|x为山东人}⊆{x|x为中国人}等.(2)当集合A中存在着不是集合B的元素,我们就说A不是B的子集,记作“A B”(或B A),读作“A不包含于B”(或“B不包含A”)。
例如:A={1,2,3}不是B={2,3,4,5,6}的子集,因为集合A中的元素1不是集合B中的元素。
(3)任意一个集合是它本身的子集.因为对于任意一个集合A,它的任意一个元素都属于集合A本身,记作A⊆A、例如:{1,5}⊆{1,5}等。
(4)空集是任意一个集合的子集,即对于任意一个集合A,都有∅⊆A、(5)在子集的定义中,不能理解为子集A是B中的“部分元素"所组成的集合.因为若A =∅,则A中不含任何元素;若A=B,则A中含有B中的所有元素。
但在这两种情况下集合A都是集合B的子集.(6)包含关系具有传递性:对于集合A,B,C,若A⊆B,B⊆C,则A⊆C、(7)写集合的所有子集时,注意按一定顺序写出,避免遗漏和重复.【例1】已知集合M={0,1},集合N={0,2,1-m},若M⊆N,则实数m=__________、解析:∵M⊆N,M={0,1},∴1∈N、∴1-m=1,即m=0、答案:0点技巧有限集合子集的确定技巧(1)确定所求的集合;(2)合理分类,按照子集所含元素的个数依次写出;(3)注意两个特殊的集合,即空集和集合自身,看它们是否能取到。
2。
真子集如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B 的真子集,记作A B或B A,读作“A真包含于B”,或“B真包含A”.例如:{1}{1,2,3}.关于真子集注意以下四点:(1)空集是任何非空集合的真子集。
集合间的基本关系
§1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn 图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一 子集、真子集、集合相等 1.子集、真子集、集合相等的相关概念定义符号表示 图形表示子集如果集合A 中的任意一个元素都是集合B 中的元素,就称集合A 是集合B 的子集A ⊆B (或B ⊇A )真子集如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A是集合B的真子集AB (或B A )集合相等如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等A =B2.Venn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图. 3.子集的性质(1)任何一个集合是它本身的子集,即A ⊆A .(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C . 思考1 任何两个集合之间是否有包含关系?答案 不一定.如集合A ={0,1,2},B ={-1,0,1},这两个集合就没有包含关系. 思考2 符号“∈”与“⊆”有何不同?答案符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相同吗?答案不同.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.已知集合M={x|x是菱形},N={x|x是正方形},则集合M与集合N的关系为________.答案N M解析因为正方形是菱形,所以N M.2.用“⊆”或“∈”填空:{0,2}________{2,1,0},2________{2,1,0}.答案⊆∈3.设a∈R,若集合{2,9}={1-a,9},则a=________.答案-1解析1-a=2,解得a=-1.4.集合{0,1}的子集有________个.答案 4解析集合{0,1}的子集有∅,{0},{1},{0,1},共4个.一、集合间关系的判断例1指出下列各对集合之间的关系:(1)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A={x|-1<x<4},B={x|x-5<0};(3)M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解(1)集合A的元素是数,集合B的元素是有序实数对,故A与B之间无包含关系.(2)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可知A B.(3)由列举法知M={1,3,5,7,…},N={3,5,7,9,…},故N M.反思感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练1(1)已知集合M={x|x2-3x+2=0},N={0,1,2},则集合M与N的关系是() A.M=N B.N MC.M N D.N⊆M(2)已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是() A.A⊆B B.A=BC.A B D.B A(1)答案 C解析解方程x2-3x+2=0得x=2或x=1,则M={1,2},因为1∈M且1∈N,2∈M 且2∈N,所以M⊆N.又因为0∈N但0∉M,所以M N.(2)答案 D解析因为A中元素是3的整数倍,而B中的元素是3的偶数倍,所以集合B是集合A的真子集.二、确定集合的子集、真子集例2设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集,并指出其中哪些是它的真子集.解由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4或x=-1或x=4.故集合A={-4,-1,4}.由0个元素构成的子集为∅;由1个元素构成的子集为{-4},{-1},{4};由2个元素构成的子集为{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为{-4,-1,4}.因此集合A的子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}.真子集为∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}.反思感悟 求集合子集、真子集的3个步骤跟踪训练2 满足{1,2} M ⊆{1,2,3,4,5}的集合M 有________个. 答案 7解析 由题意可得{1,2} M ⊆{1,2,3,4,5},可以确定集合M 必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M 的元素个数分类如下: 含有三个元素:{1,2,3},{1,2,4},{1,2,5}; 含有四个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5}; 含有五个元素:{1,2,3,4,5}. 故满足题意的集合M 共有7个.三、由集合间的关系求参数例3 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B A ,求实数m 的取值范围.解 (1)当B ≠∅时,如图所示.∴m +1≥-2,2m -1<5,2m -1≥m +1或m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.(2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}.延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2.(2)当B ≠∅时,如图所示.∴m +1>-2,2m -1<5,m +1≤2m -1,解得m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴2m -1>m +1,m +1≤-2,2m -1≥5,即m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .反思感悟 利用集合关系求参数的关注点(1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误.一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还要注意“空集”的情况,因为空集是任何集合的子集.跟踪训练3 已知集合A ={x |x <-1或x >4},B ={x |2a ≤x ≤a +3},若B ⊆A ,求实数a 的取值范围.解 (1)当B =∅时,2a >a +3,即a >3.显然满足题意.(2)当B ≠∅时,根据题意作出如图所示的数轴,可得a +3≥2a ,a +3<-1或a +3≥2a ,2a >4,解得a <-4或2<a ≤3. 综上可得,实数a 的取值范围为{a |a <-4或a >2}.1.下列六个关系式:①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.其中正确的个数是()A.1 B.3 C.4 D.62.集合{1,2}的子集有()A.4个 B.3个 C.2个 D.1个3.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.【答案与解析】1、答案 C解析①正确,集合中元素具有无序性;②正确,任何集合是自身的子集;③错误,∅表示空集,而{∅}表示的是含∅这个元素的集合,是元素与集合的关系,应改为∅∈{∅};④错误,∅表示空集,而{0}表示含有一个元素0的集合,并非空集,应改为∅ {0};⑤正确,空集是任何非空集合的真子集;⑥正确,是元素与集合的关系.2、答案 A解析集合{1,2}的子集有∅,{1},{2},{1,2},共4个.3、答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N是M的真子集,其对应的Venn图如选项B所示.4、答案 4解析∵B⊆A,B={3,4},A={-1,3,m},∴4∈A,∴m=4.5、答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
1.1.2 集合间的基本关系
1.1.2 集合间的基本关系一、子集1、定义:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含包含关系,称集合A 为集合B 的子集2、记法与读法:记作B A ⊆(或A B ⊇),读作“A 含于B ”(或“B 包含A ”)3、结论(1)任何一个集合是它本身的子集,即A A ⊆.(2)对于集合A ,B ,C ,若A ⊆B ,且B ⊆C ,则C A ⊆4、对子集概念的理解(1)集合A 是集合B 的子集的含义是:集合A 中的任何一个元素都是集合B 中的元素,即由x ∈A 能推出x ∈B .例如{0,1}⊆{-1,0,1},则0∈{0,1},0∈{-1,0,1}.(2)如果集合A 中存在着不是集合B 的元素,那么集合A 不包含于B ,或B 不包含A .此时记作A B 或B ⊉A .(3)注意符号“∈”与“⊆”的区别:“⊆”只用于集合与集合之间,如{0}⊆N.而不能写成{0}∈N ,“∈”只能用于元素与集合之间.如0∈N ,而不能写成0⊆N.二、集合相等1、集合相等的概念如果集合A 是集合B 的子集(A ⊆B ),且集合B 是集合A 的子集(B ⊆A ),此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作B A =.2、对两集合相等的认识(1)若A ⊆B ,又B ⊆A ,则A =B ;反之,如果A =B ,则A ⊆B ,且B ⊆A .这就给出了证明两个集合相等的方法,即欲证A =B ,只需证A ⊆B 与B ⊆A 同时成立即可.(2)若两集合相等,则两集合所含元素完全相同,与元素排列顺序无关.三、真子集1、定义:如果集合A ⊆B ,但存在元素A x ∈,且B x ∈,我们称集合A 是集合B 的真子集2、记法与表示:3、对真子集概念的理解(1)在真子集的定义中,A B 首先要满足A ⊆B ,其次至少有一个x ∈B ,但x ∉A .(2)若A 不是B 的子集,则A 一定不是B 的真子集.四、空集1、定义:我们把不含任何元素的集合,叫做空集2、记法:∅3、规定:空集是任何集合的子集,即∅⊆A4、特性:(1)空集只有一个子集,即它的本身,∅⊆∅(2)A ≠∅,则∅真包含A5、∅与{0}的区别(1)∅是不含任何元素的集合;(2){0}是含有一个元素的集合,∅{0}.题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是( B )①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0} A.1B.2 C.3 D.4题型二、有限集合子集的确定例2(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}M⊆{1,2,3,4,5}的集合M有________个.[解析](1)集合M的真子集所含有的元素的个数可以有0个,1个或2个,含有0个为∅,含有1个有3个真子集{1},{2},{3},含有2个元素有3个真子集{1,2}{1,3}和{2,3},共有7个真子集,故选B.(2)由题意可得{1,2}M⊆{1,2,3,4,5},可以确定集合M必含有元素1,2,且含有元素3,4,5中的至少一个,因此依据集合M的元素个数分类如下:含有三个元素:{1,2,3}{1,2,4}{1,2,5};含有四个元素:{1,2,3,4}{1,2,3,5}{1,2,4,5};含有五个元素:{1,2,3,4,5}.故满足题意的集合M共有7个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.[活学活用]非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.解析:由“若a∈S,则6-a∈S”知和为6的两个数都是集合S中的元素,则()集合S中含有1个元素:{3};集合S中含有2个元素:{2,4},{1,5};集合S中含有3个元素:{2,3,4},{1,3,5};集合S中含有4个元素:{1,2,4,5};集合S中含有5个元素:{1,2,3,4,5}.故满足题意的集合S共有7个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.[解]当B=∅时,只需2a>a+3,即a>3;当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧ a +3≥2a ,a +3<-1或⎩⎪⎨⎪⎧a +3≥2a ,2a >4,解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.[活学活用]1、已知集合A ={x |1<ax <2},B ={x |-1<x <1},求满足A ⊆B 的实数a 的取值范围. 解:(1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1}且A ⊆B , 如图作出满足题意的数轴:∴⎩⎪⎨⎪⎧ a >0,1a≥-1,2a ≤1,∴a ≥2. (3)当a <0时,A ={x |2a <x <1a } ∵A ⊆B ,如图所示, ∴⎩⎪⎨⎪⎧ a <0,2a≥-1,1a ≤1,∴a ≤-2.综上所述,a 的取值范围是{a |a =0或a ≥2或a ≤-2}.2、已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R},若B ⊆A ,求实数a 的取值范围.解:A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有⎩⎪⎨⎪⎧Δ=0,a 2-1=0,∴a =-1.(3)当B ={-4}时,有⎩⎪⎨⎪⎧Δ=0,a 2-8a +7=0,无解. (4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.课堂练习1.给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有( )A .0个B .1个C .2个D .3个解析:由空集的性质可知,只有④正确,①②③均不正确.答案:B2.已知A ={x |x 是菱形},B ={x |x 是正方形},C ={x |x 是平行四边形},那么A ,B ,C 之间的关系是 ( B )A .A ⊆B ⊆C B .B ⊆A ⊆C C .A B ⊆CD .A =B ⊆C3.已知集合A ={-1,3,m},B ={3,4},若B ⊆A ,则实数m =________.解析 :∵B ⊆A ,B ={3,4},A ={-1,3,m}∴m ∈A ,∴m =4.答案:44.集合A ={x|0≤x<3且x ∈N}的真子集的个数为________.解析:由题意得A ={0,1,2},故集合A 有7个真子集.答案:75.已知集合A ={x|1≤x ≤2},B ={x|1≤x ≤a}.(1)若A 是B 的真子集,求a 的取值范围;(2)若B 是A 的子集,求a 的取值范围;(3)若A =B ,求a 的取值范围.解:(1)若A 是B 的真子集,即A B ,故a>2.(2)若B 是A 的子集,即B ⊆A ,则a ≤2.(3)若A =B ,则必有a =2.课时跟踪检测(三) 集合间的基本关系一、选择题1.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间最适合的关系是( )A .A ⊆BB .A ⊇BC .A BD .A B2.已知集合M ={x |-5<x <3,x ∈Z },则下列集合是集合M 的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}3.已知集合P={x|x2=1},Q={x|ax=1},若Q⊆P,则a的值是( ) A.1 B.-1C.1或-1 D.0,1或-14.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为( ) A.6 B.5C.4 D.35.已知集合M={(x,y)|x+y<0,xy>0}和P={(x,y)|x<0,y<0},那么( ) A.P M B.M PC.M=P D.M P二、填空题6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.8.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为________.三、解答题9.已知A={x|x2-3x+2=0},B={x|ax-2=0},且B⊆A,求实数a组成的集合C.10.设集合A={x|-1≤x+1≤6},B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若A⊇B,求m的取值范围.答 案课时跟踪检测(三)1.选D 显然B 是A 的真子集,因为A 中元素是3的整数倍,而B 的元素是3的偶数倍.2.选D 先用列举法表示集合,再观察元素与集合的关系.集合M ={-2,-1,0,1},集合R ={-3,-2},集合S ={0,1},不难发现集合P 中的元素-3∉M ,集合Q 中的元素2∉M ,集合R 中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M ,且S M .故选D.3.选D 由题意,当Q 为空集时,a =0;当Q 不是空集时,由Q ⊆P ,a =1或a =-1.4.选A 集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.故选A.5.选C ∵⎩⎪⎨⎪⎧ x +y <0,xy >0,∴⎩⎪⎨⎪⎧ x <0,y <0. ∴M =P .6.解析:∵y =(x -1)2-2≥-2,∴M ={y |y ≥-2}.∴N M .答案:N M7.解析:由Venn 图可得AB ,CD B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.答案:小说 文学作品 叙事散文 散文8.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时,方程化为2x =0,∴x =0,此时A ={0},符合题意.当a ≠0时,Δ=22-4·a ·a =0,即a 2=1,∴a =±1.此时A ={-1},或A ={1},符合题意.∴a =0或a =±1.答案:{0,1,-1}9.解:由x 2-3x +2=0,得x =1,或x =2.∴A ={1,2}.∵B ⊆A ,∴对B 分类讨论如下:(1)若B =∅,即方程ax -2=0无解,此时a =0.(2)若B ≠∅,则B ={1}或B ={2}.当B ={1}时,有a -2=0,即a =2;当B ={2}时,有2a -2=0,即a =1.综上可知,符合题意的实数a 所组成的集合C ={0,1,2}.10.解:化简集合A 得A ={x |-2≤x ≤5}.(1)∵x ∈Z ,∴A ={-2,-1,0,1,2,3,4,5},即A 中含有8个元素,∴A 的非空真子集数为28-2=254(个).(2)①当m ≤-2时,B =∅⊆A ;②当m >-2时,B ={x |m -1<x <2m +1},因此,要B ⊆A ,则只要⎩⎪⎨⎪⎧ m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述,知m 的取值范围是:{m |-1≤m ≤2或m ≤-2}.。
高中数学集合之间的关系(一)
第3讲:集合之间的关系(一)【知识梳理】一、子集、真子集、集合相等1.子集、真子集、集合相等的相关概念定义符号表示 图形表示子集如果集合A 中的任意一个元素都是集合B 中的元素,就称集合A 是集合B 的子集A ⊆B (或B ⊇A )真子集如果集合A ⊆B ,但存在元素x ∈B ,且x ∉A ,就称集合A 是集合B 的真子集A B (或BA )集合相等如果集合A 的任何一个元素都是集合B 的元素,同时集合B 的任何一个元素都是集合A 的元素,那么集合A 与集合B 相等A =B二、子集的性质(1)任何一个集合是它本身的子集,即A ⊆A .(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C . 三、空集1.定义:不含任何元素的集合叫做空集,记为∅. 2.规定:空集是任何集合的子集.【考点解读】考点一:简单集合间关系的判断 例1.设集合1{|,}36k M x x k Z ==+∈,},{3|1|6k N x x Z x k ==+∈,则M ,N 的关系为( )A .M N ⊆B .MNC .M N ⊇D .M N ∈变式训练1:集合{}2,nM x x n N ==∈,{}2,N x x n n N ==∈,则集合M 与N 的关系是( ) A .M N ⊆ B .N M ⊆ C .M N =∅ D .M N ⊄且N M ⊄变式训练2:若集合{|,}24M x x k k Z ππ==⋅-∈,{|,}42N x x k k Z ππ==⋅+∈,则( )A .MNB .M N ⊆C .N M ⊆D .MN =∅变式训练3:设集合{}{}221,1P y y x M x y x ==+==+,则集合M 与集合P 的关系是( ) A .M P =B .P M ∈C .MP D .P M考点二:集合之间的关系例2:下列六个关系式:①{,}{,}a b b a =;②{,}{,}a b b a ⊆;③{}∅=∅;④{0}=∅;⑤{0}∅⊆;⑥0{0}∈.其中正确的个数是( )A .1B .3C .4D .6变式训练1:以下六个关系式:{}00∈,{}0⊇∅,0.3Q ∉, 0N ∈,{},a b {},b a ⊆ ,{}2|20,x xx Z -=∈是空集,错误的个数是( )A .4B .3C .2D .1变式训练2:下列写法:(1){0}{2,3,4}∈;(2){0}∅⊆;(3){1,0,1}{0,1,1}-=-;(4)0∈∅,其中错误写法的个数为( ) A .1 B .2 C .3 D .4变式训练3:已知集合2{|4}A x x ==,①2A ⊆;②{2}A -∈;③A ∅⊆;④{2,2}A -=;⑤2A -∈.则上列式子表示正确的有几个( ) A .1 B .2 C .3 D .4考点三:确定集合的子集、真子集例3.设22{|(16)(54)0}A x x x x =-++=,写出集合A 的子集,并指出其中哪些是它的真子集.变式训练1:集合{1,2}的子集有( ) A .4个B .3个C .2个D .1个变式训练2:写出集合{,,}a b c 的所有子集,并指出其中的真子集的个数.考点四:子集、真子集的个数例4.集合{,,,}A a b c d =非空子集的个数是( ) A .13B .14C .15D .16变式训练1:已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个变式训练2:若集合{12}A x x =∈-<<Z∣,则A 的真子集个数为( ) A .1B .2C .3D .4变式训练3:已知集合{}212,A x x x Z =-≤∈,则集合A 的子集个数为( ) A .0B .1C .2D .4考点五:集合相等例5.已知集合{0,,}a A a b b=+,{}0,1,1B b =-,(a ,b R ∈),若A B =,则2+a b =( ) A .2-B .2C .1-D .1变式训练1:下列集合与集合{}2,3A =相等的是( )A .(){}2,3B .(){},2,3x y x y ==C .{}2560x x x -+=D .{}2,3x y ==变式训练2:已知a ,b ∈R ,若2{,,1}{,,0}ba a ab a=+,则20212021a b +的值为( ) A .1-B .0C .1D .1-或0变式训练3:已知a R ∈,b R ∈,若集合2{,,1}{,,0}ba a ab a=-,则20202020(1)a b ++的值为( ) A .2B .1C .2-D .1-【课堂检测】1、下列各式中,正确的是( )①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}(){}0,10,1=;⑥{}00=.A .①②B .②⑤C .④⑥D .②③2、给出下列关系式:①23Q ⊆;②{}210xx x ∅⊆++=∣;③{}2{(1,4)}(,)23x y y x x -⊆=--∣;④{2}[2,)x x <=+∞∣,其中正确关系式的个数是( )A .0B .1C .2D .33、下列关系式中正确的个数是( )个①1 2Q ∈;②R ;③0*N ∈;④Z π∈;⑤{}{}20|x x x ==;⑥∅ {}0A .1B .2C .3D .44、给出下列说法:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2⊆;④{}{}0,1,22,0,1=.其中正确的个数为( ) A .1 B .2 C .3 D .45、在①{}10,1,2⊆;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④{}0∅⊆ 上述四个关系中,错误的个数是( ) A .1个B .2个C .3个D .4个6、已知集合{1,2,3,4}P =,则满足{1,2}Q P ⊆⊆的集合Q 的个数是( ) A .1B .2C .3D .47、以下六个命题中:0{0}∈;{0}⊇∅;0.3Q ∉;0N ∈;{,}{,}a b b a ⊆;{}220,xx x Z -=∈∣是空集.正确的个数是( ) A .4B .3C .5D .28、已知集合2{|320R}A x x x x =-+=∈,,{|06N}B x x x =<<∈,,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .3B .4C .8D .169、若{1,2}{0M ⊆⊆,1,2,3,4},则满足条件的集合M 的个数为( ) A .7B .8C .31D .3210、已知集合M 满足{}{}11,2,3M ≠⊆⊂,则满足条件的集合M 的个数是( )A .2B .3C .4D .511、下列集合与集合{}1,3A =相等的是( ) A .()1,3B .(){}1,3 C .{}2430x x x -+=D .(){},1,3x y x y ==12、已知a R ∈,b R ∈,若集合2{,,1}{,,0}ba a ab a=+,则20192019a b +的值为( )A .2-B .1-C .1D .213、下列四个命题中,其中正确命题的个数为( ) ①与1非常接近的全体实数能构成集合; ②{}21,(1)--表示一个集合;③空集是任何一个集合的真子集; ④任何一个非空集合必有两个以上的子集. A .0个B .1个C .2个D .3个14、已知集合M 满足{}{}1,21,2,5,6,7M ⊆,则符合条件的集合M 有______个.15、集合M 满足{}{},,....a b c M a b c d e ⊆⊆,则这样的集合M 有______个.16、满足{}1234,,,A a a a a ∅⊆的集合A 有__________个.。
人教版高一数学必修一集合间的基本关系课件PPT
管好课堂时间的五点建议 1.计划充分。教师要为课堂教学准备出足够的内容(要有意义
目标升华
一、掌握子集,真子集,非空子集,非 空真子集的概念与关系
二、了解空集的特殊性,强调空集的存 在性,在解题过程中考虑空集的存在性 之后灵活运用集合与集合之间的关系解 题。
当堂诊学
一、完成课本P7页练习2、3 二、完成选做题
选做题1. 已知集合A={x|-2≤x≤7},B={x|m+1<
(×)
(√)
3.集合相等
集合A中任何一个元素都是集合B中的元素, 同时,集合B中任何一个元素都是集合A中的 元素.这样集合A与集合B的元素是一样的.
例2.指出下列各组中集合之间的关系
(1) A={-1,1} B=Z
A ≠ B
2,3,5,7
(2) A={x︱x是小于10的素数} B={2,3,5,7}
是的,教学是一件很费心思的事情,世界上不可能存在一 种万能的教学方法,至少我还没听说过那些低效的教师 在课堂上往往只是简单地给全体学生布置一项任务(而 且很可能没有仔细考虑自己布置的任务是不是学生感兴 趣的或是需要的),然后要求学生用二十分钟完成。同样, 不用亲历现场你也能猜到,有些学生五分钟就能完成任 务,而这段时间里还有些学生甚至都没有开始,总有些学 生无法在二十分钟内完成任务因此,这个二十分钟的规 定会带来课堂纪律的问题。教师需要不断提醒学生集中 注意力,但有的学生会抱怨自己还没听懂,而那些提前完 成的学生则会感到无聊,并且着急地等着新任务。
高一数学讲义-集合间的基本关系
集合间的基本关系一、子集、空集等概念的教学:比较下面几个例子,试发现两个集合之间的关系:(1){1,2,3}A =,{1,2,3,4,5}B =;(2){}C =新华一中高一 班全体女生,{}D =新华一中高一 班全体学生;(3){|}E x x =是两条边相等的三角形,{}F x x =是等腰三角形1.子集的定义:对于两个集合A ,B ,如果集合A 的任何一个元素都是集合B 的元素,我们说这两个集合有包含关系,称集合A 是集合B 的子集(subset )。
记作:()A B B A ⊆⊇或读作:A 包含于(is contained in )B ,或B 包含(contains )A当集合A 不包含于集合B 时,记作A B用Venn 图表示两个集合间的“包含”关系:A B ⊆2. 集合相等定义:如果A 是集合B 的子集,且集合B 是集合A 的子集,则集合A 与集合B 中的元素是一样的,因此集合A 与集合B 相等,即若A B B A ⊆⊆且,则A B =。
如(3)中的两集合E F =。
3. 真子集定义:若集合A B ⊆,但存在元素,x B x A ∈∉且,则称集合A 是集合B 的真子集(proper subset )。
记作: A B (或B A )读作:A 真包含于B (或B 真包含A )4. 空集定义:不含有任何元素的集合称为空集(empty set ),记作:∅。
用适当的符号填空: ∅ {}0; 0 ∅; ∅ {}∅; {}0 {}∅重要结论:(1) 空集是任何集合的子集;(2) 空集是任何非空集合的真子集;(3) 任何一个集合是它本身的子集;(4) 对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆。
说明:1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;2. 在分析有关集合问题时,要注意空集的地位。
三、例题讲解:例1.若集合{}{}260,10,A x x x B x mx =+-==+= B A ,求m 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合之间的关系(一)
教学目标】
知识目标:
1) 掌握子集、真子集的概念;
2) 掌握两个集合相等的概念;
3) 会判断集合之间的关系 .
能力目标:
通过集合语言的学习与运用,培养学生的数学思维能力
教学重点】
集合与集合间的关系及其相关符号表示.
教学难点】
子集的概念.
教学设计】
从复习上节课的学习内容入手,通过实际问题导入知识;
通过简单的实例,认识集合的相等关系; 为学生们提供观察和操作的机会,加深对知识的理解与掌握.
课时安排】
2 课时
教学过程】 复习知识 揭示课题
前面学习了集合的相关问题,试着回忆下面的知识点:
1.集合 由某些确定的对象组成的整体,及元素组成集合的对象.
2.常用数集有哪些?用什么字母表示?
3.集合的表示法
(1) 列举法:在花括号内,一一列举集合的元素;
(2) 描述法: {代表元素| 元素所具有的特征性质 }.
4.元素与集合之间有属于或不属于的关系.
完成下面的问题:2) 通过实际问题引导学生认识真子集,突破难点;
1)
用适当的符号“ ”或“”填空:
N; (3)品R;⑷ 0.5 Z;
⑸ 1 21,2,3} ;⑹ 2 {_ x|xv1} ;(7)2_L x|x=2k+1, k Z}.
那么集合与集合之间又有什么关系呢?创设情景兴趣导入
问题
1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么,
集合A与集合B之间存在什么关系呢?
2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学},
N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N
之间存在什么关系呢?
3.自然数集Z与整数集N之间存在什么关系呢?
解决
显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班
的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素
(自然数)肯定是集合Z的元素(整数).
归纳
当集合B的元素肯定是集合A的元素时称集合A包含集合B •两个集合之间的这种关系叫做包含关系.
动脑思考探索新知
概念
一般地,如果集合B的元素都是集合A的元素,那么称集合A包含集合B,并把集合B叫做集合A的子集.
表示
将集合A包含集合B记作A B或B A (读作“ A包含B ”或“ B包含于A ”).
可以用下图表示出这两个集合之间的包含关系.
拓展
规定:空集是任何集合的子集,即
“ ”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据 关系,正确选用符号.
自然数都是有理数,因此N
0是实数,因此0 R ;
d 不是集合a,b,c 的元素,因此d a,b,c ;
X |3 X 5 X10, X
运用知识强化练习
教材练习1.2.1 (1) N Q ; (2) 0 •
(3) a a,b,c ; (4) 2,3 2 ;
(5) 0 ;(6) x|1 X, 2 x| 1 a ”或“ ”填空:
x 4 . 用符号“ ”、“ 由子集的定义可知,任何一个集合 A 都是它自身的子集,即A A . 巩固知识 例1 用符号“ ” “ ” “ 、 、 ”或“ ”填空:
⑴ a,b,c,d a,b ;⑵
1,2,3 ;
⑶ N Q
; ⑷ 0 _R ;
⑸ d a,b,c ;(6) X | 3 X 5 X |0, X 6
”是用来表示集合与集合之间关系的符号;而“ ”与 解(1)集合a,b 的元素都是集合 a,b,c,d 的元素,因此 a,b,c,d a,b
; (2) 空集是任何集合的子集,因此 1,2,3 ;
(5) (6) 集合X|3 X 5 的元素都是集合x|0, X 6的元素,因此 A
典型例题
分析“ ”与“
继续探索活动探究
(1) 阅读教材章节1.2 ;学习与训练1.2 ;
(2) 书写习题1.2 ,学习与训练1.2 训练题;
(3) 实践寻找集合和集合关系的生活实例.。