利用DCS的过热汽温系统控制系统设计
热工控制系统实验三过热汽温串级控制系统仿真实验样本
实验三 过热汽温串级控制系统仿真实验一、实验目1.理解过热汽温串级控制系统构造构成。
2.掌握过热汽温串级控制系统性能特点。
3.掌握串级控制系统调节器参数实验整定办法。
4.分析不同负荷下被控对象参数变化对控制系统控制品质影响。
二、实验原理本实验以某300MW 机组配套锅炉过热汽温串级控制系统为例, 其原理构造图如下图所示:过热器过热器喷水减温器图3-1 过热汽温串级控制系统原理构造图由上图, 可得过热汽温串级控制系统方框图如下:扰动图3-2 过热汽温串级控制系统方框图● 主调节器在图3-2所示过热汽温串级控制系统中主调节器()1T W s 采用比例积分微分(PID )调节器, 其传递函数为:()11111111111T d p i d i W s T s K K K s T s s δ⎛⎫=++=++ ⎪⎝⎭式中: ——主调节器比例系数( );1i K ——主调节器积分系数(1111i i K δ=);1d K ——主调节器微分系数(111d d K T δ=)。
● 副调节器在图3-2所示过热汽温串级控制系统中副调节器 采用比例(P )调节器,其传递函数为:()2221T p W s K δ==● 式中: ——副调节器比例系数( )。
● 导前区对象在图3-2所示过热汽温串级控制系统中导前区对象()2W s 在50%和100%负荷下 传递函数分别为:(1)50%负荷下导前区对象传递函数: ● (2)100%负荷下导前区对象传递函数: ● 惰性区对象在图3-2所示过热汽温串级控制系统中惰性区对象()1W s 在50%和100%负荷下 传递函数分别为:(1)50%负荷下惰性区对象传递函数: (2)100%负荷下惰性区对象传递函数:三、实验环节1.在MATLAB 软件Simulink 工具箱中, 打开一种Simulink 控制系统仿真界面, 依照图3-2所示过热汽温串级控制系统方框图建立仿真组态图如下:图3-3 过热汽温串级控制系统仿真组态图惰性区对象传递函数模块建立惰性区对象传递函数为三阶惯性环节, 在组态图中采用建立子模块方式建立惰性 区对象传递函数模块。
(过热蒸汽温度控制系统设计) (1)
毕业设计 [论文] 题目:过热蒸汽温度控制系统设计系别:电气与电子工程系专业:自动化姓名:龚宏奎学号:122408121指导教师:任琦梅河南城建学院2012年05月20日摘要过热蒸汽温度控制系统是单元机组不可缺少的重要组成部分,其性能和可靠性已成为保证单元机组安全性和经济性的重要因素。
过热蒸汽温度较高时,机组热效率则相对较高,但过高时,汽机的金属材料又无法承受,气温过低则影响机组效率。
过热蒸汽温度的稳定对机组的安全经济运行非常重要,所以对其控制有较高的要求。
但是由于过热蒸汽温度是一个典型的大迟延、大惯性、非线性和时变性的复杂系统,本次设计采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键词:过热蒸汽温度,减温水,串级控制系统,PIDABSTRACTThe superheated steam temperature control system is an important and indispensable unit aircrew part, its performance and reliability has become ensure safety and economic behavior of the unit aircrew important factors. The superheated steam temperature is higher, the thermal efficiency is relatively high, but is high, the metal materials and the turbine unable to bear, the temperature is too low will influence the unit efficiency. The superheated steam temperature stability of the unit safe and economic operation is very important, so for the control have higher requirements. But because the superheated steam temperature is a typical time-delayed, large inertia, nonlinear and changeable complex system, this design USES the cascade control in order to improve the control performance of the system, in the system by the master-cascade control of switching device, make the system can be used in different working environment. By using this system, can make the boiler overheating export steam temperature in allowed within the scope of the change, and the protection of superheater wall temperature not more than allow the camp of working temperature.Key words: the superheated steam temperature, reduce warm water, cascade control system, PID目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1选题的背景及其意义 (1)1.2国内外研究现状 (1)1.3本次设计的目的 (2)1.4本次设计所做的工作 (3)2汽温控制系统的组成与对象动态特性 (4)2.1汽温调节的概念和方法 (4)2.1.1从蒸汽侧调节汽温 (4)2.1.2从烟气侧调节汽温 (5)2.2过热器的分类及基本结构 (7)2.2.1过热器的分类 (7)2.2.2过热器的基本结构 (9)2.3过热蒸汽温度控制系统的基本结构与工作原理 (11)2.3.1过热器一级减温控制系统 (11)2.3.2二级减温控制系统 (12)2.4过热蒸汽温度控制对象的动静态特性 (14)2.4.1静态特性 (14)2.4.2动态特性 (14)3过热汽温控制系统的基本方案 (18)3.1串级汽温控制系统 (18)3.2串级汽温控制系统的基本结构及原理 (18)3.3串级汽温控制系统的设计 (20)3.4串级汽温控制系统的整定 (21)4相关器件的选型 (25)4.1温度检测变送器的选择 (25)4.2控制器的选型 (26)4.3执行器的选型 (28)4.4阀门定位器的选型 (30)5主蒸汽温度控制系统的改进与仿真 (33)5.1Smith预估补偿器 (33)5.2改进型Smith预估器 (37)5.3带有改进型Smith预估器的主蒸汽温度控制系统设计与仿真 (40)6结论 (43)参考文献 (44)致谢 (45)附录 (46)1绪论1.1选题的背景及其意义过热汽温(过热蒸汽的温度)的控制就是维持过热出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
锅炉过热蒸汽温度控制系统设计研究毕业设计开题报告
重点解决的问题
主要内容:
1、建立被控对象数学模型。
2、基于单片机设计总体方案,进行PID控制规律的选用与数字化。
3、硬件设计,包括单片机输入信号接口电路、外围电路等。
4、软件设计,包括初始化及主程序、控制程序、A/D和D/A转换程序及其他处理程序。
5利用PROTUES仿真。
重点解决的问题:
锅炉是我国工业生产和生活上应用面最广、数量最多的热力设备,是石油化工、发电等工业过程必不可少的重要动力设备,其产物蒸汽不但可以作为蒸馏、干燥、反应、加热等过程的热源,而且还可以作为驱动设备的动力源。
过热蒸汽温度控制是锅炉控制系统不可缺少的重要组成部分,其性能和可靠性已成为保证锅炉安全性和经济性的重要因素。由于锅炉往往负荷变化大,起停频繁,依靠人工操作很难保证其安全、稳定地在经济工况下长期运行。温度过高,会使蒸汽带水过多,汽水分离差,使后续的过热器管壁结垢,影响了生产安全;温度过低又将破坏部分水冷壁的水循环不能满足工艺要求,严重时会发生锅炉爆炸,从而造成重大事故。因此,工业过程对锅炉控制系统都有很高的要求,在锅炉运行中,保证过热蒸汽的温度在正常的范围内具有非常重要的意义。
完成论文的初稿;
修改、完善毕业设计并送指导老师审阅;
完成论文的PPT文件,准备毕业答辩。
指
导
教
师
意
见
***同学查阅了大量与课题相关的文献资料,对设计意图和课题意义清
楚明确,设计了初步的研究方案,预见了难点和关键问题,并拟定了工作计划,
为开题做了充分准备。目前已达到开题要求,同意开题。
指导教师签名:
年 月 日
1、了解锅炉过热蒸汽的工艺过程,对被控对象进行分析,设计控制方案。
DCS课程设计报告--过热汽温控制系统组态
DCS课程设计报告--过热汽温控制系统组态课程设计报告( 2012-- 2013年度第2学期)名称:控制装置与仪表A(DCS部分)课程设计题目:过热汽温控制系统组态院系:自动化系班级:测控1003学号:20100203学生姓名:指导教师:翟永杰设计周数:一周成绩:日期:2013 年7 月10 日《控制装置与仪表A(DCS部分)课程设计》课程设计任务书一、目的与要求1.了解DCS应用过程中的主要工作内容及应该注意的问题,并能根据应用目的,进行分散控制系统的设计组态、调试操作等工作。
2.以LN2000分散控制系统为平台,完成过热汽温控制系统的组态。
3.进行DCS的调试工作。
二、主要内容分为组态设计和系统调试两个部分:1.组态设计1.1系统配置组态主要是指DCS中工程师站、操作员站、控制站的主机系统配置信息及外设类型,I/O-卡件信息,电源布置,控制柜内安装接线等。
此部分内容作为了解内容,不进行具体组态。
1.2实时数据库组态数据库组态是系统组态中应尽早完成的工作,因为只有有了数据库,其他的组态工作(控制回路组态、画面组态等)才可以调试。
数据库组态一般通过专用软件进行,数据录入时一定要认真仔细,数据库中一个小的错误就会给运行带来极大的麻烦,如造成显示错误、操作不当甚至死机故障。
1.3控制算法组态控制算法组态指的是将系统设计时规定的模拟量控制、开关量控制等功能用DCS算法予以实现。
本设计以主汽温度串级控制策略为对象,并且模拟控制对象,构成闭环回路,完成这些控制算法的组态工作。
1.4操作员站显示画面组态运行人员主要通过操作员站画面来观察生产过程运行情况,并通过画面提供的软操作器来干预生产过程,因此画面设计是否合理、操作是否方便都会对运行产生重要影响。
本设计要求设计关于主汽温控制的简单流程图画面、趋势画面、参数显示画面、操作画面,并把有关的动态点同控制算法连接起来。
1.5报警显示在数据库中进行温度报警值设置,在运行界面中显示报警窗口。
660MW超临界机组过热蒸汽温度的控制系统及运行调整
660MW超临界机组过热蒸汽温度的控制系统及运行调整摘要:大型火电站当中,一项较重要的运行调整就是过热蒸汽温度控制和调整。
过热蒸汽温度控制系统,对于火电机组热效率的提升具有重要意义,能够保障机组发电过程中所产生的热量得到应有的利用,使发电效率大大提升。
因此在本文当中就将对某火力发电企业机组过热蒸汽温度控制系统设计工作进行分析,将设计工作当中对过热蒸汽温度控制系统大延迟、大惯性以及时变性和非线性内在机理问题,进行攻克的过程进行研究,同时对过热蒸汽温度的运行调整提出相关建议。
关键词:660MW;超临界机组;过热蒸汽温度;控制:调整1.前言浙能乐清一期2*660MW超临界机组,锅炉为超临界参数变压运行螺旋管圈直流炉,单炉膛、一次中间再热、采用四角切圆燃烧方式、平衡通风、固态排渣、全钢悬吊Π型结构、露天布置燃煤锅炉。
DCS系统用的是北京ABB贝利控制系统有限公司的Industrial IT Symphony 系统。
在本文当中,将主要对机组当中的过热蒸汽温度控制系统进行研究,过热蒸汽温度控制系统主要存在大延迟,大惯性以及时变性和非线性内在机理问题,并提出相应的运行调整分析。
2.过热蒸汽温度控制系统解析2.1工艺流程分析过热器喷水减温系统工艺流程:炉膛上部布置有前屏过热器和后屏过热器,水平烟道依次布置高温再热器和高温过热器,共有二级喷水减温器,将每一级减温器都进行左右两侧均匀布置。
在第一级减温器当中,主要是将减温器布置在后屏过热器的入口处,该级减温器的喷口量达到了总设计喷水量的2/3,对第一级减温器进行控制的是两个喷嘴和调节阀门。
在第二级减温器当中,主要是将其设置在末级过热器的入口处,该级减热器喷水量达到了总设计排水量的1/3。
图一过热减温水DCS画面2.2过热汽温控制系统2.2.1减温控制系统在第一级减温控制系统(以此为例)当中,进行温度调节时的被调量是前屏过热器出口处的气温,同时该控制系统还能够保护屏式过热器的管壁不会出现温度过高的现象,并与末级过热汽温控制系统进行配合协同工作,保证整体控制系统温度得以调节。
单元机组过热汽温控制系统的工程实现
单元机组过热汽温控制系统的工程实现单元机组过热汽温控制系统是一种用于调节和控制单元机组中过热蒸汽的温度的系统。
过热蒸汽是通过锅炉产生的,它的温度必须在一定范围内进行控制,以确保其稳定运行和安全性。
以下是关于单元机组过热汽温控制系统工程实现的详细介绍。
一、系统组成1.过热器:过热器是通过燃烧锅炉产生的蒸汽进行加热以增加其温度的设备。
过热器通常是由一系列管子构成,蒸汽通过这些管子流动,从而增加其温度。
2.控制阀:控制阀用于调节过热器中蒸汽的流量,从而控制蒸汽的温度。
控制阀通常由一个执行器和一个阀体组成,执行器通过电信号或气动信号控制阀体的开度。
3.温度传感器:温度传感器用于测量过热器中蒸汽的温度。
常用的温度传感器包括热电偶和热电阻。
温度传感器将蒸汽温度转换为电信号,并将其发送给控制器。
4.控制器:控制器是系统的核心部分,它接收来自温度传感器的信号,并根据预设的设定值进行比较和计算,然后通过控制阀调节过热器中蒸汽的流量,以达到设定的温度值。
5.人机界面:人机界面用于用户与系统进行交互和操作。
它通常包括显示屏和操作按钮,用户可以通过操作按钮设置温度设定值、监视当前温度和系统状态等。
二、工程实现步骤1.方案设计:根据单元机组的要求和特点,设计温控系统的整体方案。
确定控制系统的组成部分和工作原理,选择适合的控制器和传感器。
2.传感器安装:在单元机组的适当位置安装温度传感器,确保其能够准确测量蒸汽的温度,并与控制器连接。
3.控制阀安装:根据设计要求,在过热器的适当位置安装控制阀,并连接执行器和控制器。
4.控制器配置:根据单元机组的温度要求,配置控制器的相关参数。
包括设定值、比例、积分和微分等控制参数。
5.人机界面设置:配置人机界面的显示屏,以便用户可以设置设定值、监视当前温度和系统状态。
6.系统调试:经过安装和配置后,对整个系统进行调试。
通过改变设定值和监视蒸汽温度,检查系统的响应和控制准确性。
7.系统优化:根据调试的结果,对控制器的参数进行优化,以提高系统的控制精度和稳定性。
300MW单元机组过热汽温控制系统设计
一、题目300MW 单元机组过热汽温控制系统设计二、目的与意义本设计是针对“热工控制系统”课程开设的课程设计,是培养学生综合运用所学理论知识分析问题、解决问题的一个重要的教学环节。
通过本课程设计,使学生能更好的掌握热工控制系统的组成、控制方式和控制过程,使学生得到一次较全面、系统的独立工作能力的培养。
三、要求 已知条件:(1)采用导前汽温微分信号的双回路汽温控制系统方框图如图1-1所示,系统中各环节的传递函数为:图1-1()1D D d D K T s W s T s =+;11()(1)Ti W s T sδ=+; 00102239()()()(/)(115)(123)W s W s W s C V s s ︒==++; 0228()(/)(115)W s C V s ︒=+; )/(1.021C V ︒==θθγγ;1==μK K z(2)300MW 单元机组过热蒸汽流程:汽包所产生的饱和蒸汽先流经低温对流过热器进行低温过热,然后依次流经前屏过热器、后屏过热器和高温过热器后送入汽轮机。
屏式过热器和高温对流过热器均为左、右两侧对称布置。
在前屏过热器、后屏过热器和高温对流过热器的入口分别装设了Ⅰ级、Ⅱ级和Ⅲ级喷水减温器,其中Ⅲ级喷水减温10θ2θ 1θ()d W s()T W sz KμK)(02s W )(01s W2θγ 1θγ器是左、右两侧对称布置。
主要内容:1、根据图1-1及已知的传递函数完成采用导前汽温微分信号的双回路汽温控制系统的微分器和调节器的参数整定。
2、根据已知的300MW单元机组过热蒸汽流程设计采用导前汽温微分信号的双回路过热汽温分段控制系统。
要求:1、严格遵守作息时间,在规定地点认真完成设计;设计共计一周。
2、按照统一格式要求,完成设计说明书一份。
四、工作内容、进度安排1、根据图1-1及已知的传递函数完成采用导前汽温微分信号的双回路汽温控制系统的微分器和调节器的参数整定;(1天)2、根据已知的300MW单元机组过热蒸汽流程设计采用导前汽温微分信号的双回路过热汽温分段控制系统:确定控制系统的方案,画出控制系统结构图,说明系统的组成,分析系统各部分的作用及工作原理;(3天)3、编写课程设计说明书。
(完整版)我的工业燃煤锅炉DCS控制系统设计毕业论文设计
工业燃煤锅炉DCS控制系统设计(子课题:控制方案的组态及监控画面的制作)摘要:本文叙述了工业燃煤锅炉的工作原理,具体阐述了锅炉控制中对汽水控制系统方案和自动检测的设计,利用了Control Builder 软件、UMC800控制器和FIX软件进行35吨工业燃煤锅炉汽水系统的自动检测与控制回路的组态,并设计了友好的监控画面。
关键词:锅炉FIX UMC800 控制系统汽水系统蒸汽压力Abstract: the paper introduce the principle of the boiler which is used in burning coal industrial,it describes the scheme of the steam controlsystem in boiler control and the design of auto-detection. it use the Control Buildersoftware,UMC800 controller and FIX softwareto auto-detect 35t steam system in burningcoal industrial and configuration the controlloop, and designed the friendly supervisionappearance.Keyword: boiler, FIX, UMC800, control system, steam system, steam pressure引言锅炉微机控制,是近年来开发的一项新技术,它是微型计算机软件、硬件、自动控制、锅炉节能等几项技术紧密结合的产物,我国现有中、小型锅炉30多万台,每年耗煤量占我国原煤产量的13,目前大多数工业锅炉仍处于能耗高、浪费大、环境污染严重的生产状态。
提高热效率,降低耗煤量,降低耗电量,用微机进行控制是一件具有深远意义的工作。
过热汽温控制课程设计
概述 - - - - - - - - - - - - - - - - - - - - -1 中英文摘要 - - - - - - - - - - - - - - - - - -3第一章绪论 - - - - - - - - - - - - - - - - -5 1.1控制系统基本原理及组成1.2汽温控制系统的被控对象1.3本课程设计的题目及任务第二章过热汽温控制 - - - - - - - - - - - - - -8 2.1 过热汽温控制的任务2.2 过热汽温控制的难点及设计原则2.3 过热汽温对象模型的建立及其特性第三章过热汽温控制系统的设计 - - - - - - - - -15 3.1 过热汽温系统的串级控制方案3.2 具体设计方案3.3 设计的论证3.4 控制系统的切换第四章课程设计总结及体会 - - - - - - - - - - -28 4.1课程设计总结4.2体会结束语 - - - - - - - - - - - -- - - - - - - -31 参考文献 - - - - - - - - - - - - - - - - - -32单元机组是由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。
由于其工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视、操纵或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,目前,采用以分散微机为基础的集散型控制系统(TDCS)组成一个完整的控制、保护、监视、操作及计算等多功能自动化系统。
在现代火力发电厂热工控制中,锅炉过热蒸汽温度是影响锅炉生产过程安全性和经济性的重要参数,也是整个汽水行程中工质的最高温度,对电厂的安全经济运行有重大影响。
由于过热器正常运行时的温度已接近材料允许的极限温度,因此,必须相当严格地将过热汽温控制在给定值附近。
过热汽温偏高会使蒸汽管道、汽轮机内某些零部件产生过大的热膨胀变形而损坏,威胁机组的安全运行。
过热汽温偏低则会降低机组的热效率,增加燃料消耗量,浪费能源,同时会使汽轮机最后几级的蒸汽湿度增加,加速汽轮机叶片的水蚀,从而缩短汽轮机叶片的使用寿命,所以过热蒸汽温度过高或过低都是生产过程所不允许的。
过热汽温控制系统
第一部分 多容对象动态特性的求取控制对象是指各种具体热工设备,例如热工过程中的各种热交换器,加热炉、锅炉、贮 液罐及流体输送设备等。
尽管它们的结构和生产过程的物理性质很不相同,从控制的观点来 看它们在本质上有许多相似之处。
控制对象是自动控制系统中的一个重要组成部分。
它的输 出信号通常是生产过程中要求控制的被调量;它的输入信号是引起被调量变化的各种因素 (扰动作用和控制作用)。
对象的动态特性取决于它的内部过程的物理性质,设备的结构参数和运行条件等,原则 上可以用分析方法写出它的动态方程式。
但是由于一般热工对象内部过程的物理性质比较复 杂,加之运行过程中的一些实际条件很难全面予以考虑,因此用分析方法并不容易得到动态 特性的精确数学表达式。
比较常用的方法是在运行条件下通过实验来获得对象的动态特性。
根据测定到的对象阶跃响应曲线,可以把它拟合成近似的传递函数,根据阶跃响应曲线 求近似传递函数有很多方法,采用的传递函数在形式上也是各式各样 有自平衡能力的高阶对象的阶跃响应曲线如图所示:无迟延一阶对象阶跃响应曲线选定的传递函数的形式为()()1NKW S T S =+即采用一个n 阶等容惯性环节来近似表征。
上式中有三个待定的参数:放大系数K ,时间常数T 和阶数n ,传递函数的放大系数K 的求取方法按前面求取公式确定。
(1)作稳态值的渐近线y(∞),则()()0Y Y K μ∞-=∆在试验获得的阶跃响应曲线上,求得y(t 1)=0.4y(∞)及y(t 2)=0.8y(∞)时对应的时间 t 1、t 2 后,利用下式求阶数n :利用两点法公式可知(见《热工控制系统》谷俊杰,课本62 页公式):由曲线可知放大系数K ,利用两点法可确定t1,t2,利用如下公式计算对象阶次和惯性时间。
21.07510.521T N T T *⎛⎫=+ ⎪-⎝⎭122.16T T T N +≈上式求得的n 值不是整数时,应选用与其最接近的整数。
再热器汽温控制系统课程设计说明书
目录一 600MW火电机组DCS系统设计 11.1电源部分 11.2通信部分 21.3 系统接地 21.4 软件部分 3二、设计正文 42.1 已知技术条件与参数 42.2设计总体方案及传感器、执行器、调节器等的选择 42.2.1 再热汽温的影响因素 42.2.2再热汽温控制的任务 52.2.3 再热汽温的控制方法 52.2.4执行器的选择 62.2.5变送器的选择 82.2.6控制器的选择 102.4画出系统框图及接线图 122.4.1再热器烟道挡板控制系统 132.4.2再热器喷水减温控制回路 14三、设计心得 16五、附表 18一 600MW火电机组DCS系统设计DCS系统配置应能满足机组任何工况下的监控要求(包括紧急故障处理),CPU负荷率应控制在设计指标之内并留有裕度;所有站的CPU负荷率在恶劣工况下不得超过60%,所有计算站、数据管理站、操作员站、历史站等的CPU负荷率在恶劣工况下不得超过40%;控制站、操作员站、计算站、数据管理站、历史站或服务器脱网、离线、死机,在其它操作员监视器上应设有醒目的报警功能,或在控制室内设有独立于DCS系统之外的声光报警;DCS应采用合适的冗余配置和直至卡件的自诊断功能,使其具有高度的可靠性,系统的任何一个组件发生故障均不影响整个系统工作。
DCS系统应易于组态、易于实用和易于扩展;系统的报警、监视和自诊断功能应高度集中在CRT上,控制功能应尽可能在功能和物理上进行分散;主要控制器应采用冗余配置,重要I/O点应考虑采用非同一板件的冗余配置;系统设计应采用各种抗噪声技术、包括光电隔离、高共模抑制比以及合理的接地和屏蔽;分配控制回路和I/O信号时,应使一个控制器或一块I/O板件损坏时对机组的安全运行的影响尽可能小。
I/O板件及其电源故障时,应使I/O处于对系统安全的状态,不出现误动;电子设备机柜的外壳防护等级应满足有关标准的规定;机柜内的模件应能带电插拔,而不影响其它模件的正常运行。
热工自动调节(dcs-ccs-汽温)
通讯系统
连接各节点的桥梁 包括
现场总线 控制网络 系统网络 管理网络
一般在控制网络和系统网络进行冗余设计
电源系统
整个系统的工作能源 保证连续性的手段
UPS 双电源切换 现场控制站电源进行冗余设计
局部故障会影响全局
PLC控制 优点
逻辑运算功能强 运算速度快 功耗低、体积小、故障率低
缺点
局部故障会影响全局 监控和操作简单 无法实现先进控制和过程优化 模拟运算功能弱
从1975年第一套DCS诞生,发展至今已经近40年, 经历了四代历程。
1. 第一代DCS (初创期)
指从其诞生的1975~1980年间所出现的第一批系 统。这个时期的代表是率先推出DCS的Honeywell公司 的TDC-2000系统,同期的还有Yokogawa(即横河)公 司的Yawpark系统、Foxboro公司的Spectrum系统、 Bailey公司的Network 90系统、Kent公司的P4000系统、 Siemens公司的TelepermM系统及东芝公司的TOSDIC系 统等。
热工自动化技术是一种运用控制理论、热能工程技术、 智能仪器仪表、计算机技术和其他信息技术,对热力学 相关参数进行检测、控制,从而对生产过程实现检测、 控制、优化、调度、管理、决策,达到确保安全、增加 产量、提高质量、降低消耗、减员增效等目的的综合性 高新技术。
之所以称之为热工,是因为上世纪50年代中国刚解放, 工业从无到有,加之西方世界对我国进行封锁,我国的 工业设备都从前苏联引进,发电厂也不例外,当时前苏 联称发电厂中的锅炉、汽轮机及其辅助设备都叫热工设 备,而用于监控热力设备运行状况的仪表称之为热工仪 表,从事热工仪表及其控制的专业叫热工(热控)专业, 一直沿用到今天。
锅炉过热蒸汽温度控制系统课程设计
锅炉过热蒸汽温度控制系统课程设计过程控制课程设计说明书——锅炉过热蒸汽温度控制系统院系:化工学院化工机械系班级:10自动化(1)姓名:李正智学号:1 0 2 0 3 0 1 0 1 6日期:2013/12/2-2013/12/15指导老师:王淑钦老师引言蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。
过高的蒸汽温度会造成过热器、蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。
锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,并且可靠性也不高。
本次课程设计的主要目的是锅炉蒸汽温度控制系统的设计。
蒸汽过热系统包括一级过热器、减温器、二级过热器。
锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。
主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。
过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点,过热蒸汽温度过高或过低,对锅炉运行及蒸汽设备是不利的。
蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。
一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃【1】。
如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。
据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。
一般规定过热汽温下限不低于其额定值10℃。
通常,高参数电厂都要求保持过热汽温在540℃的范围内。
由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下三个方面:(1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。
300MW机组过热汽温自动控制系统设计
设计题目:300MW机组过热汽温自动控制系统设计1.设计主要内容及要求;(1)过热汽温控制对象动态特性分析;(2)过热汽温控制系统控制方案设计与原理分析;(3)控制系统组态图分析;(4)CAD制图。
2.对设计说明书、论文撰写内容、格式、字数的要求;(1).课程设计说明书(论文)是体现和总结课程设计成果的载体,一般不应少于3000字。
(2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。
课程设计说明书(论文)的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。
应做到文理通顺,内容正确完整,书写工整,装订整齐。
(3).说明书(论文)手写或打印均可。
手写要用学校统一的课程设计用纸,用黑或蓝黑墨水工整书写;打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。
(4). 课程设计说明书(论文)装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。
3.时间进度安排;沈阳工程学院热工过程控制系统课程设计成绩评定表学院(系):自动化学院班级:学生姓名:目录摘要 (II)1 引言............................................................... - 1 -2 DCS控制系统简介..................................................... - 2 -2.1分散控制系统的产生............................................... - 2 -2.2分散控制系统结构................................................. - 3 -2.2.1网络通信子系统............................................. - 3 -2.2.2过程控制子系统............................................. - 3 -2.2.3人机接口子系统(HMI)...................................... - 4 -2.3分散控制系统(DCS)的特点.......................................... - 5 -3 过热汽温控制系统概述................................................. - 6 -3.1过热蒸汽温度控制的意义和任务..................................... - 6 -3.2被控对象动态特性分析............................................. - 7 -3.2.1锅炉负荷扰动下过热汽温的阶跃响应曲线....................... - 8 -3.2.2烟汽热量扰动下过热汽温的阶跃响应曲线....................... - 8 -3.2.3减温水量扰动下过热汽温的阶跃响应曲线....................... - 9 -3.2.4减温水量扰动与负荷扰动或烟汽量扰动的比较................... - 9 -3.2.5改善减温水量扰动下动态特性的方法.......................... - 10 -3.3常规过热汽温传统控制策略........................................ - 10 -3.4串级汽温调节系统................................................ - 10 -3.4.1过热汽温串级调节系统的组成.................................... - 10 -3.4.2串级系统的结构和工作原理.................................. - 11 -3.4.3主汽温串级控制系统原理.................................... - 12 -3.4.4串级汽温调节系统的分析.................................... - 12 -4 SAMA图分析.......................................................... - 14 -4.1控制系统SAMA图绘制.......................................... - 14 -4.2控制系统SAMA图分析.......................................... - 14 -5 MATLAB仿真技术..................................................... - 17 -5.1 MATLAB仿真技术的发展与应用..................................... - 17 -5.2 MATLAB仿真技术的特点........................................... - 17 -5.3 MATLAB系统组成................................................. - 18 -5.4 MATLAB仿真..................................................... - 19 - 致谢................................................................. - 21 - 参考文献............................................................... - 22 -摘要300MW单元机组过热汽温控制通常采用分段控制系统,由二段相对独立的串级控制构成,串级控制系统对改善控制过程品质极为有效。
电站锅炉汽温控制系统仿真P3DCS-上海电力解析
上海电力学院课题:基于DCS技术的炉膛温度串级控制系统设计与仿真实现专业:自动化(电站方向)班级: 2XXXXXXX ___ 姓名: XXXXXXX 学号: XXXXXXX指导教师: XXXXXXX一、课程设计目的采用P3DCS 系统设计完成电站锅炉汽温串级控制系统并进行参数整定和调试,包括数据库组态,SAMA 图组态,流程图组态,操作器组态,设计手动和单回路自动控制,串级自动控制等控制方案,并实现手自动无扰切换和报警,设计相应的模拟量控制和逻辑控制方案并实现,进行仿真,参数整定与系统调试。
二、课程设计内容采用P3DCS 系统设计完成电站锅炉汽温串级控制系统并进行参数整定和调试,包括数据库组态、SAMA 图组态、流程图组态、操作器组态,设计手动和单回路自动控制、串级自动控制等控制方案,并实现手自动无扰切换和报警,设计相应的模拟量控制和逻辑控制方案并实现,进行仿真、参数整定与系统调试。
其中上减温器出口汽温的对象传递函数为s e s s G 321152)(-+= 过热器出口汽温的传递函数为s e s s G 511253.1)(-+= 其它执行器和测量电路的传递函数简化为K = 1三、系统概述电站锅炉过热汽温控制系统常采用经典型串级控制系统结构。
电站锅炉过热汽温控制系统的任务是使过热器出口过热汽温维持在允许范围内。
电站锅炉过热汽温受控对象的结构图如图1所示。
由图可见,减温水流量W 由减温阀控制,减温器出口的气温为1θ,过热器出口汽温为2θ 燃料在炉膛燃烧后。
通过在P3DCS 组态软件的使用下,设计一个串级控制系统。
设计串级回路控制的目的就是在控制系统中加入副回路,从而加快系统的调节速度和增强系统的动态性能。
主副回路控制系统的PID 参数采用两步整定法,先整定副回路炉膛温度的PID 参数使之达到稳定,然后再整定主回路的参数使之达到稳定的状态。
并通过P3DCS 组态软件对系统的曲线进行实时监控,调出最优PID 参数。
300MW单元机组过热汽温控制系统设计
课程设计说明书题目:300MW单元机组过热汽温控制系统设计课程设计(论文)任务书摘要过热蒸汽温度自动控制的任务是维持过热器出口蒸汽温度在允许范围内,并且保护过热器,是使管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度过高或过低都会显著地影响电厂的安全性和经济性。
文章主要根据已知的300MW单元机组过热蒸汽流程设计串级过热气温分段控制系统。
在进行设计的同时先了解过热气温的特性,选择合适的调节器,再对其控制系统的调节器参数进行整定,在参数整定时主要采用内外回路分别进行整定的方法。
然后根据控制系统的设计原则进行设计,使系统控制过热气温的能力达到实际生产的要求,从而保证机组的安全稳定地运行。
研究内容主要集中在以下几方面:第二章是过热汽温控制系统的分析和整定及过热蒸汽流程.首先说明过热汽温控制系统的任务,然后信号校正,其中信号校正又包含过热气温的校正和蒸汽流量的校正以及减温水流量的校正.最后介绍了过热蒸汽流程。
第三章是300MW单元机组过热汽温控制系统分析.内容有过热汽温控制系统方案包括系统的设计、原理分析。
并说明该过热汽温控制系统采用了前馈-串级分段控制方案,与普通的控制系统相比,既可克服内、外各种扰动,又可克服两侧汽温在调节过程中的相互干扰和影响,提高了蒸汽参数的稳定性。
维持过热器出口温度在允许的范围之内,并且保护过热器,使管壁温度不超过允许的工作温度,而最终达到设计要求。
关键词:300MW单元机组;过热汽温控制系统;串级过热汽温控制系统目录第一章过热汽温控制系统 (1)1.1 过热汽温控制的任务 (1)1.2 过热汽温控制对象的静态特性 (1)1.3过热汽温控制对象的动态特性 (2)1.4 串级过热汽温控制系统的结构和工作原理 (4)1.5控制系统的整定 (5)第二章过热汽温分段控制系统 (8)2.1 串级过热蒸汽流程 (8)2.2 300MW单元机组过热汽温控制系统方案 (8)2.3 300MW单元机组过热汽温控制系统分析 (8)参考文献 (12)第一章过热汽温控制系统1.1过热汽温控制的任务过热蒸汽温度自动控制的任务是维持过热器出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
火电厂锅炉过热汽温控制系统设计解读
摘要过热蒸汽温度控制系统是单元机组不可缺少的重要组成部分,其性能和可靠性已成为保证单元机组安全性和经济性的重要因素。
过热蒸汽温度较高时,机组热效率则相对较高,但过高时,汽机的金属材料又无法承受,气温过低则影响机组效率。
过热蒸汽温度的稳定对机组的安全经济运行非常重要,所以对其控制有较高的要求。
但是由于过热蒸汽温度是一个典型的大迟延、大惯性、非线性和时变性的复杂系统,本次设计采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。
通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。
关键词:过热蒸汽温度,减温水,串级控制系统,PIDAbstractThe superheated steam temperature control system is an important and indispensable unit aircrew part, its performance and reliability has become ensure safety and economic behavior of the unit aircrew important factors. The superheated steam temperature is higher, the thermal efficiency is relatively high, but is high, the metal materials and the turbine unable to bear, the temperature is too low will influence the unit efficiency. The superheated steam temperature stability of the unit safe and economic operation is very important, so for the control have higher requirements. But because the superheated steam temperature is a typical time-delayed, large inertia, nonlinear and changeable complex system, this design USES the cascade control in order to improve the control performance of the system, in the system by the master-cascade control of switching device, make the system can be used in different working environment. By using this system, can make the boiler overheating export steam temperature in allowed within the scope of the change, and the protection of superheater wall temperature not more than allow the camp of working temperature.Key words: the superheated steam temperature, reduce warm water, cascade control system, PID目录摘要 (I)Abstract (II)1 绪论 (1)1.1 选题的背景及意义 (1)1.2 国内外研究现状 (2)1.3 本次设计的目的 (3)1.4 本次设计所做的工作 (3)2 汽温控制系统的组成与对象动态特性 (4)2.1汽温调节的概念和方法 (4)2.1.1 从蒸汽侧调节汽温 (4)2.1.2 从烟气侧调节汽温 (6)2.2过热器的分类及其基本结构 (8)2.2.1 过热器的分类 (8)2.2.2 过热器的基本结构 (11)2.3 过热蒸汽温度控制系统的基本结构和工作原理 (12)2.3.1 过热器一级减温控制系统 (12)2.3.2 过热器二级减温控制系统 (13)2.4 过热蒸汽温度控制对象的动静态特性 (15)2.4.1 静态特性 (15)2.4.2 动态特性 (15)3 过热汽温控制系统的基本方案 (19)3.1 串级汽温控制系统 (19)3.2 串级控制系统的基本结构和原理 (19)3.3 串级汽温控制系统的设计 (21)3.4 串级汽温控制系统的整定 (22)4 器件的选型 (25)4.1 温度检测变送器的选择 (25)4.2 控制器的选型 (27)4.3 执行器的选型 (28)4.4 阀门定位器的选型 (29)5 主蒸汽温度控制系统的仿真和改进 (31)5.1 串级PID系统仿真 (31)5.2 基于Smith预估计补偿器的串级汽温控制系统 (34)5.3 基于改进型Smith预估器的串级汽温控制系统 (38)结论 (42)致谢 (43)参考文献 (44)附录 (45)附录A (45)1 绪论1.1 选题的背景及意义过热汽温的控制就是维持过热出口蒸汽温度在允许范围内,并且保护过热器,使管壁温度不超过允许的工作温度。
过热蒸汽温度控制系统课程设计2
过热蒸汽温度控制系统课程设计2湖南工程学院课程设计课程名称过程控制课题名称过热蒸汽温度控制系统设计专业班级学号姓名指导教师2007 年1 月22 日湖南工程学院课程设计任务书课程名称过程控制课题过热蒸汽温度控制系统设计专业班级学生姓名学号指导老师审批任务书下达日期2007 年 1 月9 日任务完成日期200 年 1 月22 日目录一、控制系统设计 (1)二、组态界面设计与说明 (5)三、PID控制程序 (10)四、系统调试 (12)五、总结与体会 (14)六、参考文献 (16)课程设计成绩评分表一、控制系统设计电厂锅炉过热蒸汽温度控制系统的控制任务是使出口蒸汽温度维持在允许的范围内,并保护过热蒸汽不超过允许的工作温度。
提供给下一工业环节。
同时,应满足安全性和经济性的要求,流程图如图1-1所示。
图1-1过热蒸汽温度控制系统流程图过热蒸汽温度控制要完成①供给蒸汽量适应负荷变化需要或保护给定负荷;②出口的蒸汽温度保持在一定范围内;③减温器的水位保持在一定的范围;④保持过热蒸汽系统的经济安全运行。
(1)方案选择单回路系统结构简单,投资少,又能满足不少生产过程的控制要求。
适用于被控制过程的纯滞后和惯性小、负荷和扰动变化比较平缓,或者被控制质量不高的场合下。
由于在系统结构上多了一个副回路,串级控制系统能迅速地克服进入副回路的二次干扰,从而大大减少了二次干扰对主参数的影响,改善了过程的动态特性,提高了控制作用的快速性,对负荷变化的适应性强。
双冲量控制系统利用反馈控制克服其他扰动,能使被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。
综合上面几种控制系统,串级控制系统最适用于过热蒸汽温度的控制。
但是串级控制系统结构复杂,费用较高。
限于实验室所能提供的条件,为了便于调试,本次设计选用单回路控制系统。
①、被控量根据工艺可知,过热蒸汽控制系统的控制任务是使过热器。
出口温度保持在允许范围内,并保护过热管管壁温度不超过允许温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用DCS的过热汽温系统控制系统设计
一、集散控制系统分析
集散控制系统是以微处理器为基础的集中分散控制系统。
自70年代中期第一套集散控制系统问世以来,集散控制系统己经在工业控制领域得到广泛的应用,越来越多的仪表和控制工程师已经认识到集散控制系统必将成为过程工业自动控制的主流。
集散控制系统的主要特性是它的集中管理和分散控制,而且,随着计算机技术的发展,网络技术己经使集散控制系统不仅主要用于分散控制,而且向着集成管理的方向发展。
系统的开放不仅使不同制造厂商的集散控制系统产品可以互相连接,而且使得它们可以方便地进行数据交换。
DCS集散式温度控制系统图
二、DCS系统主要技术指标调研
(1)操作员站及工程师站:
CPU PⅢ850以上
内存128M以上
硬盘40G以上
软驱 1.44M
以太网卡INTEL 100M×2块
加密锁组态王加密锁
鼠标轨迹球
键盘工业薄膜键盘
显示器21寸
显示器分辨率1280×1024
过程控制站:
CPU PⅢ850以上
内存128M以上
硬盘40G以上
电子盘8M以上
软驱 1.44M
以太网卡INTEL 100M×1块
串行通讯卡485卡×1块(可选)
(2)I/O站技术指标
1)EF4000网络
EF-4000网络是多主站、双冗余高速网络,通信波特率为312.5K和1.25M可编程;EF4000网络配合EF4000系列测控站(前端),可以完成工业现场各类信号的采集、处理和各类现场对象的控制任务。
EF4000网络的主要技术指标如下:
挂网主站数≤31
挂网模块数≤100(不带网络中继器),最多240
通讯速率 1.25MBPS和312.5KBPS可编程
基本传输距离 1.2MBPS时≥500m,312.5KBPS时≥1600m
允许中继级数≤4级
双网冗余具备两个通信口互为冗余的功能
网络通讯方式半双工同步
传输介质聚乙稀双绞线
网络隔离度≥500Vrms
通信物理层全隔离、全浮空、平衡差动传输方式
有效传输字节不小于34K字节/S(1.25MBPS通讯速率)
2)通讯网卡主要技术参数
型号EF-4000网络─ EF4001
安装方式计算机PC总线扩展插槽插卡安装
尺寸160×75mm
宿主计算机具有AT插槽的IBM-PC及其兼容机
I/O地址硬件任选100、120、140、160、180、1A0、1C0七种
中断向量软件任意设定IRQ3、5、7、10、11、12、15或不使用耗电不大于1W
工作方式连续
可靠性指标MTBF80000Hr
运行环境温度0~60C°,相对湿度≤80%
3)模拟量输入前端
模块型号EF4101
输入通道数16路
通道隔离电压400V(峰—峰值)
网络隔离度≥500Vrms
通道采样时间80mS
A/D分辨率17位
测量精度〈0.2%
被测信号类型T/C、RTD、mV、mA
4)模拟量输出前端
模块型号EF4601
输出通道数6路(全隔离)
通道隔离电压500V
网络隔离度≥500Vrms
电压输出范围-10V ~ +10V
电流输出范围0 ~ 20 mA
控制精度0.2级
5)数字量输入前端
模块型号EF4201
输入通道数28路
通道隔离电压350V
网络隔离度≥500Vrms
计数速率≤500次/秒(低频通道)
计数速率≤8000次/秒(高频通道)
事件分辨率1mS(低频通道)
计数长度24位(三字节)
测频范围0 Hz ~ 8000 Hz(高频通道)
6)数字量输出前端
模块型号EF4203
输出通道数16路(EF4203)
通道隔离电压350V
网络隔离度≥500Vrms
结点开关电流≤100 mA
结点开关电压≤350 V
结点隔离电压≤350 V
结点闭合时间≤0.6 mS
结点断开时间≤0.15 ms
7)执行器脉冲控制单元
输出结点电压≤380 V
输出结点电流≤5A
系统网络采用国际上通用的Ethernet 网,通信速率为100Mbps,遵循IEEE 802.3协议。
系统网络可直接与其他Ethernet网通信系统连接,也可挂接PC机作为网关连入厂级信息管理系统,加上管理功能,可方便地构成CIMS系统。
系统的可靠性:
过程控制站冗余配置、自动检测和自动进行无扰动切换;
网络服务器冗余配置、自动检测和自动进行无扰动切换;
现场总线层通讯网络冗余配置、自动检测和自动进行无扰动切换;
系统通讯网络冗余配置、自动检测和自动进行无扰动切换;
系统供电电源冗余配置、自动检测和自动进行无扰动切换;
直流供电电源冗余配置、自动检测和自动进行无扰动切换;
系统的平均无故障时间MTBF >100000小时。
三、主气温控制方案
1、主气温是单元机组的安全经济参数,主气温控制的目的就是要通过适当的调节而手段,使主气温度按照给定规律变化。
图为采用喷水调节的串级控制系统原理结构。
2、除了减温水量以外,影响过热器出口温度的其他主要因素还有蒸汽量扰动和烟气量扰动,统称为外部扰动。
为了提高控制系统抵御外部干扰的能了,一般使用前馈的方法。
右图为实际温度控制系统的结构图(SAMA图),图中同时还给出了控制回路的基本结构及调节器跟踪、手动和自动切换逻辑。
四、锅炉主蒸汽温度控制系统画面设计
1、主蒸汽温度控制系统的DCS实现
(1)用DCS实现上述温度控制系统式,需要从输入输出信号连接、控制回路组态、数据库组态及画面组态等几方面进行。
A、输入/输出信号连接
输入信号:主汽温度、喷水后温度、蒸汽流量、送风量及阀位信号
B、输出信号:阀位指令
C、DCS系统:I/O信号要分配I/O模件与端子单元,端子单元与I/O模件相对应。
(2)DCS中,操作员站上的所有显示操作画面均可通过工程师站上的图形组态软件来制作。
下图为一个简单的操作画面
简单操作画面
2、根据锅炉汽水系统设备和运行要求,设计锅炉蒸汽控制系统监控画面。
本文采用的控制减温喷水量来控制出口蒸汽的温度,即控制减温水阀门来控制。
定义变量出口蒸汽温度、压力、流量,给水温度、压力、流量,减温喷水量,汽包水位,并设置相应的变量类型。
锅炉汽温控制如下图所示。
运行系统图。