2019-2020年八年级上册期末数学试题(有答案)
新人教版2019-2020学年初二上册期末考试数学试卷及答案
新人教版2019-2020学年初二上册期末考试数学试卷及答案2019-2020学年八年级上学期期末考试数学试卷一、选择题(3*8=24)1.下列运算结果正确的是()A.2a(2a)=8aB.(x)=x236C.6xy÷(−2xy)=XXX(x−y)=x−y2.如果把3222y中的x和y都扩大5倍,那么分式的值()A.不变B.扩大5倍C.缩小5倍D.扩大4倍3.下列各式由左边到右边的变形中,是分解因式的是()A.a(x+y)=ax+ayB.x−4x+4=x(x−4)+4C.x−16=(x+4)(x−4)D.10x−5x=5x(2x−1)4.一个多边形的内角和是720°,则这个多边形的边数是()A.5B.6C.7D.85.在下列图形中,对称轴最多的是()A.等腰三角形B.等边三角形C.正方形D.圆6.若二次三项式x2+mx+422221为完全平方式,则m的值为()A.±2B.2C.±1D.17.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形8.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二、填空题(3*6=18)9.分解因式:a−1= a(a-1).10.若分式2−|x|的值为零,则x的值为2或-2.11.已知P(2a+b,b)与Q(8,-2)关于y轴对称,则a+b=3.12.若a+b=−3,ab=2,则a2+b2的值为13.13.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A=40°.14.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△XXX分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画一条.三、解答题(5*5=25)15.计算:(2a−3b)(−2a−3b)=−4a2+9b2.16.如图,点B、E、C、F在同一条直线上,BE=CF,∠A=∠D,∠1=∠2.求证:AC=DE.证明:由题意可知,BE=CF,∠A=∠D,∠1=∠2,所以△ABE和△DCF全等,因此∠EAB=∠XXX,∠XXX∠FCD,所以△AEB和△DFC相似,因此AE/DF=AB/DC,又因为AB=DC,所以AE=DF,因此AC=AE+EC=DF+FC=DE.17.解分式方程:13/(2x−2)-4=1.13/(2x-2)-4=113/(2x-2)=52x-2=13/5x=11/5.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,设等腰三角形的腰长为x,底边长为y,则有:周长为2x+y。
2019-2020学年八年级上期末考试数学试卷及答案解析
2019-2020学年八年级上期末考试数学试卷一.选择题(共6小题,满分12分,每小题2分)1.(2分)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a102.(2分)下列航空公司的标志中,是轴对称图形的是()A.B.C.D.3.(2分)无论a取何值时,下列分式一定有意义的是()A.B.C.D.4.(2分)下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形5.(2分)下列计算正确的是()A.5a4•2a=7a5B.(﹣2a2b)2=4a2b2C.2x(x﹣3)=2x2﹣6x D.(a﹣2)(a+3)=a2﹣66.(2分)在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF二.填空题(共8小题,满分24分,每小题3分)7.(3分)用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.8.(3分)因式分解:4a3b3﹣ab=.9.(3分)请用代数式表示:一个长方形的长为a,宽是长的,则这个长方形的周长是.10.(3分)如图,在△ABC中,D,E分别是边AC,BC上的点,若△ADB≌△EDB≌△EDC,则∠C=度.11.(3分)如果x2﹣mx+81是一个完全平方式,那么m的值为.12.(3分)如果分式的值为9,把式中的x,y同时扩大为原来的3倍,则分式的值是.13.(3分)如图,△ABC中,AB=AC,∠A=36°,AB的中垂线DE交AC于D,交AB 于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC中点.其中正确的命题序号是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC 于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为。
人教版2019-2020学年八年级上册期末数学试题及答案
2019-2020学年八年级上册期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=22.若代数式A.x=0有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3有意义,则x的取值是()B.x≠0C.x≥0D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22.已知a﹣b=2,求代数式的值.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=2有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式A.x=0有意义,则x的取值是()B.x≠0C.x≥0D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A【分析】首先判断出B.B C.C D.D的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.【分析】根据简=﹣2.=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣故答案为﹣2.|=﹣(2﹣)=﹣2.【点评】本题考查了二次根式的性质与化简:12.写出一个比4大且比5小的无理数:=|a|.也考查了绝对值的意义..【分析】由于4=即可.,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在△Rt ABD中,由勾股定理得:AD=故答案为:.=.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE (SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2体代入计算即可求出值.【解答】解:原式====,整当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(△1)∵ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠P AB=∠MAC,AQ=AM∴∠P AM=∠BAC=60°,∴△APM为等边三角形∴P A=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
2019-2020学年新人教版八年级数学上册期末考试试卷及答案
2019-2020学年八年级数学第一学期期末考试试卷一、选择题(每小题3分,共30分)1、下列四个手机APP 图标中,是轴对称图形的是( )A 、B 、C 、D 、2、下列图形中具有稳定性的是( )A 、正方形B 、长方形C 、等腰三角形D 、平行四边形 3、下列长度的三根木棒能组成三角形的是( )A 、1 ,2 ,4B 、2 ,2 ,4C 、2 ,3 ,4D 、2 ,3 ,6 4、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为( )A 、152×105米B 、1.52×10﹣5米C 、﹣1.52×105米D 、1.52×10﹣4米 5、下列运算正确的是( )A 、(a +1)2=a 2+1B 、a 8÷a 2=a 4C 、3a ·(-a )2=﹣3a 3D 、x 3·x 4=x 7 6、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( )A 、AB =2BD B 、AD ⊥BC C 、AD 平分∠BAC D 、∠B =∠C第6题 第8题7、如果(x +m )与(x -4)的乘积中不含x 的一次项,则m 的值为( )A 、4B 、﹣4C 、0D 、18、如图,已知点A 、D 、C 、F 在同一直线上,AB =DE ,AD =CF ,且∠B =∠E =90°,判定△ABC ≌△DEF 的依据是( )A 、SASB 、ASAC 、AASD 、HL 9、分式2mn m +n中的m 、n 的值同时扩大到原来的5倍,则此分式的值( )A 、不变B 、是原来的15 C 、是原来的5倍 D 、是原来的10倍 10、如图,在四边形ABCD 中,∠A +∠D =α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P =( )A 、90°-12α B 、12α C 、90°+12α D 、360°-α二、填空题(每小题4分,共24分)11、若分式xx+2有意义,则x的取值范围为。
2019-2020学年人教版八年级上册期末数学试题含答案
2019-2020学年度第一学期期末教学质量检测八年级数学试卷一、选择题(共10 个小题,每小题2 分,共20 分)下列各题均有四个选项,其中只有一个是符合题意的.1.若代数式x 1x 1有意义,则x的取值范围是A.x 1且x 1B.x1C.x 1D.x≥-1且x 12.下列各式从左到右的变形正确的是x y x x 1x13x3x2 A.=-1B.=C.= D.()2= x y y y 1x y1y y y23.在实数223π,3,,39,3.14中,无理数有72A.2个B.3个C.4个D.5个4.已知等腰三角形的两边长分别为4和9,则这个三角形的周长是A.22B.19C.17D.17或225.在下列四个图案中,是轴对称图形的是A. B. C. D.6.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的可能性大小是A.2311B.C.D.55327.下列事件中,属于必然事件的是A.2018年2月19日是我国二十四节气中的“雨水”节气,这一天会下雨B.某班级11名学生中,至少有两名同学的生日在同一个月份C.用长度分别为2cm,3cm,6cm的细木条首尾相连能组成一个三角形D. 从分别写有π,2,0.1010010001(两个1之间依次多一个0)三个数字的卡片中随机抽出一张,卡片上的数字是无理数8.下列运算错误的是A.236B.623C.235D.(2)229.如图,AD是△ABC 的角平分线,DE⊥AB于点E,S=10,DE=2,AB=4,则AC 长是△ABCA.9B.8C.7D.610.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8…31=332=933=27…新运算log2=1log4=2log8=3…log3=1log9=2log27=32 2 23 3 3…根据上表规律,某同学写出了三个式子:1①log16=4,②log25=5,③log=﹣1.其中正确的是2A.①②B.①③C.②③D.①②③二、填空题(共10 个小题,每小题2分,共20分)11.25的平方根是.12.计算:( 32)2=.13.若实数x,y满足x 3y 50,则代数式xy2的值是.14.已知:ABC中,AB AC,B A30,则A .15.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.16.边长为10cm的等边三角形的面积是.17.如图,在△ABC中,按以下步骤作图:1①分别以B,C为圆心,以大于BC的同样长为半径画弧,两弧相交于两点M,N;2②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为.MCB D AN(第17 题图)18.已知一个围棋盒子中装有7颗围棋子,其中3颗白棋子,4颗黑棋子,若往盒子中再放入x颗白棋子和y颗黑棋子,从盒子中随机取出一颗白棋子的可能性大小是系式是.14,则y与x 之间的关2521 1 2a 5a b 4b a 2b 4ab 3a 6b的值为.20.已知: 如图 △,ABC中,ABC 45, H是高 AD和 BE的交点,AD12 ,BC 17,则线段 BH的长为.三、解答题 (共 12 个小题,共 60 分)21.(4 分)51520 10 222.(5 分)计算:5( 515) ( 15 2 3)( 15 2 3)23.(4 分)已知:x y 1,( x 2 y )364,求代数式x y x 2 y2的值.24. (5 分)先化简,再求值:x 25x 3x 2 3x 2 6 x,其中 x 满足 x 2 3x 10 .25.(5 分).已知: 如图,点 B 、A 、D 、E 在同一直线上,BD=AE ,BC ∥E F ,∠C =∠F . 求证:AC =DF .26.(5 分) 解关于 x的方程:3 2 x2x 1 x 1.27.(4 分) 在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个.(1)先从袋子中取出 m (m >1)个红球,再从袋子中随机摸出 1 个球,将“摸出黑球”记为事件 A .请 完成下列表格:事件 Am 的值必然事件随机事件(2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个球是黑球的可能性 大小是 ,求 m 的值.28.(5 分) 某服装厂接到一份加工 3000 件服装的订单.应客户要求,需提前供货,该服装厂决定提高加工速度,实际每天加工的件数是原计划的 1.5 倍,结果提前 10 天完工.原计划每天加工 多少件服装?19.已知 3 ,则代数式29. (5 分) 在ABC中, AB,BC,AC三边的长分别为 5,3 2,17,求这个三角形的面积.小明同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为 1),再在网格中画出格点 ABC 中,(即 ABC 三个顶点都在小正方形的顶点处),如图 1 所示,这样不需 要 ABC 高,借用网格就能计算出它的面积.(1)△ABC 的面积为;(2)如果MNP 三边的长分别为 10 , 2 5 , 26 ,请利用图 2 的正方形网格(每个小正方形的边长为 1)画出相应的格点MNP,并直接写出MNP的面积为.30.(5 分) 已知:如图,在ABC 中, C90.(1)求作: ABC 的角平分线 AD (要求:尺规作图,不写作法,保留作图痕迹); (2)在(1)的条件下,若 AC 6 , BC 8 ,求C D 的长.31.(5 分)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这 个分式为“和谐分式”.(1)下列分式: ①(填写序号即可);x 1 a 2b x y a 2 b 2;② ;③ ;④ . 其中是“和谐分式”是x 2 1 a 2 b 2 x 2 y 2 ( a b ) 2(2)若 a 为正整数,且x 1 x 2ax 4为“和谐分式”,请写出 a 的值;(3) 在化简4a 2a b ab 2b 3b 4时,小东和小强分别进行了如下三步变形:小东:原式=4a2a44a24aab2b3b b ab2b3b24a2b24a ab 2b3ab 2b3b2小强:原式=4a2a44a24a4aab b b b b2a b b224aa ba b b2显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,原因是:请你接着小强的方法完成化简.,32.(6分)已知:如图,D是ABC的边BA延长线上一点,且AD AB,E是边AC上一点,且DE BC.求证:DEA C.23数学试题答案及评分参考一、选择题题号答案1D2A3B4A5C6B7D8C9D10B二、填空题题号11121314151617181920答案5526154075253cm2105y 3x 51213三、解答题21.解:原式=5255=25………………………………………3分(各1 分)…………………………………………4分22.解:原式=553(1512)…………………………………4分(前2分后2 分)=853…………………………………………5 分23解:∵x y 1,(x 2y)364,∴x y 1x2y 4………………………………………………2分(各1 分)解得x 2y 1……………………………………………4分(各1 分)∴x y213x2y222125………………………………………5分24解:原式=(x 2)(x 2)5x 33x(x 2)………………………1分=x293x(x 2)x 2x 3……………………………………………2分x 2=(x 3)(x 3)3x(x 2)x 2x 3……………………………3分=3x29x……………………………………………4分∵∴x23x 10 x23x 1∴原式=3x29x 3(x23x)313……………………5分25.证明:∵BD AE,∴BD AD AE AD.即AB DE.……………………………………………………………… 1 分∵BC∥EF,∴B E.………………………………………………………………2分又∵C F………………………………………………………………3分在ABC和DEF中,B E,C F,AB DE,∴ABC≌DEF.………………………………………………………4分∴AC DF.……………………………………………………………5分26.解:方程两边同乘以(x 1)(x 1),……………………………………………1分3(x 1)2x(x 1)2(x 1)(x 1).……………………………………………2分3x+32x22x 2x22.……………………………………………3分解这个整式方程,得x5.……………………………………………4分检验:当x 5时,(x 1)(x 1)0.…………………………………………5分x5是原方程的解.27.解:(1)事件A必然事件随机事件m的值43,2…………………………………………… 3分(2)依题意,得解得6 m 410 5m 2…………………………………………… 4 分…………………………………………… 5 分所以 m 的值为 228. 解:设该服装厂原计划每天加工 x 件服装,则实际每天加工1.5x 件服装.……………1分 根据题意,列方程得3000 300010x 1.5 x…………………………………3 分 解这个方程得 x 100 …………………………………………4 分 经检验, x 100 是所列方程的根. ………………………………5 分 答:该服装厂原计划每天加工 100 件服装.29. 解: (1)ABC 的面积为 4.5………………………………………… 2 分正确画图………………………………………4 分(2)MNP 的面积为 7………………………………………… 5 分30. 解:(1)如图………………1 分 (2)过点 D 作 DE ⊥AB 于 E .………………2 分∵DE ⊥AB ,∠C =90°∴由题意可知 DE =DC , ∠DEB =90°又∵DE =DC ,AD =AD∴AD -ED =AD -DC∴AE =AC =6 ………………3 分∵A B =10 ∴BE =AC -AE =4 ………………4 分 设 DE =DC =x ,则 BD =8-x∴在 △R t BED 中8x216x 2∴x =3 ………………5 分 ∴CD =3.31. (1)②………………1 分2 2 2 2(2)4,5………………3分(2)小强通分时,利用和谐分式找到了最简公分母.………………4分解:原式4a24a24a ba b b24a ba b b24aa b4ab a b b2………………5分32.证明:过点D作BC的平行线交CA的延长线于点F.………………1 分∴C F.∵点A是BD的中点,∴AD=AB.……………………………2 分在△ADF和△ABC中,C F,DAF BAC,AD AB,∴△ADF≌△ABC.…………………3分∴DF=BC.…………………………… 4 分∵DE=BC,∴DE=DF.∴F DEA.…………………………………………………………5分又∵C F,∴C DEA.……………………………………………………………6分其它证法相应给分。
2019-2020学年新人教版八年级(上)期末数学试卷 (解析版)
2019-2020学年新人教版八年级(上)期末数学试卷一、选择题1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,143.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.15.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.527.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=19.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.810.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正边形.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=°.14.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=.15.(4分)若x+=4,则的值是.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.18.(6分)先化简,再求值:()÷,其中x=.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长.(用含a,b的式子表示)22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=,∠P=;②若∠A=α,则∠O=,∠P=.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系.23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.参考答案一、选择题(本题有10小题,每小题3分,共30分)1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)下列长度的三条线段,能组成三角形的是()A.4,5,9B.8,8,15C.5,5,10D.6,7,14解:A、4+5=9,不能组成三角形,故此选项错误;B、8+8>16,能组成三角形,故此选项正确;C、5+5=10,不能组成三角形,故此选项错误;D、6+7<14,不能组成三角形,故此选项错误;故选:B.3.(3分)已知等腰三角形的一个角是100°,则它的底角是()A.40°B.60°C.80°D.40°或100°解:∵等腰三角形的一个角为100°,∴100°的角是顶角,底角为(180°﹣100°)=40°;故选:A.4.(3分)已知分式的值是零,那么x的值是()A.﹣1B.0C.±1D.1解:由题意可知:x﹣1=0且x+1≠0,∴x=1,故选:D.5.(3分)已知点A的坐标为(1,3),点B的坐标为(2,1),将线段AB沿坐标轴翻折后,若点A的对应点A′的坐标为(﹣1,3),则点B的对应点B′的坐标为()A.(2,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)解:∵将线段AB沿坐标轴翻折后,若点A(1,3)的对应点A′的坐标为(﹣1,3),∴线段AB沿y轴翻折,∴点B关于y轴对称点B'坐标为(﹣2,1)故选:C.6.(3分)若a+b=6,ab=4,则a2+4ab+b2的值为()A.40B.44C.48D.52解:∵a+b=6,ab=4,∴原式=(a+b)2+2ab=36+8=44,故选:B.7.(3分)如图,把一张长方形纸片沿对角线折叠,若△EDF是等腰三角形,则∠BDC=()A.45°B.60°C.67.5°D.75°解:由翻折可知:△BED≌△BCD,∴∠EBD=∠CBD,∠E=∠C=90°∵△EDF是等腰三角形,∴∠EFD=∠AFB=∠ABF=45°,∴∠CBF=45°,∴∠CBD=∠CBE=22.5°,∴∠BDC=67.5°,故选:C.8.(3分)若a=,b=,则下列结论正确的是()A.a=b B.a<b C.a>b D.ab=1解:∵a===,b=,∴a=b.故选:A.9.(3分)在4×4的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△ABC关于某条直线对称的格点三角形,最多能画()个.A.5B.6C.7D.8解:如图,最多能画出7个格点三角形与△ABC成轴对称.故选:C.10.(3分)若x≠﹣1,则把﹣称为x的“和1负倒数”,如:2的“和1负倒数”为﹣,﹣3的“和1负倒数”为,若x1=,x2是x1的“和1负倒数”,x3是x2的“和1负倒数”,…依此类推,则x2020的值为()A.B.﹣C.D.﹣解:∵x1=,∴x2=﹣=﹣,x3=﹣=﹣,x4=﹣=,……∴此数列每3个数为一周期循环,∵2020÷3=673…1,∴x2020=x1=,故选:A.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)计算:(﹣2)0=1.解:(﹣2)0=1.故答案为:1.12.(4分)若正多边形的一个外角等于45°,则这个多边形是正8边形.解:外角和是360°,且正多边形的每个外角相等,则多边形的边数是:360÷45=8,故答案为:8.13.(4分)如图,在△ABC与△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE,则∠ACE+∠DBC=45°.解:∵∠BAC=90°,AB=AC,∴∠ABC=45°,∵∠BAC=∠DAE,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD,∴∠ACE+∠DBC=∠ABD+∠DBC=∠ABC=45°,故答案为:4514.(4分)如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.若CD=AC,∠A=48°,则∠ACB=108°.解:∵CD=AC,∠A=48°,∴∠ADC=48°,由作图知MN是BC的垂直平分线,∴DB=DC,∴∠B=∠BCD=∠ADC=24°,则∠ACB=180°﹣∠A﹣∠B=108°,故答案为:108°.15.(4分)若x+=4,则的值是.解:原式==当x+=4时,原式=,故答案为:.16.(4分)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=.解:如图,连接CD,DB,过点D作DM⊥AB于点M,∵AD平分∠FAB,∴∠FAD=∠DAM,且AD=AD,∠AFD=∠AMD,∴△AFD≌△AMD(AAS)∴AF=AM,FD=DM,∵DE垂直平分BC∴CD=BD,且DF=DM,∴Rt△CDF≌Rt△BDM(HL)∴BM=CF∵AB=AM+BM=AF+MB=AC+CF+MB=AC+2CF∴8=5+2CF∴CF=故答案为:三、解答题(本题有8小题,共66分)17.(6分)(1)因式分解:a3﹣4a;(2)解方程:=.解:(1)原式=a(a2﹣4)=a(a+2)(a﹣2);(2)方程两边同时乘以3(x+1)得:3x=2,解得:x=,经检验x=是分式方程的解.18.(6分)先化简,再求值:()÷,其中x=.解:()÷===,当x=时,原式==﹣1.19.(6分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=1.(1)求∠B的度数;(2)求CN的长.解:(1)∵CM平分∠ACB,MN平分∠AMC,∴∠ACM=∠BCM,∠AMN=∠CMN,又∵MN∥BC,∴∠AMN=∠B,∠CMN=∠BCM,∴∠B=∠BCM=∠ACM,∵∠A=90°,∴∠B=×90°=30°;(2)由(1)得,∠AMN=∠B=30°,∠MCN=∠CMN,∠A=90°,∴MN=2AN=2,MN=CN,∴CN=2.20.(6分)在天台县“城乡公交一体化改造项目”中,某工程队承接了6千米地下管廊铺设任务,为了赶在年底前完成,实际每天的工作效率比原计划提高20%,结果提前20天完成了任务.问实际每天铺设管廊多少米.解:设原计划每天铺设管廊x米,则实际每天铺设管廊(1+20%)x米,根据题意得:﹣=20,解得:x=50,经检验,x=50是所列方程的解,且符合题意,∴(1+20%)x=60.答:实际每天铺设管廊60米.21.(8分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,若AD=a,DE=b,(1)如图1,求BE的长,写出求解过程;(用含a,b的式子表示)(2)如图2,点D在△ABC内部时,直接写出BE的长a﹣b.(用含a,b的式子表示)解:(1)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠D=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE(AAS),∴CE=AD=a,∵DC=CE+DE∴BE=CD=a+b(2)∵∠ACB=90°,∴∠ACD+∠BCD=90°∵AD⊥CE,BE⊥CE,∴∠ADC=∠BEC=90°,∴∠CBE+∠BCD=90°,∴∠ACD=∠CBE,且AC=BC,∠ADC=∠BEC=90°∴△ACD≌△CBE∴CE=AD=a,∵CD=CE﹣DE∴BE=CD=a﹣b,故答案为:a﹣b22.(12分)(1)如图1,在△ABC中,已知OB,OC分别平分∠ABC,∠ACB,BP,CP分别平分∠ABC,∠ACB的外角∠DBC,∠ECB.①若∠A=50°,则∠O=115°,∠P=65°;②若∠A=α,则∠O=90°+α,∠P=90°﹣α.(用含α的式子表示)(2)如图2,在四边形ABCD中,BP,CP分别平分外角∠EBC,∠FCB,请探究∠P 与∠A,∠D的数量关系,并说明理由;(3)如图3,在六边形ABCDEF中,CP,DP分别平分外角∠GCD,∠HDC,请直接写出∠P与∠A,∠B,∠E,∠F的数量关系∠P=360°﹣(∠A+∠B+∠E+∠F).解:(1)①解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣50°)=115°;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣50°)]=65°;故答案为:115°;65°.②解:∠O=180°﹣∠OBC﹣∠OCB=180°﹣∠ABC﹣∠ACB=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=180°﹣(180°﹣α)=90°+α;∠P=180°﹣∠PBC﹣∠PCB=180°﹣∠DBC﹣∠ECB=180°﹣(∠DBC+∠ECB)=180°﹣(180°﹣∠ABC+180°﹣∠ACB)=180°﹣[360°﹣(∠ABC+∠ACB)]=180°﹣[360°﹣(180°﹣∠A)]=180°﹣[360°﹣(180°﹣α)]=90°﹣α;故答案为:90°+α;90°﹣α,(2)解:∠P=180°﹣(∠A+∠D).理由如下:∠P=180°﹣(∠PBC+∠PCB)=180°﹣(∠EBC+∠FCB)=180°﹣[360°﹣(∠ABC+∠DCB)]=(∠ABC+∠DCB)=(360°﹣∠A﹣∠D)=180°﹣(∠A+∠D).(3)∠P=180°﹣(∠GCD+∠HDC)=180°﹣(180°﹣∠BCD+180°﹣∠CDE)=(∠BCD+∠CDE)=[(6﹣2)×180°﹣(∠A+∠B+∠E+∠F)]=360°﹣(∠A+∠B+∠E+∠F).故答案为:∠P=360°﹣(∠A+∠B+∠E+∠F)23.(10分)对实数a,b定义运算“*”,,例如,4*3=42﹣32=7,3*4==﹣7,.(1)化简:(x+1)*x=2x+1;(2)化简:0*(x2+4x+9);(3)化简:(3x﹣5)*(x+3).解:(1)因为x+1>x,所以:(x+1)*x=(x+1)2﹣x2=2x+1故答案为:2x+1(2)因为x2+4x+9=(x+2)2+5>0,所以:0*(x2+4x+9)==﹣1;(3)当(3x﹣5)≥(x+3),即x≥4时.(3x﹣5)*(x+3)=(3x﹣5)2﹣(x+3)2=8x2﹣36x+16;当(3x﹣5)<(x+3),即x<4时.(3x﹣5)*(x+3)===.24.(12分)学习与探究:在等边△ABC中,P是射线AB上的一点.(1)探索实践:如图1,P是边AB的中点,D是线段CP上的一个动点,以CD为边向右侧作等边△CDE,DE与BC交于点M,连结BE.①求证:AD=BE;②连结BD,当DB+DM最小时,试在图2中确定D的位置,并说明理由;(要求用尺规作图,保留作图痕迹)③在②的条件下,求△CME与△ACM的面积之比.(2)思维拓展:如图3,点P在边AB的延长线上,连接CP,点B关于直线CP的对称点为B',连结AB',CB',AB'交BC于点N,交直线CP于点G,连结BG.请判断∠AGC与∠AGB 的大小关系,并证明你的结论.【解答】证明:(1)探索实践①在等边△ABC与等边△CDE中AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACD+∠DCM=∠DCM+∠BCE,∴∠ACD=∠BCE∴△ACD≌△BCE(SAS)∴AD=BE(2)②如图,作∠BAC的平分线交CP于D,连结BD,∵P是边等边△ABC中AB边的中点∴CP是AB边上的中线,由“等腰三角形的三线合一”性质知,CP是AB的垂直平分线,CP平分∠ACB,∴DB=DA,∠PCB=30°要使DB+DM最小,只要DA+DM最小,即当A,D,M共线时,且AM⊥BC时,AM 最小,此时DB+DM最小③∵∠ACD=∠CAD=∠DCM=∠ECM=30°,CM⊥AM∴DC=DA=DE,DM=EM=DE,∴AM=3ME又∵Rt△CME的边ME上的高与Rt△ACM的边AM上的高均是CM∴S△CME:S△ACM=1:3(2)思维拓展∠AGC=∠AGB理由如下:∵点B关于直线CP的对称点为B',∴BC=CB',∠CB'G=∠CBG,∴AC=BC=B'C∴∠CAB'=∠CB'A,∴∠CAB'=∠CBG,∴点A,点B,点G,点C四点共圆,∴∠AGC=∠ABC=60°,∠AGB=∠ACB=60°,∴∠AGC=∠AGB。
2019--2020学年第一学期八年级上册期末考试数学试题及答案
八年级数学试卷注意:本试卷共8页,三道大题,26小题。
总分120分。
时间120分钟。
题号一二20212223242526总分得分得分评卷人一、选择题(本题共16小题,总分42分。
1-10小题,每题3分;11-16小题,每题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
请将正确选项的代号填写在下面的表格中)题号12345678910111213141516答案1.点P(﹣1,2)关于y轴的对称点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)∆≅∆,则∠α等于()2. 如图,已知ABC EFGA.72°B.60°C.58°D.50°3.用一条长16cm的细绳围成一个等腰三角形,若其中一边长4cm,则该等腰三角形的腰长为()A.4cm B.6cm C.4cm或6cm D.4cm或8cm 4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.一个多边形,每一个外角都是45°,则这个多边形的边数是()A.6 B.7 C.8 D.96.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值是()A.﹣2B.2 C.0D.17.若3x=4,3y=6,则3x+y的值是()A.24 B.10 C.3 D.28. “已知∠AOB,求作射线OC,使OC平分∠AOB”的作法的合理顺序是()①作射线OC;②在OA和OB上分别截取OD、OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径作弧,在∠AOB内,两弧交于C.A.①②③B.②①③C.②③①D.③②①9. 下列计算中,正确的是()A.x3•x2=x4B.(x+y)(x﹣y)=x2+y2C.3x3y2÷xy2=3x4D.x(x﹣2)=﹣2x+x210.下列各式中,从左到右的变形是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2C.x2﹣6x+5=(x﹣5)(x﹣1)D.x2+y2=(x﹣y)2+2xy11.在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD等于()A.30°B.45°C.50°D.75°12. 某市政工程队准备修建一条长1200米的污水处理管道。
人教版2019-2020学年八年级上册期末数学试题及答案
2019-2020学年八年级上册期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=22.若代数式A.x=0有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3有意义,则x的取值是()B.x≠0C.x≥0D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22.已知a﹣b=2,求代数式的值.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式A.x=2有意义,则x的取值是()B.x≠2C.x=3D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式A.x=0有意义,则x的取值是()B.x≠0C.x≥0D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边D E的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A【分析】首先判断出B.B C.C D.D的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.【分析】根据简=﹣2.=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣故答案为﹣2.|=﹣(2﹣)=﹣2.【点评】本题考查了二次根式的性质与化简:12.写出一个比4大且比5小的无理数:=|a|.也考查了绝对值的意义..【分析】由于4=即可.,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.△13.如图,在ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在△Rt ABD中,由勾股定理得:AD=故答案为:.=.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.△16.如图,在ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE (SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2体代入计算即可求出值.【解答】解:原式====,整当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.△24.已知:如图,在ABC中,∠1=∠2,DE∥△AC,求证:ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(△2)求证:AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.△28.在等边ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q 关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:P A=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(△1)∵ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠P AB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠P AB=∠MAC,AQ=AM∴∠P AM=∠BAC=60°,∴△APM为等边三角形∴P A=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
2019-2020学年人教版八年级上学期期末考试数学试题(含答案)
2019-2020学年人教版八年级上学期期末考试数学试题(本卷共五个大题,满分150分,考试时间 120分钟)一、选择题(每小题4分,共48分)每小题下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后对应的表格中. 1.下列几个图形是国际通用的交通标志,其中是轴对称图形的有( )个A .4B .3C .2D .1 2.若分式11x +有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x =- C .1x ≠ D .1x ≠- 3.下列计算正确的是( )A .8442x x x =+ B .()326x yx y =C .210532xy )xy ()y x (=÷D .()853x x x =-⋅-4.已知点B 、C 、F 、E 共线,12,AF CD ∠=∠=,要使ABF ∆≌DEC ∆,还需补充一个条件,下列选项中不能满足要求的是( )A .AB DE = B .A D ∠=∠C .AB ∥DED .BC EF = 5.等腰三角形的两边分别为3和6,则它的周长等于( ) A.12 B.12或15 C.15或18 D.156.如图,△ABC 中,AB=AC =10,DE 是AB 的中垂线,△BDC 的周长为16,则BC 长为( ) A .5 B .6 C .8 D .107.已知xx mn ==23,,2m n x +=( )A.12B. 108C. 18D. 36 8.下列各式中,不能用平方差公式计算的是( )A.)43)(34(x y y x ---B.)2)(2(2222y x y x +- C.))((a b c c b a +---+ D .))((y x y x -+- 9.方程11161122+=---x x x 的增根为( ) (4题图)A.1B.1和-1C. -1D.010.如图,是一组按照某种规律摆放成的图案,则图6中三角形的个数是( )A .18B .19C .20D .21 11. 如图,ABC ∆中,A ∠=84°,BD 、CD 分别平分ABC ∠、ACB ∠,M 、N 、Q 分别在DB 、DC 、BC 的延长线上,BE 、CE 分别平分MBC ∠、BCN ∠,BF 、CF 分别平分EBC ∠、ECQ ∠,则F ∠=( )A.15°B.12°C.18°D.24°12. 初二(1)班为元旦文艺表演者发奖,用一定数量的钱去买奖品.若以1支钢笔和2个笔记本为一份奖品,正好能买60份;若以1支钢笔和3个笔记本为一份奖品,正好能买50份;若以1支钢笔和1个笔记本为一份奖品,则这笔钱能买奖品( )份 A .80 B .70 C .75 D .55二、填空题:(每小题4分,共24分)请将答案填在题后的横线上. 13.利用科学记数法表示:0.0000000135= . 14. 若229a ka ++是一个完全平方式,则k 等于 . 15.分解因式:222(4)16x x +-=___________;16. A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程 .17.若关于x 的方程的解是负数,则m 的取值范围是 .18.正方形ABCD 中,E 、F 分别在AD 、DC 上,15ABE CBF ∠=∠=︒,G 是AD 上另一点,且 120BGD ∠=︒,连接EF 、BG 、FG ,EF 、BG交于点H ,则下面结论:①DE DF =;②BEF ∆ 是等边三角形;③45BGF ∠=︒;④BG EG FG =+中. 正确的是 .(请填番号)三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.计算:|2|8)31()9()1(3202013--+⨯----π.20.解分式方程:11262213x x=---.HG FE DCBA四、解答题:(21题、22题每小题8分,23、24题每小题10分,共36分)解答时必须给出必要的演算过程或推理步骤.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC ∆的顶点均在格点 (1)作出ABC ∆关于y 轴对称的111A B C ∆;(2) 写出1A 、1B 、1C 三点的坐标,并求111A B C ∆的面积.22.如图,点E 、F 在线段BD 上,AB CD =,B D ∠=∠,BF DE =. 求证:(1)AE CF =; (2)AF //CE .23.先化简,再求值:12)11(222+-+÷---+x x x x x x x x ,其中x 为不等式组⎪⎩⎪⎨⎧≤+≤252322-x x的一个整数解.24.ABC ∆中,AB BC ⊥,AB BC =,E 为BC 上一点,连接AE ,过点C 作CF AE ⊥交AE 的延长线于点F ,连结BF ,过点B 作BG BF ⊥交AE 于G . (1)求证:ABG ∆≌CBF ∆;(2)若E 为BC 中点,求证:CF EF EG +=.五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤. 25.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款1.8万元,付乙工程队工程款1.3万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: (方案一)甲队单独完成这项工程,刚好按规定工期完成; (方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三) 若由甲乙两队合作做4天 ,剩下的工程由乙队单独做,也正好按规定工期完工. (1)请你求出完成这项工程的规定时间;来源:学*科*网Z*X*X*K](2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.AC26.长方形ABCD 中,18AB CD cm ==,以AB 为边向上作正ABE ∆,AE 、BE 分别交CD 于F 、G ,5DF cm =,两动点P 、Q 运动速度分别为4scm 、v (scm).(1)AF 的长为 cm ;(2)若点P 从A 出发沿线段AB 向B 运动,同时点Q 从B 出发沿线段BE 向点E 运动,设运 动时间为()t s ,在运动过程中,以A 、F 、P 为顶点的三角形和以P 、B 、Q 为顶点的三 角形全等,求Q 的运动速度v ;(3)若点Q 以(2)中的速度从点B 出发,同时点P 以原来的速度从点A 出发,逆时针沿四边形ABGF 运动.问P 、Q 会不会相遇?若不相遇,说明理由.若相遇,请求出经过多长时间 P 、Q 第一次在四边形ABGF 的何处相遇?AFGEDCBQP八年级数学答案一.选择题(每小题4分,共48分) 1-12 ADDAD BADAC BC 二、填空题:(每小题4分,共24分)13、8-1035.1⨯ 14、3± 15、()()2222-+x x16、9448448=-++x x 17、m <2, 且m ≠0 18、①、②、④ 三、解答题:(每小题7分、共14分)解答时必须给出必要的演算过程或推理步骤. 19.2-291-1-+⨯=原式 ……………………5分 =-10 ……………………7分 20.解:去分母得:1=3x-1+4 ……………………3分X=32-……………………5分 经检验:X=32-是原方程的根 ……………………7分四.解答题:(每小题10分,共40分)解答时必须给出必要的演算过程或推理步骤 21.(1)图略 ……………………2分 (2)()()()112240111,,,,,C B A 三角形111A B C ∆的面积=2…10分22.证明略23.原式=()222)1()1(11-+÷---+x x x x x x x ……………………3分 =)1()1(112+-⨯-+x x x x x ……………………5分 =xx 1- ……………………7分解不等式得:21-≤≤x ,因为分式的分母不能为0,且x 为整数,所以x=2 …………9分 原式=21……………………10分 24.(1)略 ……………………4分(2)证明:过B 做BH ⊥AF 于H∵E 是BC 的中点 ∴BE=EC又∵CF AE ⊥,∴∠CFE=∠BFG ∠CEF=∠BEH ∴△CFE ≌△BEH ;∴EH=EF,BH=CF又由(1)ABG ∆≌CBF ∆;∴BG=BF 又∵BG BF ⊥ ∴△BGF 是等腰直角三角形 ∴∠BGH=45°,又知∠BHG=90°∴∠HBG=45°∴△BHG 是等腰直角三角形 ∴BH=GH又∵GE=GH+HE ∴GH=CF+EF ……………………10分 五.解答题:(每小题12分,共24分)解答时必须给出必要的演算过程或推理步骤.25.(1)设:完成这项工程的规定时间为x 天。
人教版2019-2020学年八年级(上)期末数学试卷及答案
人教版2019-2020学年八年级(上)期末数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)一个三角形的两边长分别是3和7,则第三边长可能是()A.2B.3C.9D.102.(3分)点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.(3分)下列运算正确的是()A.a2+a2=a4B.(﹣2a3)2=4a6C.(a﹣2)(a+1)=a2+a﹣2D.(a﹣b)2=a2﹣b24.(3分)如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是()A.B.C.D.5.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对6.(3分)一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4B.6C.8D.107.(3分)下列各式从左到右的变形正确的是()A.=B.C.D.8.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x9.(3分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3D.2﹣(x+2)=3(x﹣1)10.(3分)已知a+b=m,ab=n,则(a﹣b)2等于()A.m2﹣n B.m2+n C.m2+4n D.m2﹣4n11.(3分)已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A.100°B.80°C.50°或80°D.20°或80°12.(3分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)当x时,分式有意义.14.(3分)三角形的三边长分别为5,8,2x+1,则x的取值范围是.15.(3分)化简()的结果是.16.(3分)如果x2+mx+4是一个完全平方式,那么m的值是.17.(3分)如图,已知∠AOB=30°,点P在边OA上,OD=DP=14,点E,F在边OB上,PE=PF.若EF=6,则OF的长为.18.(3分)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P、Q是边AC、BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E.设点P、Q运动的时间是t秒(t>0).若点P从A点出发沿AC以每秒3个单位的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回到点A停止运动;点Q从点C出发沿CB以每秒1个单位的速度向点B匀速运动,到达点B后停止运动,当t=时,△APD和△QBE全等.三.解答题(共8小题,满分66分)19.(6分)化简:(1);(2).20.(6分)如图,若在象棋盘上建立直角坐标系,使“帥”位于点(﹣2,﹣3),“馬”位于点(1,﹣3),(1)画出所建立的平面直角坐标系;(2)分别写出“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标.21.(8分)先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.22.(8分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).(1)若点M、N关于x轴对称,试求a,b的值;(2)若点M、N关于y轴对称,试求(b+2a)2019.23.(8分)如图,已知:点B、F、C、E在一条直线上,∠B=∠E,BF=CE,AC∥DF.求证:△ABC≌△DEF.24.(8分)如图,在Rt△ABC中,∠ACB=Rt∠,∠B=30°,AE是∠BAC的角平分线,CD是AB上的高,请从图中找出一个等边三角形,并说明理由.25.(10分)新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?26.(12分)已知:如图,△ABC和△DBE均为等腰直角三角形.(1)求证:AD=CE;(2)求证:AD和CE垂直.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【解答】解:设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,故选:C.2.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.3.【解答】解:A.a2+a2=2a2,错误;C.(a﹣2)(a+1)=a2+a﹣2a﹣2=a2﹣a﹣2,错误D.(a﹣b)2=a2﹣2ab+b2,错误故选:B.4.【解答】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选:C.5.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.6.【解答】解:多边形的边数为:360÷45=8.故选:C.7.【解答】解:A、a扩展了10倍,a2没有扩展,故A错误;B、符号变化错误,分子上应为﹣x﹣1,故B错误;C、正确;D、约分后符号有误,应为b﹣a,故D错误.故选:C.8.【解答】解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.9.【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选:D.10.【解答】解:(a﹣b)2=(a+b)2﹣4ab=m2﹣4n.故选:D.11.【解答】解:(1)若等腰三角形一个底角为80°,顶角为180°﹣80°﹣80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.12.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.二.填空题(共6小题,满分18分,每小题3分)13.【解答】解:因为4x+5≠0,所以x≠﹣.故答案为≠.14.【解答】解:根据三角形的三边关系可得:8﹣5<2x+1<5+8,解得:1<x<6.故答案为:1<x<6.15.【解答】解:()==﹣,故答案为:﹣.16.【解答】解:∵x2+mx+4是一个完全平方式,∴m=±4,故答案为:±417.【解答】解:作PM⊥OB于M,如图所示:∵OD=DP=14,∴∠DPO=∠AOB=30°,∴∠PDM=∠FPD+∠AOB=60°,∵PM⊥OB,∴∠DPM=30°,∴DM=PD=7,又∵PE=PF,∴EM=FM=EF=3,∴DF=DM﹣FM=7﹣3=4,∴OF=DF+OD=4+14=18;故答案为:18.18.【解答】解:∵∠C=90°,∴∠A+∠B=90°,∵PD⊥AB,∴∠A+∠APD=90°,∴∠APD=∠B,∴当AP=BQ时,△APD和△QBE全等,当点P从A点出发沿AC向点C运动时,3t=6﹣t,解得,t=1.5(秒),当点P沿CA返回时,8﹣3(t﹣)=6﹣t,解得,t=5(秒),故答案为:1.5秒或5秒.三.解答题(共8小题,满分66分)19.【解答】解:(1)原式==.(2)原式====.20.【解答】解:(1)∵在象棋盘上建立直角坐标系,使“帅”位于点(﹣2,﹣3).“馬”位于点(1,﹣3),可得出原点的位置,即可建立直角坐标系;(2)“兵”和“炮”两点位于你所建立的平面直角坐标系的坐标是:兵(﹣4,0);炮(﹣1,﹣1).21.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.22.【解答】解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得,∴(b+2a)2019=1.23.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).24.【解答】解:结论:△CEF为等边三角形,理由:在Rt△ACB中,∵∠ACB=90°,∠B=30°,∴∠CAB=60°,∵AE平分∠CAB,∴∠CAE=∠CAB=30°,∴∠AEC=90°﹣∠CAE=60°,∵CD⊥AB,∴∠CDB=90°,∴∠BCD=90°﹣∠B=60°∴∠CEF=∠ECF=∠CFE=60°,∴△CEF是等边三角形.25.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.26.【解答】(1)证明:∵△ABC和△DBE是等腰直角三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=90°,∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,即∠ABD=CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)证明:延长AD分别交BC和CE于G和F,如图所示:∵△ABD≌△CBE,∴∠BAD=∠BCE,∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,又∵∠BGA=∠CGF,∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,∴∠AFC=∠ABC=90°,∴AD⊥CE.。
人教版2019-2020学年八年级(上)期末数学试卷及答案
人教版八年级(上)期末数学试卷(考试时间:90分钟,满分:120分)班级:___________姓名:____________学号:___________成绩:____________一、选择题(本大题10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.锐角三角形B.正方形C.五边形D.六边形2.下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型的是()A.B.C.D.3.已知方程无解,则m的值为()A.0B.3C.6D.24.如图,在△ABC中,BD⊥AC交AC的延长线于点D,则AC边上的高是()A.CD B.AD C.BC D.BD5.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个6.如图,Rt△ABC中,∠B=90°,ED垂直平分AC,ED交AC于点D,交BC于点E.已知△ABC的周长为24,△ABE的周长为14,则AC的长度为()A.10B.14C.24D.257.下列各式中,正确的是()A.t5•t5=2t5B.t4+t2=t6C.t3•t4=t12D.t2•t3=t58.下列各式从左到右的变形是因式分解的是()A.(a+5)(a﹣5)=a2﹣25B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2﹣1=a2+2ab+b2﹣1D.a2﹣4a﹣5=a(a﹣4)﹣59.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC10.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A.35°B.40°C.45°D.50°二、填空题(本题共6小题,每小题4分,满分24分)11.若n边形的每个内角都等于150°,则n=.12.若x、y是正整数,且a x=4,a y=8,则a x+y=.13.若多项式x2﹣mx+6分解因式后,有一个因式是x﹣3,则m的值为.14.关于x的分式方程的解为正数,则m的取值范围是.15.如图,△AEB≌△DFC,AE⊥CB,DF⊥BC,AE=DF,∠C=28°,则∠A=.16.如图,已知在锐角△ABC中,AB、AC的中垂线交于点O,则∠ABO+∠ACB=.三、解答题(一)(本题3小题,共18分)17.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.18.规定运算:a*b=10a×10b,例如:2*1=102×101=103,计算:(1)5*4;(2)(n﹣2)*(5+n).19.如图,已知△ABC≌△A'B'C',AD,A'D'分别是△ABC,△A'B'C'的对应边上的高.求证:AD=A'D'.四、解答题(二)(本题3小题,每小题7分,共21分)20.(1)如果关于x的分式方程=1无解,求字母m的值;(2)如果关于x的分式方程=1的解是负数,求字母m的取值范围.21.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.22.甲、乙两名同学在练习打字时发现,甲打1800字的时间与乙打2400字的时间相同。
2019-2020学年新人教版八年级上学期末考试数学试题附参考答案
2019-2020学年八年级上学期末考试数学试题一、选择题(本大题共14小题,共42.0分)1.下面设计的原理不是利用三角形稳定性的是()A. 三角形的房架B. 自行车的三角形车架C. 斜钉一根木条的长方形窗框D. 由四边形组成的伸缩门2.视力表中的字母“E”有各种不同的摆放形式,下面每种组合中的两个字母“E”不能关于某条直线成轴对称的是()A. B. C. D.3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A. B. C. D.4.若分式有意义,则x的取值范围是()A. B. C. D.5.已知a m=6,a n=3,则a2m-n的值为()A. 12B. 6C. 4D. 26.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为()A. 3B. 4C. 3或5D. 3或4或57.下列说法:①满足a+b>c的a、b、c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角,其中错误的有()A. 0个B. 1个C. 2个D. 3个8.下列计算正确的是()A. B. C. D.9.一定能确定△ABC≌△DEF的条件是()A. ,,B. ,,C. ,,D. ,,10.由图中所表示的已知角的度数,可知∠α的度数为()A.B.C.D.11.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.B.C.D.12.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A. B. C. D.13.甲、乙二人做某种机械零件,已知甲每小时比乙少做6个,甲做60个所用时间与乙做90个所用时间相等,求甲、乙每小时各做零件多少个.如果设甲每小时做x 个,那么所列方程是()A. B. C. D.14.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有()A. 0个B. 2个C. 4个D.8个二、填空题(本大题共4小题,共16.0分)15.分解因式:9-12t+4t2=______.16.一个正多边形的每个内角都是150°,则它是正______边形.17.已知,则代数式的值为______.18.等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角为______.三、计算题(本大题共1小题,共10.0分)19.(1)解分式方程:(2)计算:x(x+2y)-(x+y)2四、解答题(本大题共5小题,共52.0分)20.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.21.如图,在一块边长为a米的正方形空地的四角均留出一块边长为<米的正方形修建花坛,其余的地方种植草坪.利用因式分解计算当a=13.6,b=1.8时,草坪的面积.22.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ.(1)证明:CP=CQ;(2)求∠PCQ的度数;(3)当点D是AB中点时,请直接写出△PDQ是何种三角形.23.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上.(1)在图中画出与△ABC关于直线L成轴对称的△A′B′C′;(2)求△ABC的面积;(3)在直线L上找一点P(在答题纸上图中标出),使PB+PC的长最小.24.在等边△ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°,EF⊥BC于F.(1)如图1,若点D在线段BC上,证明:∠BAD=∠EDC;(2)如图1,若点D在线段BC上,证明:①AD=DE;②BC=DC+2CF(提示:构造全等三角形);(3)如图2,若点D在线段BC的延长线上,直接写出BC、DC、CF三条线段之间的数量关系.答案和解析1.【答案】D【解析】解:由四边形组成的伸缩门是利用了四边形的不稳定性,而A、B、C选项都是利用了三角形的稳定性,故选:D.利用三角形的稳定性进行解答.此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.2.【答案】C【解析】解:如图所示,A,B,D选项中,两个字母“E”关于直线l成轴对称,而C选项中,两个字母“E”不能沿着某条直线翻折互相重合,故选:C.把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称轴对称;这条直线叫做对称轴.本题主要考查了轴对称的概念,轴对称包含两层含义:①有两个图形,且这两个图形能够完全重合,即形状大小完全相同;②对重合的方式有限制,只能是把它们沿一条直线对折后能够重合.3.【答案】D【解析】解:0.000 000001=1×10-9,故选:D.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.【答案】A【解析】解:由题意得,x-2≠0,解得x≠2.故选:A.根据分式有意义,分母不等于0列不等式求解即可.本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.5.【答案】A【解析】解:∵a m=6,a n=3,∴a2m-n=(a m)2÷a n=36÷3=12.故选:A.直接利用同底数幂的乘除运算法则计算得出答案.此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.6.【答案】C【解析】解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,C、当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故本选项正确;B、当EF=4时,不符合EF为奇数,故本选项错误;A、当EF=3时,由选项C知,此选项错误;D、当EF=3或4或5时,其中4不符合EF为奇数,故本选项错误;故选:C.根据全等求出DE=AB=2,DF=AC=4,根据△DEF的周长为奇数求出EF的长为奇数,再根据EF长为奇数和三角形三边关系定理逐个判断即可.本题考查了全等三角形的性质和三角形三边关系定理的应用,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.7.【答案】D【解析】解:(1)满足a+b>c且a<c,b<c的a、b、c三条线段一定能组成三角形,故错误;(2)只有锐角三角形的三条高交于三角形内一点,故错误;(3)三角形的外角大于与它不相邻的任何一个内角,故错误;故选:D.利用三角形的三边关系、三角形的三线的定义及三角形的外角的性质,分别判断后即可确定正确的选项.本题考查了三角形的三边关系、三角形的三线的定义及三角形的外角的性质,属于基础定义或基本定理.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.8.【答案】B【解析】解:(-2a)2=4a2,A选项错误;(-3)-2==,B选项正确;(a5)2=a10,C选项错误;b3•b4=b7,D选项错误;故选:B.根据积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法法则计算,判断即可.本题考查的是积的乘方与幂的乘方、负整数指数幂、同底数幂的乘法,掌握它们的运算法则是解题的关键.9.【答案】A【解析】解:A、根据ASA即可推出△ABC≌△DEF,故本选项正确;B、根据∠A=∠E,∠B=∠D,AB=DE才能推出△ABC≌△DEF,故本选项错误;C、根据AB=DE,BC=EF,∠B=∠E才能推出△ABC≌△DEF,故本选项错误;D、根据AAA不能推出△ABC≌△DEF,故本选项错误;故选:A.全等三角形的判定定理有SAS,ASA,AAS,SSS,看看每个选项是否符合定理即可.本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.【答案】D【解析】解:∠α=360°-120°-120°-70°=50°.故选:D.根据四边形的外角和为360°直接求解.本题考查了多边形的内角与外角,牢记多边形的外角和定理是解答本题的关键.11.【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,故选:C.利用等腰三角形的性质分别判断后即可确定正确的选项.本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等.12.【答案】B【解析】解:∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选:B.先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE 与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.13.【答案】A【解析】解:设甲每小时做x个零件,则乙每小时做(x+6)个零件,依题意,得:=.故选:A.设甲每小时做x个零件,则乙每小时做(x+6)个零件,根据工作时间=工作总量÷工作效率结合甲做60个所用时间与乙做90个所用时间相等,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.14.【答案】C【解析】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,所以满足条件的格点C有4个,故选:C.根据等腰三角形的性质和三角形的面积解答即可.本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键15.【答案】(3-2t)2【解析】解:原式=(3-2t)2.故答案为:(3-2t)2原式利用完全平方公式分解即可得到结果.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.16.【答案】十二【解析】解:∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为:十二.首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.17.【答案】7【解析】解:∵x+=3,∴(x+)2=9,即x2+2+=9,∴x2+=9-2=7.根据完全平方公式把已知条件两边平方,然后整理即可求解.本题主要考查完全平方公式,根据题目特点,利用乘积二倍项不含字母是解题的关键.18.【答案】60°或120°【解析】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出120°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.19.【答案】解:(1)去分母得:2-x-1=2x-5,解得:x=2,经检验x=2是分式方程的解;(2)原式=x2+2xy-x2-2xy-y2=-y2.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果.此题考查了解分式方程,以及整式的乘除,熟练掌握运算法则是解本题的关键.20.【答案】证明;∵BD⊥AC于点D,CE⊥AB于点E,∴∠ADB=∠AEC=90°,在△ADB和△AEC中,∴△ADB≌△AEC(ASA)∴AB=AC,又∵AD=AE,∴BE=CD.【解析】要证明BE=CD,只要证明AB=AC即可,由条件可以求得△AEC和△ADB全等,从而可以证得结论.本题考查全等三角形的判定和性质,解题的关键是明确题意,找出所求问题需要的条件.21.【答案】解:由图可得,草坪的面积是:a2-4b2,当a=13.6,b=1.8时,a2-4b2=(a+2b)(a-2b)=(13.6+2×1.8)×(13.6-2×1.8)=17.2×10=172,即草坪的面积是172.【解析】根据题意和图形可以表示出草坪的面积,然后根据因式分解法和a、b的值可以求得草坪的面积本题考查因式分解的应用,解答本题的关键是明确题意,利用数形结合的思想解答.22.【答案】解:(1)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴CP=CD=CQ;(2)∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴∠ACP=∠ACD,∠BCQ=∠BCD,∴∠ACP+∠BCQ=∠ACD+∠BCD=∠ACB=120°,∴∠PCQ=360°-(∠ACP+BCQ+∠ACB)=360°-(120°+120°)=120°;(3)△PDQ是等边三角形.理由:∵将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,∴AD=AP,∠DAC=∠PAC,∵∠DAC=30°,∴∠APD=60°,∴△APD是等边三角形,∴PD=AD,∠ADP=60°,同理:△BDQ是等边三角形,∴DQ=BD,∠BDQ=60°,∴∠PDQ=60°,∵当点D在AB的中点,∴AD=BD,∴PD=DQ,∴△DPQ是等边三角形【解析】(1)由折叠直接得到结论;(2)由折叠的性质求出∠ACP+∠BCQ=120°,再用周角的意义求出∠PCQ=120°;(3)先判断出△APD是等边三角形,△BDQ是等边三角形,再求出∠PDQ=60°,即可.此题是几何变换综合题,主要考查了折叠的性质,等腰三角形的性质,等边三角形的判定,锐角三角函数,极值的确定,三角形的面积公式,解本题的关键是判断出∠PCQ=120°是个定值.23.【答案】解:(1)如图所示:(2)△ABC的面积=;(3)如图所示,点P即为所求.【解析】(1)直接利用对称点的性质得出对应点位置进而得出答案;(2)利用割补法即可得出答案;(3)利用轴对称求最短路线的方法得出答案.本题主要考查作图-轴对称变换,解题的关键是根据与轴对称的定义作出变换后的对应点及割补法求三角形的面积.24.【答案】(1)证明:∵△ABC是等边三角形,∴∠B=60°,∵∠ADC=∠ADE+∠EDC=∠B+∠BAD,∠ADE=60°,∴∠BAD=∠EDC;(2)证明:①过D作DG∥AC交AB于G,如图1所示:∵△ABC是等边三角形,AB=BC,∴∠B=∠ACB=60°,∴∠BDG=∠ACB=60°,∴∠BGD=60°,∴△BDG是等边三角形,∴BG=BD,∠AGD=∠B+∠BGD=60°+60°=120°,∴AG=DC,∵CE是∠ACB外角的平分线,∴∠DCE=120°=∠AGD,由(1)知∠GAD=∠EDC,在△AGD和△DCE中,,∴△AGD≌△DCE(SAS),∴AD=DE;②∵△AGD≌△DCE,∴GD=CE,∴BD=CE,∵EF⊥BC,CE是∠ACB外角的平分线,∴∠ECF=60°,∠CEF=30°,∴CE=2CF,∴BC=CE+DC=DC+2CF;(3)解:BC=2CF-DC;理由如下:过D作DG∥AC交AB延长线于G,如图2所示:∵DG∥AC,△ABC是等边三角形,∴∠BGD=∠BDG=∠B=60°,∴△GBD是等边三角形,∴GB-AB=DB-BC,即AG=DC,∵∠ACB=60,CE是∠ACB的外角平分线,∴∠DCE=∠ACE=×(180°-∠ACB)=60°,∴∠AGD=∠DCE=60°,∵∠GAD=∠B+∠ADC=60°+∠ADC,∠CDE=∠ADC+∠ADE=∠ADC+60°,∴∠GAD=∠CDE,在△AGD和△DCE中,,∴△AGD≌△DCE(ASA),∴GD=CE,∴BD=CE,∵CE=2CF,∴BC=BD-DC=CE-DC=2CF-DC.【解析】(1)由等边三角形的性质得出∠B=60°,再由三角形的外角性质结合已知条件,即可得出结论;(2)过D作DG∥AC交AB延长线于G,证得△AGD≌△DCE,得出:①AD=DE;进一步利用GD=CE,BD=CE得出②BC=DC+2CF;(3)过D作DG∥AC交AB延长线于G,由平行线和等边三角形的性质得出∠BGD=∠BDG=∠B=60°,证出△GBD是等边三角形,证出AG=CD,再证出∠GAD=∠CDE,证明△AGD≌△DCE,得出GD=CE,进而得出结论.此题是三角形综合题目,考查了等边三角形的性质、角平分线的意义、全等三角形的判定与性质以及平行线的性质等知识,通过作辅助线,构造三角形全等是解决问题的关键.。
新】2019-2020人教版八年级数学上册期末考试测试卷及答案
新】2019-2020人教版八年级数学上册期末考试测试卷及答案1.要使分式有意义,则x的取值范围是()。
A。
x≠1 B。
x>1 C。
x<1 D。
x≠-12.下列图形中,是轴对称图形的是()。
答案不明确,题目有误。
3.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC 的长为()。
A。
2 B。
3 C。
5 D。
2.54.下列因式分解正确的是()。
A。
m2+n2=(m+n)(m-n) B。
x2+2x-1=(x-1)2 C。
a2-a=a(a-1) D。
a2+2a+1=(a+1)25.下列说法:①满足a+b>c的a,b,c三条线段一定能组成三角形;②三角形的三条高交于三角形内一点;③三角形的外角大于它的任何一个内角。
其中错误的有()。
A。
个 B。
1个 C。
2个 D。
3个6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是()。
A。
AB=DE B。
∠B=∠E C。
EF=BC D。
EF∥BC7.已知2m+3n=5,则4m·8n=()。
A。
16 B。
25 C。
32 D。
648.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB,BC于点D,E,则∠BAE=()。
A。
80° B。
60° C。
50° D。
40°9.“五·一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少摊了3元钱车费,设原来参加游览的同学共x名,则所列方程为()。
180/(x+2) - 180/x = 310.如图,过边长为1的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ 时,PQ交AC于D,则DE的长为()。
1/3每盒鲜花的售价相同,为150元.现在已经售出了全部鲜花,求花店的总盈利.27.如图,在平行四边形ABCD中,E,F分别是AB,BC的中点,连接AE,AF,CF,DE,DF,CE,交于点M,N,P,Q,R,S,已知AB=6,BC=8,求:1)平行四边形ABCD的面积;2)线段MQ的长度;3)线段RS的长度.2.每盒鲜花的进价比第一批的进价少1元。
2019-2020年八年级上册期末数学试卷(有答案)
八年级(上)期末数学试卷一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)下列二次根式中,最简二次根式的是()A. B.C.D.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a35.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•256.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.47.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.79.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于.12.(3分)已知a+b=2,则a2﹣b2+4b的值为.13.(3分)若+|3﹣y|=0,则y= .14.(3分)2++9是完全平方式,则= .15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于cm.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.22.(5分)解方程: +=.23.(5分)先化简,再求值:(+)÷,其中=12.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= .(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= .(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.八年级(上)期末数学试卷参考答案与试题解析一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(3分)下列二次根式中,最简二次根式的是()A. B.C.D.【解答】解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是()A.(2,1)B.(1,﹣2)C.(﹣2,﹣1)D.(2,﹣1)【解答】解:点M(﹣2,1)关于y轴的对称点N的坐标是(2,1).故选:A.4.(3分)下列运算中正确的是()A.b3•b3=2b3B.2•3=6C.(a5)2=a7D.a5÷a2=a3【解答】解:A、b3•b3=b6,故A不符合题意;B、2•3=5,故B不符合题意;C、(a5)2=a10,故C不符合题意;D、a5÷a3=a2,故D符合题意;故选:D.5.(3分)下列各式中,从左到右的变形是因式分解的是()A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1C.42+4=4(+1)D.67=32•25【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、是整式的乘法,不是因式分解,故本选项错误;C、42+4=4(+1),是因式分解,故本选项正确;D、67=32•25,不是因式分解,故本选项错误.故选:C.6.(3分)分式方程+=1的解是()A.1 B.2 C.3 D.4【解答】解:去分母得:2+2+6﹣12=2﹣4,移项合并得:8=8,解得:=1,经检验=1是分式方程的解,故选:A.7.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为()A.5cm B.4cm C.5cm或3cm D.8cm【解答】解:当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形.所以该等腰三角形的底边为5cm或3cm,故选:C.8.(3分)若m+=5,则m2+的结果是()A.23 B.8 C.3 D.7【解答】解:∵m+=5,∴m2+=(m+)2﹣2=25﹣2=23,故选:A.9.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于()A.48°B.55°C.65°D.以上都不对【解答】解:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°,整理可得∠β=55°.故选:B.10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为()A.10+6 B.10+10C.10+4D.24【解答】解:根据题意得:c2=a2+b2=100,4×ab=100﹣20=80,即2ab=80,则(a+b)2=a2+2ab+b2=100+80=180,∴每个直角三角形的周长为10+=10+故选:A.二、填空题(每小题3分,共24分)11.(3分)若分式的值为零,则的值等于 2 .【解答】解:根据题意得:﹣2=0,解得:=2.此时2+1=5,符合题意,故答案是:2.12.(3分)已知a+b=2,则a2﹣b2+4b的值为 4 .【解答】解:∵a+b=2,∴a2﹣b2+4b,=(a+b)(a﹣b)+4b,=2(a﹣b)+4b,=2a+2b,=2(a+b),=2×2,=4.故答案为:4.13.(3分)若+|3﹣y|=0,则y= 6 .【解答】解:由题意得,﹣2=0,3﹣y=0,解得=2,y=3,所以,y=2×3=6.故答案为:6.14.(3分)2++9是完全平方式,则= ±6 .【解答】解:中间一项为加上或减去和3的积的2倍,故=±6.15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于10 cm.【解答】解:∵△ABC中,AB=AC,AB=6cm,∴AC=6cm,∵AB的垂直平分线交AC于P点,∴BP+PC=AC,∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=10cm.故答案为:10.16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:直角三角形.【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65,∴AC2+AB2=BC2,∴△ABC是直角三角形.17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A 到点B所经过的路径的长为.【解答】解:如图,过点B作BD⊥轴于D,∵A(0,2),B(4,3),∴OA=2,BD=3,OD=4,根据题意得:∠ACO=∠BCD,∵∠AOC=∠BDC=90°,∴△AOC∽△BDC,∴OA:BD=OC:DC=AC:BC=2:3,∴OC=OD=×4=,∴AC==,∴BC=,∴AC+BC=.即这束光从点A到点B所经过的路径的长为:.故答案为:.18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上).【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=AQ,PB=QB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.三、解答题(第19、20题每小题3分,第21-28题每小题3分,共46分)19.(3分)因式分解:3ab2+6ab+3a.【解答】解:3ab2+6ab+3a=3a(b2+2b+1)=3a(b+1)2.20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2.【解答】解:原式=a2﹣b2﹣a2+2ab﹣b2=2ab﹣2b2.21.(5分)计算: +|﹣|+()﹣3+(π﹣3.14)0.【解答】解:原式=2++8+1=3+9.22.(5分)解方程: +=.【解答】解:两边都乘(+3)(﹣3),得+3(﹣3)=+3,解得=4,经检验:=4是原分式方程的根.23.(5分)先化简,再求值:(+)÷,其中=12.【解答】解:(+)÷,=[+]•,=,=,=,当=12时,原式==.24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.【解答】解:作AD⊥BC于D,∵∠B=60°,∴∠BAD=30°,∴BD=AB=3,在Rt△ABD中,AD==9,在Rt△ADC中,CD==12,∴BC=BD+CD=3+12.25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.【解答】解:设普通快车的平均行驶速度为千米/时,则高铁列车的平均行驶速度为1.5千米/时.根据题意得:﹣=,解得:=180,经检验,=80是所列分式方程的解,且符合题意.则1.5=1.5×180=270.答:高铁列车的平均行驶速度为270千米/时.26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.(1)求∠B的度数.(2)如果AC=3cm,求AB的长度.(3)猜想:ED与AB的位置关系,并证明你的猜想.【解答】解:(1)∵AE是△ABC的角平分线,∴∠CAE=∠EAB,∵∠CAE=∠B,∴∠CAE=∠EAB=∠B.∵在△ABC中,∠C=90°,∴∠CAE+∠EAB+∠B=3∠B=90°,∴∠B=30°;(2)∵在△ABC中,∠C=90°,∠B=30°,AC=3cm,∴AB=2AC=6cm;(3)猜想:ED⊥AB.理由如下:∵∠EAB=∠B,∴EB=EA,∵ED平分∠AEB,∴ED⊥AB.27.(5分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为10 .(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是﹣,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).【解答】解:(1)直角三角形的两条直角边分别为6、8,则这个直角三角形斜边长==10,故答案为:10;(2)在Rt△ADC中,AD==2,∴BD=AD=2;(3)点A在数轴上表示的数是:﹣=﹣,由勾股定理得,OC=,以O为圆心、OC为半径作弧交轴于B,则点B即为所求,故答案为:﹣.28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.请根据从上面材料中所得到的信息解答下列问题:(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= 15cm .(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA= 3:1 .(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.【解答】解:(1)∵DE是线段BC的垂直平分线,∠ACB=90°,∴CD=BD,AD=BD.又∵在△ABC中,∠ACB=90°,∠B=30°,∴AC=AB,∴△ACD的周长=AC+AB=3BD=15cm.故答案为:15cm;(2)连接AD,如图所示.∵在△ABC中,AB=AC,∠A=120°,D是BC的中点,∴∠BAD=60°.又∵DE⊥AB,∴∠B=∠ADE=30°,∴BE=BD,EA=AD,∴BE:EA=BD: AD,又∵BD=AD,∴BE:AE=3:1.故答案为:3:1.(3)∵△ABC为等边三角形.∴AB=AC,∠BAC=∠ACB=60°,在△BAE和△ACD中,,∴△BAE≌△ACD(SAS),∴∠ABE=∠CAD.∵∠BPQ为△ABP外角,∴∠BPQ=∠ABE+∠BAD.∴∠BPQ=∠CAD+∠BAD=∠BAC=60°∵BQ⊥AD,∴∠PBQ=30°,∴BP=2PQ=2,∴PQ=1,∴BQ===.。
2019—2020新人教版八年级数学上期末测试题及答案.doc
2019—2020 新人教版八年级数学上期末测试题及答案一.选择题(共 12 小题;满分 36 分;每小题 3 分)1.以下永洁环保、绿色食品、节能、绿色环保四个标志中;是轴对称图形是()A .B .C .D .2.王师傅用 4 根木条钉成一个四边形木架;如图.要使这个木架不变形;他至少还要再钉上几根木条?()A . 0 根B .1 根C .2 根D . 3 根3.如下图;已知 △ABE ≌△ ACD ;∠ 1=∠ 2;∠ B=∠ C ;不正确的等式是( )A . AB=ACB . ∠ BAE= ∠ CADC . BE=DCD AD =DE4.如图;一个等边三角形纸片;剪去一个角后得到一个四边形;则图中∠α+∠ β的度数是()A .180 ° B . 220° C . 240 °D . 300°5.下列计算正确的是( )A . 2a+3b=5abB .( x+2)2 =x 2+4C .( ab 3)2=ab6D . (﹣ 1)0=16.如图;给出了正方形 ABCD 的面积的四个表达式;其中错误的是()A .( x+a )(x+a )B . x 2+a 2+2ax C . ( x ﹣ a )( x ﹣a )D .(x+a )a+(x+a )x7.(3 分)下列式子变形是因式分解的是( )A . x 2 ﹣5x+6=B .x 2﹣5x+6=C .( x ﹣ 2)( x ﹣3)=x 2﹣5x+6 D . x 2﹣5x+6=x ( x ﹣ 5)+6( x ﹣2)(x ﹣3)(x+2 )( x+3 )8.若分式 有意义;则 a 的取值范围是()A . a=0B .a=1C .a ≠﹣1D . a ≠09.化简的结果是()A . x+1B .x ﹣ 1C .﹣ xD . x10.下列各式: ① a 0=1;② a 2?a 3 =a 5;③ 2﹣2=﹣;④ ﹣( 3﹣5)+(﹣ 2)4÷8×(﹣1)=0;⑤ x 2+x 2=2x 2;其中正确的是 ()A . ① ②③B .① ③⑤C .② ③④D . ② ④⑤11.随着生活水平的提高; 小林家购置了私家车;这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了 15 分钟;现已知小林家距学校 8 千米;乘私家车平均速度是乘公交车平均速度的2.5 倍;若设乘公交车平均每小时走 x 千米;根据题意可列 方程为( ) A .B .C .D .12.如图;已知∠ 1=∠2;要得到 △ ABD ≌△ ACD ;从下列条件中补选一个;则错误选法是()A .AB=AC B . DB=DC C . ∠ ADB= ∠ADC D . ∠ B= ∠ C二.填空题(共 5 小题;满分 20 分;每小题 4 分)13.(4 分)分解因式: x3﹣ 4x 2﹣ 12x= _________.14.( 4 分)若分式方程:有增根;则 k=_________ .15.( 4 分)如图所示;已知点 A 、D 、 B 、F 在一条直线上; AC=EF ; AD=FB ;要使 △ABC ≌△ FDE ;还需添加一个条件;这个条件可以是 _________ .(只需填一个即可)16.(4 分)如图;在△ ABC 中; AC=BC ;△ABC 的外角∠ ACE=100 °;则∠ A= _______ 度.17.( 4 分)如图;边长为 m+4 的正方形纸片剪出一个边长为 m 的正方形之后;剩余部分可剪拼成一个矩形;若拼成的矩形一边长为4;则另一边长为_________ .三.解答题(共 7 小题;满分 64 分)18.先化简;再求值: 5(3a2b﹣ab2)﹣ 3( ab2+5a2b);其中 a= ; b=﹣.19.(6分)给出三个多项式:x2+2x﹣1;x2+4x+1;x2﹣2x.请选择你最喜欢的两个多项式进行加法运算;并把结果因式分解.20.(8 分)解方程:.21.(10 分)已知:如图;△ ABC和△ DBE均为等腰直角三角形.(1)求证: AD=CE ;(2)求证: AD 和 CE 垂直.22.(10 分)如图; CE=CB ;CD=CA ;∠ DCA= ∠ ECB;求证: DE=AB .23.(12 分)某县为了落实中央的“强基惠民工程”;计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工;则完成工程所需天数是规定天数的 1.5 倍.如果由甲、乙队先合做 15 天;那么余下的工程由甲队单独完成还需 5 天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500 元;乙队每天的施工费用为3500 元.为了缩短工期以减少对居民用水的影响;工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?参考答案一.选择题(共12 小题;满分36 分;每小题 3 分)A .1.( 3 分))在以下永洁环保、绿色食品、节能、绿色环保四个标志中;是轴对称图形是()B .C.D.考点:轴对称图形.分析:据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合;这样的图形叫做轴对称图形;这条直线叫做对称轴解答:解: A 、不是轴对称图形;不符合题意;B、是轴对称图形;符合题意;C、不是轴对称图形;不符合题意;D、不是轴对称图形;不符合题意.故选 B .点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴;图形两部分折叠后可重合.2.( 3 分)王师傅用 4 根木条钉成一个四边形木架;如图.要使这个木架不变形;他至少还要再钉上几根木条?()A . 0 根B . 1 根C.2 根D. 3 根考点:三角形的稳定性.专题:存在型.分析:根据三角形的稳定性进行解答即可.解答:解:加上 AC 后;原不稳定的四边形ABCD 中具有了稳定的△ ACD及△ ABC;故这种做法根据的是三角形的稳定性.故选 B .点评:本题考查的是三角形的稳定性在实际生活中的应用;比较简单.3.( 3 分)如下图;已知△ABE≌△ ACD;∠1=∠ 2;∠B=∠ C;不正确的等式是()A . AB=ACB .∠BAE= ∠CAD C.BE=DC D. A D=DE考点:全等三角形的性质.分析:根据全等三角形的性质;全等三角形的对应边相等;全等三角形的对应角相等;即可进行判断.解答:解:∵△ ABE ≌△ ACD ;∠ 1=∠2;∠ B= ∠C;∴AB=AC ;∠ BAE= ∠ CAD ; BE=DC ; AD=AE ;故 A 、 B 、C 正确;AD 的对应边是AE 而非 DE;所以 D 错误.故选 D .点评:本题主要考查了全等三角形的性质;根据已知的对应角正确确定对应边是解题的关键.4.( 3 分)如图;一个等边三角形纸片;剪去一个角后得到一个四边形;则图中∠α+∠β的度数是()A . 180°B . 220°C.240°D. 300°考点:等边三角形的性质;多边形内角与外角.专题:探究型.分析:本题可先根据等边三角形顶角的度数求出两底角的度数和;然后在四边形中根据四边形的内角和为360°;求出∠ α+∠ β的度数.解答:解:∵等边三角形的顶角为60°;∴两底角和 =180°﹣60°=120°;∴∠ α+∠ β=360°﹣ 120°=240°;故选 C.点评:本题综合考查等边三角形的性质及三角形内角和为180 °;四边形的内角和是360°等知识;难度不大;属于基础题5.( 3 分)下列计算正确的是()2=x2+4 C.( ab3)2=ab6 D.(﹣ 1)0=1A . 2a+3b=5abB .(x+2)考点:完全平方公式;合并同类项;幂的乘方与积的乘方;零指数幂.分析: A 、不是同类项;不能合并;B、按完全平方公式展开错误;掉了两数积的两倍;C、按积的乘方运算展开错误;D 、任何不为 0 的数的 0 次幂都等于 1.解答:解: A 、不是同类项;不能合并.故错误;B 、(x+2 )2=x 2+4x+4.故错误;C、(ab3)2=a2b6.故错误;D 、(﹣ 1) =1.故正确.点评:此题考查了整式的有关运算公式和性质;属基础题.6.( 3 分)如图;给出了正方形ABCD 的面积的四个表达式;其中错误的是()A .(x+a)( x+a)B . x2 +a2+2ax C.( x﹣ a)(x ﹣a)D.(x+a )a+(x+a)x考点:整式的混合运算.分析:根据正方形的面积公式;以及分割法;可求正方形的面积;进而可排除错误的表达式.解答:解:根据图可知;S正方形 = (x+a)2=x2+2ax+a2;故选 C.点评:本题考查了整式的混合运算、正方形面积;解题的关键是注意完全平方公式的掌握.7.( 3 分)下列式子变形是因式分解的是()A . x2﹣5x+6=x ( x﹣5) +6B . x2 ﹣5x+6= (x ﹣2)( x﹣ 3)C.( x﹣ 2)( x ﹣3)=x 2﹣ 5x+6 D. x 2﹣ 5x+6= ( x+2)( x+3)。
2019-2020学年度第一学期八年级数学期末考试题(附答案)
2019-2020学年度第一学期八年级数学期末考试题(附答案)一、选择题(共10题;共20分)1.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC 成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A. 2个B. 3个C. 4个D. 5个2.计算3﹣2的结果正确的是()A. B. ﹣ C. 9 D. ﹣93.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076用科学记数法表示为()A. 7.6×108B. 0.76×10﹣9C. 7.6×10﹣8D. 0.76×1094.分式有意义,则x的取值范围是()A. x=3B. x≠3C. x≠﹣3D. x=﹣35.下列多项式① ;② ;③ ;④ 可以进行因式分解的有()A. 0个B. 1个C. 2个D. 3个6.已知图中的两个三角形全等,则∠1等于()A. 50°B. 58°C. 60°D. 72°7.计算:=()A. B. C. D.8.如图,已知∠1=110°,∠2=70°,∠4=115°,则∠3的度数为()A. 65ºB. 70ºC. 97ºD. 115º9.若等边△ABC的边长为2cm,那么△ABC的面积为()A. cm2B. 2cm2C. 3cm2D. 4cm210.计算的结果是()A. B. C. D.二、填空题(共8题;共25分)11.如图,在中,,(1)请用直尺和圆规按下列步骤作图(保留作图痕迹),①作的平分线,交斜边AB于点D;②过点D作AC的垂线,垂足为E.(2)在(1)作出的图形中,若,则DE= ________.12.分解因式a3﹣6a2+9a=________.13.在平面直角坐标系中,点P的坐标是(3,﹣2),则点P关于y轴对称的对称点的坐标是________.14.已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是________.15.________;________16.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=5,BC=6,则sinC=________.17.如图,AD=BC,请添加一个条件,使图中存在全等三角形并给予证明.你所添加的条件为:________;得到的一对全等三角形是△________≌△________.18.如图,在▱ABCD中,E为BC边上一点,且AB=AE.(1)求证:△ABC≌△EAD;(2)若∠B=65°,∠EAC=25°,求∠AED的度数.三、解答题)(共3题;共20分)19.分解因式:x(x+4)+4.20.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.21.解方程(1)(2).四、解答题(共6题;共43分)22.求式子的值,其中.23.求证:有一个角等于60°的等腰三角形是等边三角形.24.已知某轮船顺水航行a千米,所需的时间和逆水航行b千米所需的时间相同.若水流的速度为c千米/时,则船在静水中的速度为________千米/时.25.如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A,B,C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D,E,F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是________(2)若甲、乙均可在本层移动.①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.②黑色方块所构拼图是中心对称图形的概率是________.26.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求点C的坐标;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.27.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.答案一、选择题1.C2.A3.C4.B5. B6.B7.A8.D9.A 10. C二、填空题11. (1)解:如图所示;(2)12.a(a﹣3)213.(﹣3,﹣2).14.7或3 15.3;1 16.17.PA=PB;PAD;PBC18. (1)证明:∵在平行四边形ABCD中,AD∥BC,BC=AD,∴∠EAD=∠AEB,又∵AB=AE,∴∠B=∠AEB,∴∠B=∠EAD,在△ABC和△EAD中,,∴△ABC≌△EAD(SAS).(2)解:∵AB=AE,∴∠B=∠AEB,∴∠BAE=50°,∴∠BAC=∠BAE+∠EAC=50°+25°=75°,∵△ABC≌△EAD,∴∠AED=∠BAC=75°.三、<b >解答题)</b>19. 解:原式=x2+4x+4=(x+2)220.证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.21.(1)解:去分母得:6+2x=4﹣x,解得:x=﹣,经检验x=﹣是分式方程的解(2)解:去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解四、<b >解答题</b>22. 解:原式,当时,原式23.解:如图已知AB=AC.①如果∠B=60°,那么∠C=∠B=60°.所以∠A=180°﹣(∠B+∠C)=180°﹣(60°+60°):60°于是∠A=∠B=∠C,所以△ABC是等边三角形.②如果∠A=60°,由∠A+∠B+∠C=180°和∠B=∠C得∠B=÷(180°﹣∠A)=(180°﹣60°)=60°.于是∠B=∠C=∠A,所以△ABC是等边三角形.综上所述,有一个角等于60°的等腰三角形是等边三角形.24.25.(1)(2)26.(1)解:作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2)(2)解:设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1= ,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1= ,得﹣6+2c=c,解得c=6,即反比例函数解析式为y1= ,此时C′(3,2),B′(6,1),设直线B′C′的解析式y2=mx+n,∵,∴,∴直线C′B′的解析式为y2=﹣x+3(3)解:由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(6,1),∴若y1<y2时,则3<x<6.27.(1)证明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB(2)解:∵AD 平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在Rt△ABC 中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶5,设BD=x,则DO=DC=x,BO=x,∵CD+BD=8,∴x+x=8,解得x=,5,即:BD=5(3)解:∵点B 与点B′关于直线DO 对称,∴∠B=∠OB′D,BO=B′O=x,BD=B′D=x,∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O+BO=10,∴x+x+x=10,解得x=,即BD=,∴当△AB′D 为等腰三角形时,BD=.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
2019-2020学年八年级上学期期末数学试题及答案
2019-2020学年八年级上学期期末数学试题一、选择题:本题共10小题,每小题4分,共40分1.下列各数中,属于有理数的是()A .3B .C .227D .0.1010010001…2.下面计算正确的是()A .(a 3)2=5B .a 2·a 4= a 6C .a 6-a 2=a 4D .a 3·a 3= a63.已知等腰三角形的一个角为40°,则其顶角为()A .40°B .80°C .40°或100°D .100°4.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是()A .310B .16C .35D .125.由下列条件不能判断△ABC 是直角三角形的是()A .∠A ∶∠B ∶∠C =3∶4∶5 B .∠A ∶∠B ∶∠C =2∶3∶5 C .∠A -∠C =∠BD .222=ABBC AC6.若a=15,则实数在数轴上对应的点的大致位置是()7.用反证法证明“在一个三角形中,至少有一个内角小于或等于60°”时应假设()A .三角形中有一个内角小于或等于60°B .三角形中有两个内角小于或等于60°C .三角形中有三个内角小于或等于60°D .三角形中没有一个内角小于或等于60°8.16的平方根与-8的立方根之和是()A .0B .-4C .4D .0或-4 9.若a 2=4,b 2=9,且ab<0,则a -b 的值为()A .-2B .±5C .5D .-510.如图,已知△ABC 中,∠ABC=90°,AB=BC ,过△ABC 的顶点B 作直线l ,且点A 到l 的距离为2,点C 到l 的距离为3,则AC 的长是()A .13B .20C .26D .5B(第10题)lCAD.C.B.A.–1123450–1123450–11234500–112345二、填空题:本题共6小题,每小题4分,共24分.11.计算:4a 3b ÷a 2b= .12.把多项式因式分解:x -6x+9.13.命题“对顶角相等”改写成“如果…,那么…”的形式是.14.如图,点E 在正方形ABCD 内,且∠AEB =90°,AE =5,BE=12,则图中阴影部分的面积是.15.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=8,若点M 在BC 上,且BM=2,点N 是AC 上一动点,则BN +MN 的最小值为___________.16.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,在直线AC 上找点P ,使△ABP 是等腰三角形,则∠APB 的度数为.三、解答题:本题共9小题,共86分17.(8分)计算:254279318.(8分)先化简,再求值:22111a a a a a ,其中3a19.(8分)如图,在△ADF 与△CBE 中,点A 、E 、F 、C 在同一直线上,已知AD ∥BC ,AD =CB ,∠B=∠D .求证:AE=CF .(第16题)CBA(第15题)MBANC(第14题)DCBAEFEDCBA20.(8分)如图,点B 、C 在∠DAE 的两边上,且AB =AC .(1)按下列语句作图(要求:尺规作图,保留作图痕迹,不写作法)①过点A 作AN ⊥BC ,垂足为N ;②作∠DBC 的平分线交AN 的延长线于点M ;③连接CM .(2)该图中共有_________对全等三角形.21.(8分)某中学对全校学生进行文明礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)在扇形统计图中,表示“不合格”的扇形的圆心角度数为_________;(3)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有________人达标.22.(10分)(1)求证:到线段两端距离相等的点在线段的垂直平分线上.(要求:画出图形,写出已知,求证和证明过程)(2)用(1)中的结论解决:如图,△ABC 中,∠A=30°,∠C=90°,BE 平分∠ABC ,求证:点E 在线段AB 的垂直平分线上.EDCBAECBA23.(本小题满分10分)现有足够多的正方形和长方形的卡片,如图1所示,请运用拼图的方法,选取相应种类和数量的卡片,按要求回答下列问题:(1)根据图2,利用面积的不同表示方法,写出一个代数恒等式:______________________;(2)若要拼成一个长为23a b,宽为3a b的长方形,则需要甲卡片____张,乙卡片____张,丙卡片____张;(3)请用画图结合文字说明的方式来解释:(a+b)2≠a2+b2(a≠0,b≠0).24.(13分)如图1,在△ABC中,∠ACB=90°,AC=12BC,点D为BC的中点,AB =DE,BE∥AC.(1)求证:△ABC≌△DEB;(2)如图2,连结AD、AE、CE.①求证:CE是∠ACB的角平分线;②请判断△ABE是什么特殊形状的三角形,并说明理由.图2图1图1EDC BA图2AC D BE25.(13分)如图1,已知正方形ABCD 的边长为5,点E 在边AB 上,AE=3,延长DA 至点F ,使AF =AE ,连结EF .将△AEF 绕点A 顺时针旋转(0°<<90°),如图2所示,连结DE 、BF .(1)请直接写出DE 的取值范围:_______________________;(2)试探究DE 与BF 的数量关系和位置关系,并说明理由;(3)当DE=4时,求四边形EBCD 的面积.备用图AB CDEABCDF图2F图1EDCB A初二数学参考答案及评分标准一、选择题(每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案CBCAABDDBC二、填空题(每小题4分,共24分)11.2a 12.23x 13.如果两个角是对顶角,那么这两个角相等14.139 15.1016.15°、30°、75°或120°.三、解答题(共86分):17.(本小题满分8分)计算:2542793解:原式2335--------------------6分25--------------------------------8分18.(本小题满分8分)先化简,再求值:22111a a a a a ,其中3a解:原式2222121a aaaa --------------3分22a-----------------------------------------5分当3a时,原式2321---------------8分19.(本小题满分8分)证明:∵AD ∥BC ,∴∠A=∠C---------------------------------------2分在△ADF 和△CBE 中,A CAD CB DB---------------------------------------5分∴△ADF ≌△CBE(ASA).-----------------------6分∴AF=CE ---------------------------------------7分∴AFEF CE EF即AE=CF .---------------------------------------8分20.(本小题满分8分)MN解:(1)如图,①直线AN 是所求作的.------------------2分(说明:可过点A 作BC 的垂线;也可作∠BAC 的平分线;或作BC 的垂直平分线)②射线BM 是所求作的角平分线.------------------4分③连接CM --------------------------------------------5分(2)__3__--------------8分21.(本小题满分8分)解:(1)补充如图所示-------4分(2)72°------------------6分(3)96-----------------8分22.(本小题满分10分)(1)已知:如图,QA=QB.求证:点Q 在线段AB 的垂直平分线上.----------1分证明:过点Q 作MN ⊥AB ,垂足为点 C.则∠QCA=∠QCB=90° ---2分在Rt △QCA 和Rt △QCB 中,∵QA=QB ,QC=QC∴Rt △QCA ≌Rt △QCB(H.L.) ----------4分∴AC=BC∴点Q 在线段AB 的垂直平分线上.即到线段两端距离相等的点在线段的垂直平分线上.----------5分(2)证明:∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,----------6分∵BE 平分∠ABC ,∴∠ABE=12∠ABC=12×60°=30°,--------7分∴∠A=∠ABE ,----------8分∴EA=EB ,----------9分∴点E 在线段AB 的垂直平分线上.------10分23.(本小题满分10分)(1)22223ab a b aab b ;----------3分(2)需要甲卡片 6 张,乙卡片11 张,丙卡片3 张;-----6分(3)如图,大正方形面积为2a b ,阴影部分的面积为22ab ,由图可知:2ab ≠22ab(a ≠0,b ≠0).-----10分24.(本小题满分13分)解:(1)∵∠ACB=90°,BE∥AC∴∠CBE=90°∴△ABC和△DEB都是直角三角形---------1分∵AC=12BC,点D为BC的中点∴AC=BD ------------------2分又∵AB=DE∴△ABC≌△DEB(H.L.) ----------------4分(2)①由(1)得:△ABC≌△DEB∴BC=EB ----------------5分又∵∠CBE=90°∴∠BCE=45°---------------------------6分∴∠ACE=90°-45°=45°-------------------7分∴∠BCE=∠ACE∴CE是∠ACB的角平分线----------------8分②△ABE是等腰三角形,理由如下:----------9分在△ACE和△DCE中AC DCACE BCECE CE∠∠∴△ACE≌△DCE(S.A.S.) ---------------------11分∴AE=DE ------------------------------------12分又∵AB=DE∴AE= AB∴△ABE是等腰三角形------------------13分25.(本小题满分13分)解:(1)DE的取值范围:2<DE<34;------------------2分(2)DE=BF,DE⊥BF,理由如下:延长DE,交AB于点G,交BF于点H --------------3分图1 图2∵∠BAD =∠FAE =90°即∠BAE+∠EAD =∠BAE+∠FAB =90°∴∠EAD =∠FAB --------------4分在△EAD 和△FAB 中AE AF EADFABADAB∠∠∴△EAD ≌△FAB-------------6分∴DE=BF ,∠ADE =∠ABF-------------7分又∵∠AGD=∠BGH ,∠ADE+∠AGD=90°∴∠ABF +∠BGH=90°∴∠BHG=90°即DE ⊥BF -------------8分(3)∵AE=3,DE =4,AD =5∴22222234255AEDEAD∴△ADE 为直角三角形,∠AED =90°---------------------------------10分由(2)得△EAD ≌△FAB∴∠AFB =∠AED=90°,BF=DE=4,=EAD FAB S S △△又∵∠EAF =90°∴AE ∥BF∴四边形AEBF 的面积为:12AE BF AF =13432=10.5----------12分∴ABEEAD S S △△=10.5∴=EBCD S 四形ABE EADABCDS S S △△正方形52-10.5=14.5答:当DE=4时,四边形EBCD 的面积为14.5.------------------13分图2图3。
2019—2020学年第一学期八年级数学期末考试试卷及答案
2019—2020学年第一学期期末考试试卷八年级数学题号一二三四总分得分一、选择题(每小题4分,共40分)1.等腰三角形的顶角为40°,则它的底角是() A.40°B.50°C.70°D.80°2.下列图案是轴对称图形的是()3.下列分解因式正确的是 ( )A.32(1)x x x x-=-. B.2(3)(3)9a a a+-=-C.29(3)(3)a a a-=+-D.22()()x y x y x y+=+-4.下列长度的三条线段,哪一组不能构成三角形()A. 3,3,3 B. 3,4,5 C. 5,6,10 D. 4,5,95.下列运算正确的是() A.a3·a4=a12B.(-2a2b3)3=-2a6b9C.a6÷a3=a3D.(a+b)2=a2+b26.上图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是() A.△ABD≌△CBD B.△ABC≌△ADCC.△AOB≌△COB D.△AOD≌△COD7.芝麻作为食品和药物均广泛使用,经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为()A.2.01×10-6千克B.0.201×10-5千克C.20.1×10-7千克D.2.01×10-7千克8.正多边形的一个外角等于30°,则这个多边形的边数为() A.6 B.9 C.12 D.159.已知(m-n)2=32,(m+n)2=4000,则m2+n2的值为() 得分评卷人A.2014 B.2015 C.2016 D.403210.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A .B .= C.D.二、填空题(每小题4分,共32分)11.分解因式:a3b-ab=________.12.如图,在△ABC中,D,E分别是AB,AC上的点,点F在BC的延长线上,DE∥BC,∠A =46°,∠1=52°,则∠2=________度.13.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,若CD=4,则点D到斜边AB的距离为________.14.化简x2-1x2-2x+1·x-1x2+x+2x的结果是________.15.已知2y10y m++是完全平方式,则m的值是________.(第12题图)(第13题图)(第18题图)16.甲做90个机器零件所用的时间和乙做120个所用时间相等,又知每小时甲乙二人一共做35个机器零件.求甲、乙每小时各做多少个机器零件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省宁德市八年级(上)期末数学试卷一、选择题(本大题有10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(3分)在实数3,,,0中,无理数是()A.3 B.C.D.02.(3分)如图,AB∥CD,AD,BC相交点O,若∠D=43°,∠BOD=78°,则∠B的大小是()A.35°B.43°C.47°D.78°3.(3分)下列不是方程2+3y=13解的是()A.B.C.D.4.(3分)下列各点中,在如图所示阴影区域内的是()A.(3,5)B.(﹣3,2)C.(2,﹣3)D.(﹣3,5)5.(3分)根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°6.(3分)与1+最接近的整数是()A.1 B.2 C.3 D.47.(3分)下列图象不能反映y是的函数的是()A .B .C .D .8.(3分)已知函数y=(m﹣3)+2,若函数值y随的增大而减小,则m的值不可能是()A.0 B.1 C.2 D.59.(3分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游 D.两个班的最高分在八(2)班10.(3分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C.D.12二、填空题(本大题有6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.(2分)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的中位数是.12.(2分)4的立方根是.13.(2分)如图所示,数轴上点A所表示的数为a,则a的值是.14.(2分)把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为.15.(2分)已知函数y=+b的部分函数值如表所示,则关于的方程+b+3=0的解是.…﹣2﹣101…y…531﹣1…16.(2分)小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S1= ,S2= .三、解答题(本大题有8小题,共58分.请在答题卡的相应位置作答)17.(12分)计算:(1)|﹣1|﹣+()﹣2;(2)+×;(3)﹣2.18.(5分)解方程组:19.(5分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.20.(6分)如图,已知等腰△AOB,AO=AB=5,OB=6.以O为原点,以OB边所在的直线为轴,以垂直于OB的直线为y轴建立平面直角坐标系.(1)求点A的坐标;(2)若点A关于y轴的对称点为M,点N的横、纵坐标之和等于点A的横坐标,请在图中画出一个满足条件的△AMN,并直接在图上标出点M,N的坐标.21.(6分)某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.822.(7分)某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)你能利用该统计图求出平均数、众数和中位数中的哪些统计量?并直接写出结果;(2)小颖认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?(3)小亮认为,可用该统计图求出方差.你认同他的看法吗?若认同,请求出方差;若不认同,请说明理由.23.(8分)某化妆品销售公司每月收益y万元与销售量万件的函数关系如图所示.(收益=销售利润﹣固定开支)(1)写出图中点A与点B的实际意义;(2)求y与的函数表达式;(3)已知目前公司每月略有亏损,为了让公司扭亏为盈,经理决定将每件产品的销售单价提高2元,请在图中画出提价后y与函数关系的图象,并直接写出该函数的表达式.(要标出确定函数图象时所描的点的坐标)24.(9分)在平面直角坐标系中,长方形OABC的边OC,OA分别在轴和y轴上,点B的坐标是(5,3),直线y=2+b与轴交于点E,与线段AB交于点F.(1)用含b的代数式表示点E,F的坐标;(2)当b为何值时,△OFC是等腰三角形;(3)当FC平分∠EFB时,求点F的坐标.福建省宁德市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.(3分)在实数3,,,0中,无理数是()A.3 B.C.D.0【解答】解:3,0,是有理数,是无理数,故选:B.2.(3分)如图,AB∥CD,AD,BC相交点O,若∠D=43°,∠BOD=78°,则∠B的大小是()A.35°B.43°C.47°D.78°【解答】解:∵AB∥CD,∴∠A=∠D=43°,∵∠BOD是△AOB的外角,∴∠B=∠BOD﹣∠A=78°﹣43°=35°,故选:A.3.(3分)下列不是方程2+3y=13解的是()A.B.C.D.【解答】解:A、当=2、y=3时,左边=2×2+3×3=13=右边,是方程的解;B、当=﹣1、y=5时,左边=2×(﹣1)+3×5=13=右边,是方程的解;C、当=﹣5、y=1时,左边=2×(﹣5)+3×1=﹣7≠右边,不是方程的解;D、当=8、y=﹣1时,左边=2×8+3×(﹣1)=13=右边,是方程的解;故选:C.4.(3分)下列各点中,在如图所示阴影区域内的是()A.(3,5)B.(﹣3,2)C.(2,﹣3)D.(﹣3,5)【解答】解:A、(3,5)在第一象限,不在所示区域;B、(﹣3,2)在所示区域;C、(2,﹣3)在第四象限,不在所示区域;D、(﹣3,5)在所示区域上方,不在所示区域;故选:B.5.(3分)根据下列表述,能确定具体位置的是()A.某电影院2排B.大桥南路C.北偏东30°D.东经108°,北纬43°【解答】解:A、某电影院2排,不能确定具体位置,故本选项错误;B、大桥南路,不能确定具体位置,故本选项错误;C、北偏东30°,不能确定具体位置,故本选项错误;D、东经118°,北纬43°,能确定具体位置,故本选项正确.故选:D.6.(3分)与1+最接近的整数是()A.1 B.2 C.3 D.4【解答】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<<2.3.∴3.2<1+<3.3.∴与1+最接近的整数是3.故选:C.7.(3分)下列图象不能反映y是的函数的是()A.B.C.D.【解答】解:A、当取一值时,y有唯一与它对应的值,y是的函数,错误;B、当取一值时,y有唯一与它对应的值,y是的函数,错误;C、当取一值时,y没有唯一与它对应的值,y不是的函数,正确;D、当取一值时,y有唯一与它对应的值,y是的函数,错误;故选:C.8.(3分)已知函数y=(m﹣3)+2,若函数值y随的增大而减小,则m的值不可能是()A.0 B.1 C.2 D.5【解答】解:∵一次函数y=(m﹣3)+2,y随的增大而减小,∴一次函数为减函数,即m﹣3<0,解得:m<3,所以m的值不可能为5,故选:D.9.(3分)某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.八(2)班的成绩集中在中上游 D.两个班的最高分在八(2)班【解答】解:A、∵95>94,∴八(2)班的总分高于八(1)班,不符合题意;B、∵8.4<12,∴八(2)班的成绩比八(1)班稳定,不符合题意;C、∵93<94,∴八(2)班的成绩集中在中上游,不符合题意;D、无法确定两个班的最高分在哪个班,符合题意.故选:D.10.(3分)已知△ABC,AB=5,BC=12,AC=13,点P是AC上一个动点,则线段BP长的最小值是()A. B.5 C.D.12【解答】解:∵AB=5,BC=12,AC=13,∴AB2+BC2=169=AC2,∴△ABC是直角三角形,当BP⊥AC时,BP最小,∴线段BP长的最小值是:13•BP=5×12,解得:BP=.故选:A.二、填空题(本大题有6小题,每小题2分,共12分.请将答案填入答题卡的相应位置)11.(2分)小亮上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9.这组数据的中位数是9小时.【解答】解:将数据从小到大重新排列为7、8、9、9、9、10、10,则这组数据的中位数为9小时,故答案为:9小时.12.(2分)4的立方根是.【解答】解:4的立方根是,故答案为:.13.(2分)如图所示,数轴上点A所表示的数为a,则a的值是﹣.【解答】解:由图可得,a=﹣,故答案为:﹣.14.(2分)把命题“直角三角形的两个锐角互余”改写成“如果…,那么…”的形式为如果一个三角形是直角三角形,那么它的两个锐角互余.【解答】解:如果一个三角形是直角三角形,那么它的两个锐角互余.15.(2分)已知函数y=+b的部分函数值如表所示,则关于的方程+b+3=0的解是=2 .…﹣2﹣101…y…531﹣1…【解答】解:∵当=0时,y=1,当=1,y=﹣1,∴,解得:,∴y=﹣2+1,当y=﹣3时,﹣2+1=﹣3,解得:=2,故关于的方程+b+3=0的解是=2,故答案为:=2.16.(2分)小明将4个全等的直角三角形拼成如图所示的五边形,添加适当的辅助线后,用等面积法建立等式证明勾股定理.小明在证题中用两种方法表示五边形的面积,分别是S=1 = a2+b2+ab .c2+ab ,S2【解答】解:如图所示:S=c2+ab×2=c2+ab,1=a2+b2+ab×2=a2+b2+ab.S2故答案为:c2+ab,a2+b2+ab.三、解答题(本大题有8小题,共58分.请在答题卡的相应位置作答)17.(12分)计算:(1)|﹣1|﹣+()﹣2;(2)+×;(3)﹣2.【解答】解:(1)原式=﹣1﹣3+9=8﹣2;(2)原式=+=+2=;(3)原式=﹣﹣2=4﹣2﹣2=0.18.(5分)解方程组:【解答】解:,①×2+②,得:7=14,解得:=2,将=2代入①,得:4﹣y=3,解得:y=1,则方程组的解为.19.(5分)已知:如图,∠DCE=∠E,∠B=∠D.求证:AD∥BC.【解答】证明:∵∠DCE=∠E,∴DC∥BE,∴∠D=∠DAE,又∵∠B=∠D,∴∠B=∠DAE,∴AD∥BC.20.(6分)如图,已知等腰△AOB,AO=AB=5,OB=6.以O为原点,以OB边所在的直线为轴,以垂直于OB的直线为y轴建立平面直角坐标系.(1)求点A的坐标;(2)若点A关于y轴的对称点为M,点N的横、纵坐标之和等于点A的横坐标,请在图中画出一个满足条件的△AMN,并直接在图上标出点M,N的坐标.【解答】解:(1)作AH⊥OB于H,∵AO=AB,∴OH=HB=3,在Rt△AOH中,AH==4,∴A(3,4).(2)如图M(﹣3,4),N(3,0),△AMN即为所求.21.(6分)某班为准备半期考表彰的奖品,计划从友谊超市购买笔记本和水笔共40件.在获知某网店有“双十一”促销活动后,决定从该网店购买这些奖品.已知笔记本和水笔在这两家商店的零售价分别如下表,且在友谊超市购买这些奖品需花费90元.求从网店购买这些奖品可节省多少元.品名商店笔记本(元/件)水笔(元/件)友谊超市 2.42网店2 1.8【解答】解:设购买笔记本件,购买水笔y件,依题意有,解得,2×25+1.8×15=50+27=77(元),90﹣77=13(元).答:从网店购买这些奖品可节省13元.22.(7分)某射击队为了解运动员的年龄情况,作了一次年龄调查,根据射击运动员的年龄(单位:岁),绘制出如下的统计图.(1)你能利用该统计图求出平均数、众数和中位数中的哪些统计量?并直接写出结果;(2)小颖认为,若从该射击队中任意挑选四名队员,则必有一名队员的年龄是15岁.你认为她的判断正确吗?为什么?(3)小亮认为,可用该统计图求出方差.你认同他的看法吗?若认同,请求出方差;若不认同,请说明理由.【解答】解:(1)平均数==15,众数为14,中位数为15;(2)判断错误.可能抽到13岁,14岁,16岁,17岁;(3)可以.设有n个运动员,则S2=•[10%•n(13﹣15)2+30%•n(14﹣15)2+25%•n•(15﹣15)2+20%•n•(16﹣15)2+15%•n(17﹣15)2]=1.5.23.(8分)某化妆品销售公司每月收益y万元与销售量万件的函数关系如图所示.(收益=销售利润﹣固定开支)(1)写出图中点A与点B的实际意义;(2)求y与的函数表达式;(3)已知目前公司每月略有亏损,为了让公司扭亏为盈,经理决定将每件产品的销售单价提高2元,请在图中画出提价后y与函数关系的图象,并直接写出该函数的表达式.(要标出确定函数图象时所描的点的坐标)【解答】解:(1)点A表示固定开支为20万元,点B表示当销售量为5万件时,利润为0万元;(2)设y=+b,把A(0,﹣20),B(5,0)代入得到,解得,∴y=4﹣20.(3)由题意=5时,y=10,设y=′+b′,则有,解得,∴y=6﹣20,函数图象如图所示:24.(9分)在平面直角坐标系中,长方形OABC的边OC,OA分别在轴和y轴上,点B的坐标是(5,3),直线y=2+b与轴交于点E,与线段AB交于点F.(1)用含b的代数式表示点E,F的坐标;(2)当b为何值时,△OFC是等腰三角形;(3)当FC平分∠EFB时,求点F的坐标.【解答】解:(1)∵四边形OABC是矩形,∴BF∥OC,∵B(5,3),∴点F的纵坐标为3,∴3=2+b,∴=,∴F(,3),对于直线y=2+b,令y=0,得到=﹣,∴E(﹣,0).(2)①当FO=FC时,OF=AB=,∴=,∴b=﹣2.②当OF=OC时,AF==4,∴=4,∴b=﹣5.③当CF=OC时,FB=4,AF=1,∴=1,∴b=﹣1.(3)如图,连接CF.∵AB∥OC,CF平分∠EFB,∴∠BFC=∠FCE=∠EFC,∴EF=EC,∴EF2=EC2,∵F(,3),E(﹣,0),∴32+(+)2=(5+)2,∴b=﹣10+3或﹣10﹣3(舍弃).∴F(,3).。