初二数学思维训练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学思维训练1
【知识精读】 1. 几何证明和计算是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:
(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;
(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;
(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
【实战演练】
1、如图,点P 是矩形ABCD 的边AD 的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )
A .125
B .65
C .245
D .不确定
第1题图 3题图
2、已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂
线交ED 于点P .若1AE AP ==, 5PB =.下列结论:
①△APD ≌△AEB ;②点B 到直线AE 的距离为2;
③EB ED ⊥;④16APD APB S S ∆∆+=+;⑤46ABCD S =+正方形.
其中正确结论的序号是( )
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
3、如图,正方形ABCD 的边长是2,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和
AE 上的动点,则DQ+PQ 的最小值为 .
4、如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,
∠BEG>60°,现沿直线EG 将纸片折叠,使点B 落在纸片上的点H 处,连接AH ,则与∠BEG 相等的角的个数为( )
A .4
B .3
C .2
D .1
初二校本课程
2题图 A P E D C B B A G
C D H E (第4题图)
5、如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.
6、如图所示,在正方形ABCD 中,M 是CD 的中点,
E 是CD 上一点,且∠BAE =2∠DAM 。求证:AE =BC +CE 。
第5题图
7、如图①,小明在研究正方形ABCD 的有关问题时,得出:“在正方形ABCD 中,如果点E
是CD 的中点,点F 是BC 边上的一点,且∠FAE =∠EAD ,那么EF ⊥AE ”。他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件不变,发现仍然有“EF ⊥AE ”结论。你同意小明的观点吗?若同意,请结合图④加以证明;若不同意,请说明理由。
M E A B C D A A A A B B B B C C C C D D E D D E E F F F F 图① 图② 图③ 图④