屋顶光伏发电项目设计方案
屋顶分布式光伏电站设计及施工方案三篇
屋顶分布式光伏电站设计及施工方案三篇篇一:屋顶分布式光伏电站设计及施工方案1、项目概况一、项目选址本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32‘之间。
地处黄河冲击平原,地势西南高、东北低。
平均坡降约1/7500,海拔高度27.5-49.0米。
属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。
年干燥度为1.7-1.9。
春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。
年平均气温为13.1℃。
全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。
年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。
全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。
光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。
属于太阳能资源三类可利用地区。
结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素:1、有无遮光的障碍物(包括远期与近期的遮挡)2、大风、冬季的积雪、结冰、雷击等灾害本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。
系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。
房屋周围无高大建筑物,在设计时未对此进行阴影分析。
2、配重结构设计根据最新的建筑结构荷载规范GB5009-20XX中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m。
某某医院屋顶分布式光伏发电项目设计方案
某某医院屋顶分布式光伏发电项目设计方案1. 引言本文档旨在提供某某医院屋顶分布式光伏发电项目的设计方案。
分布式光伏发电是一种利用太阳能将光能转化为电能的技术,通过在医院屋顶安装光伏发电系统,可以为医院提供绿色电力,减少能源消耗和环境污染。
本设计方案将介绍分布式光伏发电系统的选择、安装和运维等方面的内容。
2. 项目背景某某医院位于城市中心,拥有宽阔的屋顶空间。
为了提高医院的能源利用效率,减少对传统能源的依赖,医院计划在屋顶上安装分布式光伏发电系统,以满足部分电力需求。
该项目将有助于医院节约能源成本,降低对环境的影响,同时提升其可持续发展的形象。
3. 设计方案3.1 光伏发电系统选择在选择光伏发电系统时,应考虑医院屋顶的可利用空间、太阳能资源、负载需求和预算限制等因素。
建议选择高效的光伏组件、逆变器和支架系统,以提高系统的发电效率和稳定性。
3.2 安装方案根据医院屋顶的情况,设计合理的光伏组件布局和支架安装方案。
确保光伏组件能够充分吸收阳光,并具备抗风、抗震等能力。
同时,合理安排光伏组件间的间距,以便进行日常维护和清洁。
3.3 电网接入由于医院需要稳定供电,建议将分布式光伏发电系统与电网进行并网连接。
通过与电网的互联,医院可以实现光伏发电与电网电力的混合供电,以应对天气变化和负荷变化所带来的影响。
3.4 运维管理为确保光伏发电系统的正常运行和维护,医院应建立完善的运维管理机制。
定期检查光伏组件、清洁太阳能板面,以确保其发电效果最大化。
另外,制定应急预案,解决可能出现的故障和问题,确保系统的稳定性和可靠性。
4. 预期效益通过实施分布式光伏发电项目,某某医院预计能够达到以下效益:- 减少能源消耗:降低医院对传统电力的需求,节约能源成本。
- 环境友好:减少二氧化碳等温室气体的排放,降低对环境的负面影响。
- 可持续发展:提升医院环保形象,增加社会认可度。
- 经济回报:长期运营下,光伏发电项目可带来经济回报,对医院的发展和运营具有积极影响。
屋顶分布式光伏电站设计及施工方案设计
屋顶分布式光伏电站设计及施工方案设计一、设计方案1.选址分析:在选择屋顶作为光伏电站的位置时,需要考虑以下几个方面:-组件安装的方向:确保组件能够面向太阳以获取最大的太阳辐射。
-屋顶结构的稳定性:确定屋顶能够承受光伏组件的重量,并避免对屋顶结构造成损害。
-遮挡物:确保屋顶上没有大型的遮挡物,如树木或其他建筑物。
2.光伏组件布局:在屋顶上安装光伏组件时,需要考虑以下几个因素:-组件的倾角和朝向:根据所在地的纬度确定组件的倾角,并使其朝向太阳,以获得最佳的光照条件。
-组件之间的间距:确保组件之间有足够的间隔,以避免相互之间的阴影,并提高整个电站的发电效率。
3.逆变器和电池储能系统的选择:逆变器是将直流电转换为交流电的关键设备,而电池储能系统能够存储白天产生的多余能量以供夜间使用。
在选择逆变器和电池储能系统时,需要考虑以下几个因素:-太阳能电池板的输出功率:适配逆变器和电池储能系统的额定功率。
-系统的可靠性和效率:选择可靠性高、效率较高的设备,以提高整个电站的性能。
4.控制和监测系统:为了实现对光伏电站的远程监控和控制,需要安装一套专门的控制和监测系统。
该系统可以监测电站的发电情况、能量产量和设备运行状态,并远程调整电站的工作模式,以提高整体的发电效率。
二、施工方案1.屋顶结构评估:在施工前需要对屋顶的结构进行评估,确保其能够承受光伏组件的重量。
如果屋顶不够稳定,可能需要进行加固或修复工作。
2.组件安装:将太阳能电池板安装在屋顶上,并确保每个组件的倾角和朝向符合设计要求。
安装过程中需要注意安全,使用合适的工具和设备,避免对组件造成损坏。
3.电气连接:将组件连接到逆变器和电池储能系统。
这包括安装电缆和连接器,并确保其安全可靠,避免电气故障和短路。
4.控制和监测系统安装:安装控制和监测系统,确保其正常工作。
这包括安装传感器、数据采集设备和远程控制设备,并配置相应的软件和网络连接。
5.系统调试和测试:在完成安装后,对整个光伏电站进行调试和测试。
屋顶光伏发电项目设计方案
屋顶光伏发电项目设计方案屋顶光伏发电是一种将太阳能转化为电能的可再生能源项目。
它使用太阳能电池板将太阳能转化为直流电,并通过逆变器将其转化为交流电以供居民或企业使用。
下面是一个关于屋顶光伏发电项目设计的方案,包括选址、系统容量、电池板布局、逆变器选择和并网接入等方面。
1.选址:选择阳光充足、无遮挡物的建筑屋顶作为光伏发电系统的安装位置。
此外,还需考虑屋顶的承重能力以及与当地建筑规范的一致性。
2.系统容量:根据用户的电能需求和建筑物的屋顶面积,确定系统的容量。
需要计算建筑物的平均日照时间、平均月度电耗量和预估的未来电耗增长率等因素。
一般来说,一个常见的容量范围是10-100千瓦。
3.电池板布局:在屋顶上进行电池板的布局,应考虑最大化太阳光的吸收。
在选择电池板的布局时,可以采用等角度或人字形布局,以确保电池板在整个白天都能接受到最大的太阳辐射。
4.逆变器选择:逆变器是将直流电转化为交流电的关键设备。
在选择逆变器时,可以考虑其转换效率、负载容量、可靠性以及兼容性等方面。
同时,还需确保逆变器能够适应系统的最大功率输出。
5.并网接入:光伏发电系统通常需要将发电的电能接入公共电网。
在设计中,需考虑并网逆变器和电网之间的互联处,并确保光伏发电系统和电网之间的电压、频率等参数的一致性。
并网接入还需要符合当地政府监管部门的要求。
6.安全考虑:在设计光伏发电系统时,还需充分考虑安全问题。
例如,在电池板布局时,应将电线隐藏在设备或屋顶内,以避免任何损坏或意外触及。
此外,还需确保系统的接地和绝缘等安全措施。
7.维护和运营:设计方案还应考虑系统的维护和运营。
光伏发电系统需要定期检查和维护,以确保其正常运行。
此外,在设计过程中,还可以考虑可追踪设备性能、实时监测和故障诊断等智能化管理系统。
总之,屋顶光伏发电项目的设计方案应综合考虑选址、系统容量、电池板布局、逆变器选择和并网接入等多个方面的因素。
通过科学合理的设计,可以最大程度地利用太阳能资源,为建筑物提供可靠、环保的电能供应。
屋顶光伏发电项目设计方案
屋顶光伏发电项目设计方案一、项目背景光伏发电是利用太阳能将光能转换为电能的一种清洁能源发电方式。
屋顶光伏发电项目是指在建筑物屋顶安装光伏组件,通过光伏发电系统将太阳能转化为电能。
屋顶光伏发电项目具有节省能源、减少碳排放、降低用电成本等优势,已经成为建筑领域中的重要发展方向。
二、项目目标1.实现电力的自给自足:通过屋顶光伏发电系统,满足建筑物内部的电力需求,实现电力的自给自足,减少对传统能源的依赖。
2.减少能源消耗:通过光伏发电系统,将太阳能转化为电能,并应用于建筑内的照明、空调、动力等用电设备,减少传统能源的消耗。
3.降低碳排放:光伏发电是一种清洁能源发电方式,不产生二氧化碳等有害气体,通过屋顶光伏发电项目可以实现碳排放的降低。
三、项目内容1.光伏组件安装:选择适合建筑物屋顶的光伏组件,进行安装。
要根据建筑的朝向、倾角等因素进行合理布置,最大程度上接收太阳辐射能。
2.逆变器安装:安装逆变器将直流发电转化为交流电,以供建筑内部电力设备使用。
3.电网连接:将光伏发电系统与当地电网连接,与电网形成互补供电关系。
当太阳能不足时,可以从电网获取电力;当光伏发电过剩时,可以将多余的电力注入电网。
4.电力储存系统:建立电力储存系统,将光伏发电系统产生的电能储存起来,以备不时之需。
可以选择储能电池、超级电容等电力储存设备。
5.监控系统:安装光伏发电系统监控系统,对系统的发电量、发电效率、故障状态等进行监控,及时发现并解决问题。
6.安全保护措施:为光伏发电系统设置安全保护措施,防止雷击、过压、过流等故障对系统造成损害。
四、项目优势1.节约能源成本:利用太阳能免费发电,减少对电力公司的依赖,降低用电成本。
2.环保减排:光伏发电是一种清洁能源发电方式,不产生污染物和二氧化碳等有害气体,有助于减少环境污染。
3.增加建筑效益:屋顶光伏发电系统可以为建筑物提供额外收益,通过电网与电力公司的互动,产生电费的补贴和销售收入。
4.投资回收周期短:屋顶光伏发电系统具有可再生能源的特点,投资回收周期一般较短,可以在较短时间内实现回本。
3MW屋顶分布式光伏发电项目光伏方阵设计方案
3MW屋顶分布式光伏发电项目光伏方阵设计方案为了满足屋顶分布式光伏发电项目的要求,需要进行光伏方阵的设计。
本文将详细介绍光伏方阵的设计方案,并进行仿真分析以验证其性能。
1.方阵布局设计:光伏方阵的布局设计是关键的一步,需要考虑到屋顶空间的大小、方向、倾角以及日照时间等因素。
首先,根据屋顶空间的大小,确定光伏方阵的数量和大小。
在保证光电转换效率的情况下,尽量利用屋顶的空间,最大限度地安装光伏板,以提高发电量。
其次,根据屋顶的方向和倾角,确定方阵的朝向和角度。
在北半球地区,南向朝向(朝向正南方)最适合光伏发电,倾角一般为纬度的15°~25°。
选取合适的朝向和角度有助于提高光伏发电系统的效率。
最后,根据日照时间确定方阵的间距。
通过合理的间距设置,可以避免光伏板之间的阴影遮挡,保证光的充分照射,提高发电效率。
2.光伏板选择:光伏板是光伏发电系统的核心组成部分,因此选择合适的光伏板非常重要。
首先,需要选择光伏板的类型。
目前市场上常见的光伏板类型有单晶硅、多晶硅和非晶硅等。
根据项目的需求和预算,选择适合的光伏板类型。
其次,需要考虑光伏板的功率和效率。
高功率和高效率的光伏板能够在相同面积的情况下提供更高的发电量,但价格相对较高。
根据项目的预期发电量和预算,选择合适的功率和效率。
最后,需要考虑光伏板的耐候性和可靠性。
由于光伏板需要长期暴露在户外恶劣的环境中,因此需要选择具有良好耐候性和可靠性的光伏板,以确保系统的长期运行稳定性。
3.电气参数设计:光伏方阵的电气参数设计涉及到光伏板的串并联、直流电缆的选择和交流逆变器的选型等。
串并联设计可以根据光伏板的电压和电流特性来确定。
根据需求确定适当的串并联方式,以提高系统的电压和功率。
直流电缆的选择应该考虑电气损耗和安全性。
根据方阵的总功率,选择足够粗的电缆,以降低电线电阻、减少功率损耗。
交流逆变器的选型需要根据方阵的总功率和交流电压来确定。
选择适合的逆变器可以提高系统的效率和可靠性。
屋顶光伏项目计划书免费
屋顶光伏项目计划书免费一、项目概述随着全球环境问题的加剧和能源资源的日益枯竭,新能源的开发和利用已经成为全球范围内的热门话题。
而光伏发电作为一种清洁、可再生的能源形式,正受到越来越多国家和地区的重视和支持。
为推动清洁能源发展,我公司计划在今年启动一个屋顶光伏项目。
该项目将在我公司总部的屋顶上建设光伏电站,通过太阳能的辐射转换为电能,为我公司提供清洁能源,并为我公司节约能源开支。
二、项目背景1.1产业政策支持国家大力推进清洁能源建设,出台了一系列扶持政策,包括对光伏发电的补贴政策,为光伏项目的发展提供了有力支持。
1.2企业需求我公司是一家以电子产品设计和制造为主营业务的企业,每天消耗大量的电能。
而且,由于电力价格的不断上涨,我公司的能源成本每年都在增加。
因此,我公司希望通过建设光伏电站,降低能源成本,实现可持续发展。
1.3可行性分析我公司总部的屋顶面积较大,日照条件良好,非常适合建设光伏电站。
而且,光伏发电技术日趋成熟,投资回收期短,具有很好的经济效益和社会效益。
三、项目目标3.1主要目标(1)建设一座规模适中、技术先进的屋顶光伏电站,实现清洁能源的自给自足。
(2)降低我公司的能源成本,提升公司的竞争力。
(3)减少二氧化碳等温室气体排放,保护环境。
3.2具体指标(1)光伏发电装机容量:100千瓦(2)预计年发电量:120,000千瓦时(3)年发电收入:80万元(4)节约能源支出:50万元四、项目实施方案4.1项目规划(1)选址:我公司总部屋顶(2)建设时间:预计3个月完成(3)投资规模:预计投资100万元4.2项目内容(1)屋顶改造:对我公司总部屋顶进行改造,安装光伏发电设备。
(2)光伏发电设备安装:选用高效的光伏组件和逆变器,确保发电效率和稳定性。
(3)并网调试:完成设备安装后,进行并网调试,确保光伏电站正常运行。
4.3项目进度(1)前期准备阶段:包括选址、设计、采购等工作,预计1个月完成。
(2)建设阶段:包括改造屋顶、安装设备等工作,预计2个月完成。
屋顶光伏项目建设方案
极致体验业务体验简单化、个性化真实再现 、多样化零等待 、丰富沟通体验创造价值
大数据洞察行业商机整合资源 、高效协同 创新业务迅捷交付业务与商业模式创新
全联接世界
建设更美好的全联接世界
敏捷创新
每个人
每个企业
每个组织
0.34
0. 103%
1. 全数字化电站 , eLTE无线宽带传输系统 ,提高数据精度和传输可靠性2. 智能光伏电站管理云平台,提升收益,辅助决策,保障安全,促进融资
通过5点4段的PR值优化体系 , 保障:1. 大型地面电站发电量提升5%2. 山地 、屋顶发电量提升8%以上 3. IRR提升2.75个点(发电量每提升1个百分点 , IRR提升约0 .6个百分点)
无线与有线宽带 , 光纤与IP网络 , 解决海量数据 的安全 、可靠 、低成本传输。
智能传感器 , 移动通信技术解决人与人 、人与物 的通信与联接。
专业服务
光伏储能系统实行平价上工作逻辑: 光伏优先给家庭负载使用,若有剩余 , 连接电动汽车时给汽车充 电 , 未连接汽车时给储能电池充电。充满后可卖电给电网 , 若不允许卖电,也可在手机app上设置不卖电 。晚上 , 储能电池放电给家庭负载使用 。停电 时 , 光伏和电池仅供给离网端负载。
全数字化 高速无线通信网络
集中统一管理 远端无人值守 自动化运维
云计算 , 大数据分析 智能化管理与运维
智能通讯管理机
电站管理子系统
接入子系统
监控子系统
大数据挖掘
智能控制器
端
汇集及升压
管理 ,运营
管
PV子系统
云
电站控制器
屋顶光伏发电设计方案
屋顶光伏发电设计方案屋顶光伏发电是一种利用太阳能进行发电的技术,在屋顶上安装光伏板,将光能转化为电能。
下面是一个屋顶光伏发电的设计方案:1. 根据屋顶的大小和朝向确定光伏板的布局和安装方式。
光伏板的摆放应尽量避免受到阴影的影响,以确保发电效率。
可以使用网格布局或串联布局,根据实际情况进行选择。
2. 选择适当的光伏板类型和品牌。
目前市场上有多种类型的光伏板,如单晶硅、多晶硅和薄膜光伏板等。
根据预算和要求选择合适的光伏板,并选择可靠的品牌以保证质量。
3. 安装支架系统。
支架系统用于固定光伏板和适应不同的屋顶形状和角度。
支架系统应具有良好的稳定性和抗风能力,确保光伏板在恶劣天气条件下的安全性。
4. 安装逆变器和电池储能系统。
逆变器将直流电转换为交流电,供电给室内用电设备。
根据实际需求可以选择单相或三相逆变器。
电池储能系统用于储存多余的电能,以便在夜间或阴天使用。
5. 进行安全检查和防雷保护。
在安装光伏系统之前,应进行必要的安全检查。
确保光伏板和支架系统的稳固性,避免安装过程中的安全隐患。
同时,在设计中考虑防雷保护措施,以防止雷击对光伏系统造成损害。
6. 监控和维护光伏系统。
安装监控系统,实时监测光伏系统的发电量和工作状态。
定期进行系统的检查和维护,保持光伏系统的高效运行。
7. 考虑政府补贴和节能优惠政策。
在设计光伏发电系统时,可以考虑利用政府补贴和节能优惠政策,降低投资成本和提高收益。
综上所述,屋顶光伏发电的设计方案涉及到光伏板的布局、支架系统的选择、逆变器和电池储能系统的安装、安全检查和维护等方面。
通过科学合理的设计,可以充分利用太阳能资源,为屋顶提供可持续的清洁能源。
屋顶光伏发电系统设计方案
屋顶光伏发电系统设计方案
简介
本文档旨在提供一个屋顶光伏发电系统的设计方案。
屋顶光伏发电系统是一种利用太阳能转化为电能的系统,可以为建筑物提供清洁、可再生的能源。
设计要点
1. 太阳能电池板的选取:选择高效率的太阳能电池板,以最大程度地捕捉太阳能并转化为电能。
2. 安装位置的确定:根据屋顶的朝向、倾角和遮挡物情况选择最佳的安装位置,以确保太阳能电池板能够得到充分的日照。
3. 组件的选取:选择适合屋顶光伏发电系统的逆变器、电池组和配电系统等组件,以确保系统的稳定性和安全性。
4. 储能系统的设计:考虑使用储能设备,如电池组,以存储白天产生的太阳能电能,以供夜间或阴天使用。
5. 系统监控与维护:设计一个系统监控与维护的方案,确保屋顶光伏发电系统的正常运行,并及时发现和解决可能出现的问题。
总结
屋顶光伏发电系统设计方案的关键是选择高效率的太阳能电池板、确定最佳安装位置、选取适合的组件和设计储能系统。
此外,系统监控与维护也是确保系统正常运行的重要环节。
屋顶光伏发电系统的使用可以为建筑物提供清洁、可再生的能源,从而减少对传统能源的依赖,降低能源消耗的同时降低环境影响。
以上为屋顶光伏发电系统设计方案的简要介绍。
详细的设计内容和技术细节需要在具体的项目中根据实际情况进行进一步研究和调整。
屋顶光伏电站设计建设方案设计
屋顶光伏电站设计建设方案设计一、项目选址1、屋顶结构和承载能力在选择屋顶作为光伏电站的安装地点时,首先要考虑屋顶的结构和承载能力。
屋顶应具有足够的强度和稳定性,能够承受光伏组件、支架、逆变器等设备的重量。
对于老旧建筑,需要进行结构评估和加固,以确保安全。
2、朝向和倾角屋顶的朝向和倾角对光伏电站的发电效率有很大影响。
理想情况下,屋顶应朝南,倾角应与当地的纬度相近,以获得最大的太阳辐射量。
但在实际情况中,屋顶的朝向和倾角可能受到建筑布局和限制,此时需要通过技术手段进行优化,如采用不同角度的支架或跟踪系统。
3、遮挡情况要确保屋顶周围没有高大的建筑物、树木或其他障碍物遮挡阳光,以免影响光伏组件的发电效率。
在选址时,需要进行详细的现场勘察,测量遮挡物的高度和距离,计算阴影对光伏组件的影响。
4、屋顶面积根据用户的用电需求和光伏系统的功率密度,确定所需的屋顶面积。
一般来说,每千瓦的光伏系统需要约 10 平方米的屋顶面积。
同时,要考虑屋顶的可利用面积,包括通风口、烟囱、水箱等设施所占的空间。
二、系统组成1、光伏组件光伏组件是屋顶光伏电站的核心部件,其性能和质量直接影响发电效率和系统寿命。
目前市场上常见的光伏组件有单晶硅、多晶硅和薄膜等类型。
单晶硅组件效率高,但价格相对较高;多晶硅组件性价比适中;薄膜组件适用于弱光环境和特殊形状的屋顶,但效率较低。
在选择光伏组件时,要综合考虑效率、价格、质量和可靠性等因素。
2、逆变器逆变器将光伏组件产生的直流电转换为交流电,供用户使用或并入电网。
逆变器的性能和稳定性对系统的运行效率和可靠性至关重要。
常见的逆变器类型有集中式逆变器、组串式逆变器和微型逆变器。
集中式逆变器适用于大型电站,组串式逆变器适用于中小规模电站,微型逆变器则适用于分布式电站和对效率要求较高的场合。
3、支架系统支架系统用于支撑和固定光伏组件,确保其在不同的气候条件下保持稳定。
支架的材质有铝合金、不锈钢和镀锌钢等,其形式有固定式、跟踪式和可调式等。
屋顶光伏电站设计建设方案
屋顶光伏电站设计建设方案一、项目背景和目标随着能源需求的不断增长和环境问题的日益凸显,可再生能源的利用变得越来越重要。
光伏能源是目前最常见和广泛应用的可再生能源之一,屋顶光伏电站的建设是推动可再生能源利用的重要方向之一本项目旨在利用屋顶空间,建设一个高效、可持续的光伏电站,为居民和企业提供清洁、可再生的能源。
项目的目标是建设出一个小型光伏电站,通过可再生能源的利用减少对传统能源的依赖,降低能源消耗的成本,同时减少对环境的污染。
二、设计方案1.屋顶选址:选择适合光伏电站建设的屋顶,包括屋面面积大且适合发电板安装的平坦屋面。
考虑到日照条件,在选址过程中将优先考虑朝南或朝西方向的屋顶。
2.光伏组件:选用高效率的光伏组件,如多晶硅和单晶硅组件,并且根据地区日照条件和电站需求进行合理的组件布局。
3.逆变器和电网连接:选用高效、可靠的逆变器,将光伏发电的直流电转换为交流电,并连接到电网中。
同时,配置适当的电网保护装置,确保电站的安全运行。
4.铺设系统:根据屋顶的具体情况进行光伏组件的铺设,采用合适的支架或固定装置,确保组件的稳定安装。
5.电网接入:与当地电力公司沟通,申请合法的电力接入,确保电站的发电量能够正常并入电网。
6.监控系统:安装适当的监控装置,实时监测光伏电站的发电情况,及时检测和解决可能出现的故障,提高系统的可靠性和稳定性。
7.运维管理:建立完善的运维管理体系,包括定期巡检、清洁和维修,以确保电站的长期稳定运行和最优化发电效果。
三、项目收益和可持续性1.节能减排:使用光伏电站发电,减少对传统能源的依赖,减少能源消耗的成本,降低温室气体的排放,达到环保效果。
2.经济效益:利用光伏电站发电,可以节约电费支出,降低能源成本。
在满足电站需求的同时,多余的电量可以卖给电力公司,获取额外收益。
3.社会效益:为当地居民和企业提供清洁、可再生的能源,促进可持续发展,提升社会形象和环境影响力。
四、项目实施计划1.前期准备和规划:确定项目目标和范围,选定屋顶地点,进行可行性分析和资源调查。
屋顶光伏发电项目工程方案
屋顶光伏发电项目工程方案一、项目背景随着我国经济的快速发展和城市化进程的加速,能源需求不断增加,环境问题日益凸显。
应对能源危机和环境污染,推动低碳经济发展已成为当务之急。
屋顶光伏发电作为一种清洁能源,对减少二氧化碳排放、改善空气质量、促进可持续发展起到了重要的作用。
因此,通过在屋顶安装光伏发电系统,不仅可以为企业创造附加值,还可以为环境保护和可持续发展做出贡献。
二、项目概述本项目位于某企业的厂房屋顶,占地约1000平方米。
计划安装光伏发电系统,总装机容量为50kW,项目经过勘察测量,选址条件良好,光照充足,适合光伏发电。
三、项目技术方案1. 系统设计根据项目需求和实际情况,采用分布式光伏并网发电系统。
系统包括组件、支架、逆变器、组串箱、配电柜、计量表计、并网柜、接地装置等组成部分。
选用高效组件和优质逆变器,保证系统的稳定性和发电效率。
2. 安装方式考虑到屋顶面积有限和建筑结构特点,采用固定支架和斜面安装方式,保证光伏组件的安全和稳固。
同时,根据地理位置和气候条件,调整组件的安装角度和方位,最大程度地利用光照资源。
3. 接线方式光伏发电系统的接线方式采用串并联结构,根据屋顶布局和连接距离,采用合理的电缆布线方案,保证系统的安全和稳定性。
在并网点采用专用计量表计和配电柜,进行电能计量和接入电网。
4. 安全保护为了确保系统的安全运行,我们将对系统进行多方面的安全保护措施,包括防雷接地装置、过流保护装置、接地保护装置等,同时配备监控系统,实时监测发电状况,确保系统的稳定性和安全性。
四、项目施工方案1. 施工准备在正式施工之前,我们将进行现场勘察和测量,了解屋顶结构和布局情况,做好安全防护工作,确定施工方案和周边环境保护措施。
2. 设备调试在施工现场准备就绪后,我们将对光伏组件、逆变器等设备进行调试和质检,保证设备的功能完好和正常使用。
3. 安装施工根据设计方案和布置图纸,我们将进行支架和组件的安装,采用专业工具和设备,确保施工质量和安全。
屋顶光伏发电设计方案
屋顶光伏发电设计方案1. 引言随着全球对可再生能源的需求不断增加,人们对屋顶光伏发电系统的兴趣也越来越高。
屋顶光伏发电作为一种清洁、环保且可持续发展的电力来源,被广泛应用于家庭和商业建筑。
本文将介绍一种基于屋顶光伏发电的设计方案,以满足日常用电需求,并实现电力的自给自足。
2. 设计方案概述屋顶光伏发电设计方案的基本原理是利用太阳能通过光伏组件产生电能,并将其转化为可供日常使用的交流电。
该方案主要由以下组成部分构成:•光伏组件:负责将太阳能转化为直流电能。
•逆变器:将直流电能转化为交流电能。
•电池储能系统:用于储存多余的电能,以供夜间或阴天时使用。
•电网连接装置:将多余的电能通过电网供应给其他用户或从电网获得辅助电源。
3. 设计方案详述3.1 光伏组件选择选择合适的光伏组件是整个设计方案中最重要的一步。
在选择光伏组件时应考虑以下几个因素:•效率:高效率的光伏组件可以提供更多的电能输出。
•耐久性:光伏组件需要长期暴露在户外环境中,因此选用耐久性较好的组件可以延长系统的使用寿命。
•面积:屋顶面积有限,因此需要根据实际情况选择面积适中的光伏组件。
3.2 逆变器选择逆变器的作用是将光伏组件输出的直流电能转化为交流电能。
在选择逆变器时应考虑以下几个因素:•输出功率:逆变器的输出功率应与光伏组件的功率相匹配,以保证系统的正常运行。
•效率:高效率的逆变器可以减少能量损失,提高系统的总体效率。
•可靠性:逆变器应具有较好的稳定性和可靠性,以确保系统长期稳定运行。
3.3 电池储能系统设计电池储能系统用于储存光伏组件产生的多余电能,并在夜间或阴天时供电。
在设计电池储能系统时应考虑以下几个因素:•储能容量:根据日常用电需求和光伏组件的输出功率,确定合适的储能容量,以保证系统能够满足全天候的用电需求。
•充放电效率:电池储能系统的充放电效率应尽可能高,以减少能量损失。
•循环寿命:电池储能系统的循环寿命应较长,以降低系统的维护成本。
3MW屋顶分布式光伏发电项目施工组织设计方案
3MW屋顶分布式光伏发电项目施工组织设计方案1.1编制依据(1)现行国家标准、规范、规程;(2)工程文件:包括招标文件、补充通知、答疑纪要;(3)类似工程的设计和施工经验。
1.2编制原则(1)严格遵守国家和当地政府的有关法令、法规及有关规定。
(2)严格执行中华人民共和国国家标准和现行设计、施工规范,安全操作规程及招标文件中的有关规定,切实响应招标文件的要求。
(3)根据工程实际情况,围绕工程重点周密部署,合理安排施工顺序。
(4)采用平行流水及均衡生产组织方法,坚持对工程施工全进程严密监控,运用网络技术控制施工进度,确保工期目标实现。
(5)合理配置生产要素,优化施工平面布置,减少工程消耗,降低生产成本。
(6)严格遵守安全防护规程、安全操作规程,定期组织安全会议,进行安全防护教育,健全安全管理体系,落实安全责任制。
(7)制定施工方案时,首先考虑安全、环境保护措施,注重文明施工,把确保交通畅通、不污染周围环境作为施工组织的前提。
(8)严格执行IS09001质量标准,对施工过程进行有效控制,建立健全工程质量保证体系,完善质量管理制度,建立质量控制流程,抓住关键施工工序,把本标段建成精品工程。
(9)根据当地的水文地质、气象条件及施工工期要求,优化施工组织方案,严格控制施工工艺水平及管理水平,合理配置人、材、机等要素,确保工程的顺利实施。
1.3施工条件1.3.1工程地理位置本项目位于厂房屋顶,厂区内交通环境良好。
1.3.2对外运输交通条件太阳能发电主要运输设备为太阳能电池板和各种建材,无大型设备,因此采用汽车运输,厂址周围道路网能够满足设备运输要求,未来需对进厂道路进行改造,以满足日常交通需求。
1.3.3施工力能供应(1)施工用电:本工程施工用电由业主提供至一级盘,其余由施工单位自行施工。
(2)施工用水:施工期用水由施工单位自行解决。
(3)施工通信:现场施工的通讯用对讲机或手机联络业务,指挥施工。
1.4施工总布置1.4.1施工总平面布置原则根据光伏组件建设投资大、工期紧、建设地点分散、施工场地移动频繁及质量要求高等诸多特点,遵循施工工艺要求和施工规范,保证合理工期,施工总布置需按以下基本原则进行:(1)分区划片,合理交叉的原则由于地面面积较大及场区地形特点,本工程光伏组件布置范围较广,为了达到光伏阵列分批投入运营,将整个现场进行方位分区,合理安排先后的施工期限和顺序,在每个施工分区中,根据施工难易及道路施工情况,需要合理安排工序交叉作业。
屋顶光伏发电项目设计方案
***镇***屋顶光伏发电项目设计方案***有限公司二零一六年八月一、项目简介1、建设地点***办公楼屋顶光伏发电项目位于***市***镇***,省道228公路以西,区位条件优越。
周围无高大建筑,遮挡阳光。
道路四通八达,交通便捷。
2、建设内容和建设规模(1)主要建设内容:屋顶安装84.56KWp光伏发电项目。
(2)建设规模:***办公楼屋顶光伏发电项目,可利用屋顶共三栋建筑,分为1-3号。
1号楼为为地上五层平屋顶建筑,一至五层均为办公用房,2号楼为地上两层平屋顶建筑,均为办公用房,3号楼为地上两层平屋顶建筑,均为办公用房。
***镇***屋顶俯瞰图3、屋顶现状图屋顶现状图屋顶现状图二、气候概况及光照资源1、气候概况位置境域:***位于***,地处河南省最北部、太行山脉东麓,处于河南、山西、河北三省交汇处,东与安阳县、鹤壁市鹤山区、淇滨区接壤,南与辉县市、卫辉市为邻,西与山西省平顺县、壶关县毗连,北隔漳河与河北省涉县相望。
全市总面积2046平方千米,其中山坡、丘陵占86%,耕地76万亩。
市区面积约30平方公里,市区海拔306.8米。
截止2015年,全市总人口105.97万,人口密度每平方公里517.94人,是我国人口密度较高的县级市之一,市区人口近30万。
***市地理位置优越,自古为兵家必争之地,东望大海,西通晋陕,南依中原,北连京畿,乃南下北上、东进西达、三省通衢之要地,人称“金三角”,史书有“卫弃之而弱,晋有之而霸”的记载。
地形地貌:***市境内多山,山地、丘陵占86%。
地势西北高东南低,境内海拔最高处是四方垴(海拔1632米),最低处位于五龙镇东北部(海拔200左右),市区海拔306.8米。
***地处太行山东麓,属于华北地震带,境内断层较多,大多属于正断层。
最大的断层位于***盆地的西部并延长到北部,长35公里,断层面倾向东,倾角50-80度,垂直断距1000米。
此外还有4处较大的断层和众多小断层。
屋顶光伏发电项目设计方案
屋顶光伏发电项目设计方案一、项目概述屋顶光伏发电项目是指将太阳能光电技术应用于屋顶,将太阳能光能转化为电能的一种可再生能源利用项目。
该项目的主要目标是利用建筑物屋顶的空间,通过安装太阳能光伏发电设备,将太阳能光能转化为电能,并将其纳入电网供应或用于建筑内部电力需求的能源供应。
二、项目设计1.选址项目选址应考虑太阳能的接收能力和建筑物结构的稳定性。
通常情况下,选址的主要考虑因素包括建筑物的屋顶承载力、朝向及倾斜角度、遮挡物的存在、附近建筑物的高度和距离等。
2.光伏发电系统设计光伏发电系统设计包括光伏电池组件选型、安装布局、倾角与方向的设计等。
根据选址情况和需求,可以选择单晶硅、多晶硅或薄膜太阳能电池板。
同时,根据屋顶结构和面积,确定合理的光伏电池组件的倾斜角度和面积布局,以最大化太阳能接收。
3.逆变器与电池组设计逆变器是将直流能转化为交流能的关键设备,需要根据光伏电池组件的输出功率来选择合适的逆变器。
同时,为了增加系统的稳定性和可靠性,可以考虑添加电池组来存储多余的电能,以供给高峰期或夜间使用。
4.连接与并网设计光伏发电系统需要与电网进行连接,并将电能输送到电网中。
因此,还需要设计合理的连接方案,并确保与电网的安全接入。
此外,可以添加并网逆变器来实现太阳能电能的直接使用,并将多余的电能反馈到电网中。
5.运行与维护设计为了保证系统的正常运行,并延长设备的使用寿命,需要制定运行与维护计划。
定期的检查、清洁和维修工作可以确保系统的高效运行,并减少故障的可能性。
三、项目实施1.获取许可和审批在项目实施前,需要获得相关政府部门的许可和审批。
这包括土地利用许可、建筑许可、电力接入许可等。
同时,还需要了解和遵守当地的光伏发电政策和标准。
2.设备采购与安装根据项目设计方案,进行设备的采购。
同时,需要雇佣专业施工队伍进行设备的安装,并确保安装过程符合相关标准。
安装完成后,需要进行设备的连接和调试工作。
3.并网接入和调试完成设备安装后,需要与电网进行连接,并进行并网接入和调试工作。
屋顶分布式光伏发电项目设计施工方案
屋顶分布式光伏发电项目设计施工方案1.项目概述本屋顶分布式光伏发电项目旨在利用屋顶空间进行光伏发电,以减少对传统能源的依赖,保护环境,提高能源利用效率。
本项目的设计施工方案将确保光伏组件的稳定安装和项目运行的高效性。
2.工程前期准备阶段在项目启动前,将进行以下准备工作:-按照地形和建筑物特点进行选址和评估,确保阳光照射充足;-进行电力系统检查,确保能够承载光伏发电系统的额外负荷;-完成所有必要的法律手续和申请;-开展项目评估和经济分析,确保项目的可行性。
3.设计阶段在设计阶段,将进行以下工作:-根据选址评估结果和电力系统负荷计算,确定所需的光伏组件容量;-设计光伏组件的布局和安装方式,确保最大化光伏组件的发电潜力;-完成光伏发电系统的电气设计和连线图;-完成并提交所需的工程图纸和设计文件。
4.采购阶段在采购阶段,将进行以下工作:-根据设计文件,评估并选择合适的光伏组件、逆变器和其他设备;-与供应商进行合同谈判和签订,确保设备的质量和售后服务;-进行设备交付和验收。
5.施工阶段在施工阶段,将进行以下工作:-搭建安全工地,并确保施工人员遵守相关安全规定;-根据设计文件和图纸进行光伏组件和逆变器的安装;-安装光伏组件的支架和固定装置;-进行电气线路的连接和测试,并确保系统的可靠性;-安装监控系统和数据采集设备,以实时监测光伏发电系统的运行状态;-完成系统的调试和调整,并进行验收。
6.运维阶段在项目完工后-进行定期的设备巡检和维护,以确保系统的正常运行;-进行数据分析和性能评估,及时发现和解决问题;-定期清洁光伏组件,保持其发电效率;-监控系统运行状态,及时发现故障并进行维修;-定期进行技术培训和更新,以提高项目的管理水平和技术水平。
7.项目总结通过屋顶分布式光伏发电项目的设计施工方案,可以实现对传统能源的减少,保护环境和提高能源利用效率的目标。
本方案将确保光伏组件的稳定安装和项目运行的高效性,为后续的维护和管理提供可靠的基础。
3MW屋顶分布式光伏发电项目电气系统设计方案
3MW屋顶分布式光伏发电项目电气系统设计方案项目概述:在这个3MW屋顶分布式光伏发电项目中,我们的目标是利用屋顶上的太阳能光伏电池板收集太阳能并将其转换为电能。
该电能将供应给当地的电网,并且为该地区的电力需求做出贡献。
电气系统总体设计方案:1.光伏电池板安装:首先,我们将在建筑物的屋顶上安装光伏电池板。
电池板的角度和朝向将根据当地太阳能密度和方向来确定,以最大程度地利用太阳能。
2.电池板电缆布置:电池板将通过电缆与逆变器相连接。
电缆应安装在最优路径上,以最小化电能损失和电缆长度。
我们将使用适当的电缆保护装置来确保电缆的安全运行。
3.逆变器设计:逆变器是将直流电转换为交流电的设备。
我们将选择适当的逆变器,以满足项目的需求。
逆变器应与电网连接,以便将发电系统的电能注入电网中。
4.电缆接线柜设计:电缆接线柜是将不同的电缆连接在一起的设备。
我们将设计一个电缆接线柜,以确保电缆的安全连接,并提供相应的保护和监控。
5.电表和计量设备:为了定期监测和计量发电系统的电能输出,我们将安装电表和计量设备。
这些设备将帮助我们跟踪发电系统的运行情况,并在需要时进行维护和管理。
6.连接到电网:最后,我们将确保发电系统与当地电网连接。
这要求我们遵守当地电力公司的要求和规定,并确保安全地将发电系统的电能注入电网中。
风险评估和安全措施:1.防雷措施:屋顶上的光伏电池板易受雷击侵害。
我们将安装适当的避雷装置,并确保光伏电池板和逆变器以及与之相连的设备都有良好的接地。
2.短路和过载保护:为了防止电缆和设备的短路和过载,我们将在关键位置安装相应的熔断器和保险丝。
这些安全装置将确保系统的稳定性和安全性。
3.火灾预防:发电系统中的电气设备可能会引发火灾。
我们将采取必要的预防措施,例如使用阻燃电线和避免过热和过载。
此外,我们将安装火灾报警器和灭火设备,以及定期进行安全检查和维护。
4.运维和维护计划:为了确保发电系统的可靠性和持续运行,我们将制定一个完善的运维和维护计划。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
***镇***屋顶光伏发电项目设计方案
***有限公司
二零一六年八月
一、项目简介
1、建设地点
***办公楼屋顶光伏发电项目位于***市***镇***,省道228公路以西,区位条件优越。
周围无高大建筑,遮挡阳光。
道路四通八达,交通便捷。
2、建设内容和建设规模
(1)主要建设内容:屋顶安装84.56KWp光伏发电项目。
(2)建设规模:
***办公楼屋顶光伏发电项目,可利用屋顶共三栋建筑,分为1-3号。
1号楼为为地上五层平屋顶建筑,一至五层均为办公用房,2号楼为地上两层平屋顶建筑,均为办公用房,3号楼为地上两层平屋顶建筑,均为办公用房。
***镇***屋顶俯瞰图
3、屋顶现状图
屋顶现状图
屋顶现状图
二、气候概况及光照资源
1、气候概况
位置境域:
***位于***,地处河南省最北部、太行山脉东麓,处于河南、山西、河北三省交汇处,东与安阳县、鹤壁市鹤山区、淇滨区接壤,南与辉县市、卫辉市为邻,西与山西省平顺县、壶关县毗连,北隔漳河与河北省涉县相望。
全市总面积2046平方千米,其中山坡、丘陵占86%,耕地76万亩。
市区面积约30平方公里,市区海拔306.8米。
截止2015年,全市总人口105.97万,人口密度每平方公里517.94人,是我国人口密度较高的县级市之一,市区人口近30万。
***市地理位置优越,自古为兵家必争之地,东望大海,西通晋陕,南依中原,北连京畿,乃南下北上、东进西达、三省通衢之要地,人称“金三角”,史书有“卫弃之而弱,晋有之而霸”的记载。
地形地貌:
***市境内多山,山地、丘陵占86%。
地势西北高东南低,境内海拔最高处是四方垴(海拔1632米),最低处位于五龙镇东北部(海拔200左右),市区海拔306.8米。
***地处太行山东麓,属于华北地震带,境内断层较多,大多属于正断层。
最大的断层位于***盆地的西部并延长到北部,长35公里,断层面倾向东,倾角50-80度,垂直断距1000米。
此外还有4处较大的断层和众多小断层。
***大部广泛分布着石灰岩,多裂隙、溶洞,致使地表水极易散失。
在有隔水层的地方,地下水埋藏较深,开采相当困难。
在太行山东麓,地表被强烈侵蚀,多陡崖、峡谷,造成了太行山与***地面的巨大高差,形成了太行山悬崖峭壁的雄伟画卷。
气候条件:
***属于暖温带大陆性季风气候,四季分明,夏季高温多雨,冬季寒冷干燥。
***年平均气温12.8℃,年降水量672.1mm,年日照时间2251.6小时,平均无霜期192天,最热月(7月)平均温度25.8℃,最冷月(1月)平均温度-2.5℃。
***最大冻土深度42cm,最大降雨量1081.0mm/日,最大积雪厚度180mm。
全年主导风向及频率分别为南风6.6%,东风6.4%,静风40.8%;夏季主导风向及频率分别为南风6.6%,东风5.3%,静风39.6%。
2、光照资源
太阳能资源的分布与各地的纬度、海拔高度、自然地理状况和气候条件有关。
我国属太阳能资源丰富的国家之一,全国总面积2/3 以上地区年日照时数大于2000h,根据中国气象局风能太阳能评估中心推荐的国内太阳能资源地区分类办法。
全国太阳能资源丰富程度等级分布图
根据NASA数据查询得知:
***市地表太阳辐射量:(kWh/m2/day)
**** Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Annual Average
22年平均3.0
2
3.7
5
4.5
5
5.7
2
5.9
7
5.6
4
5.1
2
4.6
8
4.1
1
3.6
6
3.0
8
2.7
4.33
NASA数据查询结果:平均日照小时数为 4.33h,年平均日照小时数为1582.6h,年平均太阳辐射量为5697MJ/m2,是全省光伏资源量最丰富的地区之一,非常适合光伏电站项目建设。
三、屋顶太阳能发电系统设计
1.屋顶情况
1号楼,建筑正面朝向南偏西12度,东西向总长约74m,南北向总长约23m,屋顶可利用总面积约770m2。
屋面有楼梯间、两台太阳能热水器、雨量监测仪等设备,对太阳能的安装均有影响。
2号楼,建筑正面朝向东偏南12度,东西向总长约11m,南北向总长约35m,屋顶总面积约385m2。
屋面没有楼梯间、电梯机房、排烟风机等大型设备遮挡,对太阳能的安装没有影响。
3号楼,建筑正面朝向南偏西12度,东西向总长约33m,南北向总长约8m,屋顶总面积约264m2。
屋面没有楼梯间、电梯机房、排烟风机等大型设备遮挡,对太阳能的安装没有影响。
2.光伏系统设计
考虑各个方面因素,光伏组件安装方式采用固定式倾角安装,角度为30度。
经过计算排布,1号楼合计总排布组件数量为164块,组件规格为:1956*992*50mm、280Wp。
屋顶装机容量约为42.92kWp。
1号楼屋顶光伏组件排布图
2号楼合计总排布组件数量为78块,组件规格为:1956*992*50mm、280Wp。
屋顶装机容量约为21.84kWp。
2号楼屋顶光伏组件排布图
3号楼合计总排布组件数量为60块,组件规格为长*宽*厚1956*992*50mm、
280Wp。
屋顶装机容量约为16.8kWp。
3号楼屋顶光伏组件排布图
整个项目共占用建筑3栋,共计光伏组件数量约为302块,总装机容量约为84.56KWp。
总排布图
光伏发电基本原理,光伏组件经光生伏打效应产生直流电,经汇流箱进入逆变器、直流电转换为交流电,经箱式变压器送入电网或者直接供给建筑内部负载使用。
光伏系统原理图
太阳能光伏发电屋顶安装类似效果图
四、项目设备/工程清单表
序号设备/工程名称型号单位数量备注
1 光伏组件280W 块302
2 光伏支架/ 批配套
3 水泥基础/ 项/
4 光伏专用电缆/ 项配套
5 交流电缆/ 项配套
6 逆变器/ 台 5 组串式逆变 20KW
7 变压器/ 台 1
8 交流汇流箱/ 台 3
9 桥架管线及辅材/ 批 1
10 安装调试/ 项 1
11 监控系统/ 套 1
12 运输/ 项/
五、节能减排分析
装机容量:84.56KWp。
25年平均每年发电量为:9.68万度电;
25年总发电量为:242万度电。
节约能源:
⑴.按一度电能平均消耗334克标煤(按全国6000kW及以上机组发电标准煤耗计算),相当于每年节省标煤约32.33吨。
⑵.每燃烧一吨标煤排放二氧化碳约2.6吨,减少排放二氧化碳约84.06吨。
⑶.每燃烧一吨标煤排放二氧化硫约24公斤,氮氧化物约7公斤计算,
减少排放二氧化硫约0.776吨,氮氧化物约0.226吨,此外,还减少大量粉尘和烟尘排放。
(4).每燃烧一吨标煤排放260公斤煤渣计算,减少排放煤渣8.41吨。
六、经济效益分析
1. 本项目总投资额
本项目总投资额约为67.648万元。
2. 投资效益分析
本项目为84.56KWp晶硅太阳能光伏并网电站项目,由于光伏发电时间与电价峰值段吻合,***地区办公用电的电价为0.56元左右人民币,又根据省***有关文件规定,采用太阳能光伏发电,每发一度电补贴0.42元。
所以,该项目每发一度电大约可回本0.98元,项目平均每年发电量为9.68万度电,即项目每年大约可收益9.49万元人民币。
本项目总投资额约为67.648万元,每年收益大约9.49万元,所以,经测算,项目实施后约7年即可收回投资。
3.利润测算
经上计算,项目实施后约7年左右即可收回投资,所以,项目纯受益时间不小于18年。
11。