2014年高考数学(理)试题分项版解析:专题05 平面向量(分类汇编)Word版含解析

合集下载

2014年高考理科数学试题分类汇编 平面几何选讲 word版含答案

2014年高考理科数学试题分类汇编 平面几何选讲 word版含答案

FEDCBA 2014年高考数学试题汇编 平面几何选讲一.选择题1 (2014天津)如图,ABC D 是圆的内接三角形,BAC Ð的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD平分CBF Ð;②2FB FD FA = ;③AE CE BE DE ? ;④AF BDAB BF ? .则所有正确结论的序号是( )(A )①② (B )③④ (C )①②③ (D )①②④ 【答案】D 【解析】由弦切角定理得FBDEAC BAE ?? ,又BFD AFB ? ,所以BFD D ∽AFB D ,所以BF BDAF AB=,即AF BD AB BF ? ,排除A 、C .又FBD EAC DBC ?? ,排除B .二.填空题1.(2014重庆)过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6=PA ,AC =8,BC =9,则AB =________.【答案】4【解析】.4AB ∴4AB 3,PB ,8B6B 9PB 6∴CA B PA B PC A ΔPCA AB Δ=====+==所以相似,与A P A P P P 2(2014湖北)(选修4-1:几何证明选讲)如图,P 为⊙O 的两条切线,切点分别为B A ,,过PA 的中点Q 作割线交⊙O 于D C ,两点,若,3,1==CD QC 则_____=PB.3 (2014湖南),已知AB,BC是O的两条弦,AO BC⊥,AB=BC=则O的半径等于________.【答案】3 24 (2014陕西)(几何证明选做题)如图,ABC ∆中,6BC =,以BC 为直径的半圆分别交,AB AC 于点,E F ,若2AC AE =,则EF =B.3,2,6∴Δ=∴===ΔEF AE AC BC CBEFAC AE ACB AEF ,且相似与 5. (2014广东)(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则CDF AEF ∆∆的面积的面积=___22:9:,()()9.CDFAEF CDF CD EB AE AEF AE AE∆∆∴∆+===∆答案提示显然的面积的面积三.解答题1. (2014新课标I)(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是⊙O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB=CE .(Ⅰ)证明:∠D=∠E ;(Ⅱ)设AD 不是⊙O 的直径,AD 的中点为M ,且MB=MC ,证明:△ADE 为等边三角形.【解析】:.(Ⅰ) 由题设知得A 、B 、C 、D 四点共圆,所以∠D=∠CBE ,由已知得,∠CBE=∠E , 所以∠D=∠……………5分(Ⅱ)设BCN 中点为,连接MN,则由MB=知M N ⊥所以O 在MN 上,又AD 不是O 的直径,M 为AD 中点,故O M ⊥AD , 即MN ⊥AD ,所以AD//BC,故∠A=∠CBE , 又∠CBE=∠E ,故∠A=∠由(Ⅰ)(1)知∠D=∠E , 所以△ADE 为等边三角形. ……………10分2. (2014新课标II)(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明: (Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB【答案】 (1) 无(2)无(1)EC.BE BE ∠CE ∠BE ∠αBE,∠βαβBE ∠∠DEB ∠PDA ∠∠∠∠∠.AE ∠CE ,∠EB ∠,,,2===+=+∴+===+=+====∠Δ=∴==,所以,即即则连接为等腰三角形。

2014年全国高考理科数学试题选编7.平面向量试题解析

2014年全国高考理科数学试题选编7.平面向量试题解析

2014年全国高考理科数学试题选编七.平面向量试题1.全国课标Ⅰ.15.已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角 为__________.2.(课标全国Ⅱ,3)设向量a ,b满足|+|=a b||-a b ,则a ·b =( ). A .1 B .2 C .3 D .53.(大纲全国.4)若向量a ,b 满足:|a |=1, (a +b )⊥a ,(2a +b )⊥b ,则|b |=( ). A .2 BC .1 D.24. (天津.8)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上, BE =λBC ,DF =μDC .若1AE AF ⋅=,23CE CF ⋅=-,则λ+μ=( ).A .12B .23C .56D .7125.(安徽.10)在平面直角坐标系xOy 中,已知向量 a ,b ,|a |=|b |=1,a ·b =0,点Q 满 足2()OQ =+a b . 曲线C ={|P OP =a cos θ+b sin θ,0≤θ<2π}, 区域{|0||}P r PQ R r R Ω=<≤≤<,.若C ∩Ω为两段分离的曲线,则( ). A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3 D .1<r <3<R6.(理福建8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ). A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)7.(浙江8)记,,max{},,x x y x y y x y ≥⎧⎨<⎩,=,,min{},,y x y x y x x y ≥⎧⎨<⎩,=设a ,b 为平面向量, 则( ).A .min{|a +b|,|a -b|}≤min{|a|,|b|}B .min{|a +b|,|a -b|}≥min{|a|,|b|}C .max{|a +b|2,|a -b|2}≤|a|2+|b|2D .max{|a +b|2,|a -b|2}≥|a|2+|b|2 8.(广东5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ). A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)9.(四川7)平面向量a =(1,2),b =(4,2), c =m a +b (m ∈R ),且c 与a 的夹角等于 c 与b 的夹角,则m =( ). A .-2 B .-1 C .1 D .210.(重庆4)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ). A .92-B .0C .3D .15211.北京.10)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 12.(山东12)在△ABC 中,已知tan AB AC A ⋅=, 13.(陕西13)设π0<<2θ,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=_____. 14.(湖北.11)设向量a =(3,3),b =(1,-1). 若(a +λb )⊥(a -λb ),则实数λ=________. 15.(江西14)已知单位向量e 1与e 2的夹角为α, 且1cos 3a =,向量a =3e 1-2e 2与b =3e 1-e 2 的夹角为β,则cos β=__________.16.(湖南16)在平面直角坐标系中,O 为原点, A (-1,0),B ,C (3,0),动点D满足||1CD =,则||OA OB OD ++的最大 值是__________.17.(理15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是__________(写出所有正确命题的编号). ①S 有5个不同的值②若a ⊥b 则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0 ⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π418.(陕西18满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若PA PB PC ++=0,求||OP ;(2)设OP mAB nAC =+(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.七.平面向量试题解析1.全国课标Ⅰ.15.已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角 为__________. 解析:由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.(课标全国Ⅱ,3)设向量a ,b满足|+|=a b||-a b ,则a ·b =( ). A .1 B .2 C .3 D .5解析:∵|+|=a b (a +b )2=10, 即a 2+b 2+2a ·b =10.①∵||-a b ,∴(a -b )2=6, 即a 2+b 2-2a ·b =6.② 由①②可得a ·b =1.故选A.3.(大纲全国.4)若向量a ,b 满足:|a |=1, (a +b )⊥a ,(2a +b )⊥b ,则|b |=( ). A .2 BC .1 D解析:∵(a +b )⊥a ,|a |=1,∴(a +b )·a =0,∴|a |2+a ·b =0,∴a ·b =-1. 又∵(2a +b )⊥b , ∴(2a +b )·b =0.∴2a ·b +|b |2=0. ∴|b |2=2.∴||b = B.4. (天津.8)已知菱形ABCD 的边长为2, ∠BAD =120°,点E ,F 分别在边BC ,DC 上, BE =λBC ,DF =μDC .若1AE AF ⋅=,23CE CF ⋅=-,则λ+μ=( ).A .12B .23C .56D .712解析:由于菱形边长为2,所以BE =λBC =2λ,DF =μDC =2μ,从而CE =2-2λ,CF =2-2μ.由1AE AF ⋅=,得()()AB BE AD DF +⋅+=AB AD AB DF BE AD BE DF ⋅+⋅+⋅+⋅ =2×2×cos 120°+2·(2μ)+2λ·2+2λ·2μ·cos 120° =-2+4(λ+μ)-2λμ=1,所以4(λ+μ)-2λμ=3.由23CE CF ⋅=-,得 12(22)(22)23λμ⎛⎫-⋅-⋅-=- ⎪⎝⎭,所以23λμλμ-=+,因此有44()2()33λμλμ-+=++,解得56λμ=+,故选C.5.(安徽.10)在平面直角坐标系xOy 中,已知向量a ,b ,|a |=|b |=1,a ·b =0,点Q 满 足2()OQ =+a b .曲线C ={|P OP =a cos θ+b sin θ,0≤θ<2π}, 区域{|0||}P r P Q Rr R Ω=<≤≤<,.若C ∩Ω为两段分离的曲线,则( ). A .1<r <R <3 B .1<r <3≤R C .r ≤1<R <3D .1<r <3<R 解析:由于|a |=|b |=1,a ·b =0,所以|||2()|2OQ =+==a b ,因此点Q 在以原点为圆心,半径等于2的圆上.又|||cos sin |OP θθ==+a b 1=,因此曲线C 是以原点为圆心,半径等于1的圆. 又区域{|0||}P r PQ R r R Ω=<≤≤<,, 所以区域Ω是以点Q 为圆心,半径分别为r 和R 的两个圆之间的圆环,由图形可知,要使曲线C 与该圆环的公共部分是两段分离的曲线, 应有1<r <R <3.6.(理福建8)在下列向量组中,可以把向量a =(3,2)表示出来的是( ). A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)解析:由平面向量基本定理可知,平面内任意一个向量可用平面内两个不共线向量线性表示,A 中e 1=0·e 2,B 中e 1,e 2为两个不共线向量,C 中e 2=2e 1,D 中e 2=-e 1.故选B. 7.(浙江8)记,,max{},,x x y x y y x y ≥⎧⎨<⎩,=,,min{},,y x y x y x x y ≥⎧⎨<⎩,=设a ,b 为平面向量, 则( ).A .min{|a +b|,|a -b|}≤min{|a|,|b|}B .min{|a +b|,|a -b|}≥min{|a|,|b|}C .max{|a +b|2,|a -b|2}≤|a|2+|b|2D .max{|a +b|2,|a -b|2}≥|a|2+|b|2 解析:根据向量运算的几何意义,即三角形法则,可知min{|a +b |,|a -b |}与min{|a |,|b |}的大小关系不确定,故A ,B 选项错误. 当a ,b 中有零向量时,显然max{|a +b |2,|a -b |2}=|a |2+|b |2成立. 由于|a +b |2=|a |2+|b |2+2a ·b=|a |2+|b |2+2|a ||b |cos 〈a ,b 〉,|a -b |2 =|a |2+|b |2-2a ·b =|a |2+|b |2-2|a ||b |cos 〈a ,b 〉, 若a ≠0,b ≠0, 则当0°≤〈a ,b 〉<90°时,显然|a +b |2>|a -b |2,且|a +b |2>|a |2+|b |2; 当〈a ,b 〉=90°时,显然|a +b |2=|a -b |2=|a |2+|b |2; 当90°<〈a ,b 〉≤180°时,显然|a +b |2<|a -b |2,而|a -b |2>|a |2+|b |2.故总有max{|a +b |2,|a -b |2}≥|a |2+|b |2成立. 故选D.8.(广东5)已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ). A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)解析:对于A 中的向量a 1=(-1,1,0),1111cos ||||2⋅===-〈,〉a a a a a a ,a 1与a的夹角为120°,不合题意;对于B 中的向量a 2=(1,-1,0),2221cos ||||2⋅===〈,〉a a a a a a ,a 2与a 的夹角为60°,符合题意;对于C 中的向量a 3=(0,-1,1),3331cos ||||2⋅===-〈,〉a a a a a a ,a 3与a 的夹角为120°,不合题意;对于D 中的向量a 4=(-1,0,1),444cos 1||||⋅===-〈,〉a a a a a a ,a 4与a 的夹角为180°,不合题意,故选B. 9.(四川7)平面向量a =(1,2),b =(4,2), c =m a +b (m ∈R ),且c 与a 的夹角等于 c 与b 的夹角,则m =( ). A .-2 B .-1 C .1 D .2 解析:∵a =(1,2),b =(4,2),∴c =m (1,2)+(4,2)=(m +4,2m +2). 又∵c 与a 的夹角等于c 与b 的夹角, ∴cos 〈c ,a 〉=cos 〈c ,b 〉.∴·||||||||⋅=c a c bc a c b .=解得m =2.10.(重庆4)已知向量a =(k,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( ). A .92-B .0C .3D .152解析:由已知(2a -3b )⊥c ,可得(2a -3b )·c =0, 即(2k -3,-6)·(2,1)=0,展开化简得4k -12=0, 所以k =3,故选C.11.北京.10)已知向量a ,b 满足|a |=1,b =(2,1), 且λa +b =0(λ∈R ),则|λ|=________.解析:|=λa +b =0,得b =-λa ,故|b |=|-λa |=|λ||a |,所以||||||λ===b a 12.(山东12)在△ABC 中,已知tan AB AC A ⋅=,当π6A =时,△ABC 的面积为__________. 解析:由tan AB AC A ⋅=,可得cos tan AB AC A A=.因为π6A =,所以323AB AC ⋅= 即23AB AC =.所以1sin 2ABC S AB AC A ∆=⋅12112326=⨯⨯=. 13.(陕西13)设π0<<2θ,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=_____. 解析:由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ,因为π0<<2θ, 所以cos θ≠0,整理得2sin θ=cos θ. 所以1tan 2θ=. 14.(湖北.11)设向量a =(3,3),b =(1,-1). 若(a +λb )⊥(a -λb ),则实数λ=________. 解析:由题意得(a +λb )·(a -λb )=0, 即a 2-λ2b 2=0,则a 2=λ2b 2.∴22221892λ====a b . ∴λ=±3.15.(江西14)已知单位向量e 1与e 2的夹角为α, 且1cos 3a =,向量a =3e 1-2e 2与b =3e 1-e 2 的夹角为β,则cos β=__________.解析:由已知得cos ||||β⋅=a b a b22∵e 1与e 2是单位向量,其夹角为α,且1cos 3a =,∴|e 1|2=|e 2|2=1,12121||||cos 3a ⋅==e e e e .∴1992cos β-⨯+16.(湖南为原点, A (-1,0),B ,C (3,0),动点D 满足||1CD =,则||OA OB OD ++的最大值是__________.解析:设动点D (x ,y ),则由||1CD =,得(x -3)2+y 2=1,D 点轨迹为以(3,0)为圆心, 半径为1的圆.又=(1,OA OB OD x y ++-,所以||=(OA OB ODx ++-, 故||OA OB OD ++的最大值为点(3,0)与(1,之间的距离与1的和, 11=17.(理15)已知两个不相等的非零向量a ,b ,两组向量x 1,x 2,x 3,x 4,x 5和y 1,y 2,y 3,y 4,y 5均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值.则下列命题正确的是__________(写出所有正确命题的编号). ①S 有5个不同的值②若a ⊥b 则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π4答案:②④解析:S 有3种结果: S 1=a 2+a 2+b 2+b 2+b 2, S 2=a 2+ab +ab +b 2+b 2,S 3=ab +ab +ab +ab +b 2,①错误. ∵S 1-S 2=S 2-S 3 =a 2+b 2-2a ·b ≥a 2+b 2-2|a ||b | =(|a |-|b |)2≥0, ∴S 中最小为S 3.若a ⊥b ,则S min =S 3=b 2与|a |无关,②正确. 若a ∥b ,则S min =S 3=4a ·b +b 2与|b |有关,③错误.若|b |>4|a |,则S min =S 3=4|a ||b |cos θ+b 2>-4|a ||b |+b 2>-|b |2+b 2=0,④正确.若|b |=2|a |,则S min =S 3=8|a |2cos θ+4|a |2=8|a |2, ∴2cos θ=1.∴π3θ=,⑤错误 18.(陕西18满分12分)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上. (1)若PA PB PC ++=0,求||OP ;(2)设OP mAB nAC =+(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.分析:在(1)问中,解法一利用坐标运算,可求得P 点坐标,进而结合向量模的运算,求得||OP .解法二结合向量的几何运算,把已知向量用OA ,OB ,OC 和OP 来表示,进而利用OA ,OB ,OC 把OP 表示出来,即可达到求||OP 的目的.在(2)问中,结合题目要求,借助于向量运算,利用y -x 将m -n 表示出来,从而转化为线性规划问题,画出可行域可得出m -n 的最大值. 解:(1)解法一:∵PA PB PC ++=0, 又PA PB PC ++=(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ), ∴630,630,x y -=⎧⎨-=⎩解得x =2,y =2.即(2,2)OP =,故||22OP =. 解法二:∵PA PB PC ++=0,则()()()OA OP OB OP OC OP -+-+-=0, ∴1()(2,2)3OP OA OB OC =++=,∴||22OP=.(2)∵OP mAB nAC=+,∴(x,y)=(m+2n,2m+n),∴2,2. x m n y m n=+⎧⎨=+⎩两式相减得m-n=y-x,令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.。

2014年高考理科数学解析WORD版(新课标II卷)

2014年高考理科数学解析WORD版(新课标II卷)

2014年普通高等学校招生全国统一考试理科数学(新课标卷Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合0,1,2M ={},2{|320}N x x x =-+≤,则MN =( )A .{1}B .{2}C .{0,1}D .{1,2}【答案】D【曹亚云·解析】直接检验法把0,1,2M ={}中的数,代入不等式2320x x -+≤,经检验1,2x =满足。

2.设复数12,z z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( ) A .5- B .5 C .4i -+ D .4i --【答案】A 【曹亚云·解析】12z i =+,12,z z 在复平面内的对应点关于虚轴对称,22z i ∴=-+。

12415z z ∴=--=-。

3.设向量,a b 满足||10a b +=,||6a b -=,则a b ⋅=( )A .1B .2C .3D .5 【答案】A【曹亚云·解析】由||10a b +=两边平方得,22210a b a b ++⋅=。

由||6a b -=两边平方得,2226a b a b +-⋅=。

联立方程解得,1a b ⋅=。

4.钝角三角形ABC 的面积是12,1AB =,2BC =,则AC =( ) A .5 B . C .2 D .1 【答案】A【曹亚云·解析】因为111sin 21sin 222ABCSac B B ==⨯⨯⨯=,所以2sin 2B =,所以4B π=,或34B π=。

当4B π=时,经计算ABC 为等腰直角三角形,不符合题意,舍去。

所以34B π=,使用余弦定理,得2222cos b a c ac B =+-5=。

5.某地区空气质量监测资料表明,一天的空气质量为优良的概率是075.,连续两天优良的概率是06.,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .08.B .075.C .06.D .045. 【答案】A【曹亚云·解析】设某天的空气质量为优良,则随后一天的空气质量为优良的概率是p 。

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量(平面向量与三角的综合)填空题1.(2014•山东理)若ABC ∆中,已知tan AB AC A =,当6A π=时,ABC ∆的面积为16. 【考点】三角形的面积公式;平面向量数量积的性质及其运算 【分析】由条件利用两个向量的数量积的定义,求得23AB AC =,再根据ABC ∆的面积为1sin 2AB AC A ,计算求得结果. 【解答】解:ABC ∆中,cos tan AB AC AB AC A A ==,∴当6A π=时,有33AB AC=23AB AC =, ABC ∆的面积为11211sin 22326AB AC A =⨯⨯=,故答案为:16. 【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题. 2.(2014•陕西文)设02πθ<<,向量(sin 2,cos )a θθ=,(1,cos )b θ=-,若0a b =,则tan θ=12. 【考点】平面向量数量积的性质及其运算【分析】由条件利用两个向量的数量积公式求得22sin cos cos 0θθθ-=,再利用同角三角函数的基本关系求得tan θ 【解答】解:22sin 2cos 2sin cos cos 0a b θθθθθ=-=-=,02πθ<<,2sin cos 0θθ∴-=,1tan 2θ∴=, 故答案为:12. 【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题. 3.(2014•陕西理)设02πθ<<,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,若//a b ,则tan θ=12. 【考点】平面向量共线(平行)的坐标表示【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出. 【解答】解://a b ,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,2sin 2cos 0θθ∴-=, 22sin cos cos θθθ∴=,02πθ<<,cos 0θ∴≠.2tan 1θ∴=,1tan 2θ∴=. 故答案为:12.4.(2015•江苏)设向量(cos 6k k a π=,sin cos )(066k k k ππ+=,1,2,⋯,12),则110()k k k a a +=∑的值为 【考点】平面向量数量积的性质及其运算;两角和与差的三角函数【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 【解答】解:1(1)(1)(1)cos cos (sin cos )(sin cos )666666k k k k k k k k a a ππππππ++++=+++ (1)(1)(1)(1)(1)coscos sin sin sin cos cos sin cos cos6666666666k k k k k k k k k k ππππππππππ+++++=++++ 21121cossin(cos cos )66266k k ππππ++=+++321121sin cos2626k k ππ++=+, ∴1110357911132313579111323()12(sin sin sin sin sin sin sin sin )(cos cos cos cos cos cos cos cos )66666666266666666kk k aa ππππππππππππππππ+==+++++++⋯+++++++++⋯+∑00=+=故答案为:【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.解答题1.(2014•辽宁文理)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.【考点】平面向量数量积的性质及其运算;两角和与差的三角函数;余弦定理【分析】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值. 【解答】解:(Ⅰ)2BA BC =,1cos 3B =, cos 2c a B ∴=,即6ac =①, 3b =,∴由余弦定理得:2222cos b a c ac B =+-,即2294a c =+-,2213a c ∴+=②,联立①②得:3a =,2c =;(Ⅱ)在ABC ∆中,sin B ===,由正弦定理sin sin b cB C=得:2sin sin 3c C B b === a b c =>,C ∴为锐角,7cos 9C ∴===,则1723cos()cos cos sin sin 393927B C B C B C -=+=⨯+=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.2.(2014•山东理)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =,且()y f x =的图象过点(12π,和点2(3π,2)-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的图象,若()y g x =图象上的最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【考点】平面向量数量积的性质及其运算;正弦函数的单调性;函数sin()y A x ωϕ=+的图象变换【分析】(Ⅰ)由题意可得 函数()sin 2cos2f x m x n x =+,再由()y f x =的图象过点(12π和点2(3π,2)-,解方程组求得m 、n 的值.(Ⅱ)由(Ⅰ)可得()2sin(2)6f x x π=+,根据函数sin()y A x ωϕ=+的图象变换规律求得()2sin(22)6g x x πϕ=++的图象,再由函数()g x 的一个最高点在y 轴上,求得6πϕ=,可得()2c o s 2g x x =.令222k x k πππ-剟,k Z ∈,求得x 的范围,可得()g x 的增区间. 【解答】解:(Ⅰ)由题意可得 函数()sin 2cos 2f x a b m x n x ==+,再由()y f x =的图象过点(12π和点2(3π,2)-,可得12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩.解得m ,1n =.(Ⅱ)由(Ⅰ)可得1()2cos22cos2)2sin(2)26f x x x x x x π+=+=+. 将()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()2sin[2()]2sin(22)66g x x x ππϕϕ=++=++的图象,显然函数()g x 最高点的纵坐标为2.()y g x =图象上各最高点到点(0,3)的距离的最小值为1,故函数()g x 的一个最高点在y 轴上, 2262k ππϕπ∴+=+,k Z ∈,结合0ϕπ<<,可得6πϕ=,故()2sin(2)2cos22g x x x π=+=.令222k x k πππ-剟,k Z ∈,求得2k x k πππ-剟,故()y g x =的单调递增区间是[2k ππ-,]k π,k Z ∈.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题. 3.(2015•广东理)在平面直角坐标系xOy 中,已知向量2(m =,,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【考点】平面向量数量积的性质及其运算;数量积表示两个向量的夹角 【分析】(1)若m n ⊥,则0m n =,结合三角函数的关系式即可求tan x 的值; (2)若m 与n 的夹角为3π,利用向量的数量积的坐标公式进行求解即可求x 的值. 【解答】解:(1)若m n ⊥, 则2(2m n=,(sin x,cos )0x x x ==,x x = sin cos x x =,即tan 1x =;(2)2||()12m ==,2||sin 1n x =,2(2m n =,(sin x ,cos )x x x =, ∴若m 与n 的夹角为3π,则1||||cos 32m n m n π==,即1222x x -=, 则1sin()42x π-=,(0,)2x π∈. (44x ππ∴-∈-,)4π. 则46x ππ-=即54612x πππ=+=. 【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础. 4.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【考点】平面向量数量积的性质及其运算;三角函数中的恒等变换应用【分析】(1)根据向量的平行即可得到tan x =,问题得以解决, (2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题。

三年高考(2014-2016)数学(理)试题分项版解析 专题05平面向量解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析 专题05平面向量解析版 Word版含解析

三年高考(2014-2016)数学(理)试题分项版解析第五章 平面向量一、选择题1. 【2014,安徽理10】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q满足)OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤ ,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω 为两段分离的曲线,则( )A .13r R <<<B .13r R <<≤C .13r R ≤<<D .13r R <<< 【答案】A .考点:1.平面向量的应用;2.线性规划.【名师点睛】对于平面向量应用性问题,常常要利用向量的坐标运算,当题中出现明显的垂直和特征长度特征,优先考虑建立平面直角坐标系,用图形表示出要题中给定的条件,再利用几何意义进行求解.尤其要与平面几何结合考虑.2.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅=(D )()4C a b +⊥B【答案】D【考点定位】1.平面向量的线性运算;2.平面向量的数量积.【名师点睛】平面向量问题中,向量的线性运算和数量积是高频考点.当出现线性运算问题时,注意两个向量的差OA OB BA -= ,这是一个易错点,两个向量的和2OA OB OD+=(D 点是AB 的中点).另外,要选好基底向量,如本题就要灵活使用向量,AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几何意义等.3. 【2016高考山东理数】已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4(B )–4(C )94(D )–94【答案】B 【解析】试题分析:由43m n = ,可设3,4(0)m k n k k ==>,又()n tm n ⊥+ ,所以22221()cos ,34(4)41603n tm n n tm n n t m n m n n t k k k tk k ⋅+=⋅+⋅=⋅<>+=⨯⨯⨯+=+= 所以4t =-,故选B. 考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()n tm n ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.4. 【2016高考新课标2理数】已知向量(1,)(3,2)a m a =- ,=,且()a b b ⊥+,则m =( ) (A )-8 (B )-6 (C )6 (D )8 【答案】D 【解析】试题分析:向量a b (4,m 2)+=- ,由(a b )b +⊥ 得43(m 2)(2)0⨯+-⨯-=,解得m 8=,故选D.考点: 平面向量的坐标运算、数量积.【名师点睛】已知非零向量a =(x 1,y 1),b =(x 2,y 2):5.【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅=( ) (A )232a - (B )234a - (C ) 234a (D ) 232a【答案】D 【解析】因为()B DC D B D B ⋅=⋅=+⋅()22223c o s 2BA B C +⋅=+故选D.【考点定位】平面向量的线性运算与数量积.【名师点睛】本题考查了平面向量的基础知识,重点考查学生对平面向量的线性运算和数量积的理解与掌握,属基础题,要注意结合图形的性质,灵活运用向量的运算解决问题.6. 【2015高考陕西,理7】对任意向量,a b,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【考点定位】1、向量的模;2、向量的数量积.【名师点晴】本题主要考查的是向量的模和向量的数量积,属于容易题.解题时一定要抓住重要字眼“不”,否则很容易出现错误.解本题需要掌握的知识点是向量的模和向量的数量积,即cos ,a b a b a b ⋅=,22a a = .7.【2014新课标,理3】设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 5 【答案】A 【解析】因为22||()a b a b +=+=r u r r r 222a b a b++⋅r r r r =10,22||()a b a b -=-=r u r r r 2226a b a b +-⋅=r r r r ,两式相加得:228a b +=r r ,所以1a b ⋅=r r ,故选A.【考点定位】向量的数量积.【名师点睛】本题主要考查了向量数量积运算,本题属于基础题,解决本题的关健在于掌握向量的模与向量数量积之间的关系,还有就是熟练掌握数量积的运算性质与运算律.8. 【2014四川,理7】平面向量(1,2)a = ,(4,2)b =,c ma b =+ (m R ∈),且c 与a的夹角等于c 与b的夹角,则m =( )A .2-B .1-C .1D .2 【答案】 D.【考点定位】向量的夹角及向量的坐标运算.【名师点睛】本题考查两向量的夹角,涉及到向量的模,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.9. 【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB = ,4AD =.若点M ,N 满足3BM MC = ,2DN NC = ,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯= ,选C.【考点定位】平面向量.【名师点睛】涉及图形的向量运算问题,一般应选两个向量作为基底,选基底的原则是这两个向量有尽量多的已知元素.本题中,由于6AB = ,4AD = 故可选,AB AD作为基底.10. 【2015高考新课标1,理7】设D 为ABC ∆所在平面内一点3BC CD =,则( )(A )1433AD AB AC =-+(B)1433AD AB AC =-(C )4133AD AB AC =+ (D)4133AD AB AC =-【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-= =1433AB AC -+,故选A.【考点定位】平面向量的线性运算【名师点睛】本题以三角形为载体考查了平面向量的加法、减法及实数与向量的积的法则与运算性质,是基础题,解答本题的关键是结合图形会利用向量加法将向量AD表示为AC CD + ,再用已知条件和向量减法将CD 用,AB AC表示出来.11. 【2016高考新课标3理数】已知向量1(2BA =uu v ,1)2BC =uu u v,则ABC ∠=( )(A)30︒ (B)45︒ (C)60︒ (D)120︒ 【答案】A 【解析】试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有|a ·cos a ba bθ=,·0a b a b ⇔⊥ =,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.12. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将 a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有有效的方法.13. 【2016年高考北京理数】设a ,b 是向量,则“||||a b = ”是“||||a b a b +=-”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 【答案】D 【解析】试题分析:由22||||()()0a b a b a b a b a b a b +=-⇔+=-⇔⋅=⇔⊥,故是既不充分也不必要条件,故选D.考点:1.充分必要条件;2.平面向量数量积.【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.14. 【2014高考重庆理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥ ,则实数k =( )9.2A -.0B .C 3 D.152【答案】C考点:1、平面向量的坐标运算;2、平面向量的数量积.【名师点睛】本题考查了向量的坐标运算,向量的数量积,向量垂直的条件,属于基础题,利用向量垂直的条件的坐标条件可将两向量垂直的条件转化为所求实数k 的方程,解之即得结果.15. 【2015高考重庆,理6】若非零向量a ,b 满足|a |=3|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为 ( ) A 、4π B 、2π C 、34πD 、π【答案】A【解析】由题意22()(32)320a b a b a a b b -⋅+=-⋅-= ,即223cos 20a a b b θ--= ,所以23(2033θ⨯--=,cos 2θ=,4πθ=,选A . 【考点定位】向量的夹角.【名师点晴】本题考查两向量的夹角,涉及到向量的模,向量的垂直,向量的数量积等知识,体现了数学问题的综合性,考查学生运算求解能力,综合运用能力.16. 【2014高考广东卷.理.5】已知向量()1,0,1a =- ,则下列向量中与a 成60的是( )A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1- 【答案】B【考点定位】本题考查空间向量数量积与空间向量的坐标运算,属于基础题.【名师点晴】本题主要考查的是空间向量数量积的坐标运算,属于中等题.解题时要抓住关键字眼“成60”,否则很容易出现错误.解本题需要掌握的知识点是空间向量数量积的坐标运算,即若()111,,a x y z =,()222,,b x y z = ,则cos ,a b =.17.【2014天津,理8】已知菱形ABCD 的边长为2,120BAD? ,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF?,23CE CF?-,则l m += ( ) (A )12 (B )23 (C )56 (D )712【答案】C . 【解析】试题分析:cos 120,120 2.AB ADAB AD BE BC BAD l ?鬃==Ð-=\,()(),.1,1AE AB AD AF AB AD AE AFAB AD ABADl m l m \=+=+?\+?=,即3222l m l m +-=①,同理可得23l m l m --=-②,①+②得56l m +=,故选C . 考点:1.平面向量共线充要条件;2.向量的数量积运算.【名师点睛】本题考查平面向量的有关知识及及向量运算,运用向量的加法、减法正确表示向量,利用向量的数量积求值,本题属于基础题.解决向量问题有两种方法,第一种是本题的做法,借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助模运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.18. 【2016高考天津理数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BCAB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.19. 【2014上海,理16】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,,...)2,1(=i P i 是上底面上其余的八个点,则...)2,1(=⋅→→i AP AB i 的不同值的个数为( )(A )1 (B)2 (C)4 (D)8 【答案】A【解析】如图,AB 与上底面垂直,因此i AB BP ⊥(1,2,)i = ,cos 1i i i AB AP AB AP BAP AB AB ⋅=∠=⋅=.【考点】数量积的定义与几何意义. 【名师点睛】向量数量积的两种运算方法(1)当已知向量的模和夹角时,可利用定义法求解,即a ·b =|a ||b |cos <a ,b> .(2)当已知向量的坐标时,可利用坐标法求解,即若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.运用两向量的数量积可解决长度、夹角、垂直等问题,解题时应灵活选择相应公式求解.20. 【2014上海,理17】已知),(111b a P 与),(222b a P 是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( )(A )无论k ,21,P P 如何,总是无解 (B)无论k ,21,P P 如何,总有唯一解 (C )存在k ,21,P P ,使之恰有两解 (D )存在k ,21,P P ,使之有无穷多解 【答案】B【解析】由题意,直线1y kx =+一定不过原点O ,,P Q 是直线1y kx =+上不同的两点,则OP 与OQ 不平行,因此12210a b a b -≠,所以二元一次方程组112211a xb y a x b y +=⎧⎨+=⎩一定有唯一解.【考点】向量的平行与二元一次方程组的解.【名师点睛】可以通过系数之比来判断二元一次方程组的解的情况,如下列关于x,y 的二元一次方程组:ax by cdx ey f +=⎧⎨+=⎩,当a/d≠b/e 时,该方程组有一组解。

专题05.平面向量(2005—2014十年高考理科数学新课标2教师版)

专题05.平面向量(2005—2014十年高考理科数学新课标2教师版)

※知识点※1 等量代换
所以 CD b 2CD a , 所以 CD (b 2a) 0
※知识点※1 去分母 ※知识点※1 移项;2 提取公因式
1 2 1 2 2 2 2 4 1 2 A 选项 因为 CD a b ,所以 ( a b) (b 2a) 0 a b a b b a 0 3 3 3 3 3 3 3 3
C
4 AD AB 5
4 (CB CA) 5 4 4 a b 5 5
A
※知识点※1 共线定理
D
B
※知识点※1 向量的减法;2 向量的分解
二.能力题组 1 【2014 新课标,理 3】设向量 a, b 满足 | a b | 10 , | a b | 6 ,则 a b ( A1 【答案】A 【曹亚云·解析】 | a b | 10 a 2a b b 10 ,※知识点※1 模长公式;2 完全平方和公式
CD a , | CD |
,剩余部分读者自行解答 ,剩余部分读者自行解答 ,剩余部分读者自行解答
CD b CD CB CD CA , cos CD, CB 2 | CD | | CD | | CB | | CD | | CA |

※Байду номын сангаас识点※1 夹角公式
所以
CD b CD a , 2 | CD | | CD |
| b | 2 ,则 CD (

1 2 (A) a b 3 3 【答案】B;
2 1 (B) a b 3 3
3 4 (C) a b 5 5
4 3 (D) a b 5 5
第1页
共5页
【曹亚云·解析 1】特例法(特殊图形法) 在 Rt ABC 中,设 | a | 1 , | b | 2 , B 90 ,则 C 60 , AB 3 在 Rt CBD 中, BD BC tan 30

2014年高考数学(理)试题分项版解析:专题05 平面向量(分类汇编)Word版含解析

2014年高考数学(理)试题分项版解析:专题05 平面向量(分类汇编)Word版含解析

1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e2. 【2014高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( )A.()1,1,0-B. ()1,1,0-C.()0,1,1-D.()1,0,1-3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足CD =1,则OA OB OD ++的最大值是_________.【答案】1【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .5. 【2014陕西高考理第13题】设20πθ<<,向量()()1cos cos 2sin ,,,θθθb a =,若b a //,则=θtan _______.6. 【2014高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.若C Ω为两段分离的曲线,则( )A. 13r R <<<B.13r R <<≤C.13r R ≤<<D.13r R <<<考点:1.平面向量的应用;2.线性规划. 7. 【2014高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则||λ= .8. 【2014高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()a b a b λλ+⊥-,则实数λ= .【答案】3±10. 【2014江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .11. 【2014辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()AC AB AO +=21,则与的夹角为_______.【考点定位】1、平面向量基本定理;2、圆的性质.13. 【2014全国2高考理第3题】设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 514. 【2014高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号).①S 有5个不同的值.②若,b a ⊥则min S .③若,∥则min S 无关.>,则0min >S .⑤若2min ||2||,8||b a S a ==,则与的夹角为4π2222min 34()8||cos 4||8||S S a b b a a a θ==⋅+=+=,∴2cos 1θ=,∴3πθ=,故⑤错误.所以正确的编号为②④.考点:1.平面向量的运算;2.平面向量的数量积.15. 【2014四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .2-B .1-C .1D .216. 【2014浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+17. 【2014重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( ) 9.2A - .0B .C 3 D.15218. 【2014天津高考理第8题】已知菱形ABCD 的边长为2,120BAD ?,点,E F 分别在边,BC DC 上,BE BC l =,DF DC m =.若1AE AF ?,23CE CF ?-,则l m += ( )(A )12 (B )23 (C )56 (D )71219. 【2014大纲高考理第4题】若向量,a b 满足:()()1,,2,a a b a a b b =+⊥+⊥则b = ( )A .2BC .1D .2。

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量2(平面向量与三角的综合)带详细答案

2014-2019年高考数学真题分类汇编专题5:向量(平面向量与三角的综合)填空题1.(2014•山东理)若ABC ∆中,已知tan AB AC A =,当6A π=时,ABC ∆的面积为16. 【考点】三角形的面积公式;平面向量数量积的性质及其运算 【分析】由条件利用两个向量的数量积的定义,求得23AB AC =,再根据ABC ∆的面积为1sin 2AB AC A ,计算求得结果. 【解答】解:ABC ∆中,cos tan AB AC AB AC A A ==,∴当6A π=时,有33AB AC=23AB AC =, ABC ∆的面积为11211sin 22326AB AC A =⨯⨯=,故答案为:16. 【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题. 2.(2014•陕西文)设02πθ<<,向量(sin 2,cos )a θθ=,(1,cos )b θ=-,若0a b =,则tan θ=12. 【考点】平面向量数量积的性质及其运算【分析】由条件利用两个向量的数量积公式求得22sin cos cos 0θθθ-=,再利用同角三角函数的基本关系求得tan θ 【解答】解:22sin 2cos 2sin cos cos 0a b θθθθθ=-=-=,02πθ<<,2sin cos 0θθ∴-=,1tan 2θ∴=, 故答案为:12. 【点评】本题主要考查两个向量的数量积公式,同角三角函数的基本关系,属于基础题. 3.(2014•陕西理)设02πθ<<,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,若//a b ,则tan θ=12. 【考点】平面向量共线(平行)的坐标表示【分析】利用向量共线定理、倍角公式、同角三角函数基本关系式即可得出. 【解答】解://a b ,向量(sin 2,cos )a θθ=,(cos ,1)b θ=,2sin 2cos 0θθ∴-=, 22sin cos cos θθθ∴=,02πθ<<,cos 0θ∴≠.2tan 1θ∴=,1tan 2θ∴=. 故答案为:12.4.(2015•江苏)设向量(cos 6k k a π=,sin cos )(066k k k ππ+=,1,2,⋯,12),则110()k k k a a +=∑的值为 【考点】平面向量数量积的性质及其运算;两角和与差的三角函数【分析】利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出. 【解答】解:1(1)(1)(1)cos cos (sin cos )(sin cos )666666k k k k k k k k a a ππππππ++++=+++ (1)(1)(1)(1)(1)coscos sin sin sin cos cos sin cos cos6666666666k k k k k k k k k k ππππππππππ+++++=++++ 21121cossin(cos cos )66266k k ππππ++=+++321121sin cos2626k k ππ++=+, ∴1110357911132313579111323()12(sin sin sin sin sin sin sin sin )(cos cos cos cos cos cos cos cos )66666666266666666kk k aa ππππππππππππππππ+==+++++++⋯+++++++++⋯+∑00=+=故答案为:【点评】本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.解答题1.(2014•辽宁文理)在ABC ∆中,内角A 、B 、C 的对边分别为a ,b ,c ,且a c >,已知2BA BC =,1cos 3B =,3b =,求: (Ⅰ)a 和c 的值; (Ⅱ)cos()B C -的值.【考点】平面向量数量积的性质及其运算;两角和与差的三角函数;余弦定理【分析】(Ⅰ)利用平面向量的数量积运算法则化简2BA BC =,将cos B 的值代入求出6ac =,再利用余弦定理列出关系式,将b ,cos B 以及ac 的值代入得到2213a c +=,联立即可求出ac 的值;(Ⅱ)由cos B 的值,利用同角三角函数间基本关系求出sin B 的值,由c ,b ,sin B ,利用正弦定理求出sin C 的值,进而求出cos C 的值,原式利用两角和与差的余弦函数公式化简后,将各自的值代入计算即可求出值. 【解答】解:(Ⅰ)2BA BC =,1cos 3B =, cos 2c a B ∴=,即6ac =①, 3b =,∴由余弦定理得:2222cos b a c ac B =+-,即2294a c =+-,2213a c ∴+=②,联立①②得:3a =,2c =;(Ⅱ)在ABC ∆中,sin B ===,由正弦定理sin sin b cB C=得:2sin sin 3c C B b === a b c =>,C ∴为锐角,7cos 9C ∴===,则1723cos()cos cos sin sin 393927B C B C B C -=+=⨯+=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.2.(2014•山东理)已知向量(,cos2)a m x =,(sin 2,)b x n =,函数()f x a b =,且()y f x =的图象过点(12π,和点2(3π,2)-. (Ⅰ)求m ,n 的值;(Ⅱ)将()y f x =的图象向左平移(0)ϕϕπ<<个单位后得到函数()y g x =的图象,若()y g x =图象上的最高点到点(0,3)的距离的最小值为1,求()y g x =的单调递增区间.【考点】平面向量数量积的性质及其运算;正弦函数的单调性;函数sin()y A x ωϕ=+的图象变换【分析】(Ⅰ)由题意可得 函数()sin 2cos2f x m x n x =+,再由()y f x =的图象过点(12π和点2(3π,2)-,解方程组求得m 、n 的值.(Ⅱ)由(Ⅰ)可得()2sin(2)6f x x π=+,根据函数sin()y A x ωϕ=+的图象变换规律求得()2sin(22)6g x x πϕ=++的图象,再由函数()g x 的一个最高点在y 轴上,求得6πϕ=,可得()2c o s 2g x x =.令222k x k πππ-剟,k Z ∈,求得x 的范围,可得()g x 的增区间. 【解答】解:(Ⅰ)由题意可得 函数()sin 2cos 2f x a b m x n x ==+,再由()y f x =的图象过点(12π和点2(3π,2)-,可得12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩.解得m ,1n =.(Ⅱ)由(Ⅰ)可得1()2cos22cos2)2sin(2)26f x x x x x x π+=+=+. 将()y f x =的图象向左平移(0)ϕϕπ<<个单位后,得到函数()2sin[2()]2sin(22)66g x x x ππϕϕ=++=++的图象,显然函数()g x 最高点的纵坐标为2.()y g x =图象上各最高点到点(0,3)的距离的最小值为1,故函数()g x 的一个最高点在y 轴上, 2262k ππϕπ∴+=+,k Z ∈,结合0ϕπ<<,可得6πϕ=,故()2sin(2)2cos22g x x x π=+=.令222k x k πππ-剟,k Z ∈,求得2k x k πππ-剟,故()y g x =的单调递增区间是[2k ππ-,]k π,k Z ∈.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数sin()y A x ωϕ=+的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题. 3.(2015•广东理)在平面直角坐标系xOy 中,已知向量2(m =,,(sin ,cos )n x x =,(0,)2x π∈.(1)若m n ⊥,求tan x 的值; (2)若m 与n 的夹角为3π,求x 的值. 【考点】平面向量数量积的性质及其运算;数量积表示两个向量的夹角 【分析】(1)若m n ⊥,则0m n =,结合三角函数的关系式即可求tan x 的值; (2)若m 与n 的夹角为3π,利用向量的数量积的坐标公式进行求解即可求x 的值. 【解答】解:(1)若m n ⊥, 则2(2m n=,(sin x,cos )0x x x ==,x x = sin cos x x =,即tan 1x =;(2)2||()12m ==,2||sin 1n x =,2(2m n =,(sin x ,cos )x x x =, ∴若m 与n 的夹角为3π,则1||||cos 32m n m n π==,即1222x x -=, 则1sin()42x π-=,(0,)2x π∈. (44x ππ∴-∈-,)4π. 则46x ππ-=即54612x πππ=+=. 【点评】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,比较基础. 4.(2017•江苏)已知向量(cos ,sin )a x x =,(3,3)b =-,[0x ∈,]π. (1)若//a b ,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值以及对应的x 的值. 【考点】平面向量数量积的性质及其运算;三角函数中的恒等变换应用【分析】(1)根据向量的平行即可得到tan x =,问题得以解决, (2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出 【解答】解:(1)(cos ,sin )a x x =,(3,3)b =-,//a b ,3sin x x =,当cos 0x =时,sin 1x =,不合题意,当cos 0x ≠时,tan x =, [0x ∈,]π, 56x π∴=,(2)1()3cos sin ))26f x a b x x x x x π===-=+, [0x ∈,]π, [66x ππ∴+∈,7]6π,1cos()6x π∴-+剟 当0x =时,()f x 有最大值,最大值3,当56x π=时,()f x 有最小值,最小值- 【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题。

2014年高考数学真题分类汇编理科-平面向量(理科)

2014年高考数学真题分类汇编理科-平面向量(理科)

一、 选择题1.(2014 安徽理 10)在平面直角坐标系xOy 中,已知向量,a b ,1==a b ,=0⋅a b ,点Q 满足()2OQ =+a b .曲线{}cos sin 02πC P OP θθθ==+<,…a b ,区域{}0P r PQ R r R Ω=<<<≤,.若C Ω为两段分离的曲线,则( ).A. 13r R <<<B. 13r R <<…C. 13r R <<…D. 13r R <<<2.(2014 大纲理 4) 若向量,a b 满足:1=a ,()+⊥a b a ,()2+⊥a b b ,则=b ( ).A .2BC .1D 3.(2014 福建理 8)在下列向量组中,可以把向量()3,2=a 表示出来的是( ).A.()()120,0,1,2==e eB.()()121,2,5,2=-=-e eC.()()123,5,6,10==e eD.()()122,3,2,3=-=-e e4.(2014 广东理 5)已知向量()1,0,1,=-a 则下列向量中与a 成60︒夹角的是( ).A .()1,1,0- B. ()1,1,0- C. ()0,1,1- D. ()1,0,1-5.(2014 辽宁理 5)设,,a b c 是非零向量,已知命题p :若0⋅=a b ,0⋅=b c ,则0⋅=a c ;命题q :若//a b ,//b c ,则//a c ,则下列命题中真命题是( ).A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝6.(2014 四川理 7)平面向量()1,2=a ,()4,2=b ,m =+c a b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( ).A .2-B .1-C .1D .27.(2014 天津理 8)已知菱形ABCD 的边长为2,120BAD?,点,E F 分别在边,BC DC 上, BE BC λ=,DF DC μ=.若1AE AF ?,23CE CF ?-,则λμ+=( ). A.12 B.23 C.56 D.7128.(2014 新课标2理3)设向量,a b 满足+=a b -=a b ,则⋅=a b ( ).A.1B.2C.3D.59.(2014 浙江理 8)记{},max ,,x x y x y y x y ⎧=⎨<⎩…,{},min ,,y x y x y x x y ⎧=⎨<⎩…,设,a b 为平面向量,则( ).A.{}{}min ,min ,a b a b a b +-…B. {}{}min ,min ,a b a b a b +-… C.{}2222max ,a b a b a b +-+… D.{}2222max ,a b a b a b +-+… 10.(2014 重庆理 4)已知向量()()(),3,1,4,2,1k ===a b c ,且()23-⊥a b c ,则实数k =( ). A. 92-B. 0C. 3D. 152二、填空题 1.(2014 北京理 10)已知向量a ,b 满足1=a ,()2,1=b ,且()λλ+=∈0R a b ,则λ=________.2.(2014 湖北理 11)设向量()3,3=a ,()1,1=-b ,若()()λλ+⊥-a b a b ,则实数λ=________.3.(2014 湖南理 16)在平面直角坐标系中,O 为原点,()1,0A -,(0B ,()30C ,,动点D 满足1CD =,则OA OB OD ++的最大值是________.4.(2014 江苏理 12)如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP ⋅=,则A B A D ⋅的值是 .5.(2014 江西理 14)已知单位向量1e 与2e 的夹角为α,且1cos 3α=,向量1232=-a e e 与123=-b e e 的夹角为β,则cos β= .6.(2014 山东理 12)在ABC △中,已知tan AB AC A ⋅=uu u r uuu r ,当π6A =时,ABC △的面积为 .7.(2014 陕西理 13) 设π02θ<<,向量()()sin 2,cos ,cos ,1θθθ==a b ,若//a b,A则=θtan _______.8.(2014 新课标1理15)已知,,A B C 是圆O 上的三点,若()12AO AB AC =+,则AB 与AC 的夹角为 .三、解答题1.(2014 辽宁理 17)(本小题满分12分)在ABC △中,内角,,A B C 的对边,,a b c ,且a c >.已知2BA BC ⋅=,1cos 3B =,3b =.求:(1)a 和c 的值;(2)()cos B C -的值.2.(2014 山东理 16)(本小题满分12分)已知向量()(),cos2,sin 2,m x x n ==a b ,函数()f x =⋅a b ,且()y f x =的图像过点π12⎛ ⎝和点2π,23⎛⎫- ⎪⎝⎭. (1)求,m n 的值;(2)将()y f x =的图像向左平移()0πϕϕ<<个单位后得到函数()y g x =的图像,若()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.3.(2014 陕西理 18)(本小题满分12分)在直角坐标系xOy 中,已知点()()()1,12,3,3,2A B C ,点(),P x y 在ABC △三边围成的区域(含边界)上.(1)若PA PB PC ++=0,求OP ;(2)设(),OP mAB nAC m n =+∈R ,用,x y 表示m n -,并求m n -的最大值.。

2014年高考真题(理科数学)全国卷 纯Word版解析可编辑

2014年高考真题(理科数学)全国卷 纯Word版解析可编辑

2014·全国卷(理科数学)1.[2014·全国卷] 设z =10i3+i,则z 的共轭复数为( )A .-1+3iB .-1-3iC .1+3iD .1-3i 1.D [解析] z =10i 3+i =10i (3-i )(3+i )(3-i )=10(1+3i )10=1+3i ,根据共轭复数的定义,其共轭复数是1-3i.2.、[2014·全国卷] 设集合M ={x |x 2-3x -4<0},N ={x |0≤x ≤5},则M ∩N =( ) A .(0,4] B .[0,4) C .[-1,0) D .(-1,0]2.B [解析] 因为M ={x |x 2-3x -4<0}={x |-1<x <4},N ={x |0≤x ≤5},所以M ∩N ={x |-1<x <4}∩{0≤x ≤5}={x |0≤x <4}.3.[2014·全国卷] 设a =sin 33°,b =cos 55°,c =tan 35°,则( ) A .a >b >c B .b >c >a C .c >b >a D .c >a >b3.C [解析] 因为b =cos 55°=sin 35°>sin 33°,所以b >a .因为cos 35°<1,所以1cos 35°>1,所以sin 35°cos 35°>sin 35°.又c =tan 35°=sin 35°cos 35°>sin 35°,所以c >b ,所以c >b >a .4.[2014·全国卷] 若向量a ,b 满足:|a|=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( ) A .2 B. 2 C .1 D.224.B [解析] 因为(a +b )⊥a ,所以(a +b )·a =0,即|a|2+b·a =0.因为(2a +b )⊥b ,所以(2a +b )·b =0,即2a·b +|b|2=0,与|a|2+b·a =0联立,可得2|a|2-|b|2=0,所以|b|=2|a|= 2. 5.[2014·全国卷] 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种5.C [解析] 由题意,从6名男医生中选2名,5名女医生中选1名组成一个医疗小组,不同的选法共有C 26C 15=75(种).6.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1 6.A [解析] 根据题意,因为△AF 1B 的周长为43,所以|AF 1|+|AB |+|BF 1|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =43,所以a = 3.又因为椭圆的离心率e =c a =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.7.[2014·全国卷] 曲线y =x e x -1在点(1,1)处切线的斜率等于( ) A .2e B .e C .2 D .17.C [解析] 因为y ′=(x e x -1)′=e x -1+x e x -1,所以y =x e x -1在点(1,1)处的导数是y ′|x =1=e 1-1+e 1-1=2,故曲线y =x e x -1在点(1,1)处的切线斜率是2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝⎛⎭⎫942=81π4. 9.[2014·全国卷] 已知双曲线C 的离心率为2,焦点为F 1,F 2,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.239.A [解析] 根据题意,|F 1A |-|F 2A |=2a ,因为|F 1A |=2|F 2A |,所以|F 2A |=2a ,|F 1A |=4a .又因为双曲线的离心率e =ca =2,所以c =2a ,|F 1F 2|=2c =4a ,所以在△AF 1F 2中,根据余弦定理可得cos ∠AF 2F 1=|F 1F 2|2+|F 2A |2-|F 1A |22|F 1F 2|·|F 2A |=16a 2+4a 2-16a 22×4a ×2a=14. 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .310.C [解析] 设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎨⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝⎛⎭⎫52n -1=2×⎝⎛⎭⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝⎛⎭⎫4×52=4. 11.[2014·全国卷] 已知二面角α-l -β为60°,AB ⊂α,AB ⊥l ,A 为垂足,CD ⊂β,C ∈l ,∠ACD =135°,则异面直线AB 与CD 所成角的余弦值为( )A.14B.24C.34D.1211.B [解析] 如图所示,在平面α内过点C 作CF ∥AB ,过点F 作FE ⊥β,垂足为点E ,连接CE ,则CE ⊥l ,所以∠ECF =60°.过点E 作DE ⊥CE ,交CD 于点D 1,连接FD 1.不妨设FC =2a ,则CE =a ,EF =3a .因为∠ACD =135°,所以∠DCE =45°,所以,在Rt △DCE 中,D 1E =CE =a ,CD 1=2a ,∴FD 1=2a ,∴cos ∠DCF =4a 2+2a 2-4a 22×2a ×2a=24.12.[2014·全国卷] 函数y =f (x )的图像与函数y =g (x )的图像关于直线x +y =0对称,则y =f (x )的反函数是( )A .y =g (x )B .y =g (-x )C .y =-g (x )D .y =-g (-x )12.D [解析] 设(x 0,y 0)为函数y =f (x )的图像上任意一点,其关于直线x +y =0的对称点为(-y 0,-x 0).根据题意,点(-y 0,-x 0)在函数y =g (x )的图像上,又点(x 0,y 0)关于直线y =x 的对称点为(y 0,x 0),且(y 0,x 0)与(-y 0,-x 0)关于原点对称,所以函数y =f (x )的反函数的图像与函数y =g (x )的图像关于原点对称,所以-y =g (-x ),即y =-g (-x ).13.[2014·全国卷] ⎝⎛⎭⎫x y -y x 8的展开式中x 2y 2的系数为________.(用数字作答) 13.70 [解析] 易知二项展开式的通项T r +1=C r 8⎝⎛⎭⎫x y 8-r ⎝⎛⎭⎫-y x r=(-1)r C r 8x 8-3r 2y 3r 2-4.要求x 2y 2的系数,需满足8-3r 2=2且3r 2-4=2,解得r =4,所以T 5=(-1)4C 48x 2y 2=70x 2y 2,所以x 2y 2的系数为70.14.[2014·全国卷] 设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +2y ≤3,x -2y ≤1,则z =x +4y 的最大值为________.14.5 [解析] 如图所示,满足约束条件的可行域为△ABC 的内部(包括边界), z =x +4y 的最大值即为直线y =-14x +14z 的纵截距最大时z 的值.结合题意,当y =-14x +14z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧x -y =0,x +2y =3,可得点A 的坐标为(1,1), 所以z max =1+4=5. 15.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.15.43 [解析] 如图所示,根据题意,OA ⊥P A ,OA =2,OP =10,所以P A =OP 2-OA 2=2 2,所以tan ∠OP A =OA P A =22 2=12,故tan ∠APB =2tan ∠OP A 1-tan 2∠OP A =43, 即l 1与l 2的夹角的正切值等于43.16.、[2014·全国卷] 若函数f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________.16.(-∞,2] [解析] f (x )=cos 2x +a sin x =-2sin 2x +a sin x +1,令sin x =t ,则f (x )=-2t 2+at +1.因为x ∈⎝⎛⎭⎫π6,π2,所以t ∈⎝⎛⎭⎫12,1,所以f (x )=-2t 2+at +1,t ∈⎝⎛⎭⎫12,1.因为f (x )=cos 2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,所以f (x )=-2t 2+at +1在区间⎝⎛⎭⎫12,1上是减函数,又对称轴为x =a 4,∴a 4≤12,所以a ∈(-∞,2].17.[2014·全国卷] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知3a cos C =2c cos A ,tan A =13,求B .17.解:由题设和正弦定理得3sin A cos C =2sin C cos A , 故3tan A cos C =2sin C .因为tan A =13,所以cos C =2sin C ,所以tan C =12.所以tan B =tan[180°-(A +C )] =-tan(A +C ) =tan A +tan Ctan A tan C -1=-1,所以B =135°. 18.、[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52,因此d =-3.故数列{a n }的通项公式为a n =13-3n . (2)b n =1(13-3n )(10-3n )=13⎝⎛⎭⎫110-3n -113-3n .于是T n =b 1+b 2+…+b n =13⎝⎛⎭⎫17-110+⎝⎛⎭⎫14-17+…+⎝⎛⎭⎫110-3n -113-3n =13⎝⎛⎭⎫110-3n -110=n 10(10-3n ).19.、[2014·全国卷] 如图1-1所示,三棱柱ABC - A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 ­ AB ­ C 的大小.19.解:方法一:(1)证明:因为A 1D ⊥平面ABC ,A 1D ⊂平面AA 1C 1C ,故平面AA 1C 1C ⊥平面ABC .又BC ⊥AC ,所以BC ⊥平面AA 1C 1C .连接A 1C ,因为侧面AA 1C 1C 为菱形,故AC 1⊥A 1C . 由三垂线定理得AC 1⊥A 1B .(2)BC ⊥平面AA 1C 1C ,BC ⊂平面BCC 1B 1,故平面AA 1C 1C ⊥平面BCC 1B 1. 作A 1E ⊥CC 1,E 为垂足,则A 1E ⊥平面BCC 1B 1.又直线AA 1∥平面BCC 1B 1,因而A 1E 为直线AA 1与平面BCC 1B 1的距离,即A 1E = 3.因为A 1C 为∠ACC 1的平分线,所以A 1D =A 1E = 3.作DF ⊥AB ,F 为垂足,连接A 1F .由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1 ­ AB ­ C 的平面角.由AD =AA 21-A 1D 2=1,得D 为AC 中点,DF =55,tan ∠A 1FD =A 1D DF =15,所以cos ∠A 1FD =14. 所以二面角A 1 ­ AB ­ C 的大小为arccos 14.方法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C - xyz .由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内.(1)证明:设A 1(a ,0,c ).由题设有a ≤2,A (2,0,0),B (0,1,0),则AB →=(-2,1,0),AC →=(-2,0,0),AA 1→=(a -2,0,c ),AC 1→=AC →+AA 1→=(a -4,0,c ),BA 1→=(a ,-1,c ).由|AA 1→|=2,得(a -2)2+c 2=2,即a 2-4a +c 2=0.①又AC 1→·BA 1→=a 2-4a +c 2=0,所以AC 1⊥A 1B .(2)设平面BCC 1B 1的法向量m =(x ,y ,z ),则m ⊥CB →,m ⊥BB 1→,即m ·CB →=0,m ·BB 1→=0.因为CB →=(0,1,0),BB 1→=AA 1→=(a -2,0,c ),所以y =0且(a -2)x +cz =0.令x =c ,则z =2-a ,所以m =(c ,0,2-a ),故点A 到平面BCC 1B 1的距离为|CA →|·|cos 〈m ,CA →〉|=|CA →·m ||m |=2c c 2+(2-a )2=c .又依题设,A 到平面BCC 1B 1的距离为3,所以c =3,代入①,解得a =3(舍去)或a =1, 于是AA 1→=(-1,0,3).设平面ABA 1的法向量n =(p ,q ,r ), 则n ⊥AA 1→,n ⊥AB →,即n ·AA 1→=0,n ·AB →=0,-p +3r =0,且-2p +q =0.令p =3,则q =2 3,r =1,所以n =(3,2 3,1). 又p =(0,0,1)为平面ABC 的法向量,故 cos 〈n ,p 〉=n ·p |n ||p |=14.所以二面角A 1 ­ AB ­ C 的大小为arccos 14.20.、[2014·全国卷] 设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.20.解:记A 1表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2. B 表示事件:甲需使用设备. C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.(1)因为P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2, 所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )= P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C )= 0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C ) =P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4) =0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P (X =4)=P (A 2·B ·C )=P (A 2)P (B )P (C )=0.52×0.6×0.4=0.06, P (X =3)=P (D )-P (X =4)=0.25,P (X =2)=1-P (X =0)-P (X =1)-P (X =3)-P (X =4)=1-0.06-0.25-0.25-0.06=0.38,所以 EX =0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0.25+2×0.38+3×0.25+4×0.06=2.21.、、[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.21.解:(1)设Q (x 0,4),代入y 2=2px ,得x 0=8p ,所以|PQ |=8p ,|QF |=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x .(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m ≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D (2m 2+1,2m ), |AB |=m 2+1|y 1-y 2|=4(m 2+1). 又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M (x 3,y 3),N (x 4,y 4),则y 3+y 4=-4m ,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝⎛⎭⎫2m 2+2m 2+3,-2m , |MN |=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2. 由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE |=|BE |=12|MN |,从而14|AB |2+|DE |2=14|MN |2,即4(m 2+1)2+⎝⎛⎭⎫2m +2m 2+⎝⎛⎭⎫2m 2+22= 4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1,故所求直线l 的方程为x -y -1=0或x +y -1=0. 22.、[2014·全国卷] 函数f (x )=ln(x +1)-axx +a(a >1). (1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数.(iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2.当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n=k+1时,有2k+3<a k+1≤3k+3,结论成立.根据(i)(ii)知对任何n∈N*结论都成立.。

2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

 2014年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2} 2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.54.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.15.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45 6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.78.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.39.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.210.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f (x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题目:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1}B.{2}C.{0,1}D.{1,2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5B.5C.﹣4+i D.﹣4﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】根据复数的几何意义求出z2,即可得到结论.【解答】解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A.【点评】本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1【考点】HR:余弦定理.【专题】56:三角函数的求值.【分析】利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.【解答】解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.【点评】此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.【解答】解:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,解得p=0.8,故选:A.【点评】本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3【考点】6H:利用导数研究曲线上某点切线方程.【专题】52:导数的概念及应用.【分析】根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.【解答】解:,∴y′(0)=a﹣1=2,∴a=3.故选:D.【点评】本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10B.8C.3D.2【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.【解答】解:由y2=2px,得2p=3,p=,则F(,0).∴过A,B的直线方程为y=(x﹣),即x=y+.联立,得4y2﹣12y﹣9=0.设A(x1,y1),B(x2,y2),则y1+y2=3,y1y2=﹣.∴S△OAB=S△OAF+S△OFB=×|y1﹣y2|==×=.故选:D.【点评】本题考查直线与抛物线的位置关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5F:空间位置关系与距离.【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.【点评】本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【考点】H4:正弦函数的定义域和值域.【专题】57:三角函数的图像与性质.【分析】由题意可得,f(x0)=±,且=kπ+,k∈Z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2>m2+3,由此求得m的取值范围.【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2>m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.【点评】本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题目:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.【考点】DA:二项式定理.【专题】5P:二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.【解答】解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.【点评】本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【考点】3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].【考点】J9:直线与圆的位置关系.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,画出图形,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN≤1,∴x0的取值范围是[﹣1,1].【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.【考点】87:等比数列的性质;8E:数列的求和.【专题】14:证明题;54:等差数列与等比数列.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N+时,++…+<.【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.【解答】(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,∴CD⊥MD.∵二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AE=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.【点评】本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如表:年份2007200820092010201120122013年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.【考点】BK:线性回归方程.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b的值,再求出a的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.【解答】解:(Ⅰ)由题意,=×(1+2+3+4+5+6+7)=4,=×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∴== =0.5,=﹣=4.3﹣0.5×4=2.3.∴y关于t的线性回归方程为=0.5t+2.3;(Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得:=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.【点评】本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M 是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).【考点】6B:利用导数研究函数的单调性.【专题】16:压轴题;53:导数的综合应用.【分析】对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g′(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法利用的近似值,并寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.【解答】解:(Ⅰ)由f(x)得f′(x)=e x+e﹣x﹣2,即f′(x)≥0,当且仅当e x=e﹣x即x=0时,f′(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g′(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x+2﹣2b).①∵e x+e﹣x>2,e x+e﹣x+2>4,∴当2b≤4,即b≤2时,g′(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即,得,此时,g′(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)∵1.4142<<1.4143,根据(Ⅱ)中g(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,为了凑配ln2,并利用的近似值,故将ln即代入g(x)的解析式中,得.当b=2时,由g(x)>0,得,从而;令,得>2,当时,由g(x)<0,得,得.所以ln2的近似值为0.693.【点评】1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.3.本题的难点在于如何寻求ln2,关键是根据第(2)问中g(x)的解析式探究b的值,从而获得不等式,这样自然地将不等式放缩为的范围的端点值,达到了估值的目的.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.祝福语祝你马到成功,万事顺意!。

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2014年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1] 2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β= 9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3 10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.211.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为.(用数字填写答案)14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.﹣a n=λ(Ⅰ)证明:a n+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.2014年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分)1.(5分)已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1]C.[﹣1,2)D.[﹣2,﹣1]【考点】1E:交集及其运算.【专题】5J:集合.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】由条件利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得结果.【解答】解:==﹣(1+i)=﹣1﹣i,故选:D.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.3.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性的性质即可得到结论.【解答】解:∵f(x)是奇函数,g(x)是偶函数,∴f(﹣x)=﹣f(x),g(﹣x)=g(x),f(﹣x)•g(﹣x)=﹣f(x)•g(x),故函数是奇函数,故A错误,|f(﹣x)|•g(﹣x)=|f(x)|•g(x)为偶函数,故B错误,f(﹣x)•|g(﹣x)|=﹣f(x)•|g(x)|是奇函数,故C正确.|f(﹣x)•g(﹣x)|=|f(x)•g(x)|为偶函数,故D错误,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.4.(5分)已知F为双曲线C:x2﹣my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为()A.B.3C.m D.3m【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】双曲线方程化为标准方程,求出焦点坐标,一条渐近线方程,利用点到直线的距离公式,可得结论.【解答】解:双曲线C:x2﹣my2=3m(m>0)可化为,∴一个焦点为(,0),一条渐近线方程为=0,∴点F到C的一条渐近线的距离为=.故选:A.【点评】本题考查双曲线的方程与性质,考查点到直线的距离公式,属于基础题.5.(5分)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【专题】11:计算题;5I:概率与统计.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.6.(5分)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P作直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在[0,π]的图象大致为()A.B.C.D.【考点】3P:抽象函数及其应用.【专题】57:三角函数的图像与性质.【分析】在直角三角形OMP中,求出OM,注意长度、距离为正,再根据直角三角形的锐角三角函数的定义即可得到f(x)的表达式,然后化简,分析周期和最值,结合图象正确选择.【解答】解:在直角三角形OMP中,OP=1,∠POM=x,则OM=|cosx|,∴点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|•|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选:C.【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用.7.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.【考点】EF:程序框图.【专题】5I:概率与统计.【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出M的值.【解答】解:由程序框图知:第一次循环M=1+=,a=2,b=,n=2;第二次循环M=2+=,a=,b=,n=3;第三次循环M=+=,a=,b=,n=4.不满足条件n≤3,跳出循环体,输出M=.故选:D.【点评】本题考查了当型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.8.(5分)设α∈(0,),β∈(0,),且tanα=,则()A.3α﹣β=B.3α+β=C.2α﹣β=D.2α+β=【考点】GF:三角函数的恒等变换及化简求值.【专题】56:三角函数的求值.【分析】化切为弦,整理后得到sin(α﹣β)=cosα,由该等式左右两边角的关系可排除选项A,B,然后验证C满足等式sin(α﹣β)=cosα,则答案可求.【解答】解:由tanα=,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.【点评】本题考查三角函数的化简求值,训练了利用排除法及验证法求解选择题,是基础题.9.(5分)不等式组的解集记为D,有下列四个命题:p1:∀(x,y)∈D,x+2y≥﹣2 p2:∃(x,y)∈D,x+2y≥2p3:∀(x,y)∈D,x+2y≤3p4:∃(x,y)∈D,x+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p3【考点】2K:命题的真假判断与应用;7A:二元一次不等式的几何意义.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】作出不等式组的表示的区域D,对四个选项逐一分析即可.【解答】解:作出图形如下:由图知,区域D为直线x+y=1与x﹣2y=4相交的上部角型区域,p1:区域D在x+2y≥﹣2 区域的上方,故:∀(x,y)∈D,x+2y≥﹣2成立;p2:在直线x+2y=2的右上方和区域D重叠的区域内,∃(x,y)∈D,x+2y≥2,故p2:∃(x,y)∈D,x+2y≥2正确;p3:由图知,区域D有部分在直线x+2y=3的上方,因此p3:∀(x,y)∈D,x+2y ≤3错误;p4:x+2y≤﹣1的区域(左下方的虚线区域)恒在区域D下方,故p4:∃(x,y)∈D,x+2y≤﹣1错误;综上所述,p1、p2正确;故选:C.【点评】本题考查命题的真假判断与应用,着重考查作图能力,熟练作图,正确分析是关键,属于难题.10.(5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若=4,则|QF|=()A.B.3C.D.2【考点】K8:抛物线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】求得直线PF的方程,与y2=8x联立可得x=1,利用|QF|=d可求.【解答】解:设Q到l的距离为d,则|QF|=d,∵=4,∴|PQ|=3d,∴不妨设直线PF的斜率为﹣=﹣2,∵F(2,0),∴直线PF的方程为y=﹣2(x﹣2),与y2=8x联立可得x=1,∴|QF|=d=1+2=3,故选:B.【点评】本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.11.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】53:函数的零点与方程根的关系.【专题】11:计算题;51:函数的性质及应用;53:导数的综合应用.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.【点评】本题考查了导数的综合应用及分类讨论的思想应用,同时考查了函数的零点的判定的应用,属于基础题.12.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6C.4D.4【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】画出图形,结合三视图的数据求出棱长,推出结果即可.【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点评】本题考查三视图求解几何体的棱长,考查计算能力.二、填空题(共4小题,每小题5分)13.(5分)(x﹣y)(x+y)8的展开式中x2y7的系数为﹣20.(用数字填写答案)【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】由题意依次求出(x+y)8中xy7,x2y6,项的系数,求和即可.【解答】解:(x+y)8的展开式中,含xy7的系数是:8.含x2y6的系数是28,∴(x﹣y)(x+y)8的展开式中x2y7的系数为:8﹣28=﹣20.故答案为:﹣20【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为A.【考点】F4:进行简单的合情推理.【专题】5M:推理和证明.【分析】可先由乙推出,可能去过A城市或B城市,再由甲推出只能是A,B中的一个,再由丙即可推出结论.【解答】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A.故答案为:A.【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题.15.(5分)已知A,B,C为圆O上的三点,若=(+),则与的夹角为90°.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】根据向量之间的关系,利用圆直径的性质,即可得到结论.【解答】解:在圆中若=(+),即2=+,即+的和向量是过A,O的直径,则以AB,AC为邻边的四边形是矩形,则⊥,即与的夹角为90°,故答案为:90°【点评】本题主要考查平面向量的夹角的计算,利用圆直径的性质是解决本题的关键,比较基础.16.(5分)已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sinA﹣sinB)=(c﹣b)sinC,则△ABC面积的最大值为.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;35:转化思想;48:分析法;58:解三角形.【分析】由正弦定理化简已知可得2a﹣b2=c2﹣bc,结合余弦定理可求A的值,由基本不等式可求bc≤4,再利用三角形面积公式即可计算得解.【解答】解:因为:(2+b)(sinA﹣sinB)=(c﹣b)sinC⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.【点评】本题主要考查了正弦定理,余弦定理,基本不等式,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.三、解答题17.(12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n﹣1,其中λ为常数.(Ⅰ)证明:a n﹣a n=λ+2(Ⅱ)是否存在λ,使得{a n}为等差数列?并说明理由.【考点】83:等差数列的性质;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)利用a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,相减即可得出;(Ⅱ)假设存在λ,使得{a n}为等差数列,设公差为d.可得λ=a n+2﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,.得到λS n=,根据{a n}为等差数列的充要条件是,解得λ即可.【解答】(Ⅰ)证明:∵a n a n+1=λS n﹣1,a n+1a n+2=λS n+1﹣1,∴a n(a n+2﹣a n)=λa n+1+1≠0,∵a n+1∴a n﹣a n=λ.+2(Ⅱ)解:假设存在λ,使得{a n}为等差数列,设公差为d.﹣a n=(a n+2﹣a n+1)+(a n+1﹣a n)=2d,则λ=a n+2∴.∴,,∴λS n=1+=,根据{a n}为等差数列的充要条件是,解得λ=4.此时可得,a n=2n﹣1.因此存在λ=4,使得{a n}为等差数列.【点评】本题考查了递推式的意义、等差数列的通项公式及其前n项和公式、等差数列的充要条件等基础知识与基本技能方法,考查了推理能力和计算能力、分类讨论的思想方法,属于难题.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求EX.附:≈12.2.若Z~N(μ,σ2)则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.【考点】CH:离散型随机变量的期望与方差;CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;5I:概率与统计.【分析】(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得.【解答】解:(Ⅰ)抽取产品的质量指标值的样本平均数和样本方差s2分别为:=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(﹣30)2×0.02+(﹣20)2×0.09+(﹣10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而P(187.8<Z<212.2)=P(200﹣12.2<Z<200+12.2)=0.6826;(ii)由(i)知一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知X~B(100,0.6826),所以EX=100×0.6826=68.26.【点评】本题主要考查离散型随机变量的期望和方差,以及正态分布的特点及概率求解,考查运算能力.19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【考点】M7:空间向量的夹角与距离求解公式;MJ:二面角的平面角及求法.【专题】5H:空间向量及应用.【分析】(1)连结BC1,交B1C于点O,连结AO,可证B1C⊥平面ABO,可得B1C ⊥AO,B10=CO,进而可得AC=AB1;(2)以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,分别可得两平面的法向量,可得所求余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴=(0,,),==(1,0,),==(﹣1,,0),设向量=(x,y,z)是平面AA1B1的法向量,则,可取=(1,,),同理可得平面A1B1C1的一个法向量=(1,﹣,),∴cos<,>==,∴二面角A﹣A1B1﹣C1的余弦值为【点评】本题考查空间向量法解决立体几何问题,建立坐标系是解决问题的关键,属中档题.20.(12分)已知点A(0,﹣2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆的右焦点,直线AF的斜率为,O为坐标原点.(Ⅰ)求E的方程;(Ⅱ)设过点A的直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l 的方程.【考点】K4:椭圆的性质;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)通过离心率得到a、c关系,通过A求出a,即可求E的方程;(Ⅱ)设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,利用△>0,求出k的范围,利用弦长公式求出|PQ|,然后求出△OPQ的面积表达式,利用换元法以及基本不等式求出最值,然后求解直线方程.【解答】解:(Ⅰ)设F(c,0),由条件知,得又,所以a=2,b2=a2﹣c2=1,故E的方程.….(5分)(Ⅱ)依题意当l⊥x轴不合题意,故设直线l:y=kx﹣2,设P(x1,y1),Q(x2,y2)将y=kx﹣2代入,得(1+4k2)x2﹣16kx+12=0,当△=16(4k2﹣3)>0,即时,从而又点O到直线PQ的距离,所以△OPQ的面积=,设,则t>0,,当且仅当t=2,k=±等号成立,且满足△>0,所以当△OPQ的面积最大时,l的方程为:y=x﹣2或y=﹣x﹣2.…(12分)【点评】本题考查直线与椭圆的位置关系的应用,椭圆的求法,基本不等式的应用,考查转化思想以及计算能力.21.(12分)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】15:综合题;53:导数的综合应用.【分析】(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g (x)min,h(x)max;【解答】解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,∵f(x)>1,∴e x lnx+>1,∴lnx>﹣,∴f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=xe﹣x﹣,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.【点评】本题考查导数的几何意义、利用导数求函数的最值、证明不等式等,考查转化思想,考查学生分析解决问题的能力.选修4-1:几何证明选讲22.(10分)如图,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.(Ⅰ)证明:∠D=∠E;(Ⅱ)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.【考点】NB:弦切角;NC:与圆有关的比例线段.【专题】15:综合题;5M:推理和证明.【分析】(Ⅰ)利用四边形ABCD是⊙O的内接四边形,可得∠D=∠CBE,由CB=CE,可得∠E=∠CBE,即可证明:∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,证明AD∥BC,可得∠A=∠CBE,进而可得∠A=∠E,即可证明△ADE为等边三角形.【解答】证明:(Ⅰ)∵四边形ABCD是⊙O的内接四边形,∴∠D=∠CBE,∵CB=CE,∴∠E=∠CBE,∴∠D=∠E;(Ⅱ)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,∴O在直线MN上,∵AD不是⊙O的直径,AD的中点为M,∴OM⊥AD,∴AD∥BC,∴∠A=∠CBE,∵∠CBE=∠E,∴∠A=∠E,由(Ⅰ)知,∠D=∠E,∴△ADE为等边三角形.【点评】本题考查圆的内接四边形性质,考查学生分析解决问题的能力,属于中档题.选修4-4:坐标系与参数方程23.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.【考点】KH:直线与圆锥曲线的综合;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.【点评】本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题.选修4-5:不等式选讲24.若a>0,b>0,且+=.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【考点】RI:平均值不等式.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由条件利用基本不等式求得ab≥2,再利用基本不等式求得a3+b3的最小值.(Ⅱ)根据ab≥2及基本不等式求的2a+3b>8,从而可得不存在a,b,使得2a+3b=6.【解答】解:(Ⅰ)∵a>0,b>0,且+=,∴=+≥2,∴ab≥2,当且仅当a=b=时取等号.∵a3+b3 ≥2≥2=4,当且仅当a=b=时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥2=2,当且仅当2a=3b时,取等号.而由(1)可知,2≥2=4>6,故不存在a,b,使得2a+3b=6成立.【点评】本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.。

【最新原创】2014年高考数学(理)真题分类汇编:F单元 平面向量

【最新原创】2014年高考数学(理)真题分类汇编:F单元 平面向量

数 学F 单元 平面向量F1 平面向量的概念及其线性运算 5.、[2014·辽宁卷] 设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q ) 5.A15.[2014·新课标全国卷Ⅰ] 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB→与AC →的夹角为________.15.90° 7.[2014·四川卷] 平面向量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 7.2F2 平面向量基本定理及向量坐标运算 4.[2014·重庆卷] 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92 B .0C .3 D.1524.C8.[2014·福建卷] 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 8.B 16.,[2014·山东卷] 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.16.解:(1)由题意知,f (x )==m sin 2x +n cos 2x .因为y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2,所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6.由题意知,g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6.设y =g (x )的图像上符合题意的最高点为(x 0,2).由题意知,x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x .由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .13.[2014·陕西卷] 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.13.1218.,[2014·陕西卷] 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值. 18.解:(1)方法一:∵P A →+PB →+PC →=0,又P A →+PB →+PC →=(1-x ,1-y )+(2-x ,3-y )+(3-x ,2-y )=(6-3x ,6-3y ),∴⎩⎪⎨⎪⎧6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2,即OP →=(2,2),故|OP →|=2 2. 方法二:∵P A →+PB →+PC →=0,则(OA →-OP →)+(OB →-OP →)+(OC →-OP →)=0, ∴OP →=13(OA →+OB →+OC →)=(2,2),∴|OP →|=2 2.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.F3 平面向量的数量积及应用 10.[2014·北京卷] 已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.10.5 11.[2014·湖北卷] 设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.11.±314.[2014·江西卷] 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.14.2 234.[2014·全国卷] 若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.224.B 3.[2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .53.A12.,[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.12.168.[2014·天津卷] 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 8.CF4 单元综合15.[2014·安徽卷] 已知两个不相等的非零向量a ,b ,两组向量,,,,和,,,,均由2个a 和3个b 排列而成.记S =x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4+x 5·y 5,S min 表示S 所有可能取值中的最小值,则下列命题正确的是________(写出所有正确命题的编号).①S 有5个不同的值②若a ⊥b ,则S min 与|a |无关 ③若a ∥b ,则S min 与|b |无关 ④若|b |>4|a |,则S min >0⑤若|b |=2|a |,S min =8|a |2,则a 与b 的夹角为π415.②④ 16.[2014·湖南卷] 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.16.1+710.,[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728 D.1010.B8.[2014·浙江卷] 记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y .设a ,b 为平面向量,则( )A.min{|a+b|,|a-b|}≤min{|a|,|b|} B.min{|a+b|,|a-b|}≥min{|a|,|b|} C.max{|a+b|2,|a-b|2}≤|a|2+|b|2 D.max{|a+b|2,|a-b|2}≥|a|2+|b|2 8.D。

2014年全国高考 四川数学 及答案详解 (理)WORD

2014年全国高考 四川数学 及答案详解 (理)WORD

1AAP 2014年普通高等招生全国统一考试(四川卷)数学(理工类)本试题卷分第I卷(选择题)和第II卷(非选择题)。

第I卷1至2页,第II卷3至4页,共4页。

满分150分,考试时间120分钟)第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的答案中,只有一个符合题目要求。

1、已知集合{}2|20A x x x=--≤,集合B为整数集,则A B={}{}{}{}1,0,1,22,1,0,10,11,0A B C D⋅⋅⋅⋅----2、在6(1)x x+的展开式中,含3x项的系数为:A. 30B. 20 C . 15 D . 103、为了得到函数sin(21)y x=+的图象,只需把函数sin2y x=的图象上所有点A向左平行移动12个单位长度B向右平行移动12个单位长度C向左平行移动1个单位长度D向右平行移动1个单位长度4、若0 ,0 ,a b c d>><<则一定有:A.a bc d>B.a bc d<C.a bd c>D.a bd c<5、执行如图的程序框图,如果输入,x y R∈,那么输出S的最大值为A. 0B. 1C. 2D. 36、六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A. 192种B. 216种C. 240种D. 288种7、平面向量(1,2) , (4,2) , () ,a b c ma b m R c a c b===+∈且与的夹角等于与的夹角, m则=A.-2B. -1C. 1D. 28、如图,在正方体1111ABCD A BC D-中,点O为线段BD的中点,设点P在线段1CC上,直线OP与平面1A BD所成夹角为α,则sinα的取值范围是:CA . , 1⎤⎥⎣⎦ B . 1⎤⎥⎣⎦C.⎣⎦ D . , 1⎤⎥⎣⎦9、 已知()ln(1)ln(1) , ( 1 , 1) f x x x x =+--∈-现有下列命题: ○1()()f x f x -=- ;○222()2()1xf f x x =+ ;○3()2f x x ≥ ,其中所有正确命题的序号是 A .○1○2○3 B . ○2○3 C . ○1○3 D . ○1○210、 已知F 是抛物线2y x =的焦点,点A 、B 在抛物线上且位于x 轴的两侧,2OA OB ⋅=,(其中O为坐标原点)则△ABO 与△AFO 面积之和的最小值是: A . 2 B . 3CD . 第II 卷(非选择题,共100分)二、填空题本大题共5小题,每小题5分,共25分。

2014年高考真题——理科数学(新课标卷Ⅰ)解析版 Word版含答案

2014年高考真题——理科数学(新课标卷Ⅰ)解析版 Word版含答案

2014年高招全国课标1(理科数学word 解析版)第Ⅰ卷一.选择题:共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】:A【解析】:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<, ∴A B ⋂={}21x x -≤≤,选A..2.32(1)(1)i i +-= A .1i + B .1i - C .1i -+ D .1i --【答案】:D【解析】:∵32(1)(1)i i +-=2(1)12i i i i+=---,选D..3.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论正确的是A .()f x ()g x 是偶函数B .|()f x |()g x 是奇函数C .()f x |()g x |是奇函数D .|()f x ()g x |是奇函数【答案】:C【解析】:设()()()F x f x g x =,则()()()F x f x g x -=--,∵()f x 是奇函数,()g x 是偶函数,∴()()()()F x f x g x F x -=-=-,()F x 为奇函数,选C.4.已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【答案】:A【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d = A. .5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率A .18B .38C .58D .78【答案】:D【解析】:4位同学各自在周六、周日两天中任选一天参加公益活动共有4216=种,周六、周日都有同学参加公益活动有两种情况:①一天一人一天三人有11428C A =种;②每天2人有246C =种,则周六、周日都有同学参加公益活动的概率为867168+=;或间接解法:4位同学都在周六或周日参加公益活动有2种,则周六、周日都有同学参加公益活动的概率为1627168-=;选D.6.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为【答案】:B【解析】:如图:过M 作M D ⊥OP 于D,则 PM=sin x ,OM=cos x ,在Rt OMP ∆中,MD=cos sin 1x xOM PM OP =cos sin x x = 1sin 22x =,∴()f x 1sin 2(0)2x x π=≤≤,选B. .7.执行下图的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =A .203 B .165 C .72 D .158【答案】:D【解析】:输入1,2,3a b k ===;1n =时:1331,2,222M a b =+===; 2n =时:28382,,3323M a b =+===;3n =时:3315815,,28838M a b =+===;4n =时:输出158M = . 选D.8.设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则 A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B9.不等式组124x y x y +≥⎧⎨-≤⎩的解集记为D .有下面四个命题:1p :(,),22x y D x y ∀∈+≥-,2p :(,),22x y D x y ∃∈+≥, 3P :(,),23x y D x y ∀∈+≤,4p :(,),21x y D x y ∃∈+≤-.其中真命题是A .2p ,3PB .1p ,4pC .1p ,2pD .1p ,3P【答案】:C【解析】:作出可行域如图:设2x y z +=,即122zy x =-+,当直线过()2,1A -时,min 220z =-+=,∴0z ≥,∴命题1p 、2p 真命题,选C.10.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72 B .52C .3D .2 【答案】:C【解析】:过Q 作Q M ⊥直线L 于M ,∵4FP FQ = ∴34PQ PF=,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 选C11.已知函数()f x =3231ax x -+,若()f x 存在唯一的零点0x ,且0x >0,则a 的取值范围为A .(2,+∞)B .(-∞,-2)C .(1,+∞)D .(-∞,-1)【答案】:B【解析1】:由已知0a ≠,2()36f x ax x '=-,令()0f x '=,得0x =或2x a=, 当0a >时,()22,0,()0;0,,()0;,,()0x f x x f x x f x a a ⎛⎫⎛⎫'''∈-∞>∈<∈+∞> ⎪ ⎪⎝⎭⎝⎭; 且(0)10f =>,()f x 有小于零的零点,不符合题意。

2014年全国高考理科数学试题分类汇编(纯word解析版) 五、平面向量(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word解析版)              五、平面向量(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word 解析版) 五、平面向量(逐题详解)第I 部分1.【2014年重庆卷(理04)】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数k =( )9.2A - .0B .C 3 D.152【答案】C【解析】由已知(23)0230a b c a c b c -⋅=⇒⋅-⋅=,即 2(23)3(2141)03k k +-⨯+⨯=⇒=,选择C2.【2014年福建卷(理08)】在下列向量组中,可以把向量=(3,2)表示出来的是( )A .=(0,0),=(1,2)B .=(﹣1,2),=(5,﹣2)C .=(3,5),=(6,10)D .=(2,﹣3),=(﹣2,3)【答案】B 【解析】 根据,选项A :(3,2)=λ(0,0)+μ(1,2),则 3=μ,2=2μ,无解,故选项A 不能; 选项B :(3,2)=λ(﹣1,2)+μ(5,﹣2),则3=﹣λ+5μ,2=2λ﹣2μ,解得,λ=2, μ=1,故选项B 能. 选项C :(3,2)=λ(3,5)+μ(6,10),则3=3λ+6μ,2=5λ+10μ,无解,故选项C 不能. 选项D :(3,2)=λ(2,﹣3)+μ(﹣2,3),则3=2λ﹣2μ,2=﹣3λ+3μ,无解,故选 项D 不能.故选:B3.【2014年全国新课标Ⅱ(理03)】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2C. 3D. 5【答案】A 【解析】.,1,62-102∴,6|-|,10||2222A b a b a b a b a b a b a b a 故选联立方程解得,,==+=++==+4.【2014年辽宁卷(理05)】设,,a b c 是非零向量,学科 网已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝【答案】A【解析】若•=0,•=0,则•=•,即(﹣)•=0,则•=0不一定成立,故命题p 为假命题,若∥,∥,则∥平行,故命题q 为真命题,则p ∨q ,为真命题,p ∧q ,(¬p )∧(¬q ),p ∨(¬q )都为假命题,故选:A5.【2014年全国大纲卷(04)】若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )A .2B .2C .1D .22【答案】B【解析】由题意可得,(+)•=+=1+=0,∴=﹣1; (2+)•=2+=﹣2+=0,∴b 2=2,则||=,故选:B6.【2014年广东卷(理05)】已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)【答案】B【解析】∵(1,0,1)=-a ,设所求向量为(,y,z)x =b ,由题意得:||||cos60⋅=a b a b , ∴(1,1,0)=-b .故选B.7.【2014年上海卷(理16)】 如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i = 是上底面上其余的八个点,则(1, 2, , 8)i AB AP i ⋅=的不同值的个数为 ( ) (A) 1.(B) 2.(C) 4.(D) 8.【答案】A【解析】:根据向量数量积的几何意义,i AB AP ⋅等于AB 乘以i AP 在AB 方向上的投影,而i AP 在AB 方向上的投影是定值,AB 也是定值,∴i AB AP ⋅为定值1,∴选A8.【2014年浙江卷(理08)】记max{x ,()}()x x y y y x y ≥⎧=⎨<⎩,min{x ,()}()y x y y x x y ≥⎧=⎨<⎩,设a 、b 为平面向量,则A.min{||a b +,||}min{||a b a -≤,||}bB.min{||a b +,||}min{||a b a -≥,||}bC.2min{||a b +,222||}||||a b a b -≥+ D.2min{||a b +,222||}||||a b a b -≤+【答案】D【解析】对于选项A ,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B ,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=,显然,不等式不成立;对于选项C ,取,是非零的相等向量,则不等式左边max{|+|2,|﹣|2}=|+|2=4,而不等 式右边=||2+||2=2,显然不成立.由排除法可知,D 选项正确.故选:D9.【2014年四川卷(理07)】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .2【答案】D【解析1】(4,22)c m m =++因为cos ,||||c a c a c a ⋅=⋅,cos ,||||c b c b c b ⋅=⋅,所以||||||||c a c bc a c b ⋅⋅=⋅⋅, 又||2||b a =所以2c a c b ⋅=⋅即2[(4)2(22)]4(4)2(22)m m m m +++=+++2m ⇒=【解析2】由几何意义知c 为以ma ,b 为邻边的菱形的对角线向量,又||2||b a =故2m =10.【2014年天津卷(理08)】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E 、F 分别在边BC 、DC 上,BE BC λ=,DF DC μ=.若1AE AF ⋅=,23CE CF ⋅=-,则λμ+=A.12 B.23 C.56 D.712【答案】C【解析】 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由=μ得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,①=(λ-1, 3(λ-1))·(μ-1, 3(1-μ))=-23.②①-②得λ+μ=56.第II 部分11.【2014年陕西卷(理13)】设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a//,则=θtan _______. 【答案】 21【解析】.21tan θθ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22=====解得即,b a b a12.【2014年湖南卷(理16)】在平面直角坐标系中,O 为原点,)0,1(-A ,)3,0(B ,)0,3(C . 动点D 满足1||=CD ,则||OD OB OA ++的最大值是_________.【答案】71+【解析】动点D 的轨迹为以C 为圆心的单位圆,则设为()[)()3cos ,sin 0,2θθθπ+∈,则()()223cos 1sin 3OA OB OD θθ++=+-++)sin(728ϕθ++=,所以OA OB OD ++的最大值为17728+=+,故填71+.或由题求得点D 的轨迹方程为1)3(22=+-y x ,数形结合求出OA OB OD ++的 最大值即为点)3,1(-到轨迹上的点最远距离( 到圆心的距离加半径) .13.【2014年全国新课标Ⅰ(理15)】已知A ,B ,C 是圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为 . 【答案】:090 【解析】:∵1()2AO AB AC =+,∴O 为线段BC 中点,故BC 为O 的直径, ∴090BAC ∠=,∴AB 与AC 的夹角为090。

2014年高中数学题型分析(平面向量)

2014年高中数学题型分析(平面向量)

2014年全国高考理科数学试题分类汇编:平面向量(教师)1、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A2、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D3、2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))在四边形ABCD中,(1,2)AC =,(4,2)BD =-,则四边形的面积为 ( )A B .C .5 D .10【答案】C4、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P O PO A O B R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D .【答案】D5、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是 ( )A .⎛ ⎝⎦B .⎝⎦C .⎝D .⎝ 【答案】D6、(2013年高考湖南卷(理))已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】A7、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-1【答案】B8、(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD 方向上的投影为( )A B C .D . 【答案】A9、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______.【答案】210、(2013年上海市春季高考数学试卷(含答案))已知向量(1)a k =,,(9 6)b k =-,.若//a b ,则实数 k = __________【答案】34-11、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知向量AB 与AC的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥, 则实数λ的值为__________.【答案】71212、(2013年高考新课标1(理))已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.【答案】t =2.13、(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb(λ,μ∈R),则λμ=_________.【答案】414、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设21,e e 为单位向量,非零向量R y x e y e x ∈+=,,21,若21,e e 的夹角为6π,则的最大值等于________.【答案】215、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))设E D ,分别是A B C ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1216、(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】217、(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5218、(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在平行四边形ABCD中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______. 【答案】122014年全国高考理科数学试题分类汇编:平面向量(学生)1、(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,2、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P PC PB 00∙≥∙.则( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =3、2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))在四边形ABCD中,(1,2)AC =,(4,2)BD =-,则四边形的面积为 ( )A B .C .5 D .104、(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P O PO A O B R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D .5、(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,12AB AB ⊥,121OB OB ==,12AP AB AB =+.若12OP <,则OA 的取值范围是( )A .0,2⎛ ⎝⎦B .22⎛ ⎝⎦C .2⎛ ⎝D .2⎛ ⎝6、(2013年高考湖南卷(理))已知,a b 是单位向量,0a b =.若向量c 满足1,c a b c --=则的取值范围是( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦7、(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知向量()()1,1,2,2m n λλ=+=+,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-18、(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD 方向上的投影为( )ABC.D. 9、(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______.10、(2013年上海市春季高考数学试卷(含答案))已知向量(1)a k =,,(9 6)b k =-,.若//a b ,则实数 k = __________11、(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知向量AB 与AC的夹角为120°,且3AB =,2AC =,若AP AB AC λ=+,且AP BC ⊥, 则实数λ的值为__________.12、(2013年高考新课标1(理))已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.13、(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb(λ,μ∈R),则λμ=_________.14、(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设21,e e 为单位向量,非零向量R y x e y e x ∈+=,,21,若21,e e 的夹角为6π,则||b 的最大值等于________.15、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))设E D ,分别是A B C ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+= (21λλ,为实数),则21λλ+的值为__________.16、(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.17、(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________18、(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在平行四边形ABCD中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.。

2014年全国高考理科数学试题分类汇编(纯word解析版)_九、立体几何(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word解析版)_九、立体几何(逐题详解)

2014年全国高考理科数学试题分类汇编(纯word 解析版) 九、立体几何(逐题详解)第I 部分1.【2014年陕西卷(理05)】已知底面边长为1,侧棱长为2则正四棱柱的各顶点均在同一个球面上,则该球的体积为( )32.3A π .4B π .2C π 4.3D π2.【2014年重庆卷(理07)】某几何体的三视图如下图所示,则该几何体的表面积为( ) A.54 B.60 C.66 D.723.【2014年安徽卷(理07)】一个多面体的三视图如图所示,则该多面体的表面积为 (A )321+(B )318+(C )21 (D )184.【2014年福建卷(理02)】某空间几何体的正视图是三角形,则该几何体不可能是( )A . 圆柱B . 圆锥C . 四面体D . 三棱柱 5.【2014年湖南卷(理07)】一块石材表示的几何体的三视图如图2所示. 将该石材切割、打磨,加工成球,则能得到最大球的半径等于 A. 1 B. 2 C. 3 D. 46.【2014年辽宁卷(理04)】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥俯视图左视图正视图3245正(主)视图侧(左)视图俯视图1111111111117.【2014年全国大纲卷(08)】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π第(7)题图8.【2014年四川卷(理08)】如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。

设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .3[,1]3 B .6[,1]3 C .622[,]33 D .22[,1]39.【2014年辽宁卷(理07)】某几何体三视图如图所示,则该几何体的体积为( )A .82π-B .8π-C .82π-D .84π-10.【2014年全国大纲卷(11)】已知二面角l αβ--为060,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,0135ACD ∠=,则异面直线AB 与CD 所成角的余弦值为( )A .14 B .24 C .34D .1211.【2014年全国新课标Ⅰ(理12)】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A .62B .42C .6D .412.【2014年全国新课标Ⅱ(理06)】如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( ) A. 1727 B. 59 C. 1027 D. 1313.【2014年全国新课标Ⅱ(理11)】直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C. 3010D.2214.【2014年北京卷(理07)】在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx坐标平面上的正投影图形的面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠15.【2014年广东卷(理07)】若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 16.【2014年湖北卷(理05)】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为A.①和②B.③和①C. ④和③D.④和②17.【2014年湖北卷(理08)】.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,另相乘也。

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

高考数学专题05平面向量-高考数学试题分项版解析(解析版).docx

高中数学学习材料马鸣风萧萧*整理制作专题5 平面向量1. 【2014高考安徽卷文第10题】设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( ) A.23π B.3π C.6π D.02. 【2014高考北京卷文第3题】已知向量()2,4a =,()1,1b =-,则2a b -=( )A.()5,7B.()5,9C.()3,7D.()3,9【答案】A【解析】因为2(4,8)a =r ,所以2(4,8)(1,1)a b -=--r r =(5,7),故选A.【考点】本小题主要考查平面向量的基本运算,属容易题.3. 【2014高考大纲卷文第6题】已知a 、b 为单位向量,其夹角为60︒,则(2a -b )·b =( )A. -1B. 0C. 1D.2【答案】B【解析】 试题分析:22(2)22cos ,a b b a b b a b a b b -⋅=⋅-=⨯⨯<>-=2×1×1×c os 60︒-1=0,故选B.【考点】向量的数量积运算.4. 【2014高考福建卷文第10题】设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点,则OA OB OC OD +++等于 ( ) ..2.3.4A OM B OM C OM D OM5. 【2014高考广东卷文第3题】已知向量()1,2a =,()3,1b =,则b a -=( )A.()2,1-B.()2,1-C.()2,0D.()4,37. 【2014高考湖南卷文第10题】在平面直角坐标系中,O 为原点,()1,0A -,()03B ,,()30C ,,动点D 满足1CD =,则OA OB OD ++的取值范围是( )A.[]46,B.19-119+1⎡⎤⎣⎦,C.2327⎡⎤⎣⎦,D.7-17+1⎡⎤⎣⎦, 【答案】D【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程8.【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .9.【2014高考江西卷文第12题】已知单位向量=-==||,23,31cos ,,2121a e e a e e 则若向量且的夹角为αα_______. 【答案】3【解析】 试题分析:因为22221211221||(32)9124912cos 413129,3a e e e e e e α=-=-⋅+=-⨯+=-⨯=所以|| 3.a = 考点:向量数量积10. 【2014高考辽宁卷文第5题】设,,a b c 是非零向量,已知命题P :若0a b ⋅=,0b c ⋅=,则0a c ⋅=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( )A .p q ∨B .p q ∧C .()()p q ⌝∧⌝D .()p q ∨⌝12. 【2014高考全国2卷文第4题】设向量b a ,满足10||=+b a ,6||=-b a ,则=⋅b a ( )A. 1B. 2C. 3D. 513.【2014高考山东卷文第7题】已知向量()1,3a =,()3,b m =.若向量,a b 的夹角为π6,则实数m =( )(A )23 (B )3 (C )0 (D )3-【答案】B【解析】因为cos ,,||||a b a b a b ⋅<>=⋅所以2233cos ,623m m π+=+解得3m =,故选B . 考点:平面向量的数量积、模与夹角. 14.【2014高考四川卷文第14题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m = .15. 【2014高考天津卷卷文第13题】已知菱形ABCD 的边长为2,120BAD ∠=︒,点E ,F 分别在边BC 、DC 上,3BC BE =,DC DF λ=.若1,AE AF ⋅=,则λ的值为________.16.【2014高考浙江卷文第9题】设θ为两个非零向量a 、b 的夹角,已知对任意实数t ,||t a b +的最小值为1( )A.若θ确定,则 ||a 唯一确定B.若θ确定,则 ||b 唯一确定C.若||a 确定,则 θ唯一确定D.若||b 确定,则 θ唯一确定17.【2014高考重庆卷文第12题】已知向量=⋅=--=b a b a b a 则,且的夹角为与,10||),6,2(60_________.18.【2014高考上海卷文第14题】已知曲线C :24x y =--,直线l :x=6.若对于点A (m ,0),存在C 上的点P 和l 上的点Q 使得0AP AQ +=,则m 的取值范围为 .【答案】[2,3]【解析】由0AP AQ +=知A 是PQ 的中点,设(,)P x y ,则(2,)Q m x y --,由题意20x -≤≤,26m x -=,解得23m ≤≤.【考点】向量的坐标运算.19.【2014高考上海卷文第17题】如图,四个边长为1的正方形排成一个大正方形,AB 是在正方形的一条边,(1,2,,7)i P i =是小正方形的其余各个顶点,则(1,2,,7)i AB AP i ⋅=的不同值的个数为( )(A )7 (B )5 (C )3 (D )120.【2014高考陕西文第18题】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,点(,)P x y 在ABC ∆三边围成的区域(含边界)上,且(,)OP mAB nAC m n R =+∈.(1)若23m n ==,求||OP ; (2)用,x y 表示m n -,并求m n -的最大值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 【2014高考福建卷第8题】在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e
2. 【2014高考广东卷理第5题】已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A.()1,1,0- B. ()1,1,0- C.()0,1,1- D.()1,0,1-
3. 【2014高考湖南卷第16题】在平面直角坐标系中,O 为原点,()),0,3(),3,0(,0,1C B A -动点D 满足
CD =1,则OA OB OD ++的最大值是_________.
【答案】17+
【解析】因为C 坐标为()3,0且1CD =,所以动点D 的轨迹为以C 为圆心的单位圆,则D 满足参数方程
4. 【2014高考江苏卷第12题】如图在平行四边形ABCD 中,已知8,5AB AD ==,
3,2CP PD AP BP =⋅=,则AB AD ⋅的值是 .
5. 【2014陕西高考理第13题】设2

θ<
<,向量()()1cos cos 2sin ,,,θθθb a
=,若b a //,则
=θtan _______.
6. 【2014高考安徽卷理第10题】在平面直角坐标系xOy 中,已知向量,,1,0,a b a b a b ==⋅=点Q 满足
2()OQ a b =+.曲线{cos sin ,02}C P OP a b θθθπ==+≤≤,区域{0,}P r PQ R r R Ω=<≤≤<.
若C
Ω为两段分离的曲线,则( )
A. 13r R <<<
B.13r R <<≤
C.13r R ≤<<
D.13r R <<<
考点:1.平面向量的应用;2.线性规划.
7. 【2014高考北京版理第10题】已知向量a 、b 满足1||=a ,)1,2(=b ,且0b a =+λ(R λ∈),则
||λ= .
8. 【2014高考湖北卷理第11题】设向量(3,3)a =,(1,1)b =-,若()()
a b a b λλ+⊥-,则实数
λ= .
【答案】3±
10. 【2014江西高考理第15题】已知单位向量1e 与2e 的夹角为α,且1
cos 3
α=
,向量1232a e e =-与123b e e =-的夹角为β,则cos β= .
11. 【2014辽宁高考理第5题】设,,a b c 是非零向量,已知命题P :若0a b ∙=,0b c ∙=,则0a c ∙=;命题q :若//,//a b b c ,则//a c ,则下列命题中真命题是( ) A .p q ∨ B .p q ∧ C .()()p q ⌝∧⌝ D .()p q ∨⌝
12. 【2014全国1高考理第15题】已知C B A ,,为圆O 上的三点,若()
AC AB AO +=2
1
,则AB 与AC 的夹角为_______.
【考点定位】1、平面向量基本定理;2、圆的性质.
13. 【2014全国2高考理第3题】设向量a,b 满足|a+b |=10,|a-b |=6,则a ⋅b = ( ) A. 1 B. 2 C. 3 D. 5
14. 【2014高考安徽卷理第15题】已知两个不相等的非零向量,,b a 两组向量54321,,,,x x x x x 和
54321,,,,y y y y y 均由2个a 和3个b 排列而成.记5544332211y x y x y x y x y x S ⋅+⋅+⋅+⋅+⋅=,
min S 表示S 所有可能取值中的最小值.则下列命题的是_________(写出所有正确命题的编号). ①S 有5个不同的值. ②若,b a ⊥则min S 与a 无关. ③若,b a ∥则min S 与b 无关. ④若a b 4>,则0min >S .
⑤若2
min
||2||,8||b a S
a ==,则a 与
b 的夹角为4
π
2222
min 34()8||cos 4||8||S S a b b a a a θ==⋅+=+=,∴2cos 1θ=,∴3
π
θ=
,故⑤错误.所以
正确的编号为②④.
考点:1.平面向量的运算;2.平面向量的数量积.
15. 【2014四川高考理第7题】平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =( ) A .2- B .1- C .1 D .2
16. 【2014浙江高考理第8题】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y
≥⎧=⎨<⎩,设,a b 为平面向量,
则( )
A.min{||,||}min{||,||}a b a b a b +-≤
B.min{||,||}min{||,||}a b a b a b +-≥
C.2
222min{||
,||}||||a b a b a b +-≥+ D.2
222min{||
,||}||||a b a b a b +-≤+
17. 【2014重庆高考理第4题】已知向量(,3),(1,4),(2,1)a k b c ===,且(2
3)a b c -⊥,则实数k =( )
9
.2A -
.0B .C 3 D.152
18. 【2014天津高考理第8题】已知菱形ABCD 的边长为2,120BAD
?,点,E F 分别在边,BC DC 上,
BE BC l =,DF DC m =.若1AE AF
?,2
3
CE CF ?-
,则l m += ( ) (A )
12 (B )23 (C )56 (D )712
19. 【2014大纲高考理第4题】若向量,a b 满足:()()
1,,2,a a b a a b b =+⊥+⊥则b = ( )
A .2
B .2
C .1
D .
22。

相关文档
最新文档