因式分解(常用方法)ppt课件
合集下载
因式分解(常用方法)课件
④ 4x2 – 8xy + 4y2
= 4 (x2–2xy+y2) = 4 (x–y)2
做一做
用完全平方公 式进行因式分解。
①a 18a 81 ④m n 2m n 1
2
4 2 2
2 1 2 2 2 ⑤a b c 4abc 4 ②x x 3 9 2 2 ③ s t 2st ⑥ 25x 2 20x 4
利用平方差 公式因式分解。
2 2
①169a 196b
⑤9m 2 n 2 16t 2
2 2
1 2 1 2 x y ② x y ⑥ 4 16 9 4 4 2 2 4 ③ 25x 16 y ⑦ p q q ④9 xy 36x y
2 3 2
⑧2a b 4a b
例1 把8a3b2 + 12ab3c 分解因式.
解:8a3b2+12ab3c =4ab2•2a2+4ab2•3bc =4ab2(2a2+3bc).
例2
把 2a(b+c) -3(b+c)分解因式.
分析:( b+c)是这个式子的公因式,可以直接提出.
解:2a(b+c) – 3(b+c)
=(b+c)(2a-3).
例如:2
(3) 6x3 – 54xy2 解:原式 = 6x (x2–9y2) = 6x (x+3y)(x–3y)
2 (4) (x+p)2 – ( x – q ) X Y
解:原式= [ (x +p)+(x –q) ]·[ (x +p)–(x –q) ] X Y X Y
= (2x+p–q)(p+q)
因式分解法-ppt课件
2
2
思考:将一个多项式进行因式分解,通常有哪几 种方法?
提公因式法,公式法,十字相乘法 用因式分解法解一元二次方程的依据是:
如果ab=0,则a=0或b=0.
解下列方程: (x-2)·(x-3)=0; 解: 由题可得
x-2=0或x-3=0 x1=2, x2=3
4x2-11x=0.
解: 分解因式,得
x1=2,x2=-1.
于是得
2x+1=0,或2x-1=0,
x1
1 2
,
x2
1. 2
直接开平方法适用于哪种形式的方程? x2=p 配方法适用于哪种形式的方程? (mx+n)2=p 公式法适用于哪种形式的方程? ax2+bx+c=0(a≠0) 因式分解法适用于哪种形式的方程?x2-(m+n)x+mn=0
课堂小结
因式分解法
通过因式分解 实现降次来解 一元二次方程
提公因式法 公式法
十字相乘法
完全平方公式 平方差公式
课后作业
1.用合适的方法法解下列一元二次方程. (1)(5x)2-9=16; (2)x2+4x+5=2; (3)2x2-3x-2=0; (4)(x-2)(x-3)=12;
2.填空 ①x2-3x+1=0 ②3x2-1=0 ③-3t2+t=0 ④x2-4x=2 ⑤2x2-x=0 ⑥5(m+2)2=8 ⑦3y2-y-1=0 ⑧2x2+4x-1=0 ⑨(x-2)2=2(x-2). (1)适合运用直接开平方法 ② ⑥ ; (2)适合运用因式分解法 ③ ⑤ ⑨ ; (3)适合运用公式法 ① ⑦ ⑧ ; (4)适合运用配方法 ④ . 【提示】每个题都有多种解法,选择更 合适的方法,可以简化解题过程!
因式分解法-PPT课件
★ 选择适当的方法解一元二次方程
例2 用适当的方法解下列方程: (1)2(x-1)2-18 = 0 ;
分析:出现了(x-1)2,并且一次项为0,考虑用直接开平方法. 解:整理,得(x-1)2= 9. 开平方,得x-1 = ±3, 即x-1 = 3 或x-1 = -3, ∴ x1=4,x2=-2.
(2)x2+4x-1 = 0 ;
(x + m) (x + n)=0
Hale Waihona Puke 解法选择基本思路1.一般地,当一元二次方程一次项系数为0时(ax2+c=0), 应选用直接开平方法; 2.若常数项为0( ax2+bx=0),应选用因式分解法; 3.若一次项系数和常数项都不为0 (ax2+bx+c=0),先化为一 般式,看一边的整式是否容易因式分解,若容易,宜选用因 式分解法,不然选用公式法; 4.当二次项系数是1,且一次项系数是偶数时,用配方法也较 简单.
因式分解
x(x-7) =0 ②
两个因式乘积为 0,说明什么?
如果a · b = 0, 那么 a = 0或 b =
0.
x =0 或 x-7=0
降次,化为两个一次方程
x1 0, x2 7
(解两个一次方程,得出原方程的根) 这种解法是不是很简单?
例1 用因式分解法解下列方程
解:化为一般式为 x2-2x+1 = 0.
解:2(x-3)2=(x+3)(x- 3), (x-3)[2(x-3)-(x+3)]=0. 解得x1=3,x2=9. (3)5x(2x-3)=10x-15.
解为(x+a)(x-a)= 0,则x+a = 0 或x-a = 0,即x1 = -a, x2 = a. (3)形如x2 ±2ax+ a2 = 0 的一元二次方程,将左边用完全平方公式因式 分解为(x± a )2= 0,则① x+a = 0,即x1 = x2 = -a. ② x-a = 0,即 x1 = x2 = a. (4)形如x2 +(a+b)x+ab = 0 的一元二次方程,将其左边因式分解, 则 方程化为(x+a)(x+b)= 0,所以x+a = 0 或x+b = 0,即x1 = -a, x2 = -b.
21.2.3 因式分解法 课件(共21张PPT)
( + )( − )
−
( − )( + )
情境引入
对于方程 − = ,除了可以用配方法或公式法求
解,还可以怎样求解呢?
观察和分析小亮的解法,你认为他的解法有没有道理?
小亮的思考及解法
解一元二次方程的关键是将它转化为一元一次方程,因此,
可将方程的左边分解因式.于是,得( − ) = .
那么这两个因式中至少有一个等于0;
(3)用因式分解法解一元二次方程的注意点:①必须将方程的右边
化为0;②方程两边不能同时除以含有未知数的代数式;
(4)解一元二次方程时,如果能用因式分解法进行解题,那么它是
首选.
知识点2:换元法解一元二次方程(难点)
1. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使
0,解得y₁=2,y₂=-1(不合题意,舍去),∴|x|=2,∴x₁=2,x₂=-2.
变式:已知(x+y-3) (x+y+4)=-10, 求x+y的值.
解:整理,得( − ) = ,
直接开平方,得 − = 或 −
= −,
解得 = , = −.
() + − = .
解: = , = , = −,
− = + = > ,
所以 =
−±
= − ± ,
21.2.3 因式分解法
1.通过阅读课本 , 学生会用因式分解法解某些简单的数字系
数的一元二次方程,提高了学生的运算能力.
2.通过学生自主探究利用因式分解的方法解方程,培养学生
分析问题、解决问题的能力,并体会通过“降次”把一元二
次方程转化为两个一元一次方程的转化思想.
专题(七) 因式分解的技巧PPT课件(华师大版)
(2)x(x-1)-y(y-1). 解:(x-y)(x+y-1)
二、巧用因式分解解决问题 类型一 简化计算 5.(1)计算:23×2.718+59×2.718+18×2.718; 解:271.8
(2)已知(202X-b)×(202X-b)=202X,求(202X-b)2+(202X-b)2的值. 解:设202X-b=m,202X-b=n,则mn=202X, m-n=(202X-b)-(202X-b)=202X-b-202X+b=2, ∴(202X-b)2+(202X-b)2=m2+n2= m2-2mn+n2+2mn=(m-n)2+2mn=22+2×202X=4040
类型二 求值 6.已知m+n=2,求m2-n2+4n的值.
解:∵m+n=2,∴原式=(m+n)(m-n)+4n=2(m-n)+4n=2m-2n+4n =2(m+n)=2×2=4
7.已知a2-a-1=0,求a3-2a+202X的值.
解:∵a2-a-1=0,∴a2=a+1,∵a3-2a+202X=a3-a-a-1+202X,
八年级数学上册(华师版) 第十二章 整式的乘除
专题(七) 因式分解的技能
专题(七) 因式分解的技能
一、因式分解的技能 类型一 符号变换 1.分解因式: (1)(m+n)(x-y)+(m-n)(y-x); 解:2n(x-y) (2)-a2-2ab-b2. 解:-(a+b)2
类型二 系数变换 2.分解因式: (1)4x2-12xy+9y2; 解:(2x-3y)2
(2)14x2+x3y+19y2. 解:316(3x+2y)2
类型三 指数变换 3.分解因式: (1)x4-y4; 解:(x2+y2)(x+y)(x-y)
(2)a4-2a2b2+b4. 解:(a+b)2(a-b)2
二、巧用因式分解解决问题 类型一 简化计算 5.(1)计算:23×2.718+59×2.718+18×2.718; 解:271.8
(2)已知(202X-b)×(202X-b)=202X,求(202X-b)2+(202X-b)2的值. 解:设202X-b=m,202X-b=n,则mn=202X, m-n=(202X-b)-(202X-b)=202X-b-202X+b=2, ∴(202X-b)2+(202X-b)2=m2+n2= m2-2mn+n2+2mn=(m-n)2+2mn=22+2×202X=4040
类型二 求值 6.已知m+n=2,求m2-n2+4n的值.
解:∵m+n=2,∴原式=(m+n)(m-n)+4n=2(m-n)+4n=2m-2n+4n =2(m+n)=2×2=4
7.已知a2-a-1=0,求a3-2a+202X的值.
解:∵a2-a-1=0,∴a2=a+1,∵a3-2a+202X=a3-a-a-1+202X,
八年级数学上册(华师版) 第十二章 整式的乘除
专题(七) 因式分解的技能
专题(七) 因式分解的技能
一、因式分解的技能 类型一 符号变换 1.分解因式: (1)(m+n)(x-y)+(m-n)(y-x); 解:2n(x-y) (2)-a2-2ab-b2. 解:-(a+b)2
类型二 系数变换 2.分解因式: (1)4x2-12xy+9y2; 解:(2x-3y)2
(2)14x2+x3y+19y2. 解:316(3x+2y)2
类型三 指数变换 3.分解因式: (1)x4-y4; 解:(x2+y2)(x+y)(x-y)
(2)a4-2a2b2+b4. 解:(a+b)2(a-b)2
2.4《因式分解法》课件(共35张PPT)
2、用适当方法解下列方程 ① -5x2-7x+6=0
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
② 2x2+7x-4=0
③ 4(t+2 3 )2=3
④ x2+2x-9999=0
(5) 3t(t+2)=2(t+2)
小结: 1、
ax2+c=0
====>
直接开平方法
ax2+bx=0 ====>
因式分解法
ax2+bx+c=0 ====>
因式分解法 公式法(配方法)
① x2-3x+1=0 ② 3x2-1=0
③ -3t2+t=0
④ x2-4x=2
⑤ 2x2-x=0
⑥ 5(m+2)2=8
⑦ 3y2-y-1=0 ⑧ 2x2+4x-1=0
⑨ (x-2)2=2(x-2)
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
我的发现
➢一般地,当一元二次方程一次项系数为0时 (ax2+c=0),应选用直接开平方法;
例3.解下列方程 :
(1)x(x 2) x 2 0;
(2)5x2 2x 1 x2 2x 3 .
4
4
可以试用 多种方法解 本例中的两
个方程 .
分解因式法解一元二次方程的步骤是: 1.将方程右边等于0; 2. 将方程左边因式分解为A×B; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
➢若常数项为0( ax2+bx=0),应选用因式分解法;
➢若一次项系数和常数项都不为0 (ax2+bx+c=0), 先化为一般式,看一边的整式是否容易因式分解, 若容易,宜选用因式分解法,不然选用公式法;
因式分解法ppt课件
(1)提公因式法:am+bm+cm= m(a+b+c)
;
( 2)公式法:a²-b²= (a+b)(a-b) ,a²±2ab+b²= (a± b)²
(3)十字相乘法 X
)(x
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛, 那么物体经过xs 离地面的高度(单位:m) 为10-4.9x².
解 :(1) x(x-4)=2-8x
方程整理,得x²+4x=2,
配方,得x²+4x+4=6, 即(x+2)²=6 开平方,得x+2=± √6,
解得x
=-2+√6,x₂=-2-√6.
解 :(2) x²-4x=0
分解因式,得x(x-4)=0, 所以x=0 或x-4=0, 解得x=0,x₂=4.
解:(3)2 x(x+4)=1
解得
,X
₂
解 :2(x-3)²=x²-9,
2(x-3)²=(x-3)(x+3) (x-3)[2(x-3)-(x+3)]=0 (x-3)[x-9]=0 x₁=3,x₂=9.
练习6 按要求解一元二次方程.
(1)x(x-4)=2-8x
(配方法) .
(2)x²-4x=0
(因式分解法).
(3)2x(x+4)=1 (公式法) .
元
先配方,再用直接开平方法降
二 配方法 次 方
次
适用于全部
一
程 公式法
直接利用求根公式
元二次方程
的 方
先使方程一边化为两个一次因
法
因式分解法
式乘积的形式,另一边为0,适用于部分一
因式分解ppt课件
方式.
完全平方式的条件:(1)多项式是二次三项式;(2)首末
两项是两个数(或式子)的平方且符号相同,中间项是这
两个数(或式子)的积的2 倍,符号可以是“+”,也可以
是“-”.
感悟新知
知5-讲
2. 完全平方公式
两个数的平方和加上(或减去)这两个数
的积的2 倍,等于这两个数的和(或差)的平方.
即:a2±2ab+b2=(a±b)2 .
知4-讲
3. 运用平方差公式分解因式的步骤
一判:根据平方差公式的特点,判断是否为平方差,若负
平方项在前面,则利用加法的交换律把负平方项放在后面;
二定:确定公式中的a和b,除a和b是单独一个数或字母外,
其余不管是单项式还是多项式都必须用括号括起来,表示
一个整体;三套:套用平方差公式进行分解;四整理:将
(2)确定另一个因式,另一个因式即多项式除以公因式所
得的商;
(3)写成积的形式.
感悟新知
知3-讲
特别解读
1. 提公因式法实质上是逆用乘法的分配律.
2. 提公因式法就是把一个多项式分解成两个因式的积的形
式,其中的一个因式是各项的公因式,另一个因式是多
项式除以这个公因式所得的商.
感悟新知
知3-练
例 5 把下列多项式分解因式:
感悟新知
例 3 仔细阅读下面例题,解答问题:
知1-练
例题:已知把x2-4x+m分解因式后有一个因式是x
+3,求其另一个因式及m的值.
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x
+n),即x2-4x+m=x2+(n+3)x+3n.
=-,
+=-,
所以
解得
=-.
因式分解ppt(共22张PPT)
3.(随堂练习p31、2)
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
规律总结
• 对多项式分解因式与整式乘法是方向相反的两种恒等变 形.
• 整式的乘法运算是把几个整式的积变为多项式的形式,
特征是向着积化和差的形式发展;
• 多项式的分解因式是把一个多项式化为几个整式乘积的
形式,特征是向着和差化积的形式发展.
• 因式分解要注意以下几点: 1.分解的对象必须是多项式.
• 把一个多项式化成几个整式的积的形式,这 种变形叫做因式分解。
• 因式分解也可称为分解因式。
因分解的结果要以积的形式表示
2.每个因式必须是整式,且每个因式的次数 都要低于原多项式的次数。
3.必须分解到每个多项式不能分解为止(具 体由所在的数集决定)。
想一想: 因式分解与整式乘法有什么联系?
2.分解的结果一定是几个整式的乘积的形式.
2:计算
(1) 8728713 (2) 1012992
=87(87+13) =8700
=(101+99)(101-99) =200×2 =400
3.若 x101,y99则 x22xyy2_ 4_
动脑筋
n2+n是奇数还是偶数?
2517-532能被120整除吗? 若n是整数,证明 (2n+1)2-(2n-1)2是8的倍数.
多项式的因式分解与整式乘法是方向相反的恒等式.
整式乘法
3x(x-1)= _____
(3).(5a-1) =25a -10a+1 解: ab-ac=a(b-c)
a(a+1)(a-1) a3-a=a(a+1)(a-1)
2
2
整式乘法
答: 由a(a+1)(a-1)得到a3-a的变形是整式乘法,由a3-a得到a(a+1)(a-1)的变形是把一个多项式化成几个整式的积的形式.
因式分解ppt课件
识别多项式的系数
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
观察多项式的系数,可以发现其中的规律和特点,有助于因式分解的进行。
ห้องสมุดไป่ตู้
寻找公因式或公因子
提取公因式
通过观察多项式的各项,可以发现其 中的公因式,提取公因式是因式分解 的一种常用方法。
寻找公因子
在某些情况下,多项式中可能存在公 因子,通过寻找公因子可以简化因式 分解的过程。
灵活运用公式和分组方法
利用公式进行因式分解
在数学中存在许多公式可以用于因式分解,如平方差公式、 完全平方公式等,利用这些公式可以简化因式分解的过程。
分组方法
对于一些复杂的多项式,可以将其分组进行因式分解,这样 可以更好地理解和处理多项式。
04
因式分解的应用实例分析
代数式的化简与求值
代数式的化简
通过因式分解,可以将复杂的代数式 化简为简单的形式,便于计算和理解 。
$ax^n + bx^{n-1} + \ldots + y = a(x^m)^n + b(x^m)^{n-1} + \ldots + y$
因式分解的意义
01
02
03
简化计算
因式分解可以简化多项式 的计算过程,提高计算效 率。
便于应用
因式分解在解决实际问题 中具有广泛应用,如解方 程、求根、不等式等。
分组分解法
总结词
将多项式分组进行因式分解
详细描述
分组分解法是将多项式中的某些项进行分组,然后对每组进行因式分解的方法。这种方法可以简化多项式的结构 ,使其更容易进行因式分解。
03
因式分解的技巧与策略
观察多项式的结构特点
识别多项式的项数和各项的次数
观察多项式的项数和各项的次数,有助于确定因式分解的策略。
因式分解ppt课件
因式分解
根据左面的算式填空: (1) 3x2-3x=_______ (2) m2-16=__________ (3) y2-6y+9=______ (4) ma+mb-mc=
归纳小结
想一想 因式分解与整式乘法有什么关系?
整式积的形式 整式乘法
整式乘法 因式分解
互逆运算
多项式 因式分解
典例精析
例1 若多项式 ax+B可分解为a(x+y),则B等于( )
第四章 因式分解
第一节 因式分解
温故知新
一、用简便方法计算
(1)66×42- 42×6
(2)16.9× 1 +15.1× 1
8
8
探索一:因式分解的概念
993-99能被100整除吗?
乘法对加法分配律Βιβλιοθήκη 逆用解:993-99=99×992-99×1 =99×(992-1) =99×9800 =99×100×98
8
8
5.若多项式2x2+mx+n分解因式的结果为(2x-2)(x+3) 求m,n的值。
能力提升
6:仔细阅读下面的例题,并解答问题
例题:已知二次三项式x2-4x+m有一个因式为x十3,求另
一个因式及m的值
解:设另一个因式为x+n,则x2-4x+m=(x+3)(x+n)
即:x2-4x+m=x2+(n+3)x+3n.
在这里,解决问题的关键是把 一个数式化成几个数的积的形式。
所以,993-99能被100整除. 想一想: 993-99还能被哪些整数整除?
探索一:因式分解的概念
议一议 你能尝试把
第三讲因式分解PPT课件
① x2-5x+6
1
-2
1
-3
解:原式=(x-2)(x-3)
② a2-a-2
1
1
1
-2
解:原式=(a+1)(a-2)
【例 4】 (2011·台湾)下列四个多项式,是 2x2+5x-3 的因式的只能为
( A)
A.2x-1
B.2x-3
C.x-1
D.x-3
2x²-5x-3
4x²+10x+6
⑷分组分解法: a3 a2 a 1
(1)、提公因式法: 公因式的确定:
ma + mb + mc = m(a+b+c)系数取所有系数的最大公约数,
字母取相同的字母, 指数取最低指数。
练习:把下列各式分解因式
① 6x3y2-9x2y3+3x2y2
)②p(y-x)-2(x-y)
解:原式=3x2y2(2x-3y+1)
解:原式=p(y-x)+2(y-x) =(y-x)(p+2)
综合运用多种方法分解因式
知能迁移 4 (1)分解因式:a5-a (2)分解因式:(x+2)(x+4)+x2-4 (3)(解2012(·x+临2沂)(x)+分4解)+因x式22-:4a-6ab+9ab2= ________=.x22+6x+8+x22-4 (4)在=实2x数22+范6x围+内4 分解因式:x4-4
(2)运用公式法:
例题精析
【例 1】 (1)(2013·广东湛江)分解因式:x2-4=___x_2-__4_=__(_x_+__2_)(_x_-__2_)____. (2)(2013·江苏苏州)分解因式:a2+2a+1=___a_2+__2_a_+__1_=__(_a_+__1_)2_____. (3)(2013·山东滨州)分解因式:5x2-20=__5_x_2_-__2_0_=__5_(_x_+__2_)(_x_-__2_)_. (4)(2013·湖南益阳)分解因式:xy2-4x=___x_y2_-__4_x_=__x_(_y+__2_)_(_y_-__2_) __.
因式分解ppt课件
02
03
04
因式分解的基本概念:定义、 性质、方法等
因式分解的技巧:提公因式、 平方差公式、十字相乘法等
因式分解的应用:代数式化简 、解方程等
Hale Waihona Puke 学习方法:理论学习、练习、 小组讨论等
因式分解的应用与重要性
01
02
03
04
代数式化简
利用因式分解简化复杂的代数 式,提高计算效率
解方程
通过因式分解将方程转化为多 个简单方程,便于求解
因式分解的作用
有助于理解方程的解 法
可以用于解决一些数 学问题,如求根、解 方程等
可以将一个复杂的多 项式简化成易于理解 的形式
课程目标和学习方法
掌握因式分解的基本方法 学习如何将一个多项式分解成几个整式的乘积
通过练习,达到能够快速、准确地完成因式分解的目标
02
因式分解的基本概念
整式和因式的定义
分解6a4b3+18a3b2+12a2b
首先,我们可以发现6a4b3和18a3b2可以组合成一项,得到(6a4b3+18a3b2),接着观察多项式,我 们可以发现12a2b可以单独列出来,所以原多项式可以分解为(6a4b3+18a3b2)+12a2b。
应用题中的例子
在一个水池设计中,需要将一个圆形的水池分割成若干个小 的区域,这时候就需要使用到因式分解的方法,将圆形水池 的面积分解成若干个小的面积之和,这样就可以更加方便地 进行设计和规划。
掌握因式分解的方法
因式分解的方法有很多种,初学者可能难以掌握。解决办 法是加强对方法的学习,可以通过大量的练习来掌握。
解决因式分解的问题
因式分解的问题可能比较复杂,初学者可能难以解决。解 决办法是加强对问题的分析,学会拆解问题,找出合适的 解决方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
x2 1
x 1x 1
整式乘法
因式分解与整式乘法是逆变形
5
依照定义,判断下列变形是不是 因式分解 (把多项式化成几个整式的积)
①x 2x 2 x2 4
②6x4 y3 2x3 y 3xy2
③x 2
9 4x4
x
3 2x2
x
3 2x2
④5x2 y 3x2 y 2x2 y
以便于更好的解决一些问题
3
试试看
(将下列多项式写成几个整式的乘积)
回忆前面整式的乘法
x2 x ___x_x___1_ __ x2 1 __x__1__x__1__
4
x2 1 x 1x 1
上面我们把一个多项式化成了几个整 式的积的形式,像这样的式子变形叫做把 这个多项式 因式分,解也叫做把这个多项 式分解因。式
6
创设情景
学校打算把操场重新规划一下,分 为绿化带、运动场、主席台三个部分, 如下图,计算操场总面积。
a
b
c
m
7
方法一:S = m ( a + b + c ) 方法二:S = ma + mb + mc
a
b
c
mm
m
8
方法一:S = m ( a + b + c ) 方法二:S = ma + mb + mc 下面两个式子中哪个是因式分解? m ( a + b + c ) = ma + mb + mc ma + mb + mc = m ( a + b + c )
③ 1 m3n mn 5 mn2
3
6
④0.49 p2q 0.21pq2
⑦ x2 y 2x3y x2 y2 23 6
⑧49 4mn2 98 5n2m
14
15
维度A
公式回顾
▪ 平方差公式: ▪ 完全平方公(式a : b)(a b) a2 b2 ▪ 立方和公式:(a b)2 a2 2ab b2 ▪ 立方差公式:a3 b3 (a b)(a2 ab b2 )
例如:2
(3) 6x3 – 54xy2 解:原式 = 6x (x2–9y2)
= 6x (x+3y)(x–3y) (4) (x+p)2 –X(x–q)2 Y 解:原式= [ (xX+p)+(xY–q) ]·[ (xX+p)–(xY–q) ]
= (2x+p–q)(p+q)
21
做一做
利用平方差公 式因式分解。
`.
12
例2 把 2a(b+c) -3(b+c)分解因式.
分析:( b+c)是这个式子的公因式,可以直接提出.
解:2a(b+c) – 3(b+c) =(b+c)(2a-3).
13
做一做
按照提公因式 法因式分解。
①3a2b 6abc
⑤36x2 y3 45x3 y2
② 5x3 y 10xy2 20xy ⑥74a3b2c4 111a4b3c4
复习回顾
口答:
xx 1 __x_2___x__ x 1x 1 ___x_2 __1__ 2x3x 7 _6_x_2__1_4_x_
2
新课引入
问题:630可以被哪些整数整除?
解决这个问题,需要对630进行 分解质因数 630 = 2×32×5×7
类似地,在式的变形中, 有时需要将一个多项式写成几个整式的乘积的形式
a3 b3 (a b)(a2 ab b2 )
选考 学试 ,不 不会 做涉 统及 一 要 求 ,
16
复习回顾
还记得学过的两个最基本的乘法公式吗?
平方差公式: a ba b a2 b2
完全平方公式:aaa
bbb222
a aa
2
2 2
2ab 22aabb
bbb222
计 算
x 2x 2 __x_2___4__
①169a2 196b2 ⑤9m2n2 16t 2
② 1 x2 1 y2 ⑥ x2 y2
4 16
94
③25x4 16y2 ⑦ p q2 q4
④9xy2 36x3 y2 ⑧2a b2 4a b2
22
23
复习回顾
还记得前面学的完全平方公式吗?
在式子ma + mb + mc中,m是这个多项式 中每一个项都含有的因式,叫做 公。因式
9
在下面这个式子的因式分解过程中, 先找到这个多项式的公因式,再将原式除 以公因式,得到一个新多项式,将这个多 项式与公因式相乘即可。
这种方法叫做提公因式法。
ma + mb + mc = m ( a + b + c )
: 5 a2 _a_2__1_0_a__2_5_
m 7 m 7 __m__2 __14_m___4_9_
17
新课引入
此处运用了什么公式? 逆用 平方差公式
试计算:9992 – 12 = (999+1)(999–1) = 1000×998 = 998000
因式分解:(1)x2 – 422 ;(2)y2 – 2552 = (x+2)(x–2) = (y+5)(y–5)
19
例如:1
(1) – 4x2 + y2 解:原式 = y2 – 4x2 = (y+2x)(y–2x)
= – ( 4x2 – y2 ) = – (2x+y)(2x–y)
(2) x4 – 1 解:原式 = (x2)2 – 12 = (x2+1) (x22+–11))(x–1)
因式分解一定要分解彻底 ! 20
提公因式法一般步骤:
1、找到该多项式的公因式,
2、将原式除以公因式,得到一个新多项式,
3、把它与公因式相乘。
10
8a3b2-12ab3c 的公因式是什么?
公因式 4
a
b2
最大公约数 相同字母 最低指数
观察 一看系数 二看字母 三看指数 方向
11
例1 把8a3b2 + 12ab3c 分解因式. 解:8a3b2+12ab3c =4ab2•2a2+4ab2•3bc =4ab2(2a2+3bc).
这些计算过程中都逆用了平方差公式
即:a2 b2 a ba b
18
a2 b2 a ba b
此即运用平方差公式进行因式分解 用文字表述为:
两个数的平方差等于这两个 数的和与这两个数的差的积。
尝试练习(对下列各式因式分解):
① a2 – 9 = ______(_a_+_3_)_(a_–_3_)_____ ② 49 – n2 = _____(_7_+_n_)_(7_–_n_)_____ ③ 5s2 – 20t2 = ___5_(_s_+_2_t)_(_s–_2_t_)___ ④ 100x2 – 9y2 =_(1_0_x_+__3_y)_(_1_0_x_–_3_y_)