复数教案
大学复数教案百度文库
![大学复数教案百度文库](https://img.taocdn.com/s3/m/22a9e4ab4793daef5ef7ba0d4a7302768e996f0a.png)
课时:2课时教学目标:1. 理解复数的概念和表示方法。
2. 掌握复数的运算规则,包括加法、减法、乘法、除法。
3. 了解复数的几何意义和复平面。
4. 能够运用复数解决实际问题。
教学重点:1. 复数的概念和表示方法。
2. 复数的运算规则。
教学难点:1. 复数的几何意义和复平面。
2. 复数的实际应用。
教学过程:第一课时一、导入1. 引导学生回顾实数的概念和运算。
2. 提出问题:实数能否表示所有几何图形上的点?二、新课讲授1. 复数的概念:形如a+bi(a,b∈R)的数叫复数,其中a是实部,b是虚部,i 是虚数单位,满足i²=-1。
2. 复数的表示方法:用有序实数对(a,b)表示复数,即a+bi=(a,b)。
3. 复数的运算规则:(1)加法:设z₁=a₁+bi₁,z₂=a₂+bi₂,则z₁+z₂=(a₁+a₂,b₁+b₂)。
(2)减法:设z₁=a₁+bi₁,z₂=a₂+bi₂,则z₁-z₂=(a₁-a₂,b₁-b₂)。
(3)乘法:设z₁=a₁+bi₁,z₂=a₂+bi₂,则z₁z₂=(a₁a₂-b₁b₂,a₁b₂+a₂b₁)。
(4)除法:设z₁=a₁+bi₁,z₂=a₂+bi₂(a₂≠0),则z₁÷z₂=(a₁a₂+b₁b₂)/(a₂²+b₂²),b₁a₂-a₁b₂)/(a₂²+b₂²)。
三、课堂练习1. 计算下列复数的和、差、积、商:(1)(3+4i) + (2-5i)(2)(1-i) - (3+2i)(3)(2+i)(3-2i)(4)(4+3i)/(1+i)四、小结1. 复数的概念和表示方法。
2. 复数的运算规则。
第二课时一、复习1. 复数的概念和表示方法。
2. 复数的运算规则。
二、新课讲授1. 复数的几何意义:在复平面上,复数z=a+bi对应点Z(a,b),其中实轴表示实部,虚轴表示虚部。
2. 复平面的概念:由实轴和虚轴构成的平面称为复平面。
高中数学复数的概念教案
![高中数学复数的概念教案](https://img.taocdn.com/s3/m/e30d0a51a66e58fafab069dc5022aaea988f4115.png)
高中数学复数的概念教案
一、教学目标:
1. 了解复数的概念和表示方法;
2. 学习复数的加减法和乘法;
3. 掌握复数的共轭和模;
4. 能够解决与复数相关的数学问题。
二、教学重点:
1. 复数的定义和表示;
2. 复数的加减法和乘法;
3. 复数的共轭和模。
三、教学步骤:
1. 复数的引入
- 引导学生回顾实数的概念,介绍实数无法解决的问题;
- 引入复数的概念,说明复数可以解决实数无法解决的问题。
2. 复数的定义和表示
- 介绍复数的定义:形如a+bi的数称为复数,其中a为实部,bi为虚部;- 解释复数的表示方法:直角坐标系、极坐标系和三角形式。
3. 复数的加减法和乘法
- 介绍复数的加减法规则:实部相加,虚部相加;
- 讲解复数的乘法规则:根据分配律进行计算。
4. 复数的共轭和模
- 介绍复数的共轭定义:实部不变,虚部变号;
- 讲解复数的模定义:绝对值表示复数的距离。
5. 示例分析和练习
- 给出一些具体的复数问题,引导学生进行解题分析;
- 可以让学生进行课堂练习,巩固所学知识。
四、课堂总结:
- 总结本节课的内容,强调复数的重要性和实际应用;
- 鼓励学生积极思考,提出问题。
五、课后作业:
- 完成课后习题,巩固所学知识;
- 思考如何将复数应用到实际问题中。
六、教学反思:
本节课着重介绍了复数的概念和基本运算规则,通过引导学生进行实际问题的解决,使学生能够深入理解复数的含义和作用。
在今后的教学中,可以适当增加实际应用的案例,引导学生更好地理解和掌握复数的相关知识。
高中数学教案设计复数
![高中数学教案设计复数](https://img.taocdn.com/s3/m/310dbfe91b37f111f18583d049649b6648d709e0.png)
高中数学教案设计复数
1. 了解复数的概念,掌握复数的表示方法;
2. 掌握复数的加法、减法、乘法、除法的运算规律;
3. 熟练运用复数进行计算,解决实际问题。
教学重点:
1. 复数的概念和表示方法;
2. 复数的加法、减法、乘法、除法的运算规律。
教学难点:
1. 复数的乘法和除法;
2. 利用复数解决实际问题。
教学准备:
1. 复数的相关教学素材和习题;
2. 复数的实际应用问题;
3. 复数的操作演示材料。
教学过程:
一、导入新知识(5分钟)
老师简要介绍复数的概念,并通过一个简单的例子引入复数的概念和表示方法。
二、讲解复数表示法及运算规律(15分钟)
1. 讲解复数的表示法:a+bi;
2. 讲解复数的加法、减法规律;
3. 讲解复数的乘法、除法规律;
4. 给出几个例题进行讲解。
三、练习与巩固(20分钟)
1. 学生进行基础运算练习;
2. 学生互相交流解题经验,相互促进;
3. 完成一些复杂运算并检查答案。
四、应用与拓展(10分钟)
老师给出一些实际应用题,让学生通过复数的运算解决问题。
五、课堂小结(5分钟)
1. 整理本节课的重点和难点知识;
2. 引导学生总结本节课所学内容。
教学反馈:
布置一定量的作业,包括基础运算和实际应用题,让学生巩固学习成果。
下节课进行作业检查和相关知识拓展。
复数的几何意义教案
![复数的几何意义教案](https://img.taocdn.com/s3/m/3e079a0976232f60ddccda38376baf1ffc4fe397.png)
复数的几何意义教案【最新精选】一、教学目标:1. 让学生理解复数的概念,掌握复数的代数表示方法。
2. 引导学生了解复数的几何意义,能够将复数与复平面上的点对应起来。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学重点与难点:1. 重点:复数的概念,复数的代数表示方法,复数的几何意义。
2. 难点:复数与复平面上的点的对应关系,复数的运算规则。
三、教学方法:1. 采用讲授法,讲解复数的基本概念和运算规则。
2. 运用直观演示法,通过示例让学生了解复数的几何意义。
3. 采用练习法,让学生在实践中掌握复数的运算方法和几何意义。
四、教学准备:1. 教师准备PPT,展示复数的相关概念和图形。
2. 准备黑板,用于板书关键知识点。
3. 准备练习题,巩固学生对复数的理解和运用。
五、教学过程:1. 导入新课:通过复习实数的概念,引入复数的概念。
2. 讲解复数的基本概念:讲解复数的定义,阐述复数的代数表示方法。
3. 展示复数的几何意义:介绍复平面,讲解复数与复平面上的点的对应关系。
4. 复数的运算规则:讲解复数的加减乘除运算方法,并通过示例进行演示。
5. 练习与巩固:让学生在课堂上完成练习题,检验对复数的理解和运用。
6. 课堂小结:对本节课的主要内容进行总结,强调重点知识点。
7. 布置作业:布置课后练习题,让学生巩固所学知识。
8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。
六、教学拓展:1. 引导学生了解复数的分类,包括实数、虚数、纯虚数和零数。
2. 讲解复数在实际应用中的例子,如电子电路中的信号处理、物理学中的振动分析等。
七、课堂互动:1. 设置小组讨论环节,让学生探讨复数在实际问题中的应用。
2. 组织学生进行复数运算竞赛,提高学生的运算速度和准确性。
八、教学评估:1. 课后收集学生的练习作业,评估学生对复数的掌握程度。
2. 在下一节课开始时,进行简短的复数知识测试,了解学生的学习效果。
九、教学反馈与调整:1. 根据学生的作业和测试情况,及时给予反馈,指出学生的错误和不足。
高中数学复数讲解课程教案
![高中数学复数讲解课程教案](https://img.taocdn.com/s3/m/44fddb7911661ed9ad51f01dc281e53a59025173.png)
高中数学复数讲解课程教案教学内容:复数教学目标:1. 了解复数的定义和概念;2. 掌握复数的加减乘除运算规则;3. 能够在应用题中灵活运用复数进行计算。
教学重点:1. 复数的定义和概念;2. 复数的加减乘除运算规则;教学难点:1. 复数的概念理解;2. 复数运算规则的掌握。
教学准备:1. 教学投影仪;2. 教学PPT;3. 复数实例题目。
教学过程:一、复数的定义和概念(10分钟)1. 引入复数的概念,解释虚数单位i的定义;2. 讲解复数的表示形式 a+bi,其中a为实部,bi为虚部;3. 举例说明复数在平面直角坐标系中的表示方式。
二、复数的加减运算规则(15分钟)1. 讲解复数的加法和减法规则;2. 通过实例演示加减运算的步骤;3. 练习简单的加减运算题目。
三、复数的乘法和除法规则(20分钟)1. 讲解复数的乘法规则(乘法公式展开推导);2. 讲解复数的除法规则(除法的分母为0的情况);3. 通过实例演示乘除运算的步骤。
四、综合练习(15分钟)1. 给学生提供多个应用题目,让学生灵活运用复数进行计算;2. 解答学生提出的疑问,帮助他们理解复数的运算规则。
五、作业布置(5分钟)1. 布置课后练习题目,巩固学生对复数的理解和掌握程度;2. 鼓励学生在课后多加练习,提高解题能力。
教学反思:本节课主要介绍了复数的定义和概念,以及复数的加减乘除运算规则。
通过实例演示和练习题目,学生对复数的概念和运算规则有了初步的认识。
在以后的教学中,可以通过更多的综合题目加深学生对复数的理解,提高解题能力。
同时,引导学生积极思考问题,提高问题解决能力。
高中复数数学教案设计
![高中复数数学教案设计](https://img.taocdn.com/s3/m/1e8e7d46591b6bd97f192279168884868762b8e5.png)
高中复数数学教案设计一、教学目标:1. 理解复数的定义及表示形式。
2. 掌握复数的四则运算。
3. 了解复数在平面直角坐标系中的几何意义。
二、教学重点:1. 复数的定义及表示形式。
2. 复数的加减乘除运算。
3. 复数在平面直角坐标系中的几何意义。
三、教学难点:1. 理解复数的概念。
2. 复数乘法和除法的运算法则。
3. 复数在坐标系中的应用。
四、教学过程:1. 复数的引入:1.1 引导学生思考虚数单位i的定义及性质。
1.2 给出复数的定义,并引入复数的表示形式。
2. 复数的表示形式:2.1 给出一般形式a+bi和三角形式r(cosθ+isinθ)。
2.2 讲解复数的实部、虚部和共轭的概念及性质。
3. 复数的加减运算:3.1 通过实例讲解复数的加减法规则。
3.2 练习复数的加减法计算。
4. 复数的乘法运算:4.1 讲解复数的乘法法则。
4.2 练习复数的乘法计算。
5. 复数的除法运算:5.1 讲解复数的除法法则。
5.2 练习复数的除法计算。
6. 复数在坐标系中的应用:6.1 介绍复数在平面直角坐标系中的表示及意义。
6.2 讲解复数在平面几何问题中的应用。
7. 总结与作业:7.1 总结复数的定义、运算规则及应用。
7.2 布置练习作业,巩固复数的运算与应用。
五、教学手段:1. 多媒体教学。
2. 板书。
3. 练习题、作业。
六、教学反思:在教学中,要注重引导学生理解复数的概念和运算规则,注重培养学生的实际应用能力,引导学生在解决实际问题中灵活运用复数知识。
同时,要不断激发学生的学习兴趣,提高学生的学习主动性和参与性,促使学生形成良好的学习习惯和积极的学习态度。
复数概念大学数学教案
![复数概念大学数学教案](https://img.taocdn.com/s3/m/7ff349e11b37f111f18583d049649b6648d709a6.png)
课程名称:大学数学授课对象:大学一年级学生教学目标:1. 使学生掌握复数的定义、实部和虚部的概念。
2. 理解复数的运算规则,包括加、减、乘、除。
3. 掌握复数的几何表示,理解复数在复平面上的表示方法。
4. 熟悉共轭复数、模的概念及其性质。
5. 培养学生运用复数解决实际问题的能力。
教学重点:1. 复数的定义和实部、虚部的概念。
2. 复数的运算规则。
3. 复数的几何表示。
教学难点:1. 复数的运算规则的理解和应用。
2. 复数在复平面上的几何表示。
教学准备:1. 多媒体课件2. 复数相关习题3. 白板或黑板教学过程:一、导入1. 通过生活中的实例引入复数的概念,如电学中的电压、电流等。
2. 提出问题:如何表示这些具有实部和虚部的量?二、新课讲授1. 复数的定义:形如a+bi的数,其中a、b为实数,i为虚数单位,满足i²=-1。
2. 实部和虚部的概念:复数a+bi中,a称为实部,b称为虚部。
3. 复数的运算规则:(1)加法:两个复数相加,实部相加,虚部相加。
(2)减法:两个复数相减,实部相减,虚部相减。
(3)乘法:两个复数相乘,先将实部相乘,再将虚部相乘,最后将实部和虚部相加。
(4)除法:两个复数相除,先将除数乘以被除数的共轭复数,再将实部和虚部相加。
4. 复数的几何表示:(1)将复数a+bi在复平面上表示为一个点,其实部a对应横坐标,虚部b对应纵坐标。
(2)复数在复平面上的加、减、乘、除运算可以转化为对应点在复平面上的加、减、乘、除运算。
5. 共轭复数和模的概念:(1)共轭复数:形如a+bi的复数,其共轭复数为a-bi。
(2)模:复数a+bi的模定义为|a+bi|=√(a²+b²)。
三、课堂练习1. 举例说明复数的几何表示。
2. 计算复数的加、减、乘、除运算。
3. 利用复数解决实际问题。
四、课堂小结1. 复数的定义、实部和虚部的概念。
2. 复数的运算规则。
3. 复数的几何表示。
复数 教案
![复数 教案](https://img.taocdn.com/s3/m/d5e79875e55c3b3567ec102de2bd960590c6d996.png)
复数教案教学目标:1. 学生能正确理解复数的含义,并能正确使用英语的复数形式。
2. 学生能正确运用复数形式进行句子的构成和表达。
教学重点:1. 复数的定义和形式。
2. 复数在句子中的应用。
教学难点:1. 特殊名词的复数形式。
2. 不规则复数形式的掌握。
教学准备:1. 教师准备复数形式的教学材料。
2. 学生准备纸和笔。
教学过程:Step 1: 导入新知识教师出示一些物品的图片,如书、椅子、苹果等,然后问学生这些物品的名词分别用什么形式才能表示为复数形式。
Step 2: 讲解复数的定义和形式教师简要地解释复数的含义是表示多个物品、人或概念的形式,并说明英语中一般在名词的末尾加上-s来表示复数形式。
Step 3: 一般名词复数形式的构成规则教师通过示范和学生的回答,让学生掌握一般名词复数形式的构成规则,即在名词的末尾加上-s。
Step 4: 特殊名词复数形式的构成规则教师讲解一些特殊名词的复数形式构成规则,如以字母o结尾的名词,要在末尾加上-es来表示复数形式;以字母y结尾的名词,要把y改成i,再加上-es来表示复数形式等。
Step 5: 不规则复数形式的掌握教师列举一些不规则复数形式的名词,如man-men、child-children、foot-feet等,让学生记忆和掌握这些不规则复数形式的变化。
Step 6: 练习复数形式教师出示一些物品的图片或名词,让学生用复数形式进行口头表达。
然后,教师出示一些句子的图片或名词,让学生根据情景造句,要求使用正确的复数形式。
Step 7: 总结和归纳教师与学生共同总结和归纳一般名词复数形式的构成规则、特殊名词复数形式的构成规则以及不规则复数形式的变化规律。
Step 8: 拓展活动教师可以给学生一些练习题进行巩固复习,如选词填空、改写句子等。
也可以让学生自由发挥,用所学的复数形式进行对话或写作练习。
Step 9: 总结课堂内容教师和学生一起总结和回顾今天课堂所学的内容,确保学生对复数形式的掌握和理解。
复数教案小学
![复数教案小学](https://img.taocdn.com/s3/m/ee207b514531b90d6c85ec3a87c24028915f852a.png)
复数教案小学教案标题:复数教案小学教案目标:1. 学生能够理解复数的概念,知道复数是指表示多个事物的形式。
2. 学生能够正确地使用英语中的复数形式,包括名词和动词的复数形式。
3. 学生能够在实际交流中灵活运用复数形式,表达自己的意思。
教案步骤:1. 导入(5分钟)- 使用图片或实物引起学生对复数的兴趣,例如展示一些多个相同物品的图片,如苹果、书籍等。
- 引导学生观察图片,提问:这些是什么?有几个?如何表示多个?2. 理解复数的概念(10分钟)- 通过示范和解释,向学生介绍复数的概念。
例如,用一个桌子和多个桌子的图片来说明复数的概念。
- 引导学生思考复数的规则:通常在名词后面加上-s或-es,表示多个。
3. 名词的复数形式(15分钟)- 向学生展示一些常见名词的复数形式规则,例如:cat - cats, dog - dogs, book - books等。
- 通过练习,让学生掌握名词复数形式的规则。
可以使用填空、选择题等形式的练习。
4. 动词的复数形式(15分钟)- 通过示范和解释,向学生介绍动词的复数形式规则。
例如,动词go的复数形式是goes。
- 通过练习,让学生掌握动词复数形式的规则。
可以使用填空、选择题等形式的练习。
5. 实际运用(15分钟)- 分组活动:将学生分成小组,每个小组选择一个主题(例如动物、食物等),并列举出该主题下的名词和动词的复数形式。
- 每个小组派代表上台展示他们的成果,并与其他小组进行交流。
- 教师引导学生讨论复数形式的使用场景,例如描述自己的家庭成员、朋友等。
6. 总结(5分钟)- 教师引导学生总结复数的概念和规则,确保学生对复数形式的掌握程度。
- 教师鼓励学生在日常生活中注意观察和使用复数形式,加深对复数的理解。
教案评估:- 教师观察学生在练习中的表现,包括对名词和动词复数形式的正确理解和使用。
- 教师评估学生在小组活动中的参与度和交流能力。
- 教师收集学生完成的练习和小组活动的成果,对学生的掌握情况进行评估。
复数的有关概念教案
![复数的有关概念教案](https://img.taocdn.com/s3/m/9ea032acf71fb7360b4c2e3f5727a5e9856a2791.png)
复数的有关概念教案一、教学目标1. 让学生理解复数的概念,掌握复数的表示方法。
2. 培养学生运用复数解决实际问题的能力。
3. 引导学生了解复数在数学和物理学中的应用,提高对复数的认识。
二、教学内容1. 复数的概念:实数和虚数的概念,复数的定义。
2. 复数的表示方法:代数表示法,几何表示法。
3. 复数的性质:实部和虚部的性质,共轭复数的性质。
4. 复数的运算:加法、减法、乘法、除法。
5. 复数在实际问题中的应用。
三、教学重点与难点1. 重点:复数的概念,复数的表示方法,复数的性质,复数的运算。
2. 难点:复数的运算规则,复数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解复数的相关概念和性质。
2. 利用几何画板展示复数的几何表示,增强直观感受。
3. 引导学生通过例题分析,掌握复数的运算方法。
4. 开展小组讨论,探讨复数在实际问题中的应用。
五、教学过程1. 导入:回顾实数和虚数的概念,引导学生思考实数和虚数的局限性。
2. 讲解:介绍复数的概念,解释复数的表示方法,阐述复数的性质。
3. 演示:利用几何画板展示复数的几何表示,让学生直观理解复数。
4. 练习:让学生通过例题,掌握复数的运算方法。
5. 应用:开展小组讨论,探讨复数在实际问题中的应用。
6. 总结:对本节课的内容进行归纳总结,回答学生提出的问题。
7. 作业:布置相关练习题,巩固所学知识。
六、教学评价1. 评价目标:检查学生对复数概念的理解,复数表示方法的掌握,复数性质和运算的熟练程度,以及复数在实际问题中的应用能力。
2. 评价方法:课堂问答:通过提问检查学生对复数基本概念的理解。
练习题:布置不同难度的练习题,评估学生对复数运算和性质的掌握。
小组讨论:评估学生在小组讨论中的参与度和问题解决能力。
课后作业:通过学生的课后作业评估其对课堂内容的吸收和应用。
七、教学资源1. 教案和课件:提供详细的教案和课件,方便学生复习和理解复数的相关概念。
2. 几何画板软件:用于展示复数的几何表示,增强学生的直观感受。
新人教版高中数学必修二复数全套教案
![新人教版高中数学必修二复数全套教案](https://img.taocdn.com/s3/m/3d42920aec630b1c59eef8c75fbfc77da2699780.png)
复数的概念【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数是如何定义的?其表示方法又是什么?2.复数分为哪两大类?3.复数相等的条件是什么?二、新知探究探究点1:复数的概念下列命题:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R,且a>b,则a+i>b+i;③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;④实数集是复数集的真子集.其中正确的命题是()A.①B.②C.③D.④解析:对于复数a+b i(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.答案:D判断与复数有关的命题是否正确的方法(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a +b i 的形式,更要注意这里a ,b 均为实数时,才能确定复数的实部、虚部.提醒:解答复数概念题,一定要紧扣复数的定义,牢记i 的性质. 探究点2: 复数的分类当实数m 为何值时,复数z =m2+m -6m+(m 2-2m )i :(1)为实数?(2)为虚数?(3)为纯虚数?解:(1)当⎩⎨⎧m 2-2m =0,m ≠0,即m =2时,复数z 是实数.(2)当m 2-2m ≠0且m ≠0,即m ≠0且m ≠2时,复数z 是虚数.(3)当⎩⎪⎨⎪⎧m ≠0,m 2+m -6m =0,m 2-2m ≠0,即m =-3时,复数z 是纯虚数.解决复数分类问题的方法与步骤(1)化标准式:解题时一定要先看复数是否为a +b i (a ,b ∈R )的形式,以确定实部和虚部.(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.(3)下结论:设所给复数为z =a +b i (a ,b ∈R ), ①z 为实数⇔b =0; ②z 为虚数⇔b ≠0;③z 为纯虚数⇔a =0且b ≠0. 探究点3: 复数相等(1)(2019·浙江杭州期末考试)若z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i (m ,n ∈R ),且z 1=z 2,则m +n =( )A .4或0B .-4或0C .2或0D .-2或0(2)若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的值是________. 解析:(1)由z 1=z 2,得n 2-3m -1=-3且n 2-m -6=-4,解得m =2,n =±2,所以m +n =4或0,故选A .(2)因为log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,所以⎩⎨⎧log 2(x 2-3x -2)>1,log 2(x 2+2x +1)=0,即⎩⎨⎧x 2-3x -2>2,x 2+2x +1=1,解得x =-2. 【答案:(1)A (2)-2复数相等的充要条件复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.注意:在两个复数相等的充要条件中,注意前提条件是a ,b ,c ,d ∈R ,即当a ,b ,c ,d ∈R 时,a +b i =c +d i ⇔a =c 且b =d .若忽略前提条件,则结论不能成立. 三、课堂总结1.复数的有关概念 (1)复数的定义形如a +b i (a ,b ∈R )的数叫做复数,其中i 叫做虚数单位,满足i 2=-1. (2)复数集全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集. (3)复数的表示方法复数通常用字母z 表示,即z =a +b i (a ,b ∈R ),其中a 叫做复数z 的实部,b 叫做复数z 的虚部.2.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i (a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当a =c 且b =d .3.复数的分类(1)复数z =a +b i (a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.(2)复数集、实数集、虚数集、纯虚数集之间的关系■名师点拨复数b i (b ∈R )不一定是纯虚数,只有当b ≠0时,复数b i (b ∈R )才是纯虚数. 四、课堂检测1.若复数z =a i 2-b i (a ,b ∈R )是纯虚数,则一定有( ) A .b =0 B .a =0且b ≠0 C .a =0或b =0D .ab ≠0解析:选B .z =a i 2-b i =-a -b i ,由纯虚数的定义可得a =0且b ≠0. 2.若复数z =m 2-1+(m 2-m -2)i 为实数,则实数m 的值为( ) A .-1 B .2 C .1D .-1或2解析:选D .因为复数z =m 2-1+(m 2-m -2)i 为实数, 所以m 2-m -2=0,解得m =-1或m =2.3.若复数z =(m +1)+(m 2-9)i <0,则实数m 的值等于____________.解析:因为z <0,所以⎩⎨⎧m 2-9=0,m +1<0,解得m =-3.答案:-34.已知x 2-x -6x +1=(x 2-2x -3)i (x ∈R ),则x =________.解析:因为x ∈R ,所以x 2-x -6x +1∈R ,由复数相等的条件得⎩⎪⎨⎪⎧x 2-x -6x +1=0,x 2-2x -3=0,x +1≠0,解得x =3. 答案:3【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题: 1.复平面是如何定义的?2.复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 3.复数z =a +b i 的共轭复数是什么? 二、新知探究探究点1:复数与复平面内的点已知复数z =(a 2-1)+(2a -1)i ,其中a ∈R .当复数z 在复平面内对应的点Z满足下列条件时,求a 的值(或取值范围).(1)在实轴上; (2)在第三象限.解:(1)若z 对应的点在实轴上,则有2a -1=0,解得a =12.(2)若z 对应的点在第三象限,则有 ⎩⎨⎧a 2-1<0,2a -1<0,解得-1<a <12. 故a 的取值范围是⎝ ⎛⎭⎪⎫-1,12. 互动探究:变条件:本例中复数z 不变,若点Z 在抛物线y 2=4x 上,求a 的值.解:若z 对应的点(a 2-1,2a -1)在抛物线y 2=4x 上,则有(2a -1)2=4(a 2-1),即4a 2-4a +1=4a 2-4,解得a =54.利用复数与点的对应解题的步骤(1)找对应关系:复数的几何表示法即复数z =a +b i (a ,b ∈R )可以用复平面内的点Z(a ,b )来表示,是解决此类问题的根据.(2)列出方程:此类问题可建立复数的实部与虚部应满足的条件,通过解方程(组)或不等式(组)求解.探究点2:复数与复平面内的向量在复平面内,复数i ,1,4+2i 对应的点分别是A ,B ,C .求平行四边形ABCD 的顶点D 所对应的复数.解:法一:由复数的几何意义得A (0,1),B (1,0),C (4,2),则AC 的中点为⎝ ⎛⎭⎪⎫2,32,由平行四边形的性质知该点也是BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,所以⎩⎨⎧x =3,y =3,即点D的坐标为(3,3),所以点D 对应的复数为3+3i .法二:由已知得OA →=(0,1),OB →=(1,0),OC →=(4,2),所以BA →=(-1,1),BC →=(3,2),所以BD →=BA →+BC →=(2,3),所以OD →=OB →+BD →=(3,3), 即点D 对应的复数为3+3i .复数与平面向量的对应关系(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数,反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的问题时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.探究点3: 复数的模(1)设复数z 1=a +2i ,z 2=-2+i 且|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a <-1或a >1 C .a >1D .a >0(2)(2019·贵州遵义贵龙中学期中测试)已知复数z 满足|z |2-2|z |-3=0,则复数z 在复平面内对应点的集合是( )A .1个圆B .线段C .2个点D .2个圆解析:(1)由题意得a 2+22<(-2)2+12,即a 2+4<5(a ∈R ),所以-1<a <1. (2)由题意知(|z |-3)(|z |+1)=0, 即|z |=3或|z |=-1, 因为|z |≥0,所以|z |=3,所以复数z 在复平面内对应点的集合是1个圆. 答案:(1)A (2)A求解复数的模的思路解决复数的模的求解问题,应先把复数表示成标准的代数形式,再根据复数的模的定义求解. 三、课堂总结1.复平面建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的两种几何意义(1)复数z =a +b i (a ,b ∈R )←――→一一对应复平面内的点Z (a ,b ).(2)复数z =a +b i (a ,b ∈R ) ←――→一一对应平面向量OZ →.3.复数的模复数z =a +b i (a ,b ∈R )对应的向量为OZ →,则OZ →的模叫做复数z 的模或绝对值,记作|z |或|a +b i|,即|z |=|a +b i|4.共轭复数(1)一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数.(2)虚部不等于0的两个共轭复数也叫做共轭虚数. (3)复数z 的共轭复数用z -表示,即如果z =a +b i ,那么z -=a -b i . ■名师点拨复数z =a +b i 在复平面内对应的点为(a ,b ),复数z -=a -b i 在复平面内对应的点为(a ,-b ),所以两个互为共轭复数的复数,它们所对应的点关于x 轴对称. 四、课堂检测1.已知z =(m +3)+(m -1)i (m ∈R )在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞)D .(-∞,-3)解析:选A .由题意得⎩⎨⎧m +3>0,m -1<0,解得-3<m <1.2.在复平面内,O 为原点,向量OA →对应的复数为-1-2i ,若点A 关于实轴的对称点为B ,则向量OB→对应的复数为( ) A .-2-i B .2+i C .1+2iD .-1+2i解析:选D .由题意可知,点A 的坐标为(-1,-2),则点B 的坐标为(-1,2),故向量OB→对应的复数为-1+2i . 3.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是____________. 解析:依题意,可知z =a +i (a ∈R ),则|z |2=a 2+1.因为0<a <2,所以a 2+1∈(1,5),即|z |∈(1,5).答案:(1,5)4.若复数z 1=2+b i 与复数z 2=a -4i 互为共轭复数,则a =________,b =________. 解析:因为z 1与z 2互为共轭复数, 所以a =2,b =4. 答案:2 4复数的三角表示【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数z =a +b i 的三角形式是什么? 2.复数的辐角、辐角的主值是什么? 3.复数三角形式的乘、除运算公式是什么? 4.复数三角形式乘、除运算的几何意义是什么? 二、基础知识1.复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数z =a +b i 都可以表示成r (cos θ+isin θ)的形式,其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ→所在射线(射线OZ →)为终边的角,叫做复数z =a+b i 的辐角,我们规定在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z .r (cos θ+isin θ)叫做复数z =a +b i 的三角表示式,简称三角形式.a +b i 叫做复数的代数表示式,简称代数形式.■名师点拨(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2π的整数倍. (2)复数0的辐角是任意的.(3)在0≤θ<2π范围内的辐角θ的值为辐角的主值,通常记作arg z ,且0≤arg z <2π. (4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等. 2.复数三角形式的乘、除运算若复数z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),且z 1≠z 2,则 (1)z 1z 2=r 1(cos θ1+isin θ1)·r 2(cos θ2+isin θ2) =r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)]. (2)z 1z 2=r 1(cos θ1+isin θ1)r 2(cos θ2+isin θ2)=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)]. 即:两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和. 两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差. 三、合作探究1.复数的代数形式与三角形式的互化 角度一 代数形式化为三角形式把下列复数的代数形式化成三角形式:(1)3+i ; (2)2-2i.【解】(1)r =3+1=2,因为3+i 对应的点在第一象限, 所以cos θ=32,即θ=π6,所以3+i =2⎝ ⎛⎭⎪⎫cos π6+isin π6.(2)r =2+2=2,cos θ=22, 又因为2-2i 对应的点位于第四象限, 所以θ=7π4.所以2-2i =2⎝⎛⎭⎪⎫cos 7π4+isin7π4.复数的代数形式化三角形式的步骤 (1)先求复数的模. (2)决定辐角所在的象限. (3)根据象限求出辐角. (4)求出复数的三角形式.[提醒]一般在复数三角形式中的辐角,常取它的主值这既使表达式简便,又便于运算,但三角形式辐角不一定取主值.角度二 三角形式化为代数形式分别指出下列复数的模和辐角的主值,并把这些复数表示成代数形式.(1)4⎝ ⎛⎭⎪⎫cos π6+isin π6;(2)32(cos 60°+isin 60°);(3)2⎝⎛⎭⎪⎫cos π3-isin π3.【解】(1)复数4⎝⎛⎭⎪⎫cos π6+isin π6的模r =4,辐角的主值为θ=π6.4⎝⎛⎭⎪⎫cos π6+isin π6=4cos π6+4isin π6=4×32+4×12i=23+2i.(2)32(cos 60°+isin 60°)的模r =32,辐角的主值为θ=60°. 32(cos 60°+isin 60°)=32×12+32×32i =34+34i.(3)2⎝⎛⎭⎪⎫cos π3-isin π3=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝ ⎛⎭⎪⎫2π-π3=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π. 所以复数的模r =2,辐角的主值为53π.2⎝ ⎛⎭⎪⎫cos 53π+isin 53π=2cos 53π+2isin 53π =2×12+2×⎝ ⎛⎭⎪⎫-32i=1-3i.复数的三角形式z =r (cos θ+isin θ)必须满足“模非负、余正弦、+相连、角统一、i 跟sin ”,否则就不是三角形式,只有化为三角形式才能确定其模和辐角,如本例(3).2.复数三角形式的乘、除运算计算:(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π;(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)]; (3)4÷⎝⎛⎭⎪⎫cos π4+isin π4.【解】(1)8⎝ ⎛⎭⎪⎫cos 43π+isin 43π×4⎝ ⎛⎭⎪⎫cos 56π+isin 56π=32⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫43π+56π+isin ⎝ ⎛⎭⎪⎫43π+56π=32⎝ ⎛⎭⎪⎫cos 136π+isin 136π=32⎝⎛⎭⎪⎫cos π6+isin π6=32⎝ ⎛⎭⎪⎫32+12i=163+16i.(2)3(cos 225°+isin 225°)÷[2(cos 150°+isin 150°)] =32[cos(225°-150°)+isin(225°-150°)] =62(cos 75°+isin 75°) =62⎝ ⎛⎭⎪⎫6-24+6+24i =6-238+6+238i =3-34+3+34i.(3)4÷⎝⎛⎭⎪⎫cos π4+isin π4=4(cos 0+isin 0)÷⎝⎛⎭⎪⎫cos π4+isin π4=4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4 =22-22i.(1)乘法法则:模相乘,辐角相加. (2)除法法则:模相除,辐角相减.(3)复数的n 次幂,等于模的n 次幂,辐角的n 倍. 3.复数三角形式乘、除运算的几何意义在复平面内,把复数3-3i 对应的向量分别按逆时针和顺时针方向旋转π3,求所得向量对应的复数.【解】因为3-3i =23⎝ ⎛⎭⎪⎫32-12i=23⎝ ⎛⎭⎪⎫cos 116π+isin 116π所以23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎝ ⎛⎭⎪⎫cos π3+isin π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π+π3+isin ⎝ ⎛⎭⎪⎫116π+π3=23⎝ ⎛⎭⎪⎫cos 136π+isin 136π=23⎝ ⎛⎭⎪⎫cos π6+isin π6=3+3i ,23⎝ ⎛⎭⎪⎫cos 116π+isin 116π×⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3=23⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫116π-π3+isin ⎝ ⎛⎭⎪⎫116π-π3=23⎝ ⎛⎭⎪⎫cos 32π+isin 32π=-23i.故把复数3-3i 对应的向量按逆时针旋转π3得到的复数为3+3i ,按顺时针旋转π3得到的复数为-23i.两个复数z 1,z 2相乘时,先分别画出与z 1,z 2对应的向量OZ 1→,OZ 2→,然后把向量OZ 1→绕点O 按逆时针方向旋转角θ2(如果θ2<0,就要把OZ 1→绕点O 按顺时针方向旋转角|θ2|),再把它的模变为原来的r 2倍,得到向量OZ →,OZ →表示的复数就是积z 1z 2. 四、课堂检测1.复数1-3i 的辐角的主值是( ) A .53π B .23π C .56πD .π3解析:选A .因为1-3i =2⎝ ⎛⎭⎪⎫12-32i =2⎝ ⎛⎭⎪⎫cos 53π+isin 53π,所以1-3i 辐角的主值为53π.2.复数9(cos π+isin π)的模是________. 答案:93.arg(-2i)=________.答案:32π 4.计算:(1)(cos 75°+isin 75°)(cos 15°+isin 15°);(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π. 解:(1)(cos 75°+isin 75°)(cos 15°+isin 15°) =cos(75°+15°)+isin(75°+15°) =cos 90°+isin 90° =i.(2)2(cos 300°+isin 300°)÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π=2⎝ ⎛⎭⎪⎫cos 53π+isin 53π÷⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫cos 34π+isin 34π =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫53π-34π+isin ⎝ ⎛⎭⎪⎫53π-34π=2⎝ ⎛⎭⎪⎫cos 1112π+isin 1112π=-1+32+3-12i.复数的四则运算【第一课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的加、减法运算法则是什么?运算律有哪些? 2.复数的加、减法的几何意义是什么?二、新知探究探究点1:复数的加、减法运算(1)计算:(5-6i )+(-2-i )-(3+4i );(2)设z 1=x +2i ,z 2=3-y i (x ,y ∈R ),且z 1+z 2=5-6i ,求z 1-z 2. 解:(1)原式=(5-2-3)+(-6-1-4)i =-11i . (2)因为z 1=x +2i ,z 2=3-y i ,z 1+z 2=5-6i ,所以(3+x )+(2-y )i =5-6i , 所以⎩⎨⎧3+x =5,2-y =-6,所以⎩⎨⎧x =2,y =8,所以z 1-z 2=(2+2i )-(3-8i )=(2-3)+[2-(-8)]i=-1+10i .解决复数加、减运算的思路两个复数相加(减),就是把两个复数的实部相加(减),虚部相加(减).复数的减法是加法的逆运算,两个复数相减,也可以看成是加上这个复数的相反数.当多个复数相加(减)时,可将这些复数的所有实部相加(减),所有虚部相加(减).探究点2:复数加、减法的几何意义已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i .(1)求AO→表示的复数; (2)求CA→表示的复数.解:(1)因为AO→=-OA →,所以AO →表示的复数为-(3+2i ),即-3-2i . (2)因为CA→=OA →-OC →, 所以CA →表示的复数为(3+2i )-(-2+4i )=5-2i . 互动探究:1.变问法:若本例条件不变,试求点B 所对应的复数.解:因为OB →=OA →+OC →,所以OB →表示的复数为(3+2i )+(-2+4i )=1+6i .所以点B所对应的复数为1+6i .2.变问法:若本例条件不变,求对角线AC ,BO 的交点M 对应的复数.解:由题意知,点M 为OB 的中点,则OM →=12OB →,由互动探究1中知点B 的坐标为(1,6),得点M 的坐标为⎝ ⎛⎭⎪⎫12,3,所以点M 对应的复数为12+3i .复数加、减法几何意义的应用技巧(1)复数的加减运算可以转化为点的坐标或向量运算.(2)复数的加减运算转化为向量运算时,同样满足平行四边形法则和三角形法则. 三、课堂总结1.复数加、减法的运算法则及加法运算律 (1)加、减法的运算法则设z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )是任意两个复数,则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i .(2)加法运算律 对任意z 1,z 2,z 3∈C ,有 ①交换律:z 1+z 2=z 2+z 1.②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3). 2.复数加、减法的几何意义如图所示,设复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R )对应的向量分别为OZ 1→,OZ 2→,四边形OZ 1ZZ 2为平行四边形,则与z 1+z 2对应的向量是OZ →,与z 1-z 2对应的向量是Z 2Z 1→.四、课堂检测1.(6-3i )-(3i +1)+(2-2i )的结果为( ) A .5-3i B .3+5i C .7-8iD .7-2i解析:选C .(6-3i )-(3i +1)+(2-2i )=(6-1+2)+(-3-3-2)i =7-8i .2.已知复数z 1=(a 2-2)-3a i ,z 2=a +(a 2+2)i ,若z 1+z 2是纯虚数,则实数a 的值为____________.解析:由z 1+z 2=a 2-2+a +(a 2-3a +2)i 是纯虚数,得⎩⎨⎧a 2-2+a =0,a 2-3a +2≠0⇒a =-2.答案:-23.已知复数z 1=-2+i ,z 2=-1+2i . (1)求z 1-z 2;(2)在复平面内作出复数z 1-z 2所对应的向量.解:(1)由复数减法的运算法则得z 1-z 2=(-2+i )-(-1+2i )=-1-i .(2)在复平面内作复数z 1-z 2所对应的向量,如图中OZ→.【第二课时】【教学过程】一、问题导入预习教材内容,思考以下问题:1.复数的乘法和除法运算法则各是什么? 2.复数乘法的运算律有哪些? 3.如何在复数范围内求方程的解? 二、新知探究探究点1: 复数的乘法运算(1)(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=( )A .1+3iB .-1+3iC .3+iD .-3+i(2)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i )2=( )A .5-4iB .5+4iC .3-4iD .3+4i(3)把复数z 的共轭复数记作z -,已知(1+2i ) z -=4+3i ,求z .解:(1)选B .(1-i )⎝ ⎛⎭⎪⎫-12+32i (1+i )=(1-i )(1+i )⎝ ⎛⎭⎪⎫-12+32i=(1-i 2)⎝ ⎛⎭⎪⎫-12+32i=2⎝ ⎛⎭⎪⎫-12+32i =-1+3i . (2)选D .因为a -i 与2+b i 互为共轭复数, 所以a =2,b =1,所以(a +b i )2=(2+i )2=3+4i . (3)设z =a +b i (a ,b ∈R ),则z -=a -b i ,由已知得,(1+2i )(a -b i )=(a +2b )+(2a -b )i =4+3i ,由复数相等的条件知,{a +2b =4,2a -b =3,解得a =2,b =1,所以z =2+i .复数乘法运算法则的应用复数的乘法可以按照多项式的乘法计算,只是在结果中要将i 2换成-1,并将实部、虚部分别合并.多项式展开中的一些重要公式仍适用于复数,如(a +b i )2=a 2+2ab i +b 2i 2=a 2-b 2+2ab i ,(a +b i )3=a 3+3a 2b i +3ab 2i 2+b 3i 3=a 3-3ab 2+(3a 2b -b 3)i .探究点2: 复数的除法运算计算:(1)(1+2i )2+3(1-i )2+i;(2)(1-4i )(1+i )+2+4i 3+4i.解:(1)(1+2i )2+3(1-i )2+i =-3+4i +3-3i2+i=i2+i=i (2-i )5=15+25i .(2)(1-4i )(1+i )+2+4i 3+4i =5-3i +2+4i 3+4i =7+i 3+4i=(7+i )(3-4i )(3+4i )(3-4i )=21-28i +3i +425=25-25i 25=1-i .复数除法运算法则的应用复数的除法法则在实际操作中不方便使用,一般将除法写成分式形式,采用分母“实数化”的方法,即将分子、分母同乘分母的共轭复数,使分母成为实数,再计算.探究点3: i 的运算性质(1)复数z =1-i1+i,则ω=z 2+z 4+z 6+z 8+z 10的值为( ) A .1 B .-1 C .iD .-i(2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019等于________. 解析:(1)z 2=⎝⎛⎭⎪⎫1-i 1+i 2=-1,所以ω=-1+1-1+1-1=-1. (2)⎝ ⎛⎭⎪⎫1+i 1-i 2 019=⎣⎢⎡⎦⎥⎤(1+i )(1+i )(1-i )(1+i )2 019=⎝ ⎛⎭⎪⎫2i 22 019=i 2 019=(i 4)504·i 3=1504·(-i )=-i .答案:(1)B (2)-i(1)i 的周期性要记熟,即i n +i n +1+i n +2+i n +3=0(n ∈N *). (2)记住以下结果,可提高运算速度. ①(1+i )2=2i ,(1-i )2=-2i .②1-i 1+i =-i ,1+i 1-i =i . ③1i =-i . 探究点4:在复数范围内解方程在复数范围内解下列方程. (1)x 2+5=0;(2)x 2+4x +6=0.解:(1)因为x 2+5=0,所以x 2=-5, 又因为(5i )2=(-5i )2=-5, 所以x =±5i ,所以方程x 2+5=0的根为±5i . (2)法一:因为x 2+4x +6=0, 所以(x +2)2=-2,因为(2i )2=(-2i )2=-2, 所以x +2=2i 或x +2=-2i , 即x =-2+2i 或x =-2-2i ,所以方程x 2+4x +6=0的根为x =-2±2i . 法二:由x 2+4x +6=0知Δ=42-4×6=-8<0, 所以方程x 2+4x +6=0无实数根.在复数范围内,设方程x 2+4x +6=0的根为x =a +b i (a ,b ∈R 且b ≠0), 则(a +b i )2+4(a +b i )+6=0, 所以a 2+2ab i -b 2+4a +4b i +6=0,整理得(a 2-b 2+4a +6)+(2ab +4b )i =0,所以⎩⎨⎧a 2-b 2+4a +6=0,2ab +4b =0,又因为b ≠0,所以⎩⎨⎧a 2-b 2+4a +6=0,2a +4=0,解得a =-2,b =±2. 所以x =-2±2i ,即方程x 2+4x +6=0的根为x =-2±2i .在复数范围内,实系数一元二次方程ax 2+bx +c =0(a ≠0)的求解方法 (1)求根公式法①当Δ≥0时,x =-b ±b 2-4ac2a.②当Δ<0时,x =-b ±-(b 2-4ac )i2a .(2)利用复数相等的定义求解设方程的根为x=m+n i(m,n∈R),将此代入方程ax2+bx+c=0(a≠0),化简后利用复数相等的定义求解.三、课堂总结1.复数乘法的运算法则和运算律(1)复数乘法的运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则z1·z2=(a+b i)(c+d i)=(ac-bd)+(ad+bc)i.(2)复数乘法的运算律2.复数除法的运算法则设z1=a+b i,z2=c+d i(c+d i≠0)(a,b,c,d∈R),则z1z2=a+b ic+d i=ac+bdc2+d2+bc-adc2+d2i(c+d i≠0).■名师点拨对复数除法的两点说明(1)实数化:分子、分母同时乘以分母的共轭复数,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.(2)代数式:注意最后结果要将实部、虚部分开.四、课堂检测1.若复数(1+b i)(2+i)是纯虚数(i是虚数单位,b是实数),则b=()A.-2B.-1 2C.12D.2解析:选D.因为(1+b i)(2+i)=2-b+(2b+1)i是纯虚数,所以b=2.2.已知i为虚数单位,则复数i2-i的模等于()A.5B.3C.33D.55解析:选D.因为i2-i=i(2+i)(2-i)(2+i)=i(2+i)5=-15+25i,所以|i2-i |=|-15+25i|=(-15)2+(25)2=55,故选D.3.计算:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018;(2)(4-i5)(6+2i7)+(7+i11)(4-3i).解:(1)2+2i(1-i)2+⎝⎛⎭⎪⎫21+i2 018=2+2i-2i+⎝⎛⎭⎪⎫22i1 009=i(1+i)+⎝⎛⎭⎪⎫1i1 009=-1+i+(-i)1 009=-1+i-i=-1.(2)原式=(4-i)(6-2i)+(7-i)(4-3i)=22-14i+25-25i=47-39i.。
高中数学教案《复数》
![高中数学教案《复数》](https://img.taocdn.com/s3/m/1617ddfb294ac850ad02de80d4d8d15abf23007a.png)
教学设计:《复数》一、教学目标1.知识与技能:学生能够理解复数的概念,掌握复数的表示方法(代数形式和三角形式),学会复数的基本运算(加法、减法、乘法、除法及共轭复数)。
2.过程与方法:通过实例引入、小组讨论、师生互动等方式,培养学生抽象思维能力和问题解决能力,体会复数在解决实际问题中的应用。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养学生的探究精神和团队合作精神,理解复数在数学史和现代科技中的重要性。
二、教学重点和难点●重点:复数的概念、表示方法及基本运算。
●难点:复数乘法的几何意义、共轭复数的应用及复数除法的运算法则。
三、教学过程1. 引入新课(5分钟)●故事导入:讲述数学家欧拉在解决三次方程根时遇到负数开平方的情况,引出复数的历史背景。
●生活实例:展示电路中的电流与电压相位差,说明复数在描述交流电中的应用,激发学生兴趣。
●提出问题:引导学生思考如何用数学工具表示并解决这类问题,自然引出复数的概念。
2. 概念讲解与表示方法(10分钟)●定义讲解:清晰阐述复数的定义,包括实部、虚部及虚数单位i。
●表示方法:介绍复数的代数形式a+bi,并通过图形展示复数在复平面上的表示(点表示法)。
●三角形式:简要提及复数的三角形式re^(iθ),为后续学习埋下伏笔。
3. 复数的基本运算(20分钟)●加法与减法:通过图示和例题,讲解复数加减法的几何意义及运算法则。
●乘法:重点讲解复数乘法的运算法则,利用分配律和i²=-1的性质,结合图形展示乘积在复平面上的旋转与伸缩效应。
●除法与共轭复数:介绍复数除法的计算方法,强调共轭复数在除法中的作用,通过实例演示除法过程。
4. 探究与讨论(10分钟)●小组讨论:分组探讨复数在物理、工程等领域的应用实例,每组选代表分享。
●问题解决:设置几道涉及复数基本运算的实际问题,鼓励学生合作解决,增强应用能力。
●教师总结:汇总讨论成果,强调复数概念及运算的核心要点。
5. 巩固练习与反馈(15分钟)●课堂练习:设计多层次练习题,包括基础运算、综合应用及开放性问题,确保每位学生都能参与。
主题复习课复数教案
![主题复习课复数教案](https://img.taocdn.com/s3/m/dfddc95a03020740be1e650e52ea551811a6c90a.png)
主题复习课复数教案一、教学目标1. 知识与技能:(1)理解复数的定义及表示方法;(2)掌握复数的四则运算规则;(3)能够运用复数解决实际问题。
2. 过程与方法:(1)通过复习,巩固已学的复数知识;(2)培养学生运用复数解决实际问题的能力;(3)提高学生的逻辑思维和运算能力。
3. 情感态度与价值观:(1)激发学生对复数知识的兴趣;(2)培养学生的团队合作精神;(3)使学生感受到数学在生活中的应用。
二、教学内容1. 复数的定义及表示方法;2. 复数的四则运算规则;3. 复数在实际问题中的应用。
三、教学重点与难点1. 教学重点:复数的定义、表示方法、四则运算规则及应用。
2. 教学难点:复数的四则运算规则及在实际问题中的应用。
四、教学方法1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生掌握复数知识;2. 通过例题和练习题,让学生在实际问题中运用复数知识;3. 组织学生进行小组讨论,培养学生的团队合作精神。
五、教学过程1. 复习导入:回顾复数的定义及表示方法,引导学生回顾已学的复数知识;2. 知识讲解:讲解复数的四则运算规则,并通过例题进行演示;3. 练习巩固:让学生进行复数四则运算的练习,巩固所学知识;4. 实际应用:布置一些实际问题,让学生运用复数知识进行解决;5. 总结与反思:对本节课的内容进行总结,让学生反思自己在学习过程中的收获和不足。
六、教学评估1. 课堂练习:及时检查学生对复数知识的理解和运用情况;2. 课后作业:布置相关习题,巩固所学知识;3. 小组讨论:观察学生在讨论中的表现,了解团队合作情况;4. 学生反馈:听取学生的意见和建议,不断调整教学方法。
七、教学资源1. 教材:选用合适的教材,为学生提供系统、全面的复数知识;2. 课件:制作精美的课件,辅助讲解和展示;3. 练习题:准备适量的练习题,巩固所学知识;4. 实际问题:收集一些与生活相关的实际问题,激发学生兴趣。
八、教学进度安排1. 第1-2课时:复习复数的定义及表示方法;2. 第3-4课时:讲解复数的四则运算规则;3. 第5-6课时:练习复数四则运算,巩固知识;4. 第7-8课时:运用复数解决实际问题;5. 第9-10课时:总结与反思,检查学习效果。
复数的概念精选教案
![复数的概念精选教案](https://img.taocdn.com/s3/m/527a7c76a0116c175e0e4899.png)
复数的概念精选教案复数的概念教案1目的要求1.掌握复数的代数形式,理解虚数、纯虚数、实部与虚部等有关复数的概念.2.理解复数相等的定义,并会应用它来解决有关问题. 内容分析1.我们知道,形如a+bi(a,b∈R.以后说复数a+bi时,都有a,b∈R)的数叫做复数.复数通常用小写英文字母z表示,即z=a+bi.把复数表示成a+bi的形式,叫做复数的代数形式.复数的代数形式z=a+bi,即是与以后的几何表示、向量表示相对应,也说明任何一个复数均可以由一个有序实数对(a,b)唯一确定,是复数能由复平面内的点来表示的理论基础.复数的代数形式、几何表示、向量表示、三角形式及指数形式(本书不介绍)是复数的不同表示形式,它们既相互联系又各具特点.2.虚数、纯虚数、实部与虚部等概念,是复数这一章的基本概念.教学中要多举一些例子让学生判别,以加深学生理解.一些初学者对虚部(z=a+bi,b叫做z的虚部,它是一个实数)和纯虚数(z=a+bi,当a=0,b≠0时,z=bi叫做纯虚数)、零(z=a+bi,当a=b=0时,z=0)和纯虚数以及虚数(z=a+bi,b≠0时,z叫做虚数)和纯虚数等相关概念容易混淆.教学中应有意识地加以强调.3.若复数z1=a+bi,z2=c+di,则这是复数相等的定义,也就是说,它是一项规定.由这个定义可以得出一个推论:复数相等的定义是*的重要基础知识之一,它是求复数值、在复数集中解方程等的重要依据.复数相等的定义与初中学习的多项式恒等的意义在本质上是一致的,说明这一点,对学生理解这一概念是有帮助的.4.两个复数只能说相等或不相等,而不能比较大小.因为不论怎样定义两个复数之间的一个大小关系,都不能使这种关系同时满足实数集中大小关系的四条性质:(1)对于任意实数a、b来说,ab,a=b,ba这三种情况有且只有一种成立; p="" (4)如果ab,0c,那么acbc.="" (3)如果ab,那么a+cb+c;="" (2)如果ab,bc,那么a例如,对于复数i和2i来说,显然i≠0,且i≠2i. 若定义i2i,0i,则i22i2,即-1-2,矛盾; 若定义i2i,i2,矛盾; 若定义2ii,0i,则21,矛盾; p=""若定义2ii,i0,则2i2i2,即-2-1,矛盾. p="" 因此,无论怎样定义i与2i的大小关系,都会导致矛盾.5.教科书中的两道例题相对来说比较简单,学生完全有能力通过自学弄懂.因此,教师只需对其解题方法加以概述.这里安排的另外两道例题(例3和例4)有一点难度,教学中,一是要结合简易逻辑知识讲清楚ax2+bx+c≠0的解法;二是因为初中对二元二次方程组的解法要求较低,估计学生对与例4类似问题学习起来有些困难.因此要引导学生从方程思想的高度去理解本例的解法.教学过程 1.复习提问(1)简要说明引进新数i的必要性. (2)引入新数i后,对它有哪两点规定? 2.提出复数的代数形式的概念在复习提问(2)的基础上,由i的第二条性质提出复数的代数形式的概念.这时必须说明如下两点:(1)复数的代数形式a+bi是复数的表示形式之一;(2)任何一个复数a+bi,必须由一个有序实数对(a,b)唯一确定. 第(2)点说明可为后续学习打下基础.3.提出虚数、纯虚数、实部与虚部等复数的有关概念在学生掌握复数的代数形式的基础上,提出复数的有关概念是顺理成章的事.教学中注意渗透数学中的重要思想方法——分类与讨论思想,同时结合以下实例加深对复数有关概念的理解.例1 下列数中,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么.113,--2,0,-i22例2 t取何实数时,复数z=(t2-1)+(t-1)i是(1)零? (2)纯虚数? (3)虚数?4.提出两个复数相等的定义,即两个复数相等的充要条件是它们的实部与虚部分别对应相等.也就是由此容易得出:这是复数这一章中最重要的基础知识之一,它是求复数值及在复数集C中解方程的重要依据.这里顺便说明,两个复数只能说相等或不相等,而不能比较大小.教科书中举例说1+i与3+5i不能比较大小,学生不易接受.教学中,可说明i与2i不能比较大小,以帮助学生初步了解,为什么说两个不全为实数的复数不能比较大小.5.布置学生阅读教科书中的两道例题6.讲解例3、例4 例3 实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i 是(1)实数?(2)虚数?(3)纯虚数?(4)零?分析:因为x∈R,所以x2+x-6,x2-2x-15都是实数,由复数z=a+bi是实、虚数、纯虚数与零的条件可以确定实数x的值.解:(1)当x2-2x-15=0,即x=-3或x=5时,复数z是实数;(2)当x2-2x-15≠0,即x≠-3且x≠5时,复数z是虚数;(3)当x2+x-6=0且x2-2x-15≠0,即x=2时,复数z是纯虚数; (4)当x2+x-6=0且x2-2x-15=0,即x=-3时,复数z=0. 例4 求适合下列方程中的x与y(x、y∈R)的值.(1)x2+2+(x-3)i=y2+9+(y-2)i; (2)2x2-5x+3+(y2+y-6)i=0.分析:因为x,y∈R,所以由两个复数相等的定义,可列出关于x,y的方程组,解这个方程组,可求出x,y的值.解:(1)根据复数相等的定义,得方程组??x2+2=y2+9,?x-3=y-2. 所以,x=4,y=3.(2)根据复数相等的定义,得方程组???2x2-5x+3=0,? ?y2+y-6=0.?所以,??x=32,或x=1, ??y=-3,或y=2.7.课堂练习教科书中的课后练习第1、2、3题. 8.归纳总结 (1)由学生填空:设复数z=a+bi(a,b∈R),当________时,z为实数;当当________时,z为纯虚数;当________时,z等于零.(2)教师对“复数的概念”这一节作简明扼要的概述. 布置作业教科书习题5.1第1、3题. (洪立松陈宗炫)________时,z为虚数;复数的概念教案2教学目标(1)把握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并把握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;(3)能初步运用复平面两点间的距离公式解决有关问题;(4)通过学习-平行四边形法则和三角形法,培养学生的数形结合的数学思想;(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).教学建议一、知识结构二、重点、难点分析本节的重点是复数加法法则。
复数的概念教案
![复数的概念教案](https://img.taocdn.com/s3/m/e80fcff1a0c7aa00b52acfc789eb172ded6399fe.png)
复数的概念教案一、教学目标1.知识与技能目标:学生掌握复数的概念、表示方法和基本运算规则,理解复数的几何意义。
2.过程与方法目标:通过引入复数的概念,培养学生抽象思维和逻辑推理能力,通过复数的基本运算,提高学生运算能力和解决问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣和好奇心,增强学生对数学文化的了解和认识。
二、教学内容1.复数的概念和表示方法。
2.复数的基本运算规则。
3.复数的几何意义。
4.复数在实际问题中的应用举例。
三、教学难点与重点1.难点:学生对复数概念的理解,以及复数几何意义的掌握。
2.重点:复数的基本运算规则和实际应用举例。
四、教具和多媒体资源1.黑板、粉笔等传统教学用具。
2.投影仪、电脑等多媒体教学设备。
3.教学软件或数学工具,如GeoGebra等。
五、教学方法1.激活学生的前知:通过提问和讨论,了解学生对实数、代数等基本概念的掌握程度。
2.教学策略:采用讲解、示范和实践等方法,引导学生了解复数的概念、表示方法和基本运算规则,理解复数的几何意义。
3.学生活动:组织学生进行小组讨论和练习,培养学生主动参与活动的实践能力。
六、教学过程1.导入:通过实际问题或数学典故引入复数的概念,激发学生的学习兴趣和好奇心。
2.讲授新课:介绍复数的概念、表示方法和基本运算规则,引导学生理解复数的几何意义。
通过举例和练习,让学生熟练掌握复数的基本运算规则。
3.巩固练习:组织学生进行小组讨论和练习,提供必要的指导和反馈,帮助学生更好地掌握所学知识。
4.归纳小结:总结本节课所学内容,强调学生对复数概念的理解、基本运算规则的掌握以及实际应用举例的了解。
鼓励学生积极参与讨论和练习,提高学习效果。
七、评价与反馈1.设计评价策略:通过课堂练习和小测验等方式,评估学生对复数概念、表示方法、基本运算规则以及几何意义的掌握程度。
2.为学生提供反馈:根据学生的表现和评估结果,给予具体的指导和建议,帮助学生更好地掌握所学知识。
复数的应用大学教案
![复数的应用大学教案](https://img.taocdn.com/s3/m/898df54e15791711cc7931b765ce0508763275a6.png)
课程目标:1. 理解复数的概念及其表示方法。
2. 掌握复数的加减、乘除运算。
3. 了解复数在几何、物理等领域的应用。
4. 培养学生解决实际问题的能力。
教学重点:1. 复数的加减、乘除运算。
2. 复数在几何、物理等领域的应用。
教学难点:1. 复数乘除运算的技巧。
2. 复数在几何、物理等领域的应用理解。
教学准备:1. 教师准备:多媒体课件、黑板、粉笔。
2. 学生准备:笔记本、笔。
教学过程:一、导入1. 通过生活中的实例引入复数概念,如电流的相位、电磁波的振动等。
2. 提问:如何表示一个不在实数范围内的数?二、新课讲授1. 复数的概念及表示方法- 定义:复数是形如a+bi的数,其中a、b为实数,i为虚数单位,满足i²=-1。
- 表示方法:用a+bi表示复数,其中a称为实部,b称为虚部。
2. 复数的加减运算- 规则:两个复数相加,只需将它们的实部和虚部分别相加。
- 示例:计算(3+4i) + (2-5i)。
3. 复数的乘除运算- 规则:两个复数相乘,先将实部相乘,再将虚部相乘,最后将实部和虚部相加。
- 示例:计算(3+4i) × (2-5i)。
- 乘除运算的技巧:利用复数乘除运算的规则,可以将复数乘除运算转化为实数乘除运算。
4. 复数在几何、物理等领域的应用- 几何:复数可以表示平面上的点,实部表示横坐标,虚部表示纵坐标。
- 物理:在电磁学、量子力学等领域,复数用于描述波的振动、粒子的状态等。
三、课堂练习1. 计算以下复数的加减、乘除运算:- (2+3i) + (4-5i)- (5-2i) × (3+4i)- (1+i) ÷ (2-i)2. 结合实际应用,分析以下问题:- 一个电路中,电流的相位为30°,求该电流的复数表示。
- 一个质点的运动轨迹可以用复数表示,求该质点的速度和加速度。
四、课堂小结1. 总结本节课所学内容,强调复数的概念、运算及其应用。
复数的概念教案高中数学
![复数的概念教案高中数学](https://img.taocdn.com/s3/m/5906126a4a35eefdc8d376eeaeaad1f347931177.png)
复数的概念教案高中数学一、教学目标1.了解复数的定义和性质;2.掌握复数的加减乘除运算方法;3.能够将复数化成标准形式;4.能够解决与复数相关的实际问题。
二、教学重点和难点1.掌握复数的基本概念和运算法则;2.理解复数的乘法和除法规则;3.解决与复数相关的问题。
三、教学内容1.复数的定义和形式;2.复数的加减法规则;3.复数的乘法和除法规则;4.复数的实际应用。
四、教学过程(一)复数的定义和形式1.复数的定义:形如a+bi(a,b为实数,i为虚数单位)的数称为复数。
2.实部和虚部:复数a+bi中的a称为实部,bi称为虚部。
3.复数的表示方式:a+bi表示复数的通用形式,也可以使用复平面来表示复数。
(二)复数的加减法规则1.同类项相加减:将实部相加减,虚部相加减。
2.举例:(3+2i)+(1-4i)=4-2i,(5-3i)-(2+4i)=3-7i。
(三)复数的乘法和除法规则1.复数的乘法:按照分配律,进行实部和虚部的运算,最终化成标准形式。
2.复数的除法:乘以共轭复数,分母合并虚部并化简。
3.举例:(3+2i)(1-4i)=11-10i,(3+2i)/(1-4i)=(-5/17)+(10/17)i。
(四)复数的实际应用1.解决实际问题:如电路中的交流电流计算等。
2.举例:已知复数(3+4i)(2-i),求该复数的平方根。
五、教学反馈1.作业批改:检查学生课后练习的答案。
2.提问讨论:与学生互动讨论复数运算中的问题。
3.小组讨论:让学生分组讨论并分享解决复数问题的方法。
六、教学总结1.复数是数学中的一种扩展概念,用于解决实际问题;2.学会了复数的基本定义和运算规则,能够灵活运用;3.复数是数学领域的重要概念,需要不断巩固和实践。
以上就是本次教学内容,希望同学们能够认真学习,掌握复数的相关知识。
如果对复数还有疑问,欢迎随时提问。
谢谢!。
复数的有关概念高中数学教案
![复数的有关概念高中数学教案](https://img.taocdn.com/s3/m/7a844c9c2dc58bd63186bceb19e8b8f67d1cef16.png)
复数的有关概念高中数学教案一、教学目标1. 让学生理解复数的概念,掌握复数的表示方法。
2. 培养学生运用复数解决实际问题的能力。
3. 引导学生掌握复数的运算规则,提高学生的数学运算能力。
二、教学内容1. 复数的概念:引入复数的概念,解释实数和虚数的概念。
2. 复数的表示方法:用代数形式表示复数,介绍复数的标准形式。
3. 复数的运算规则:讲解复数的加法、减法、乘法和除法运算规则。
4. 复数的几何意义:介绍复数的几何表示,解释复平面的概念。
5. 复数的应用:举例说明复数在实际问题中的应用。
三、教学重点与难点1. 重点:复数的概念、表示方法、运算规则和几何意义。
2. 难点:复数的运算规则和几何意义。
四、教学方法1. 采用讲授法,讲解复数的有关概念和运算规则。
2. 利用图形和实例,直观地展示复数的几何意义。
3. 引导学生运用复数解决实际问题,提高学生的应用能力。
4. 组织课堂讨论,让学生提问、交流和分享。
五、教学准备1. 教案、教材、多媒体教学设备。
2. 复数的相关图形和实例。
3. 练习题和课后作业。
六、教学过程1. 导入:通过复习实数的概念,引导学生自然过渡到复数的概念。
2. 新课导入:讲解复数的概念,解释实数和虚数的概念。
3. 案例分析:分析一些实际的例子,让学生更好地理解复数的概念。
4. 复数的表示方法:用代数形式表示复数,介绍复数的标准形式。
5. 课堂练习:让学生独立完成一些关于复数表示的练习题。
七、复数的运算规则1. 讲解复数的加法、减法、乘法和除法运算规则。
2. 利用具体例子,让学生理解和掌握复数的运算规则。
3. 课堂练习:让学生独立完成一些关于复数运算的练习题。
八、复数的几何意义1. 介绍复数的几何表示,解释复平面的概念。
2. 利用图形,直观地展示复数的几何意义。
3. 课堂练习:让学生独立完成一些关于复数几何意义的练习题。
九、复数的应用1. 举例说明复数在实际问题中的应用,如信号处理、控制系统等。
高中数学复数讲解教案
![高中数学复数讲解教案](https://img.taocdn.com/s3/m/7374e07586c24028915f804d2b160b4e777f8111.png)
高中数学复数讲解教案一、导入:复数的引入(5分钟)1. 复数的定义:复数是由实数和虚数构成的数,常表示为a+bi,其中a为实部,b为虚部,i为虚数单位。
2. 复数的表示形式:直角坐标形式、极坐标形式及指数形式。
3. 复数的基本运算:加法、减法、乘法、除法的规则。
二、概念理解(10分钟)1. 实部和虚部的概念:实部为复数的实数部分,虚部为复数的虚数部分。
2. 复数的相等概念:如果两个复数的实部和虚部分别相等,则两个复数相等。
3. 复数的共轭概念:如果一个复数为a+bi,则它的共轭复数为a-bi。
三、复数运算(15分钟)1. 复数的加法:(a+bi) + (c+di) = (a+c) + (b+d)i2. 复数的减法:(a+bi) - (c+di) = (a-c) + (b-d)i3. 复数的乘法:(a+bi) * (c+di) = (ac-bd) + (ad+bc)i4. 复数的除法:(a+bi) / (c+di) = [(ac+bd)/(c^2+d^2)] + [(bc-ad)/(c^2+d^2)]i四、练习与应用(20分钟)1. 练习:根据给定的复数,进行加减乘除运算。
2. 应用:解决实际问题,如电路中的复数阻抗计算、空间向量的表示等。
五、实例分析(10分钟)1. 根据实际问题,通过复数形式进行分析和解决。
2. 引导学生发现复数在实际应用中的重要性和实用性。
六、总结与反思(5分钟)1. 复习复数的基本概念和运算规则。
2. 总结本节课的重点内容,并思考如何更好地运用复数解决实际问题。
七、作业布置(5分钟)1. 布置练习题,巩固本节课的知识点。
2. 要求学生独立完成一道实际应用题,并写出解题思路和过程。
注:以上教案可根据具体课堂情况和学生的理解水平进行调整和修改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 3.1.1 数系的扩充与复数的概念教学要求: 理解数系的扩充是与生活密切相关的,明白复数及其相关概念。
教学重点:复数及其相关概念,能区分虚数与纯虚数,明白各数系的关系。
教学难点:复数及其相关概念的理解 教学过程:一、复习准备:1. 提问:N 、Z 、Q 、R 分别代表什么?它们的如何发展得来的?(让学生感受数系的发展与生活是密切2.判断下列方程在实数集中的解的个数(引导学生回顾根的个数与∆的关系): (1)2340x x --= (2)2450x x ++= (3)2210x x ++= (4)210x += 3. 人类总是想使自己遇到的一切都能有合理的解释,不想得到“无解”的答案。
讨论:若给方程210x +=一个解i ,则这个解i 要满足什么条件?i 是否在实数集中? 实数a 与i 相乘、相加的结果应如何? 二、讲授新课:1. 教学复数的概念:①定义复数:形如a bi +的数叫做复数,通常记为z a bi =+(复数的代数形式),其中i 叫虚数单位,a 叫实部,b 叫虚部,数集{}|,C a bi a b R =+∈叫做复数集。
出示例1:下列数是否是复数,试找出它们各自的实部和虚部。
23,84,83,6,,29,7,0i i i i i i +-+--规定:a bi c di a c +=+⇔=且b=d ,强调:两复数不能比较大小,只有等与不等。
②讨论:复数的代数形式中规定,a b R ∈,,a b 取何值时,它为实数?数集与实数集有何关系? ③定义虚数:,(0)a bi b +≠叫做虚数,,(0)bi b ≠叫做纯虚数。
④ 数集的关系:0,0)0)0,0)Z a a ⎧⎪≠≠⎧⎨≠⎨⎪≠=⎩⎩实数 (b=0)复数一般虚数(b 虚数 (b 纯虚数(b上述例1中,根据定义判断哪些是实数、虚数、纯虚数?2.出示例题2:62P (引导学生根据实数、虚数、纯虚数的定义去分析讨论)练习:已知复数a bi +与3(4)k i +-相等,且a bi +的实部、虚部分别是方程2430x x --=的两根,试求:,,a b k 的值。
(讨论3(4)k i +-中,k 取何值时是实数?)小结:复数、虚数、纯虚数的概念及它们之间的关系及两复数相等的充要条件。
三、巩固练习:1.指出下列复数哪些是实数、虚数、纯虚数,是虚数的找出其实部与虚部。
())4,80,6,,291,7,0i i i i i -+--⨯2.判断① 两复数,若虚部都是3,则实部大的那个复数较大。
② 复平面内,所有纯虚数都落在虚轴上,所有虚轴上的点都是纯虚数。
3若(32)(5)172x y x y i i ++-=-,则,x y 的值是?4..已知i 是虚数单位,复数2(1)(23)4(2)Z m i m i i =+-+-+,当m 取何实数时,z 是: (1)实数 (2) 虚数 (3)纯虚数 (4)零 作业:62P 2、3题。
第二课时 3.1.2 复数的几何意义教学要求:理解复数与复平面内的点、平面向量是一一对应的,能根据复数的代数形式描出其对应的点及向量。
教学重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量。
教学难点: 根据复数的代数形式描出其对应的点及向量。
教学过程:一、复习准备:1. 说出下列复数的实部和虚部,哪些是实数,哪些是虚数。
14,72,83,6,,20,7,0,03,3i i i i i i i +-+---2.复数(4)(3)z x y i =++-,当,x y 取何值时为实数、虚数、纯虚数? 3. 若(4)(3)2x y i i ++-=-,试求,x y 的值,((4)(3)2x y i ++-≥呢?) 二、讲授新课:1. 复数的几何意义:① 讨论:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?(分析复数的代数形式,因为它是由实部a 和虚部同时确定,即有顺序的两实数,不难想到有序实数对或点的坐标) 结论:复数与平面内的点或序实数一一对应。
②复平面:以x 轴为实轴, y 轴为虚轴建立直角坐标系,得到的平面叫复平面。
复数与复平面内的点一一对应。
③例1:在复平面内描出复数14,72,83,6,,20,7,0,03,3i i i i i i i +-+---分别对应的点。
(先建立直角坐标系,标注点时注意纵坐标是b 而不是bi ) 观察例1中我们所描出的点,从中我们可以得出什么结论?④实数都落在实轴上,纯虚数落在虚轴上,除原点外,虚轴表示纯虚数。
思考:我们所学过的知识当中,与平面内的点一一对应的东西还有哪些?⑤Z a bi=+↔一一对应复数复平面内的点(a,b),Z a bi=+↔一一对应复数平面向量OZ,↔一一对应复平面内的点(a,b)平面向量OZ注意:人们常将复数z a bi =+说成点Z 或向量OZ ,规定相等的向量表示同一复数。
2.应用例2,在我们刚才例1中,分别画出各复数所对应的向量。
练习:在复平面内画出23,42,13,4,30i i i i i +--+--所对应的向量。
小结:复数与复平面内的点及平面向量一一对应,复数的几何意义。
三、巩固与提高:分别写出下列各复数所对应的点的坐标。
1.())4,80,6,,291,7,0i i i i i -+--⨯2. 若复数22(34)(56)Z m m m m i =--+--表示的点在虚轴上,求实数a 的取值。
变式:若z 表示的点在复平面的左(右)半平面,试求实数a 的取值。
3、作业:课本64题2、3题.第一课时 3.2.1 复数的代数形式的加减运算教学要求:掌握复数的代数形式的加、减运算及其几何意义。
教学重点:复数的代数形式的加、减运算及其几何意义 教学难点:加、减运算的几何意义 教学过程: 一、复习准备:1. 与复数一一对应的有?2. 试判断下列复数14,72,6,,20,7,0,03i i i i i i +----在复平面中落在哪象限?并画出其对应的向量。
3. 同时用坐标和几何形式表示复数121472z i Z i =+=-与所对应的向量,并计算12OZ OZ +。
向量的加减运算满足何种法则?4. 类比向量坐标形式的加减运算,复数的加减运算如何? 二、讲授新课:1.复数的加法运算及几何意义①.复数的加法法则:12z a bi Z c di =+=+与,则12()()Z Z a c b d i +=+++。
例1.计算(1)(14)(72)i i +-+ (2)(72)(14)i i -++ (3)[(32)(43)](5)i i i --++++(4)(32)(43)(5)]i i i --++++[②.观察上述计算,复数的加法运算是否满足交换、结合律,试给予验证。
例2.例1中的(1)、(3)两小题,分别标出(14),(72)i i +-,(32),(43),(5)i i i --++所对应的向量,再画出求和后所对应的向量,看有所发现。
③复数加法的几何意义:复数的加法可以按照向量的加法来进行(满足平行四边形、三角形法则) 2.复数的减法及几何意义:类比实数,规定复数的减法运算是加法运算的逆运算,即若12Z Z Z +=,则Z 叫做21Z Z 减去的差,21Z Z Z =-记作。
④讨论:若12,Z a b Z c di =+=+,试确定12Z Z Z =-是否是一个确定的值? (引导学生用待定系数法,结合复数的加法运算进行推导,师生一起板演)⑤复数的加法法则及几何意义:()()()()a bi c di a c b d i +-+=-+-,复数的减法运算也可以按向量的减法来进行。
例3.计算(1)(14)(72)i i +-- (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[ 练习:已知复数,试画出2Z i +,3Z -,(54)2Z i i ---2.小结:两复数相加减,结果是实部、虚部分别相加减,复数的加减运算都可以按照向量的加减法进行。
三、巩固练习:1.计算(1)()845i -+(2)()543i i --(3())29i i ---2.若(310)(2)19i y i x i -++=-,求实数,x y 的取值。
变式:若(310)(2)i y i x -++表示的点在复平面的左(右)半平面,试求实数a 的取值。
3.三个复数123,,Z Z Z ,其中1Z i =,2Z 是纯虚数,若这三个复数所对应的向量能构成等边三角形,试确定23,Z Z 的值。
作业:课本71页1、2题。
第二课时 3.2.2 复数的代数形式的乘除运算教学要求:掌握复数的代数形式的乘、除运算。
教学重点:复数的代数形式的乘除运算及共轭复数的概念 教学难点:乘除运算 教学过程:一、复习准备:1. 复数的加减法的几何意义是什么?2. 计算(1)(14)(72)i i +-+ (2)(52)(14)(23)i i i --+--+ (3)(32)(43)(5)]i i i --+-+-[3. 计算:(1)(1(2⨯ (2)()()a b c d +⨯+ (类比多项式的乘法引入复数的乘法) 二、讲授新课:1.复数代数形式的乘法运算①.复数的乘法法则:2()()()()a bi c di ac bci adi bdi ac bd ad bc i ++=+++=-++。
例1.计算(1)(14)(72)i i +⨯- (2)(72)(14)i i -⨯+ (3)[(32)(43)](5)i i i -⨯-+⨯+(4)(32)(43)(5)]i i i -⨯-+⨯+[探究:观察上述计算,试验证复数的乘法运算是否满足交换、结合、分配律? 例2.1、计算(1)(14)(14)i i +⨯- (2)(14)(72)(14)i i i -⨯-⨯+(3)2(32)i + 2、已知复数Z ,若,试求Z 的值。
变:若(23)8i Z +≥,试求Z 的值。
②共轭复数:两复数a bi a bi +-与叫做互为共轭复数,当0b ≠时,它们叫做共轭虚数。
注:两复数互为共轭复数,则它们的乘积为实数。
练习:说出下列复数的共轭复数32,43,5,52,7,2i i i i i --++--。
=,试写出复数的除法法则。
2.复数的除法法则:2222()()()()()()a bi a bi c di ac bd bc ada bi c di i c di c di c di c d c d ++-+-+÷+===+++-++ 其中c di -叫做实数化因子例3.计算(32)(23)i i -÷+,(12)(32)i i +÷-+(师生共同板演一道,再学生练习) 练习:计算232(12)i i -+,23(1)1ii -+-2.小结:两复数的乘除法,共轭复数,共轭虚数。