数学核心素养与全国高考试题
高中数学核心素养在高考试题中的体现
高中数学核心素养在高考试题中的体现摘要:高中数学的核心素养,主要包含数学抽象、建模、逻辑推理等多种素养。
而这些素养可以帮助高中生理解和解析试题,因此本文将分析这些核心素养,在具体试题中的考试评价。
关键字:高中数学核心素养;考试评价引言:在高中数学的解题方式中,数学教师和高中生主要运用抽象、推理、建模、运算四大核心素养。
因此,以下内容将主要分析这四种素养在试题中的应用。
1.数学抽象一般而言,数学抽像可以从符号意识、数感、几何直观等四种角度解释。
其一,为了保障数学公式及运算过程的准确性,这就使得要用运算符号连接不同的数学文字,从而组建的数学公式才具有数学抽象作用,因此符号意识是数学抽象的基础。
其二,每个数学公式都会通过具体的推理过程,然后得出一个具体的数字,而该数字就是题目中表示的明确含义,而这就是数学抽象的数感。
其三,数学中所述的数形结合,就是用图形的方式来表示题目中数字的含义,有些是二维平面表示,有些是三维立体表示,而这些图形综合起来就是数学抽象中的几何直观。
其四,当高中生看到题目中的图形,或者线段相交的关系图时,就会自行在脑中形成具象的空间图,而这就是数学抽象的空间观念。
例:2019年高考全国Ⅰ卷(理科):设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则对应的表达式是什么?解:z=x+yi,z-i=x+(y-1)i,|z-i|=√(x2+(y-1)2=1),则表达式为x2+(y-1)2=1。
由这道例题可看出,高中生可以通过空间想象的方式模拟求出该复数的表达式,从而可以运用数学抽象的思想解决这道题。
2.逻辑推理逻辑推理主要包括归纳和演绎两种推理方式,首先,高中数学中的归纳推理是指,高中生在思索数学题目时,从一个独立的角度出发,然后根据题目中提供的知识线索,接着由点扩面式的逐渐推出最终结论,但不能保证最终结论的准确性。
其次,高中数学中的逻辑推理恰恰与归纳推理相反,主要指高中生在思索数学题目时,在事先就对该题目全面了解的前提下,然后由面扫点式的逐渐推出最终结论,而这个最终结论相比归纳推理的结论,具有更高的准确性。
以核心素养为导向的数学试题研究母题60题
以核心素养为导向的数学试题研究母题60题核心素养是指一系列与个人发展密切相关的基本素质和能力,包括思维能力、学习能力、沟通能力、创新能力等。
数学作为一门学科,不仅培养学生的数学知识和技能,更重要的是培养学生的核心素养。
因此,设计以核心素养为导向的数学试题十分重要。
我以核心素养为导向,设计了60题数学试题。
以下将就其中几道题目进行详细说明。
1.题目:小明家有100个苹果,他决定每天吃掉前一天剩下苹果数的一半,并每天再多吃5个苹果。
请问小明吃完所有苹果需要多少天?解析:这道题目主要考察学生的逻辑思维和推理能力。
学生需要从每天减半还加5个苹果来分析得出每天剩下的苹果数量,然后通过逐天进行计算,最终找出小明吃完所有苹果需要多少天。
2.题目:数列1, 2, 4, 8, 16, ...的第n项是多少?解析:这道题目主要考察学生的数学思维和推理能力。
学生需要观察数列的规律,发现每一项都是前一项的2倍,然后通过递推的方法计算出第n项是多少。
3.题目:已知一条直线上有3个点A(2, 4),B(4, 6)和C(6, 8),请问这三个点是否共线?解析:这道题目主要考察学生的几何思维和图形理解能力。
学生需要通过计算这三个点的斜率,来判断它们是否处于同一条直线上。
4.题目:某商场打折销售,原价100元的商品打8折后售价为多少?解析:这道题目主要考察学生的数学计算能力和实际应用能力。
学生需要计算出打折后的价格,然后将计算结果与原价进行比较,得出最终售价。
通过这些题目的设计,学生不仅能够学习和掌握基本的数学知识,更重要的是培养他们的核心素养,如逻辑思维、推理能力、数学思维、图形理解和实际应用能力等。
这些素养对学生未来的学习和工作发展都具有重要意义。
总的来说,以核心素养为导向的数学试题设计能够使学生在学习数学的过程中培养和发展全面的素质和能力。
通过这些试题的练习和解题过程,学生不仅可以提高数学水平,还能为他们今后的学习和发展奠定坚实的基础。
核心素养视域下新高考数学试题分析及教学建议
核心素养视域下新高考数学试题分析及教学建议摘要:2022年新高考I卷的数学试卷,试题蕴含着丰富的数学核心素养,题题精彩.函数导数试题蕴含直观想象素养,立体几何试题蕴含逻辑推理素养,不等式试题蕴含数学抽象素养,圆锥曲线试题蕴含数学运算素养,概率统计试题蕴含数据分析素养,应用性试题蕴含数学建模素养赏析.整卷试题是数学核心素养浸润的成果,重在检测学生数学核心素养的养成情况.关键词:核心素养视域下;新高考数学试题;分析及教学建议引言《普通高中数学课程标准2017年版2020年修订》提出了数学学科的六大核心素养:数学抽象,逻辑推理,数学建模,直观想象,数学运算和数据分析.新高考试题的命制也从知识立意、能力立意,转变为素养立意.2022年,教育部教育考试院命制的新高考I卷数学试题,其题面亲切、形式简约、思想深刻、内涵丰富.每道试题的背后都有其精彩的故事,细品题中所蕴含的数学知识、思想、方法,可以感受到试题的命制基于数学核心素养,试题是核心素养自然浸润的成果.指向素养立意的新高考数学试题更加注重检测学生的基础知识、思维水平、探究能力、学科素养、创新能力、应用能力等,其解题过程更多的是基于核心素养的探究活动。
1、逻辑推理视域下的立体几何试题试题的命制过程往往是命题者“执果寻因”的逆向逻辑推理过程.如在编制“立体几何与空间向量”的试题时,命题者可先设定一个确定的空间几何体,并根据空间几何体的特征,编制若干可确定该几何体的几何量或者位置关系的条件,让学生根据条件求解空间几何体,然后在确定的空间几何体中探究其他的几何量和位置关系.题2.(2022年新高考数学I卷,T19)如图7,直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,AA1=AB平面A1BC⊥平面ABB1A1,求二面角A-BD-C的正弦值.命题者拟以直三棱柱为背景,考查“利用等积转化求空间中的点面距离”的方法.等积法的关键是转换顶点,进行等积转化,由VA-A1BC=VA1-ABC,可得13hAS△A1BC=13hA1S△ABC,又因为hA1S△ABC=VA1B1C1-ABC,所以hAS△A1BC=VA1B1C1-ABC.因此,只需要给定直三棱柱ABC-A1B1C1和△A1BC的面积,即可求解点A到平面A1BC的距离.由此,编制出题干与问题(1):“直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22,求A到平面A1BC的距离.”一道立体几何试题的命制过程中,命题者是有全局观的.命题者对本道试题所涉及的几何图形、空间位置关系、几何量等是要有整体把握的.题干与问题(1)所给的两个条件是无法确定这个直三棱柱的.要确定一个三角形至少需要三个单一独立的条件,如已知三边、已知两边一夹角等.那么,需要几个条件才能确定这个直三棱柱呢?要确定一个直三棱柱,需要确定直三棱柱的侧棱和底面三角形的形状和大小,因此至少需要四个单一独立的条件.题中给出直三棱柱ABC-A1B1C1的体积和△A1BC的面积,因此需要再给出两个条件,于是命题者给出“AA1=AB,平面A1BC⊥平面ABB1A1”两个条件.这四个条件即可确定直三棱柱,下面进行验证:由条件“AA1=AB”可以快速判断出四边形ABB1A1是正方形,其对角线互相垂直平分;结合条件“平面A1BC⊥平面ABB1A1”,可得点A到平面A1BC的距离等于点A到A1B中点的距离,从而得到正方形ABB1A1对角线的长度,进而确定AA1,AB的长度;由“直三棱柱ABC-A1B1C1的性质,平面A1BC⊥平面ABB1A1”可以证得BC⊥平面ABB1A1,进而得BC⊥AB,BC⊥A1B;再结合“△A1BC的面积为22”求得BC的长度.至此,侧棱及其底面三角形的形状和大小确定,从而确定了直三棱柱.有了确定的空间几何体,即可在几何体中设问其中的各种几何量,如求二面角的大小.由此,编制出问题(2):“直三棱柱ABC-A1B1C1的体积为4,△A1BC的面积为22,设D为A1C的中点,AA1=AB,平面A1BC⊥平面ABB1A1求二面角A-BD-C的正弦值.”数学是讲道理的,解题靠推理.命题是“执果寻因”的推理过程,解题是“由因导果”的推理过程.无论解题还是命题,其基本工作形式都是逻辑推理,逻辑推理素养的具体表现是如何科学地、符合逻辑地在“因果”之间进行转化,从而实现命题或解题目标.2、数学抽象视域下的不等式试题数学抽象是指在具体问题背景中发现规律,归纳出共同的、本质的问题,建立数学模型加以研究.数学抽象常常从数量关系、数式的结构特征、图形关系等角度进行抽象研究.在命制“比较数值大小”的试题时,命题者常常从已知的不等关系出发,对不等式进行赋值、变形,得到具体数值的大小关系,从而设置试题.学生解题时需具备较强的数感和符号意识,根据数式的特征,对问题进行抽象,再构造函数求解.题3.(2022年新高考数学I卷,T7)设a=0.1e0.1,b=19,c=-ln0.9,则A.a<b<c B.c<b<a C.c<a<b D.a<c<b根据题干所给三个式子的结构特征,通过观察、归纳、抽象,发现a,b,c均是某函数在0.1处的函数值.构造函数f(x)=xex,g(x)=1-xx,h(x)=-ln(1-x),则a,b,c分别是f(x),g(x),h(x)在x=0.1处对应的函数值,即a=f(0.1),b=g(0.1),c=h(0.1).借助画图软件作图,如图8,可以发现g(0.1)>f(0.1)>h(0.1),即c<a<b.由图象可看出,函数f(x),g(x),h(x)在x=0附近的图象是非常接近的,肉眼几乎不可识别.若想借助函数图象解题,可用导数严格地加以证明.除了用图象观察得结论,编制试题.笔者猜测本题是对重要不等式ln x⩽x-1进行恒等变形、赋值而得.曲线y=ln x的图象在其切线y=x-1的下方(切点(1,0)除外),并由此可得不等式ln x⩽x-1,当且仅当x=1时,等号成立.y=ln x与y=x-1在x=1附近的函数值是非常接近的,通过估算是难以比较其大小的.因此,命题者考虑,设置比较两个函数在x=1的附近的函数值的大小,如比较ln0.9与0.9-1=-0.1的大小.由于背景的函数、不等式相对简单,若仅是对这两个数进行比较,则问题相对容易.因此,命题者对上述恒等式进行变形.由“ln x⩽x-1,当且仅当x=1时,等号成立”,得“ln11-x⩽11-x-1=x1-x,当且仅当x=0时,等号成立”,即“-ln(1-x)⩽x1-x,当且仅当x=0时,等号成立”.由“ln x⩽x-1,当且仅当x=1时,等号成立”,得“ln(1-x)⩽-x,当且仅当x=0时,等号成立”,得“e-x⩾1-x当且仅当x=0时,等号成立”,得“当x<1,ex⩽11-x,当且仅当x=0时,等号成立”,得“当0<x<1,xex⩽1-xx,当且仅当x=0时,等号成立”.综上,当0<x<1,xex⩽x1-x,-ln(1-x)⩽x1-x,当且仅当x=0时,等号成立.因此可得,0.1e0.1<19,-ln0.9<19.那么0.1e0.1与-ln0.9的大小关系又如何呢?构造函数φ(x)=xex+ln(1-x)(0<x⩽110),φ′(x)=(x+1)ex+1x-1,φ″(x)=(x+2)ex-1(x-)2.当0<x⩽110时,(x+2)ex>2,1(x-1)2⩽10081,此时φ″(x)>0,φ′(x)单调递增,故φ′(x)>φ′(0)=0,φ(x)单调递增,φ(x)>φ(0)=0,因此有0.1e0.1>-ln0.9.综上,可得-ln0.9<0.1e0.1<抽象是数学的重要特性之一19..抽象的目的在于确定数学的研究对象,抽象的常见方法是观察变化中的不变、不同中的共性、无序中的有序,并把问题符号化、模式化,抽象成数学问题再加以解决.3教学过程中强调把握住基础题得分尤为重要,对于应试考试还需要有一定的考试策略.基本策略是先易后难,会做的一分不扣,保证基础题得分,不会做的题尽量多写,可以对难题的条件和结论进行化简,选择题可以利用排除法、特值法等特殊方法.每次测试都要鼓励引导学生进行应试策略培训,这样可以拿到基本分数.所以在教学中应不断给予学生提出要求和目标引导,让他们把应试考试策略养成习惯。
2023年高考数学(全国甲卷文科)真题详细解读及评析
2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。
一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。
二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。
数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。
数学核心素养及全国高考试题
从各板块分析可得,各模块占比变化不大,试卷结构与往年一致。在题目设置上考查对于基础知识、基本技能的考查,符合考试说明的各项要 求,又在一定程度上考查学生对知识点的综合运用,注重考查学生对实际生活的具体应用。 二、试卷各部分分析——选填偏基础,大题显常规 ①选填题: 今年,选择填空部分的考点设置基本与新课标2014、2015及2016年一致,顺序略有调整,注重基础,渗透中华文化,比如说第4题,但部分题目 考查学生的综合能力,比如第8题考查函数图像,需要结合奇偶性并代入特殊值进行判断,第9题考查函数图象的对称性,考生比较少练习,第 12题需要进行分类讨论,且计算难度较大,第16题是三棱柱锥的外接球,对文科生来说,空间想象能力是一个挑战。
由模块占比可知,整套试卷在六大板块的考查比重上趋于稳定,但是概率模块想拿满分难度较大,跟去年一样,依然非常重视对学生阅读理 解能力的考查。
二、试卷各部分分析——选填更灵活,大题较常规 ①选填题: 选择填空部分的考点设置基本与新课标2016的一致,顺序略有调整,难度有所降低,第3题复数和命题结合,考点新颖。第 12题考点为数列的前n项和,有一定的技巧性,第16题考查立体几何体积的最值问题,这两题综合文字过多,对考生的理解 能力要求较大。
数学核心素养与全国卷试题
普通高中数学学科素养 学科素养下的真题评价 素养下的真题典例剖析
一、数学核心素养
1 十八大和十八届三中全会提出关于立德树人的要求落到实处,2014年3月教育部研制印发《关于全面深化课程改革落实立德树人根本任务 的意见》,意见提出“教育部将组织研究提出各学段学生发展核心素养体系,明确学生应具备的适应终身发展和社会发展需要的必备品格 和关键能力”。
核心素养视角下的高考数学试题分析
技法点拨摘要:高考数学在高中的学习中是有一定难度的,同时,高考数学在高考总分中也占有很大的比重。
学生们在学习的过程中也会遇到很多困难和阻碍,而教师在教学的过程中也会碰到各种各样的问题,不知道用哪种方式更能帮助学生更好地学习数学。
在数学的学习中,往往会形成两极分化,能够学会数学的,往往在数学的考试中都会取得很高的分数,而那些不会数学的,通常就是不及格甚至远远不及格。
那么同样的教师,同样的课本,同样的教学方式,为什么会造成这样的两极分化现象呢?这是我们需要思考的问题。
关键词:核心素养;高考数学;分析我们都知道,高中学生要在不到两年的时间内学习六本数学必修和两本选修的内容,对于学生来说,这无疑是一个艰巨的学习任务,那么怎样才能更好地完成这个学习任务呢?首先在于教师的讲解,其次是学生自己的掌握能力。
在高中的学习中,有一个好的老师对于高中数学的学习是有很大的帮助的。
教师在讲解数学是应该时刻注意学生的掌握程度,根据学生的学习能力安排学习课程,重点的专题要进行重点讲解,结合学生的学习能力进行讲解,才能够最大限度地帮助学生学习数学。
一、打牢基础,从课本知识出发想要学好高中数学,那么就要从小对数学学习打牢基础,在高中的数学学习中才能够做到不吃力,无论是什么知识,都是围绕着课本进行讲解,老师在讲解的过程中也会根据课本上的例题,来引出本节课所需要学习的内容。
课本上的知识是最基础的,也是最经典的教学案例,在把课本上的教学案例琢磨透后,那么对于有关本节内容的例题就会有一个系统的认识。
其次就是对于本节课拓展内容的学习,这需要学生耐下心来仔细琢磨,教师可以在其中起到点睛之笔的作用。
总的来说,无论是什么知识,都还是要从课本出发,只有把课本上的知识记在心里,才能够把基础掌握牢固。
二、精讲精练,做到讲与评结合在高中数学的学习中所涉及的学习范围特别广泛,但其实也不乏分为几大块,在数学的学习中,更重要的是学习方法和做题思路。
在学习某一部分内容时,教师可以专门针对这一部分内容进行讲解和总结,让学生只做这一部分内容的习题,加深对这一部分学习内容的印象和做题思路。
明立意 提素养———由一道2022_年高考数学试题引发的思考
明立意㊀提素养由一道2022年高考数学试题引发的思考李㊀彦(江苏省姜堰中学ꎬ江苏泰州225500)摘㊀要:高考承载着为高校选拔人才的重要任务ꎬ新课改背景下高考试题充分体现出考查学生核心素养的重要特征ꎬ高考试题的探究与分析是高中数学课程教学的重要任务之一.本文以2022年一道高考数学试题为探究载体ꎬ重点从试题分析㊁变式拓展㊁教学启示三个角度进行阐释.关键词:高中数学ꎻ高考试题ꎻ素养ꎻ能力中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)16-0040-03收稿日期:2023-03-05作者简介:李彦(1978.9-)ꎬ江苏姜堰人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教育教学研究.基金项目:泰州市教育学会十四五规划重点立项课题 新课程背景下高中数学高效课堂的建构研究 阶段性研究成果(项目编号:TZ2022015)㊀㊀高考试题一直是高中教师关注的焦点ꎬ对高考试题形式和考查意图的探究是提升 备考 效率的重要途径.近年来ꎬ高考数学试题中导数问题一直是考查重点内容之一ꎬ多数以初等函数为载体ꎬ以压轴题的形式呈现ꎬ侧重于考查学生的数学学科核心素养.命题专家一直十分青睐导数问题的考查ꎬ给不少学生带来一些困难ꎬ对于高中数学高考复习教学而言ꎬ整体把握导数问题是提升学生解题能力的关键[1].1真题回顾ꎬ多元剖析题目㊀(2022年全国高考理科数学第16题)已知x=x1和x=x2分别是函数f(x)=2ax-ex2(a>0且aʂ1)的极小值点和极大值点.若x1<x2ꎬ试求a的取值范围[2]解法1㊀根据题意结合函数导数的性质可得ꎬfᶄ(x)=2axlna-2ex存在两个零点x1和x2(x1<x2).令函数g(x)=2axlna-2exꎬ当a>1时xң-ɕꎬg(x)ң+ɕꎻxң+ɕꎬg(x)ң+ɕ(不合题意ꎬ舍去).当0<a<1时xң-ɕꎬg(x)ң-ɕꎻxң+ɕꎬg(x)ң-ɕ(符合题意)ꎬ则gᶄ(x)=2ax(lna)2-2e.令gᶄ(x0)=0可得x0=loga[e/(lna)2].由于函数g(x)在区间(-ɕꎬx0)内单调递增ꎬ在区间(x0ꎬ+ɕ)内单调递减ꎬ根据题意可令g(x)max=g(x0)>0ꎬ即2ax0lna-2ex0>0.即2aloga[e/(lna)2] lna>2eloga[e/(lna)2].即1lna>logaeln2a=ln(e/ln2a)lna.由于lna<0则lneln2a>1.即1(lna)2>1.即0<(lna)2<1.则a的取值范围为1e<a<1.解法2㊀根据题意结合函数导数的性质可得ꎬ04fᶄ(x)=2axlna-2ex有两个零点x1和x2(x1<x2).令fᶄ(x)=0ꎬ即2axlna=2ex.该方程有两个实数根分别为x1和x2(x1<x2)ꎬ令函数y=axlna与函数y=ex图象在x0处相切ꎬ可知ax0lna=ex0ꎬ且ax0(lna)2=e.则x0=1lnaꎬ即a=e1x0.则ax01x0=ex0ꎬ即ax0=ex20.则(e1x0)x0=ex20ꎬ即x0=ʃ1.(1)在a>1的情况下ꎬ当x0=1ꎬa=eꎬ若a减小ꎬ则函数y=axlna与y=ex的图象有两个交点(如图1所示).函数fᶄ(x)=2axlna-2ex的图象如图2所示ꎬ根据前面的分析可知ꎬ函数f(x)=2ax-ex2从左到右的单调性为:递增ң递减ң递增ꎬ且极大值点x1小于极小值点x2(不符合题意ꎬ舍去)图1㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图2(2)在0<a<1的情况下ꎬ当x0=1ꎬa=1eꎬ若a变大ꎬ则函数y=axlna与y=ex的图象有两个交点(如图3所示)ꎬ函数f(x)=2ax-ex2从左到右的单调性为:递减ң递增ң递减ꎬ且极小值x1小于极大值x2ꎬ则1e<a<1.图3㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图4解法3㊀根据题意结合函数导数的性质可得ꎬfᶄ(x)=2axlna-2ex有两个零点x1和x2(x1<x2).令fᶄ(x)=0ꎬ即axx=elna.该方程有两个实根x1和x2(x1<x2)ꎬ如图4所示ꎬ在a>1的情况下ꎬ函数f(x)=2ax-ex2从左到右的单调性为:递增ң递减ң递增ꎬ且极大值点x1小于极小值点x2(不符合题意ꎬ舍去).在0<a<1的情况下ꎬ令h(x)=axxꎬ则hᶄ(x)=ax(xlna-1)x2.令hᶄ(x0)=0ꎬ即x0=1lnaꎬ即lna=1x0ꎬ即a=e1x0ꎬ即ax0=e.根据0<a<1ꎬlna<0ꎬ则x0<0ꎬ显然函数h(x)在区间(-ɕꎬx0)上单调递增ꎬ在区间(x0ꎬ0)上单调递减ꎬ则h(x)max=h(x0)=ax0x0=ex0.结合题意可得ꎬex0>elna.即lna>x0.即1x0>x0.则x0<-1.即1lna<-1.即lna>-1.则1e<a<1.点评㊀解法1是直接从函数的性质视角进行探究ꎬ解题思路比较清晰但计算繁琐ꎬ需要学生具有一定的逻辑思维和数学运算能力ꎻ解法2是采取转化思想ꎬ借助于数形结合的方法进行求解ꎬ需要学生具备一定直观想象素养能力ꎻ解法3是采取分离函数㊁等价代换的手段进行求解ꎬ该方法过程简洁运算量不大ꎬ是多数学生优先选择的方法.2洞悉本质ꎬ变式拓展大量实践表明ꎬ机械刷题难以提升学生数学解题能力ꎬ直接影响数学素养的培养与提升.数学教师可以引导学生洞悉数学典型试题的内在本质规律ꎬ呈现多元变式ꎬ在师生共同探究中提升学生数学学14科核心素养[3].变式1㊀已知函数f(x)=2ax-ex2(a>0且aʂ1)存在极小值点x1和极大值点x2且x2<x1ꎬ试求a的取值范围?变式2㊀已知函数f(x)=2ax-ex2(a>0且aʂ1)存在极小值点x1和极大值点x2ꎬ试求a的取值范围?变式3㊀已知函数f(x)=2ax-ex2(a>0且aʂ1)无极值点ꎬ试求a的取值范围?点评㊀变式训练是提升学生数学解题能力的重要方式ꎬ上述三个变式拓展试题是从函数的内在本质出发ꎬ通过对函数的 极值点 进行探讨ꎬ关注学生数学转化思想在数学解题中的实际运用.三道变式试题随着题设条件的变化ꎬ问题由浅入深ꎬ重点考查学生分析数学综合问题的能力ꎬ有助于学生核心素养的提升.3教学启示ꎬ落实素养第一ꎬ重视数学基本知识与技能训练ꎬ灵活运用数学思想方法.函数是高中数学教学中的重点和难点ꎬ每年高考离不开数学函数的考查ꎬ以函数为背景的命题受到命题专家的特殊青睐.导数引入高中数学函数的探究ꎬ已经成为探究函数问题的重要工具.高中数学函数问题注重考查 函数与方程㊁数形结合㊁分类讨论㊁转化与化归㊁函数构造 等数学思想方法.对于高中数学中的导数问题ꎬ应该关注 分离㊁换元㊁构造 等方法.在高考备考复习教学中ꎬ数学教师可以引导学生从基本的解题方法出发ꎬ积极探究解决众多问题中共同的㊁基本的解题方法ꎬ让学生感受通性通法合理应用于解题的实用性ꎬ尽量较少进行特殊解题技巧和方法的熏陶.第二ꎬ重视一题多解的探究与分析ꎬ从变式训练中提升创新思维能力.数学解题教学是高中数学课程教学的重要内容之一ꎬ学生解题能力的提升离不开典型数学试题的剖析.大量实践表明ꎬ 一题多解 是从多个角度探讨同一问题ꎬ有效采取此教学思路有助于拓宽学生的解题思路ꎬ有助于培养学生的发散思维能力和解题能力.在高中数学教学实践中ꎬ学生的数学思维能力存在着一定的差异性ꎬ将 一题多解 和 变式训练 有机融合ꎬ能够有效激发不同层次学生数学探究的好奇心ꎬ引导学生从不同视角㊁不同维度探究问题ꎬ从多 变 的问题中探寻 不变 的性质与特征ꎬ不断强化学生的应变能力ꎬ发展学生的创新思维能力.第三ꎬ融合信息技术教学手段ꎬ充分呈现数学本质规律.数学图象是帮助学生理解和解决问题的重要手段ꎬ函数图象具有较高的直观性ꎬ有利于学生理解函数的内在本质规律.高中数学函数问题教学中ꎬ可以借助于GeoGebra图象软件展示变化中的函数图象ꎬ特别是对函数单调性的增减问题ꎬ能够直观地显现出来ꎬ学生能够直接获得数学结论ꎬ激发学生深入探究的欲望ꎬ强化学生直观想象素养的形成与发展.作为高中数学教师ꎬ一定要给予学生动手操作实践的空间与时间ꎬ让学生在实践中体悟数学的本质魅力.高考试题是高中数学课程教学的重要资源与素材ꎬ对高考典型试题的探究是高考备考的必备动作.作为高中数学教师在平时的教学中ꎬ应该强化对高考试题的剖析与思考ꎬ充分挖掘高考试题中 不变 的本质规律ꎬ灵活运用数学思想方法进行教学方式的优化ꎬ不断促进学生创新思维能力的提升ꎬ尽可能实现高中数学核心素养的真正落地.参考文献:[1]中华人民共和国教育部.普通高中数学课程标准[M].北京:人民教育出版社ꎬ2020.[2]杜斌.一道2022年联考导数题的多视角探究[J].中学数学教学ꎬ2022(03):42-44.[3]季峰.低起点多层次高落差:2022年高考数学新高考Ⅰ卷试卷点评[J].中学数学ꎬ2022(15):30-31.[责任编辑:李㊀璟]24。
高考数学试卷核心素养
摘要:高考作为我国选拔优秀人才的重要途径,其试卷设计一直备受关注。
本文从核心素养的角度,对2024年上海高考数学试卷进行分析,探讨其如何体现核心素养,以及对学生能力培养的意义。
一、核心素养的内涵核心素养是指学生在面对现实世界时,能够运用所学知识和技能,解决实际问题,形成正确价值观的能力。
数学核心素养主要包括:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等。
二、2024年上海高考数学试卷核心素养体现1. 数学抽象试卷中,填空题、选择题等题型,通过具体情境,引导学生从实际问题中提炼出数学模型,培养学生的数学抽象能力。
如填空题中的海上货船和灯塔位置关系问题,要求学生运用解三角形的有关知识解决实际问题。
2. 逻辑推理试卷中的解答题,如沿海地区气温与海水表层温度的统计关系、考生学业成绩与体育锻炼时长的有关问题等,都要求学生运用逻辑推理能力,分析问题、解决问题。
这有助于培养学生的逻辑思维能力。
3. 数学建模试卷中,通过实际问题,引导学生运用数学知识建立模型,培养学生的数学建模能力。
如填空题中的概率问题,引导学生用数学眼光观察世界,用数学思维思考世界,用数学语言表达世界。
4. 直观想象试卷中的选择题和解答题,如几何探秘、函数的性质等,都要求学生具备一定的直观想象力。
这有助于培养学生的空间想象能力和图形思维能力。
5. 数学运算试卷中的填空题、选择题等题型,都要求学生具备扎实的数学运算能力。
这有助于提高学生的数学素养,为未来的学习和工作奠定基础。
6. 数据分析试卷中的解答题,如考生学业成绩与体育锻炼时长的有关问题,要求学生运用数据分析方法,分析问题、解决问题。
这有助于培养学生的数据分析能力。
三、高考数学试卷核心素养对学生能力培养的意义1. 培养学生解决实际问题的能力高考数学试卷中的实际问题,有助于引导学生运用所学知识解决现实生活中的问题,提高学生的实践能力。
2. 培养学生创新精神和批判性思维试卷中的问题设计,鼓励学生从不同角度思考问题,培养学生的创新精神和批判性思维。
数学学科核心素养高考测评与课程标准一致性研究——以2023_年全国高考数学甲卷试题为例
专题研究·高考数学试题研究【摘要】本文采用SEC一致性分析模式,从数学知识、问题解决、数学思维三个维度,对2023年高考全国甲卷数学试题的数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析六大数学学科核心素养及其三个水平进行分析,发现2023年高考全国甲卷数学试题的学科核心素养测评与课程标准达到一定程度的一致,认为2024年高考试题将会突出考查学生的数学抽象、逻辑推理和数据分析素养,提高对学生问题解决和数学思维的测评力度,数学学科核心素养高考测评集中体现在素养的第二个水平。
【关键词】数学学科核心素养2023年高考测评课程标准一致性【中图分类号】G63【文献标识码】A【文章编号】0450-9889(2023)35-0063-07《普通高中数学课程标准(2017年版2020年修订)》(以下简称《课程标准》),明确数学学科六大核心素养的内涵并将每一个数学学科核心素养划分为三个水平,从课程引领角度将数学学科核心素养的培养从理念层面转向教学实践。
2019年6月,国务院办公厅印发《关于新时代推进普通高中育人方式改革的指导意见》指出,学业水平选择性考试与高等学校招生全国统一考试命题要以普通高中课程标准和高校人才选拔要求为依据。
2019年12月,教育部考试中心发布《中国高考评价体系》,明确了高考命题要突出考查学生必备知识、关键能力及学科思维,使得以核心素养为导向的基础教育考试评价日益成为社会关注的焦点。
然而,高考试题是否真实、有效、适切地考查了学生的数学学科六大核心素养及其三个不同水平?回答这个问题,需要开展数学学科核心素养高考试题测评与数学学科核心素养课程标准的要求一致性研究。
2024年,广西即将迎来高考综合改革的第一次新高考,目前面临着重新构建数学学科考试的知识体系、能力框架、试卷结构和试题类型等新问题,迫切需要开展数学学科核心素养高考测评与课程标准一致性研究。
本文通过解构2023年高考全国甲卷数学试题中核心素养的考查,形成一致性结论,以期为将来学生数学学科核心素养的研究提供参考依据,为学生数学学科核心素养成分、维度、水平三大层面的测评提供操作范式,为学生数学学科核心素养的测评提供经验借鉴,并有效指导教学改革、试题命制改革以及备考。
新高考数学试题与数学核心素养契合度研究
新高考数学试题与数学核心素养契合度研究摘要:随着新高考的出现,数学教师对数学科目的教学重点发生了变化,变得更加重视对学生数学核心素养的培养。
教师为了提高学生的数学核心素养,使学生更加深刻地认识和学习数学科目,适应新高考的考试方法,教师要对教学手段进行创新,做好教学计划,使教学策略有所改变,并积极研究数学核心素养理念,使学生能深刻掌握和学习数学科目,使数学核心素养与新高考数学试题进行融合,提高学生对数学学习的效率,从而提升高考成绩。
关键词:新高考;数学试题;数学核心素养前言:核心素养指的是学生在接受教育的过程中,形成的能适应社会发展的品质和能力,它是学生在学习过程中对情感、态度、技能等方面的素质的综合表现,是促进学生全面发展的重要因素。
核心素养有着重要的育人价值和作用,在一定程度上对教师的教学实践具有导向作用,对学生核心要素的培养能使学生在学习中掌握学习的关键能力。
学校加强对学生的核心素养的培养对学生有着非常重要的作用,能促进学生的发展和成长。
对目前的新高考下的高中数学学习来说,加强学生的数学核心素养对数学科目的学习是非常重要的。
1.新高考下数学核心素养的概述对高中学生数学核心素养的培养不仅能使学生具备更加坚定的意志力,增强学生的心理素质,还能使学生的数学逻辑思维和计算能力得到提升。
教师创新设计教学手段,注重对学生核心素养的培养,转变教学策略,重视学生在课堂中的主体地位,将课堂的主导权交还给学生,在教师的带领下,给学生创造能自由发挥和学习的空间,使学生在不断地探索中提高观察、学习、思考等能力,探索出高效且适应自身的学习方法。
1.新高考数学试题与数学核心素养契合存在的问题在高考形势紧张的当下,很多高中数学教师在教学的过程中都重视将理论知识和习题讲解作为数学教学的重要内容,想要以此提升学生的数学成绩,这种教学方法忽视了对学生数学逻辑思维等数学核心素养的培育,使学生在数学学习过程中,实际的知识应用水平不高,对数学的理论知识掌握较好,但是数学实践能力和逻辑能力相对较差,难以将一些生活中常见的问题转换为学习过的数学问题去解决,甚至无法做到有效审题。
核心素养视角下2024_年全国新高考适应性测试数学试题难度评析与备考启示
核心素养视角下2024年全国新高考适应性测试数学试题难度评析与备考启示文尚平1,2农雅婷2卢玉琦2杨璧华2(1.西北师范大学教师教育学院;2.南宁市第二中学)摘要:2024年全国新高考适应性测试试题的命题风格、试卷结构、难度系数、综合素养水平代表着高考改革的趋势和方向,将在2024年新高考中全面体现。
课题组借助喻平的数学关键能力评价框架和鲍建生的综合难度系数模型,分别对此次适应性测试试题所蕴含的数学核心素养水平和试题的综合难度进行分析,探寻两者之间的内在关系,通过对新高考命题的趋势、特点等开展实证研究,提出备考启示:深化基础,强化对数学学科本质的理解;注重素养,强化对数学教育内核的追求;改善教学,强化对数学思维能力的培养。
关键词:数学核心素养;综合素养水平;综合难度系数;适应性测试中图分类号:G63文献标识码:A 文章编号:0450-9889(2024)08-0053-06作者简介:文尚平,1983年生,广西桂林人,在读博士研究生,高级教师,研究方向为中学数学课程与教学论;农雅婷,1986年生,广西崇左人,本科,学士,一级教师,研究方向为中学数学教育教学;卢玉琦,1987年生,广西宾阳人,本科,学士,一级教师,研究方向为中学数学教育教学;杨璧华,1984年生,广西南宁人,本科,学士,高级教师,研究方向为中学数学教育教学。
《普通高中数学课程标准(2017年版2020年修订)》(以下简称《课程标准》)系统提出了六大数学学科核心素养及水平的划分,明确了数学学科核心素养是数学课程目标的集中体现,拉开了数学学科核心素养从理念层面走向教学实践的序幕,并将数学科核心素养的培养贯穿新教材、新课程和新高考“三新”综合改革的全过程[1]。
2019年,《中国高考评价体系》明确提出高考命题要突出考查学生的必备知识、关键能力及学科思维,以核心素养为导向的基础教育考试评价日益成为社会关注的焦点。
核心素养的测评是以区分度为主要依据开展的,而试题的区分度与试题的难度又有着紧密的联系。
2024年全国统一高考数学Ⅰ卷(带答案解析)
2024年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项填涂在答题卡相应的位置上。
1.(5分)已知集合A={x|﹣5<x3<5},B={﹣3,﹣1,0,2,3},则A∩B=()A.{﹣1,0}B.{2,3}C.{﹣3,﹣1,0}D.{﹣1,0,2} 2.(5分)若=1+i,则z=()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.(5分)已知向量=(0,1),=(2,x),若⊥(),则x=()A.﹣2B.﹣1C.1D.24.(5分)已知cos(α+β)=m,tanαtanβ=2,则cos(α﹣β)=()A.﹣3m B.﹣C.D.3m5.(5分)已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为,则圆锥的体积为()A.2πB.3πC.6πD.9π6.(5分)已知函数为f(x)=在R上单调递增,则a的取值范围是()A.(﹣∞,0]B.[﹣1,0]C.[﹣1,1]D.[0,+∞)7.(5分)当x∈[0,2π]时,曲线y=sin x与y=2sin(3x﹣)的交点个数为()A.3B.4C.6D.88.(5分)已知函数为f(x)的定义域为R,f(x)>f(x﹣1)+f(x﹣2),且当x<3时,f(x)=x,则下列结论中一定正确的是()A.f(10)>100B.f(20)>1000C.f(10)<1000D.f(20)<10000二、选择题:本大题共3小题,每小题6分,共计18分。
每小题给出的四个选项中,有多项符合题目要求。
全部选对的得6分,选对但不全得部分分,有选错的得0分。
(多选)9.(6分)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值=2.1,样本方差s2=0.01,已知该种植区以往的亩收入X服从正态分布N(1.8,0.12),假设推动出口后的亩收入Y服从正态分布N(,s2),则()(若随机变量Z服从正态分布N(μ,σ2),则P(Z<μ+σ)≈0.8413)A.P(X>2)>0.2B.P(X>2)<0.5C.P(Y>2)>0.5D.P(Y>2)<0.8(多选)10.(6分)设函数f(x)=(x﹣1)2(x﹣4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f(x2)C.当1<x<2时,﹣4<f(2x﹣1)<0D.当﹣1<x<0时,f(2﹣x)>f(x)(多选)11.(6分)造型可以做成美丽的丝带,将其看作图中的曲线C的一部分,已知C过坐标原点O,且C上的点满足横坐标大于﹣2,到点F(2,0)的距离与到定直线x=a(a<0)的距离之积为4,则()A.a=﹣2B.点(2,0)在C上C.C在第一象限的纵坐标的最大值为1D.当点(x0,y0)在C上时,y0≤三、填空题:本大题共3小题,每小题5分,共计15分。
2023年高考数学试题评析(新课标Ⅱ卷)和教学策略
2023年高考数学试题评析(新课标Ⅱ卷)和教学策略2023年高考数学(新课标Ⅱ卷)试题, 聚焦学科主干内容, 突出数学学科特色, 重视数学本质, 突出理性思维, 体现基础性、综合性、应用性和创新性的考查要求。
与2022年高考全国乙卷试题相比难度有所下降, 整张试卷全面地考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养。
试题分析一、着重考查学科基础知识和基本方法新课标Ⅱ卷试题涉及的知识面广, 覆盖了集合、复数、平面向量、函数与导数、三角函数、解三角形、数列、不等式、立体几何、解析几何、概率与统计等知识模块的主要知识点。
对于基础知识的考查主要体现在选择题、填空题的前几道题上。
在试题设计上, 单个试题涉及的知识点相对较少, 思维相对简单, 如单选题(第1至第7题)、多选题(第9题)和填空题(第13.14题), 这些都是基础题, 主要考查数学基本概念、基本公式和基本方法的运用, 易于作答。
二、突出考查数学学科核心素养新课标Ⅱ卷全面考查数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养。
如第11题, 将函数导数与方程相结合, 其本质是根据一元二次方程根的性质判定方程系数之间的关系, 题中函数经过求导后既有极大值又有极小值的性质, 可以转化为一元二次方程的两个正根, 重点考查学生的逻辑推理素养。
第10题, 设置直线与抛物线相交的情境, 通过直线方程与抛物线方程的联立, 考查学生的数学运算素养。
第9题, 以多选题的形式考查圆锥的内容, 各选项互相联系, 分别考查圆锥的不同性质, 深入考查学生的直观想象素养。
三、注重考查关键能力, 体现综合性和创新性新课标Ⅱ卷的试题具有较强的综合性, 如第22题, 将导数与三角函数巧妙地结合起来, 通过对导函数的分析, 考查函数的单调性、极值等相关问题, 通过导数、函数不等式等知识, 深入考查分类讨论的思想、化归与转化的思想。
以核心素养为导向的数学试题研究母题60题
以核心素养为导向的数学试题研究母题60题一、数与代数1. 已知$x$,$y$为实数,且$x^{2} + y^{2} = 1$,求$x + y$的最大值与最小值。
2. 设$x, y$为实数,且$xy = 1$,求证:$x + y \geq 2$。
3. 若$\frac{1}{a} + \frac{1}{b} = 1$,求证:$a + b \geq 4$。
二、图形与几何4. 已知三角形ABC的面积为$S$,求证:$\frac{1}{2} \times \frac{b + c}{a} \leq \sqrt{\frac{2S}{3}}$。
5. 在矩形ABCD中,已知AB=6, AD=8,求对角线AC和BD的长。
三、概率与统计6. 某班有30名学生,其中男生15名,女生15名。
现从中随机选出5名学生担任班干部,求男、女生人数分别不少于2名的概率。
7. 从某社区的居民中随机抽取了100名,发现其中有50名支持绿化工程。
根据这个数据,估计该社区支持绿化工程的居民所占的比例。
四、逻辑推理8. 甲、乙、丙、丁四人参加数学竞赛,赛后四人自报成绩分别为:甲是90分,乙不是最高分,丙比甲分数高,丁比丙分数低。
已知四人中有一人说得不对,由此可知:A. 甲说得不对,乙是最高分;B. 乙说得不对,丙是最高分;C. 丙说得不对,丁是最高分;D. 丁说得不对,乙是最高分。
9. 小明和小强都是张老师的学生,张老师的生日是M月N日,两人都知道张老师的生日是下列10组中的一天。
张老师把M值告诉了小明,把N值告诉了小强。
张老师问他们知道他的生日是哪一天吗?小明说:如果我不知道的话,小强肯定也不知道。
小强说:本来我不知道,但是现在我知道了。
小明说:哦,那我也知道了。
你能根据他们的对话推断出张老师的生日是哪一天吗?五、数学建模10. 一辆汽车以75千米/小时的速度从A地驶往B地,A地和B地之间的距离为200千米。
要求计算汽车从A地到B地所需的时间。
核心素养数学试题及答案
核心素养数学试题及答案一、选择题1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 200π答案:B二、填空题1. 一个数的平方根是4,那么这个数是________。
答案:162. 一个直角三角形的两个直角边分别是3和4,那么斜边的长度是________。
答案:5三、简答题1. 什么是勾股定理?请用数学公式表示。
答案:勾股定理是指在一个直角三角形中,斜边的平方等于两直角边的平方和,数学公式表示为:c² = a² + b²,其中c是斜边,a 和b是两个直角边。
2. 解释什么是等差数列,并给出一个例子。
答案:等差数列是一个序列,其中每一项与其前一项的差是一个常数。
例如,数列2, 4, 6, 8, 10是一个等差数列,因为每一项与前一项的差都是2。
四、计算题1. 计算下列表达式的值:(3x + 2)² - 4(x - 1)²答案:首先展开平方项:(3x + 2)² = 9x² + 12x + 44(x - 1)² = 4(x² - 2x + 1)然后计算差:9x² + 12x + 4 - 4(x² - 2x + 1) = 9x² + 12x + 4 - 4x² + 8x - 4最后合并同类项:5x² + 20x2. 解一元二次方程:x² - 5x + 6 = 0答案:首先分解因式:(x - 2)(x - 3) = 0所以,x = 2 或 x = 3五、解答题1. 一个长方形的长是10厘米,宽是5厘米。
求这个长方形的周长和面积。
答案:长方形的周长是长和宽的两倍之和,即:周长= 2 × (长 + 宽) = 2 × (10 + 5) = 30厘米长方形的面积是长乘以宽,即:面积 = 长× 宽= 10 × 5 = 50平方厘米2. 一个数列的前三项是2, 5, 8,且每一项都比前一项多3。
2021届高考数学大二轮专题复习讲义(新高考)专题8第1讲数学文化及核心素养类试题
第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A. 2 B.2 2C. 6 D.2 3我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S=p(p-a)(p-b)(p-c),其中p=12(a+b+c))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A考向3 立体几何中的数学文化例3我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b,高皆为a的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d处的平面截这两个几何体,可横截得到S圆及S环两截面.可以证明S圆=S环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R,酒杯内壁表面积为143πR2.设酒杯上部分(圆柱)的体积为V1,下部分(半球)的体积为V2,则V1V2=()A.2 B.3 2C.1 D.3 4考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为()A.37B.715C.25D.35数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是()A.①③B.①④C.②③D.②④.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P和一个焦点F,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a,则视力4.9的视标边长为()A.104 5aB.109 10aC.D.真题押题『真题检验』1.(2020·新高考卷Ⅰ) 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°2.(2020·全国卷Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块3. (2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.『押题』4.天干地支纪年法(简称干支纪年法)是中国历法上自古以来就一直使用的纪年方法.天干有十,即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;地支有十二,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.干支纪年法中,天干地支对应的规律如表:2049年是新中国成立100周年.这一百年,中国逐步实现中华民族的伟大复兴.使用干支纪年法,2049年是己巳年,则2059年是________年;使用干支纪年法可以得到________种不同的干支纪年.专题作业一、选择题1.(2020·山东省烟台市模拟)《九章算术》是我国古代的一本数学名著.全书为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,收有246个与生产、生活实践有联系的应用问题.在第六章“均输”中有这样一道题目:“今有五人分五钱,令上二人所得与下三人等,问各得几何?”其意思为:“现有五个人分5钱,每人所得成等差数列,且较多的两份之和等于较少的三份之和,问五人各得多少?”在此题中,任意两人所得的最大差值为()A.13B.23C.16D.562.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为()A.48里B.24里C.12里D.6里3. (2020·河北六校联考)玉琮是中国古代玉器中重要的礼器,神人纹玉琮王是新石器时代良渚文化的典型玉器,1986年出土于浙江省余杭县反山文化遗址.如图,玉琮王通高8.8 cm,孔径4.9 cm,外径17.6 cm,琮体四面各琢刻一完整的兽面神人图象,兽面的两侧各浅浮雕鸟纹,器形呈扁矮的方柱体,内圆外方,上下端为圆面的射,中心有一上下垂直相透的圆孔.估计该神人纹玉琮王的体积为(单位:cm3)()A.6250 B.3050C.2850 D.23504.中国是发现和研究勾股定理最古老的国家之一,古代数学家称直角三角形较短的直角边为勾,另一直角边为股,斜边为弦,其三边长组成的一组数据称为勾股数.现从1~15这15个数中随机抽取3个数,则这三个数为勾股数的概率为()A.1910B.3910C.4455D.64555.阿基米德(公元前287年~公元前212年)不仅是著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴与短半轴的乘积.若椭圆C的对称轴为坐标轴,焦点在y轴上,且椭圆的离心率为74,面积为12π,则椭圆C的方程为()A.x29+y216=1 B.x23+y24=1C.x218+y232=1 D.x24+y236=16.(2020·山东省泰安市模拟)我国古代数学名著《九章算术》中记载:“刍甍者,下有袤有广,而上有袤无广.刍,草也.甍,屋盖也.”今有底面为正方形的屋脊形状的多面体(如图所示),下底面是边长为2的正方形,上棱EF=32,EF ∥平面ABCD,EF与平面ABCD的距离为2,该刍甍的体积为()A.6 B.11 3C.314D.127.(2020·江西省九江市二模)算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百、千位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字大于200的概率为()A.38B.12C.23D.348.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年.例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵ABC-A1B1C1中,AC⊥BC,若A1A=AB=2,当阳马B-A1ACC1体积最大时,堑堵ABC-A1B1C1的体积为()A.83B. 2C.2 D.2 29.(2020·四川省达州市模拟)斗拱是中国古典建筑最富装饰性的构件之一,并为中国所特有.图1、图2是斗拱实物图,图3是斗拱构件之一的“斗”的几何体.本图中的斗由棱台与长方体形凹槽(长方体去掉一个小长方体)组成.若棱台两底面面积分别是400 cm2,900 cm2,高为9 cm,长方体形凹槽的体积为4300 cm3,那么这个斗的体积是()注:台体体积公式是V=13(S′+S′S+S)h.A.5700 cm3B.8100 cm3C.10000 cm3D.9000 cm310. (2020·辽宁省葫芦岛市模拟)地球的公转轨道可以看作是以太阳为一个焦点的椭圆,根据开普勒行星运动第二定律,可知太阳和地球的连线在相等的时间内扫过相等的面积.某同学结合物理和地理知识得到以下结论:①地球到太阳的距离取得最小值和最大值时,地球分别位于图中A点和B点;②已知地球公转轨道的长半轴长约为149600000千米,短半轴长约为149580000千米,则该椭圆的离心率约为1,因此该椭圆近似于圆形;③已知我国每逢春分(3月21日前后)和秋分(9月23日前后),地球会分别运行至图中C点和D点,则由此可知我国每年的夏半年(春分至秋分)比冬半年(当年秋分至次年春分)要少几天.以上结论正确的是()A.①B.①②C.②③D.①③二、填空题11.数学与文化有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读.数学中有回文数,如343,12521等,两位数的回文数有11,22,33,…,99共9个,则三位数的回文数中,偶数的概率是________.12.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问:五人各得几何?”其意思为“有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少橘子.”这个问题中,得到橘子最少的人所得的橘子个数是________.13.(2020·山东省泰安市高三一模)《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成,“”表示一根阳线,“”表示一根阴线,从八卦中任取两卦,这两卦的六根线中恰有两根阳线、四根阴线的概率为________.14.我国《物权法》规定:建造建筑物,不得违反国家有关工程建设标准,妨碍相邻建筑物的通风、采光和日照.已知某小区的住宅楼的底部均在同一水平面上,且楼高均为45 m,依据规定,该小区内住宅楼楼间距应不小于52 m.若该小区内某居民在距离楼底27 m高处的某阳台观测点,测得该小区内正对面住宅楼楼顶的仰角与楼底的俯角之和为45°,则该小区的住宅楼楼间距实际为________ m.第1讲数学文化及核心素养类试题「考情研析」数学文化与数学知识相结合,有效考查考生的阅读理解能力、抽象概括能力、转化与化归能力,既体现了对数学应用性的考查,也体现了我国数学文化的源远流长.高考中多以选择题的形式出现,难度中等.热点考向探究考向1三角函数中的数学文化例1(2020·河北省衡水中学第九次调研考试)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=14⎣⎢⎡⎦⎥⎤(ab)2-⎝⎛⎭⎪⎫a2+b2-c222.根据此公式,若a cos B+(b+3c)cos A=0,且a2-b2-c2=2,则△ABC的面积为()A . 2B .2 2C . 6D .2 3答案 A解析 由a cos B +(b +3c )cos A =0,可得sin A cos B +cos A sin B +3sin C cos A =0,即sin(A +B )+3sin C cos A =0,即sin C (1+3cos A )=0,因为sin C ≠0,所以cos A =-13,由余弦定理可得a 2-b 2-c 2=-2bc cos A =23bc =2,所以bc =3,由△ABC 的面积公式可得S =14⎣⎢⎡⎦⎥⎤(bc )2-⎝ ⎛⎭⎪⎫c 2+b 2-a 222=14×(32-12)= 2.故选A .我国南宋数学家秦九韶发现的“三斜求积术”虽然与海伦公式(S =p (p -a )(p -b )(p -c ),其中p =12(a +b +c ))在形式上不一样,但两者完全等价,它填补了我国传统数学的一项空白.(2020·湖南省长郡中学高三第三次适应性考试)上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”“夏(冬)至”的示意图.图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.由历法理论知,黄赤交角近1万年持续减小,其正切值及对应的年代如表:黄赤交角23°41′23°57′24°13′24°28′24°44′正切值0.4390.4440.4500.4550.461年代公元元年公元前2000年公元前4000年公元前6000年公元前8000年根据以上信息,通过计算黄赤交角,可估计该骨笛的大致年代是()A.早于公元前6000年B.公元前2000年到公元元年C.公元前4000年到公元前2000年D.公元前6000年到公元前4000年答案 A解析由题意,可设冬至日光与垂直线夹角为α,春秋分日光与垂直线夹角为β,则α-β即为冬至日光与春秋分日光的夹角,即黄赤交角,由图3近似画出如图平面几何图形,则tanα=1610=1.6,tanβ=16-9.410=0.66,tan(α-β)=tanα-tanβ1+tanαtanβ= 1.6-0.661+1.6×0.66≈0.457.∵0.455<0.457<0.461,∴估计该骨笛的大致年代早于公元前6000年.考向2数列中的数学文化例2(多选)(2020·山东省青岛市高三三模)在悠久灿烂的中国古代文化中,数学文化是其中的一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元五世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中的第n 天所织布的尺数为a n ,b n =2an ,对于数列{a n },{b n },下列选项中正确的为( )A .b 10=8b 5B .{b n }是等比数列C .a 1b 30=105D .a 3+a 5+a 7a 2+a 4+a 6=209193答案 BD解析 由题意可知,数列{a n }为等差数列,设数列{a n }的公差为d ,a 1=5,由题意可得30a 1+30×29d 2=390,解得d =1629,∴a n =a 1+(n -1)d =16n +12929,∵b n =2an ,∴b n +1b n =2an +12an =2an +1-an =2d (非零常数),则数列{b n }是等比数列,B 正确;∵5d =5×1629=8029≠3,b 10b 5=(2d )5=25d ≠23,∴b 10≠8b 5,A 错误;a 30=a 1+29d =5+16=21,∴a 1b 30=5×221>105,C 错误;a 4=a 1+3d =5+3×1629=19329,a 5=a 1+4d =5+4×1629=20929,∴a 3+a 5+a 7a 2+a 4+a 6=3a 53a 4=a 5a 4=209193,D 正确.故选BD.本题以传统数学文化为载体考查数列的实际应用问题.解题的关键是将古代实际问题转化为现代数学问题,建立等差、等比数列的模型,探索并掌握它们的一些基本数量关系,利用方程思想求解.(2020·福建省宁德市二模)著名物理学家李政道说:“科学和艺术是不可分割的”.音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代的数学家、音乐理论家朱载堉创立了十二平均律,是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音之间的频率比是常数,如表所示,其中a 1,a 2,…,a 13表示这些半音的频率,它们满足log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12).若某一半音与D #的频率之比为32,则该半音为( ) 频率 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 半音CC #DD #EFF #G G #AA #BC (八度)C .G #D .A答案B解析 由题意知log 2⎝ ⎛⎭⎪⎫a i +1a i 12=1(i =1,2,…,12), ∴a i +1a i=2112,故数列{a n }是公比q =2112的等比数列. ∵a 4=D #,a 8=a 4q 4=D #×(2112)4=D #×32=G ,∴G D #=32.故选B.考向3 立体几何中的数学文化例3 我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.答案 4π解析 因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a , 所以椭球体的体积为V =43πb 2a ,因为椭球体的半短轴长为1,半长轴长为3, 所以椭球体的体积为V =43πb 2a =43π×12×3=4π, 故答案是4π.依托立体几何,传播数学文化.立体几何是中国古代数学的一个重要研究内容,从中国古代数学中挖掘素材,考查立体几何的线面的位置关系、几何体的体积等知识,既符合考生的认知水平,又可以引导学生关注中华优秀传统文化.(2020·山东省潍坊市模拟)唐朝的狩猎景象浮雕银杯如图1所示,其浮雕临摹了国画、漆绘和墓室壁画,体现了古人的智慧与工艺.它的盛酒部分可以近似地看作是半球与圆柱的组合体(假设内壁表面光滑,忽略杯壁厚度),如图2所示.已知球的半径为R ,酒杯内壁表面积为143πR 2.设酒杯上部分(圆柱)的体积为V 1,下部分(半球)的体积为V 2,则V 1V 2=( )A .2B .32C.1 D.3 4答案 A解析由球的半径为R,得半球的内部表面积为2πR2,又酒杯内壁表面积为143πR2,∴圆柱的侧面积为83πR2.设圆柱的高为h,则2πR·h=83πR2,即h=43R.∴V1=πR2·43R=43πR3,V2=23πR3,∴V1V2=43πR323πR3=2.故选A.考向4概率中的数学文化例4(2020·河北省张家口高三5月模拟)角谷猜想,也叫3n+1猜想,是由日本数学家角谷静夫发现的,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2,如此循环最终都能够得到1.如:取n=6,根据上述过程,得出6,3,10,5,16,8,4,2,1,共9个数.若n=5,从根据上述过程得出的整数中,随机选取两个不同的数,则这两个数都是偶数的概率为() A.37B.715C.25D.35答案 C解析若n=5,根据上述过程得出的整数有5,16,8,4,2,1,随机选取两个不同的数,基本事件总数n=C26=15,这两个数都是偶数包含的基本事件个数m=C24=6,则这两个数都是偶数的概率为P=mn=615=25.故选C.数学文化渗透到概率数学中去,不但丰富了数学的概率知识,还提高了学生的文化素养.解决此类问题的关键是构建合理的概率模型,利用相应的概率计算公式求解.(2020·河南省六市高三一模)五行学说是华夏民族创造的哲学思想,是华夏文明的重要组成部分.古人认为,天下万物皆由金、木、水、火、土五类元素组成,如图,分别是金、木、水、火、土彼此之间存在的相生相克的关系.若从5类元素中任选2类元素,则2类元素相生的概率为()A.12B.13C.14D.15答案 A解析金、木、水、火、土彼此之间存在相生相克的关系.从5类元素中任选2类元素,基本事件总数n=C25=10,2类元素相生包含的基本事件有5个,则2类元素相生的概率为P=510=12.故选A.考向5数学文化与现代科学例52016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①a1+c1=a2+c2;②a1-c1=a2-c2;③c1a1<c2a2;④c1a2>a1c2.其中正确式子的序号是( ) A .①③ B .①④ C .②③ D .②④答案 D解析 观察题图可知a 1>a 2,c 1>c 2,∴a 1+c 1>a 2+c 2,即①式不正确;a 1-c 1=a 2-c 2=|PF |,即②式正确;由a 1-c 1=a 2-c 2>0,c 1>c 2>0,知a 1-c 1c 1<a 2-c 2c 2,即a 1c 1<a 2c 2,从而c 1a 2>a 1c 2,c 1a 1>c 2a 2.即④式正确,③式不正确.(1)命题者抓住“嫦娥奔月”这个古老而又现代的浪漫话题,以探测卫星轨道为背景,抽象出共一条对称轴、一个焦点和一个顶点的两个椭圆的几何性质,并以加减乘除的方式构造两个等式和两个不等式,考查椭圆的几何性质,可谓匠心独运.(2)注意到椭圆轨道Ⅰ和Ⅱ共一个顶点P 和一个焦点F ,题目所给四个式子涉及长半轴长和半焦距,从焦距入手,这是求解的关键,本题对考生的数学能力进行了比较全面的考查,是一道名副其实的小中见大、常中见新、蕴文化于现代科学技术应用之中的好题.(2020·北京市东城区模拟)标准对数远视力表(如图)采用的“五分记录法”是我国独创的视力记录方式,标准对数远视力表各行为正方形“E”形视标,且从视力5.2的视标所在行开始往上,每一行“E”的边长都是下方一行“E”边长的1010倍,若视力4.1的视标边长为a ,则视力4.9的视标边长为( )。
高考数学核心素养提升练习 基本不等式
核心素养提升练三十五基本不等式(25分钟50分)一、选择题(每小题5分,共35分)1.若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )A.a+b≥2B.+>C.+≥2D.a2+b2>2ab【解析】选C.因为ab>0,所以>0,>0,所以+≥2=2,当且仅当a=b时取等号.2.若2x+2y=1,则x+y的取值范围是( )A.[0,2]B.[-2,0]C.[-2,+∞)D.(-∞,-2]【解析】选D.因为1=2x+2y≥2=2,所以≤,所以2x+y≤,得x+y≤-2.3.(2019·深圳模拟)已知f(x)=(x∈N*),则f(x)在定义域上的最小值为( ) A. B. C. D.2【解析】选B.f(x)==x+,因为x∈N*,所以x+≥2 =2,当且仅当x=,即x=时取等号.但x∈N*,故x=5或x=6时,f(x)取最小值,当x=5时,f(x)=,当x=6时,f(x)=,故f(x)在定义域上的最小值为.4.已知f(x)=x+-2(x<0),则f(x)有( )A.最大值为0B.最小值为0C.最大值为-4D.最小值为-4【解析】选C.因为x<0,所以f(x)=--2≤-2-2=-4,当且仅当-x=,即x=-1时,取等号.5.若a≥0,b≥0,且a(a+2b)=4,则a+b的最小值为( )A. B.4 C.2 D.2【解析】选C.因为a≥0,b≥0,所以a+2b≥0,又因为a(a+2b)=4,所以4=a(a+2b)≤,当且仅当a=a+2b=2时等号成立.所以(a+b)2≥4,所以a+b≥2.6.已知x>0,y>0,且4xy-x-2y=4,则xy的最小值为( )A. B.2 C. D.2【解析】选D.因为x>0,y>0,x+2y≥2,所以4xy-(x+2y)≤4xy-2,所以4≤4xy-2,即(-2)(+1)≥0,所以≥2,所以xy≥2.7.(2018·衡水模拟)若a>0,b>0,lg a+lg b=lg(a+b),则a+b的最小值为( ) A.8 B.6 C.4 D.2【解析】选C.由a>0,b>0,lg a+lg b=lg(a+b),得lg(ab)=lg(a+b),即ab=a+b,则有+=1,所以a+b=(a+b)=2++≥2+2=4,当且仅当a=b=2时等号成立,所以a+b的最小值为4. 二、填空题(每小题5分,共15分)8.设P(x,y)是函数y=(x>0)图象上的点,则x+y的最小值为________.【解析】因为x>0,所以y>0,且xy=2.由基本不等式得x+y≥2=2,当且仅当x=y时等号成立. 答案:29.已知x,y为正实数,则+的最小值为________.【解析】因为x,y为正实数,则+=++1=++1,令t=,则t>0,所以+=+t+1=+t++≥2+=,当且仅当t=时取等号.所以+的最小值为.答案:10.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为9平方米,且高度不低于米,记防洪堤横断面的腰长为x米,外周长(梯形的上底与两腰长的和)为y米,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x=________.【解析】设横断面的高为h,由题意得AD=BC+2·=BC+x,h=x,所以9=(AD+BC)h=(2BC+x)·x,故BC=-,由得2≤x<6,所以y=BC+2x=+(2≤x<6),从而y=+≥2 =6,当且仅当=(2≤x<6),即x=2时等号成立.答案:2(20分钟40分)1.(5分)当0<m<时,若+≥k2-2k恒成立,则实数k的取值范围为( )A.[-2,0)∪(0,4]B.[-4,0)∪(0,2]C.[-4,2]D.[-2,4]【解析】选D.因为0<m<,所以×2m×(1-2m)≤×=,当且仅当2m=1-2m,即m=时取等号,所以+=≥8,又+≥k2-2k恒成立,所以k2-2k-8≤0,所以-2≤k≤4.所以实数k的取值范围是[-2,4].2.(5分)(2018·石家庄模拟)若a,b是正数,直线2ax+by-2=0被圆x2+y2=4截得的弦长为2,则t=a取得最大值时a的值为( )A. B. C. D.【解析】选D.因为圆心到直线的距离d=,则直线被圆截得的弦长L=2=2=2,所以4a2+b2=4,则t=a=·(2a)·≤××[(2a)2+()2]=·[8a2+1+2(4-4a2)]=,当且仅当时等号成立,此时a=.3.(5分)(2019·邯郸模拟)设x>0,y>0,且=,则当x+取最小值时,x2+=________. 【解析】因为x>0,y>0,所以当x+取最小值时,取得最小值,因为=x2++,又=,所以x2+=+,所以=+≥2 =16,所以x+≥4,当且仅当=,即x=2y时取等号,所以当x+取最小值时,x=2y,x2++=16,所以x2++=16,所以x2+=16-4=12.答案:124.(12分)已知x,y∈(0,+∞),x2+y2=x+y.(1)求+的最小值.(2)是否存在x,y满足(x+1)(y+1)=5?并说明理由.【解析】(1)因为+==≥=2,当且仅当x=y=1时,等号成立,所以+的最小值为2.(2)不存在.理由如下:因为x2+y2≥2xy,所以(x+y)2≤2(x2+y2)=2(x+y).又x,y∈(0,+∞),所以x+y≤2.从而有(x+1)(y+1)≤≤4,因此不存在x,y满足(x+1)(y+1)=5.5.(13分)某厂家拟在2018年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x万件与年促销费用m(m≥0)万元满足x=3-(k为常数).如果不搞促销活动,那么该产品的年销量只能是1万件.已知2018年生产该产品的固定投入为8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2018年该产品的利润y万元表示为年促销费用m万元的函数.(2)该厂家2018年的促销费用投入多少万元时,厂家利润最大?【解析】(1)由题意知,当m=0时,x=1(万件),所以1=3-k⇒k=2,所以x=3-,每件产品的销售价格为1.5×(元),所以2018年的利润y=1.5x×-8-16x-m=-+29(m≥0).(2)因为m≥0时,+(m+1)≥2=8,所以y≤-8+29=21,当且仅当=m+1,即m=3(万元)时,y max=21(万元).故该厂家2018年的促销费用投入3万元时,厂家的利润最大,为21万元.关闭Word文档返回原板块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 . 所以直线 l 的方程为 y kx 2k 1 ,它过定点 2 ,
5/12/2018
数学抽象
例 3. 几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他 们推出了“解数学题获取软件激活码”的活动. 这款软件的激活码为下面数学问题的答案: 已 知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 20 ,接下来 的两项是 2 ,2 ,再接下来的三项是 2 ,2 ,2 ,依此类推.求满足如下条件的最小整数 N: N>100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A.440 B.330 C.220
第一篇 理科 纵观2017高考新课标1卷,试卷整体结构与去年基本一致,但是在相应的题目设置上 略有调整。与去年对比,整体难度有所降低,在常规考点部分的题型中规中矩,但 是部分题目对学生的理解能力要求较高。 一、试卷各板块占比——覆盖更加全面
二、素养下真题的评析
由模块占比可知,整套试卷在六大板块的考查比重上趋于稳定,但是概率模块想 拿满分难度较大,跟去年一样,依然非常重视对学生阅读理解能力的考查。
直观想象
逻辑推理
1 b2 1 3 0 , 1 , P 1 , 将P 代入椭圆方程得 3 2 3 2 1 1 2 4 b2 a
数学抽象 数学运算
x2 2 2 y2 1 . 解得 a 4 , b 1 ,所以椭圆 C 的方程为: 4
△ DBC , 上的等边三角形 ABC 的中心为 O ,D 、E 、F 为圆 O 上的点, △ECA , △ FAB 分别是以 BC , CA , AB 为底边的等腰三角形,沿虚
CA ,AB 为折痕折起 △ DBC , △ECA , △ FAB , 线剪开后, 分别以 BC ,
使得 D , E , F 重合,得到三棱锥.当 △ ABC 的边长变化时,所得 三棱锥体积(单位: cm 3 )的最大值为_______.
2
3
数学学科核心素养:数学抽象、逻辑推理、数学建模、数学运算、 直观想象和数据分析
4
新课程方案和课程标准在落实党的十八大和十九大精神,加强中 华优秀传统文化和革命传统教育,研制学业质量标准的同时首次 提出凝练各学科核心素养。明确了学生学习该学科课程后应形成 的正确价值观、必备品格和关键能力,围绕学科核心素养的落实, 精选、重组教学活动,提出考试评价的建议。
k * n ≥14 , k log2 n 3 → n 29 ,k 5 , 即 2 1 2 n k N ,
29 1 29 5 440 . 故选 A. 则 N 5/12/2018 2
例 2. (2017 理 16)如图,圆形纸片的圆心为 O ,半径为 5 cm ,该纸片
B x2 ,y2 , ② 当斜率存在时,设 l∶y kx b b 1 , A x1 ,y1 ,
y kx b 联立 2 ,整理得 1 4k 2 x2 8kbx 4b2 4 0 , 2 x 4 y 4 0
数学运算
8kb 4b2 4 x1 x2 , x1 x2 , 2 1 4k 2 1 4k
(2) 设直线 l 不经过 P2 点且与 C 相交于 A 、 B 两点, 若直线 P 2 A 与直线
P 1 ,证明: l 过定点. 2 B 的斜率的和为
解析: (1)根据椭圆对称性,必过 P3 , P4 ,
P P 又 P4 横坐标为 1,椭圆必不过 P 1 ,所以过 P 2 , 3 , 4 三点.
二、试卷各部分分析——选填更灵活,大题较常规 ①选填题: 选择填空部分的考点设置基本与新课标2016的一致,顺序略有调整,难 度有所降低,第3题复数和命题结合,考点新颖。第12题考点为数列的 前n项和,有一定的技巧性,第16题考查立体几何体积的最值问题,这 两题综合文字过多,对考生的理解能力要求较大。 ②解答题: 解答题部分,基本符合新课标卷的一贯风格。比如解三角形考查了正余弦 定理、面积公式以及两角和差公式;函导数考查了求导后含参问题的分类 讨论。但第18题立体几何的难度难度“有失”以往标准,第1问证明过程 无需做辅助线;第2问求余弦值由于垂直关系和数量关系明显,所以利用 几何法和向量法都十分简单。第19题概率大题以应用题型考查了相对来说 冷门的正态分布,篇幅较长,题目中附加公式和参数过多,对学生的理解 能力也有一定的要求。
③选做题: 选做题部分,极坐标与参数方程的第2问,用到了参数方程的方法,利用点到 直线的距离公式求解即可;而不等式部分难度也较低,考查了绝对值不等式, 且不含参数,考生容易拿分。 整体来说,考点依然比较常规,依然需要考生注重基础,回归教材,理解知识 本身的内涵。虽然试题的整体难度有所降低,难点也还是对学生阅读理解能力 的考查,但想拿高分并不容易。 高考是选拔性考试,整体常规化容易导致区分度降低,新一届高三学生更要加 强全国卷模板式训练,要达至全面覆盖且滚瓜烂熟的状态。
B m , yA , (2) ① 当斜率不存在时,设 l : x m ,A m ,y A ,
yA 1 yA 1 2 kP2 A kP2 B 1 , 得 m 2, 此时 l 过椭圆右顶点, 不存在两个交点, m m m 数学抽象 不满足题意. 直观想象
解析:连接 OD ,交 BC 与点 G ,由题, OD BC , OG 设 OG x ,则 BC 2 3x , DG 5 x 三棱锥的高 h DG2 OG2 25 10x x 2 x 25 10x 1 1 S△ ABC 2 3 3x 3 3x2 ,则 V S△ ABC h 3x2 25 10x 2 3
n 1 n 2
0 1 0 1 2
D.110
解析 设首项为第 1 组,接下来两项为第 2 组,再接下来三项为第 3 组,以此类推. 设第 n 组的项数为 n ,则 n 组的项数和为 由题意得, N 100 ,令
n 1 n 2
,
数据处理 逻辑推理
100 → n ≥ 14 且 n N* ,即 N 出现在第 13 组之后
3 BC , 6
Байду номын сангаас
直观想象 逻辑推理 数学抽象 数学运算
= 3 25x4 10 x5
5 令 f x 25x4 10x5 , x (0, ) , f x 100x3 50x4 2 令 f x 0 ,即 x 4 2 x3 0 , x 2 ,则 f x ≤ f 2 80 ,则
V ≤ 3 80 45 ,
∴体积最大值为 4 15 cm3
5/12/2018
数学建模
(2017 理 21)已知函数 f ( x) ae2 x (a 2)e x x . (1)讨论 f ( x ) 的单调性; (2)若 f ( x ) 有两个零点,求 a 的取值范围.
解析: (1)由于 f x ae2 x a 2 e x x 故 f x 2ae2 x a 2 ex 1 aex 1 2ex 1
三、真题典例剖析
x2 y2 1 , 例 1.(2017 理 20)已知椭圆 C : 2 2 1 a b 0 ,四点 P 1 1, a b
3 3 P 1 , P 1 , P 0 , 1 , 3 , 4 中恰有三点在椭圆 C 上. 2 2 2 (1)求 C 的方程;
数学核心素养与全国卷高考试题
普通高中数学学科素养 学科素养下的真题评价 素养下的真题典例剖析
一、数学核心素养
1
十八大和十八届三中全会提出关于立德树人的要求落到实处,2014年 3月教育部研制印发《关于全面深化课程改革落实立德树人根本任务 的意见》,意见提出“教育部将组织研究提出各学段学生发展核心素 养体系,明确学生应具备的适应终身发展和社会发展需要的必备品格 和关键能力”。 2016年9月13日,中国学生发展核心素养研究成果发布。中国学生发 展核心素养以培养“全面发展的人”为核心,分为文化基础、自主发 展、社会参与3个方面,综合表现为人文底蕴、科学精神、学会学习、 健康生活、责任担当、实践创新等六大素养,具体细化为国家认同等 18个基本要点。
第二篇 文科 全国卷I数学(文科)整体稳定,难度在学生的预期和能够接受的范围以内。 但对运算能力的要求高,同时考生对知识运用的熟练程度成为胜败关键。 一、 试卷各板块占比——稳中有变,难度降低
从各板块分析可得,各模块占比变化不大,试卷结构与往年一致。在题目设置上考 查对于基础知识、基本技能的考查,符合考试说明的各项要求,又在一定程度上考 查学生对知识点的综合运用,注重考查学生对实际生活的具体应用。 二、试卷各部分分析——选填偏基础,大题显常规 ①选填题: 今年,选择填空部分的考点设置基本与新课标2014、2015及2016年一致,顺序略有 调整,注重基础,渗透中华文化,比如说第4题,但部分题目考查学生的综合能力, 比如第8题考查函数图像,需要结合奇偶性并代入特殊值进行判断,第9题考查函数 图象的对称性,考生比较少练习,第12题需要进行分类讨论,且计算难度较大,第 16题是三棱柱锥的外接球,对文科生来说,空间想象能力是一个挑战。
②解答题: 解答题第一题,文数已经连续4年考查数列,考查等比数列最基本的通项及求 和,需要注意不要犯计算错误。 今年立体几何为常规的平行与垂直的证明,第二问考查了侧面积,与平面几 何呼应,对于考生来说计算量不大。第19题则考查了稍微冷门的相关系数。
压轴的解析几何及函导数考法都是常规套路,圆锥曲线以开口向上的抛物线为载体, 第一问设出AB的直线方程与抛物线联立,利用韦达定理中的两根之和即可求出AB斜率; 第二问对抛物线求导、利用切线与直线AB平行求出M点的坐标,然后把垂直条件翻译 成韦达形式,借助韦达定理即可求出直线AB方程。此题属于典型的“韦达定理型圆锥 曲线”,在平时会得到大量的练习,这启发大家高考中的圆锥曲线考法一定属于常规 类型。 导数压轴题以含参函数为背景,第一问考察函数的单调性,求导后对导函数进行因式 分解,分三种情况分类讨论即可;第二问在第一问的基础之上分三种情况研究函数的 最小值,然后分别求出a的范围即可,有的考生会考虑参变分离,但此题的参数a单调 分离不出,此方法失效!所以在以后的学习中,要加强各种方法的训练! 总体来说, 高考试题在降低起点的同时,强调能力立意;在立足基础的同时,着力 内容创新;在突出导向的同时,确保甄别功能;在继承传统的同时,彰显课程理念。 在备考方面:高考是选拔性考试,整体常规化容易导致区分度下降,新一届高三学 生不应放松心态,应更要加强全国卷模板式训练,为可能的难度调整,做好充足准 备,而且要达至全面覆盖且滚瓜烂熟的状态。