机器人学导论(克雷格)第二章作业答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机器人学导论(克雷格)第二章作业答案
本页仅作为文档封面,使用时可以删除
This document is for reference only-rar21year.March
2.1 solution:
According to the equation of pure transition transformation,the new point after transition is as follows:
1002350
10358(,,)00147110
00111trans
x y z old P Trans d d d P ⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥=⨯==⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
2.3 solution:
According to the constraint equations:
0;0;01
n a n o a o n •=•=•==
Thus,the matrix should be like this:
0015001
51003100301020102000
1000
1or --⎡⎤⎡⎤⎢⎥⎢⎥-⎢
⎥⎢
⎥⎢⎥⎢⎥--⎢
⎥⎢
⎥⎣⎦⎣⎦
2.4 Solution:
X Y Z
P P P ⎛⎫ ⎪ ⎪ ⎪⎝⎭=cos 0sin 010sin 0cos θθθθ⎛⎫ ⎪ ⎪ ⎪-⎝
⎭0n a P P P ⎛⎫
⎪
⎪ ⎪⎝⎭
2.7 Solution:
According to the equation of pure rotation transformation , the new coordinates are as follows:
100222
22(,45)0
34227202
22new
P rot x P ⎡⎤⎡⎤
⎢⎥
⎢⎥⎡⎤⎢
⎢⎢⎥⎢⎢=⨯==⎢⎥⎢⎢⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥
⎢⎥⎢⎥⎣
⎦⎣⎦
2.9 Solution:
Acording to the equations for the combined transformations ,the new coordinates are as follows:
B 01
005100051
100030010310 (,90)(5,3,6)(,90)
00106010049
00011000111 A B
P Rot z Trans Rot x P
-
⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
-
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⨯⨯⨯==
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦Transformations relative to the reference frame
Transformations relative to the current frame
2.10
P=Trans(5,3,6)Rot(x,90)Rot(a,90) P
A
1 0 0 5 1 0 0 0 0 -1 0 0
2 = 0 1 0
3 0 0 -1 0 1 0 0 0 3 0 0 1 6 0 1 0 0 0 0 1 0 5 0 0 0 1 0 0 0 1 0 0 0 1 1 2 = -2 8 1 2.12
2.14
a) For spherical coordinates we have (for posihon )
1) r ·cos γ·sin β = 3.1375
units
units
2) r ·sin γ·sin β = 2.195 3) r ·cos β = 3.214
I) Assuming sin β is posihve, from a and b → γ=35°
from b and c → β=50° from c → r=5
II) If sin β were negative. Then γ=35°
β=50° r=5 Since orientation is not specified, no more information is available to check the results.
b) For case I, substifate corresponding values of sin β , cos β, sin γ, cos γ
and r in sperical coordinates to get: 0.5265 -0.5735 0.6275 3.1375
Tsph(r,β,γ)=Tsph(35,50,5)= 0.3687 0.819 0.439 2.195
-0.766 0 0.6428 3.214 0 0 0 1
2.16 Solution:
According to the equations given in the text book, we can get the Euler angles as follows:
arctan 2(,)arctan 2(,)y x y x a a or a a Φ=-- Which lead to :