常微分方程考研讲义 一阶微分方程解的存在定理

合集下载

常微分3-一阶方程解的存在唯一

常微分3-一阶方程解的存在唯一

常微分方程Ordinary Differential Equations第三讲一阶常微分方程解的存在性与唯一性内容提要问题引入存在唯一性定理 例题00d (,),()d yf x y y x y x ==一阶方程初值问题 初等积分法求解的方程可变量分离的方程, 齐次方程, 线性方程, 全微分方程等22d ,(0) 1 d y x y y x =+=不能用初等积分法求解的方程非线性方程, 如黎卡提方程结论需要从理论上研究微分方程解的性质d ,(0) 1 (1)d yy y x==例1证明初值问题的解存在且唯一.证明0 (),(1) ()1()d . (2)xy x y s y s y x ==+⎰若是初值问题的解则对方程两端积分可得,()(2),(1),(1)(2).y y x =反之若一个连续满足式则它一定是初值问题的解即初值问题与积分方程解的存在唯一性等价下面用逼近的方法求(2)的解. 令0()1,y x = 100()1()d 1,xy x y s s x =+=+⎰2210()1()d 1,2x xy x y s s x =+=++⎰23320()1()d 1,2!3!xx xy x y s s x =+=+++⎰2310()1()d 1.2!3!!nx n n x xxy x y s s x n -=+=+++++⎰(),lim ()e .xn n n y x y x →∞=收敛且e (1).xy =是方程的解 ()()(1),()()(), ()()()()()(),(0)0.y f x y g x h x f x g x h x f x g x f x g x h x h ===-'''=-=-==设和都是方程的解令则有[()()]e[()e ]0.xxh x h x h x --''-==于是可知()e0,()0.xh x h x -≡=因此可得即存在性✔唯一性✔问题一般微分方程初值问题解的存在唯一性?(){}00121212(,),||,||,0,(,),(,)|(,)(,)|||,(,)Lipschitz , Lipschitz .1 f x y D x y x x a y y b L x y x y D f x y f x y L y y f x y D y L -≤-≤>∈-≤-若在矩形区域=上连续 且存在常数使得对所有的都有 则称在上关于满足条件称为数 常定义000(,)0d (,) (3)(,)Lipschitz ,[,],min ,,=max |d ((,)|.1)x y Df x y yD y f x y I x h x h b h a M f x y M x y x y∈⎧=⎪⎨=-+⎪=⎧⎫=⎨⎬⎩⎭⎩若在 上连续 且关于满足 条件 则初值问题: 在区间上有并且只有一个解 其中 常数 定理二、存在唯一性定理()00(3i ((),)d 4)xxy y f t y t =+⎰初值问题等价于积分方程:(4).I 定理的证明等价于证明积分方程在区间上有且只有一个解证明分四步进行Picard (ii)构造迭代函数序列01000()(,())d (5)()x n n x y x y f t y t t y x y +⎧=+⎪⎨⎪=⎩⎰Picard {}(iii), (4);n y I 序列在区间上一致收敛且极限是的解.(iv)解的唯一性第一步等价的积分方程0 ()(,)d . ()(3), (4)xx y x y f t y t y y x =+=⎰若是初值问题的解对方程两端积分可得()(4),()(3),(3)(4).y y x y x =反之若是积分方程的解则满足初值问题的解即初值问题与积分方程解的存在唯一性等价第二步构造Picard 迭代函数列00100 ();()()(,())d ;xx y x y y x y x f t y t t ==+⎰020121()()(,())d ;()(),,xx y x y x f t y t t y x y x =+=⎰若停止否则10()(),,y x y x =若停止否则01,,()()(,())d .xn n x y x y x f t y t t -=+⎰重复上述过程12,()(),()(4)Picar .{()},.d k k k n k y x y x y x y x -≥=若存在使得则显然是的解否则得到一个连续函数序列为序列称第三步Picard 函数列一致收敛, 且极限是方程(4)的解0000,] , ,] .x x h x h x +-只证在区间[成立对于[类似可证011 ()[()()], (6)k k k y x y x y x ∞-=+-∑考虑函数项级数0111():()()[()()]().n nn k k n k n S x S x y x y x y x y x -=+=+-=∑其前项部分和 (6){()}.n y x 下面通过证明级数的一致收敛来证明一致收敛010000|()()|=|(,())d ||(,())|d ();x xx x y x y x f t y t t f t y t t M x x -≤≤-⎰⎰02110|()()||(,())(,())|d xx y x y x f t y t f t y t t-≤-⎰002010(|()d ().2!)()|d xxx x L ML LM x x t y x x t y t t ≤-=-≤-⎰⎰Lipschitz 条件000+1111010|()()||(,())(,())|d (),(1|()(())|d )!d !xn n n n n x n x x n x x n n n L y t y y x y x f t y t f t y t tM ML LM x x t L x t t x n n --+--≤-+-=-≤≤-⎰⎰⎰110|()()|(),!n n n n ML y x y x x x n ---≤-设则111000,|()()|(),[,].!!k k k k k k k ML ML y x y x x x h x x x h k k ----≤-≤∈+所以由数学归纳法可得对所有的自然数 有11100100, ![()()Weierstrass [{(),],Picard ,}[]].k k k k k n k y x x ML h k y x y x x h x x h -∞=∞-=++-∑∑又级数由判别法知函数收敛一致收项级数在上故序列在上一致收敛敛00Lipschitz |(,())(,())||()()|,(,)(){(,())} [,] (,()), n n n n f x y x f x x L y x x f x y y x f x y x x x h f x x ϕϕϕ-≤-+再根据条件的连续性以及的一致收敛性可得函数列在上一致收敛到 因而()(),()(),n n y x x y x x ϕϕ→设则由的一致收敛可知连续00001010()lim ()lim (,())d lim (,())d (,())d ,xn n x n n xn x n x x x y x y f t y t t y f t y t t y f t t t ϕϕ-→∞→∞-→∞==+=+=+⎰⎰⎰()(4) , () (3) .x x ϕϕ即连续函数是积分方程的解于是也是初值问题的解第四步解的唯一性00()()[,], ,|()()|.x x x x h x x K ψϕψϕ-+-≤在 上连续故有界 设 ()(4), ()().x x x ψψϕ=设也是积分方程的解需要证明000Lipschitz ()()||[(,())(,())]d | |()()|d (),xx xx x x f t t f t t t L t t t LK x x ψϕψϕψϕ-=-≤-≤-⎰⎰由条件有|0[()],()()|, 1.!n K L x x x x n n ψϕ--≤≥重复此操作可由归纳法得到|0(||)0,()()0,()=().n L x x K x x x x n ψϕψϕ-→-→因为所以即!000200()()|()()()||()()|d [()],()()|()d =.2!xx x x x x LK x x x x L t t t K L x x x x L LK t x t ψϕψϕψϕψϕ-≤--≤---≤-⎰⎰再将|代入不等式|的右端可得 |✔注记(,) .f x y D 在矩形区域 上有连续的偏导数 定理1中的Lipschitz 条件验证比较困难, 在实际应用中经常用如下条件代替:122121212, (,) , ,(,) , |(,)(,)|=| (,())()| ||.y y y f x y D D f x y L f x y f x y f x y y y y y L y y ≤-+--≤-θ 事实上若 在上连续则它在 上有界不妨设 | | 则由微分中值定理有定理1中只给出了局部范围解的存在唯一性, 实际上在很多情况下都可以将解的存在范围延拓到较大的区间.证明221,1, {(,)|||1,1min{||1},(,), ,, 2, .}2 a b D x y x y f x y x y D M b h a M ===≤≤=+=== 取则 在上连续且有连续偏导数且所以 22d ,(0)0 d y x y y x =+=例2 证明初值问题的解在区间上存在且唯一, 且求其Picard 序列中的前四个.11[,]22-11[,]22.- 于是由解的存在唯一性定理知该初值问题在区间上有唯一解证明22d ,(0)0 d y x y y x =+=例2 证明初值问题的解在区间上存在且唯一, 且求其Picard 序列中的前四个.11[,]22-下面求解. 0()0,y x = 23101()0d ,3x y x s s x =+=⎰222010232370()()[+()]d 111 0[()]d ;3363x x y x y x s y s s s s s x x =+=++=+⎰⎰2237111530201121()()[+()]d .363207959535x y x y x s y s s x x x x =+=+++⎰皮卡( Picard, Charles Emile) 1856.7.24—1941.12.11, 法国数学家皮卡(Picard Charles Emile,1856年7月24日—1941年12月11日), 法国数学家. 生于巴黎, 卒于同地. 1877年毕业于巴黎高等师范学校, 获得博士学位. 1879年被聘为图卢兹大学教授, 同时任教于巴黎高等师范学校和巴黎综合工科学校. 1898年任巴黎大学教授,1917年当选为法国科学院终身秘书. 他是伦敦皇家学会、原苏联科学院等30多所重要科研机构的成员, 并被5所外国大学授予名誉博士学位, 曾获多种科学奖金.皮卡的主要贡献在解析函数论、微分方程、代数几何学和力学等方面. 1879年他提出皮卡第一定理, 次年得到皮卡第二定理. 这两个定理成为复变函数论许多新方向的起点. 1883–1888年皮卡将庞加莱(Poincaré)自守函数的方法推广到二元复变函数, 进而研究了代数曲面(1901), 导致了“皮卡群” (Picard Group)的建立. 他推广了逐步逼近法, 证明了含复变量的微分方程和积分方程的解的存在唯一性定理.李普希茨(Lipschitz, Rudolf Otto Sigismund) 1832.5.14—1903.10.7, 德国数学家利普希茨的数学贡献涉及众多学科, 特别在常微分方程和微分几何领域做出重要贡献. 在常微分方程解的存在性探求中创立了著名的“利普希茨条件” 判别法, 得到柯西-利普希茨存在性定理. 在代数数论领域引入了实变换的符号表示法及其计算法则, 建立起被称为“利普希茨代数” 的超复数系. 在微分几何方面他对黎曼1854年的有关结果进行了研究, 讨论了多重微分与子流形的性质, 并由此开创了微分不变量理论的研究, 其研究成果为爱因斯坦建立广义相对论奠定了数学基础. 此外, 利普希茨在力学和物理学方面也做出了不少贡献.利普希茨(Lipschitz, Rudolf Otto Sigismund), 生于柯尼斯堡,卒于伯恩. 在柏林大学曾师从狄利克雷学习数学, 1853年8月9日获博士学位. 随后在柯尼斯堡预科学校和埃尔宾预科学校任教四年, 1857年回柏林大学任教, 1864年成为伯恩大学数学教授. 曾被选为巴黎科学院和柏林、格廷根、罗马等地研究院的通讯院士.感谢大家的聆听!。

一阶微分方程的解的存在性定理

一阶微分方程的解的存在性定理
x
y ( x )为积分方程y y0 f ( x , y )dx的定义于x0 x x0 h
x0
上的解。
现在我们先构造积分方程y y0 f ( x , y )dx的定义于 x0 x x0 h上的Picard的逐次逼近函数列 n ( x ) .
结果1:如果f ( x , y )在R上关于y的偏导数f y ( x , y )存在且有界,则 f ( x , y )在R上关于y满足Lipschitz条件。
结果2:如果f ( x , y )在R上关于y的偏导数f y ( x , y )连续,则f ( x , y ) 在R上关于y满足Lipschitz条件。
下面我们分五个命题来证明定理。为此先给出: 定义2(积分方程):如果一个数学关系式中含有定积 分符号且在定积分符号下含有未知函数,则称这样的 数学关系式为一个积分方程。
x 例如, y e y(t )dt 0 x
就是一个简单的积分方程。
x
定义3(积分方程的解)对于积分方程 y y0 f ( x , y )dx,
满足初始条件
y( x0 ) y0 ,
y( x0 ) y0.
3. 近似计算和误差估计
存在唯一性定理不仅肯定了解的存在唯一性,同时还 给出了第n次近似解n(x)和真正解(x)的误差估计
n
ML n ( x) ( x) hn1 (n 1)!
有了误差估计式, 我们就可根据实际要求, 选取适当 的逼近函数 n ( x ).
问题:这样构造函数列是否行的通,即上述的积分是否有 意义?
命题2:对任意的自然数n, n ( x )在x0 x x0 h上有定义、 连续且满足不等式
n ( x) y0 b.

第三章一阶微分方程的解的存在定理精品文档5页

第三章一阶微分方程的解的存在定理精品文档5页

第三章 一阶微分方程的解的存在定理教学目的:使学生掌握解的存在唯一性定理的内容及证明思想、延拓定理、解对初值的连续依赖性和可微性定理的内容;掌握逐次逼近法;会判断解的存在区间;了解奇解的概念和解法.教学内容:1、解的存在唯一性定理与逐次逼近法解的存在唯一性定理及其证明、Lipschitz 条件、Picard 逼近序列、逐次逼近法.2、解的延拓定理与延拓条件.3、解对初值的连续依赖性和可微性定理4、奇解、包络、奇解、Clairaut 方程.教学重点:解的存在唯一性定理及其证明教学难点:解的延拓定理、解对初值的连续依赖性、可微性定理的证明 教学过程:§3.1 解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理定理1 如果),(y x f 在R 上连续且关于y 满足李普希兹条件,则方程),(y x f dxdy = (3.1) 存在唯一解)(x y ϕ=定义于区间h x x ≤-0上,连续且满足初始条件00)(y x =ϕ (3.3) 其中),(max ),,min(),(y x f M Mb a h R y x ∈== 可用皮卡(Picard )逐步逼近法证明这个定理,此外,用欧拉折线法(差分法)、绍德尔(Schouder )不动点方法等亦可证明.逐步逼近法的基本思想分五个命题来证明定理.命题1 设)(x y ϕ=是方程(3.1)的定义于区间h x x x +≤≤00上,满足初始条件 00)(y x =ϕ的解,则)(x y ϕ=是积分方程h x x x dx y x f y y xx +≤≤+=⎰000,),(0 (3.5)的定义于区间h x x x +≤≤00上的连续解,反之亦然.现取00)(y x =ϕ,构造皮卡逐步逼近函数序列如下:⎪⎩⎪⎨⎧=+≤≤+==⎰-x x n n n h x x x dx f y x y x 0),,2,1(,)(,()()(0010n00Λξϕξϕϕ (3.7) 命题2 对于所有的n ,(3.7)中函数)(x n ϕ在h x x x +≤≤00上有定义、连续且满足不等式b y x n ≤-0)(ϕ (3.8)命题3 函数序列{})(x n ϕ在h x x x +≤≤00上是一致收敛的. 设 )()(lim 0x x n n ϕϕ=→,则)(x ϕ也在h x x x +≤≤00上连续,且由(3.8)又可知, b y x n ≤-0)(ϕ命题4 )(x ϕ是积分方程(3.5)定义于区间h x x x +≤≤00上的连续解.命题5 设)(x ψ是积分方程(3.5)定义于区间h x x x +≤≤00上的另一个连续解,则)(),()(00h x x x x x +≤≤=ψϕ.附注1 (P84)附注2 由于利普希兹条件比较难于检验,常用),(y x f 在R 上对于y 的连续偏导数代替.附注3 (P85)定理2 如果在点),,(000y y x '的某个邻域内, ο1 ),,(y y x F '对所有变元连续,且存在连续偏导数;ο2 0),,(000='y y x F ; ο3 0),,(000≠'∂'∂y y y x F ; 则方程(3.15)存在唯一解.h x x x y y ≤-=0),( (h 未足够小的任意正数)满足初始条件000)(,)(y x y y x y '='= 3.1.2 近似计算与误差估计在(3.14)中令),()(x x ψϕ=可得第n 次近似解)(x n ϕ和真正解)(x ϕ在区间11)!1()()(+++≤-n n n h n Ml x x ϕϕ (3.19) 在近似计算时,可根据误差的要求,选取适当的逐步逼近函数)(x n ϕ.例1 方程22y x dxdy +=定义于矩形区域11,11:≤≤-≤≤-y x R 上,试利用存在唯一性定理确定过点)0,0(的解的存在区间,并求在此区间上与真正解的误差不超过05.0的近似解的表达式.作业:P88 1、3、4、5、7、9§3.2 解的延拓局部利普希兹条件,即对于内的每一点,有以其为中心的完全含于G 内的闭矩形R 存在,在R 上),(y x f 关于y 满足利普希兹条件.解的延拓定理 如果方程(3.1)右端的函数),(y x f 在有界区域内连续,且在G 内关于y 满足局部利普希兹条件,则方程(3.1)的通过G 内任意一点),(00y x 的解)(x y ϕ=可以延拓,直到点))(,(x x ϕ任意接近区域G 的边界.以向x 增大的一方的延拓来说,如果)(x y ϕ=只能延拓到区间m x x ≤≤0上,则当m x →时,))(,(x x ϕ趋于区域G 的边界.推论 如果G 是无界区域,在上面解的延拓定理的条件下,方程(3.1)的通过),(00y x 的解)(x y ϕ=可以延拓,以向x 增大的一方的延拓来说,有下面两种情况:(1) 解)(x y ϕ=可以延拓到区间),[0∞+x ;(2) 解)(x y ϕ=只可以延拓到区间),[0m x ,其中m 为有限数,则当m x →时,或者)(x y ϕ=无界,或者点))(,(x x ϕ趋于区域G 的边界.例1 讨论方程212-=y dx dy 的分别通过点)3,2(ln ),0,0(-的解的存在区间.例2 讨论方程x dxdy ln 1+=满足条件1)1(=y 的解的存在区间. §3.3 解对初值的连续性和可微性定理3.3.1 解关于初值的对称性解关于初值的对称性定理 设方程(3.1)的满足初始条件00)(y x y =的解是唯一的,记为),,(00y x x y ϕ=,则在表达式中,),(y x 和),(00y x 可以调换其相对位置,即在解的存在范围内成立着关系式),,(00y x x y ϕ=3.3.2 解对初值的连续依赖性引理 如果函数),(y x f 在某区域D 内连续,且关于y 满足利普希兹条件,则对方程(3.1)的任意两个解)()(x x ψϕ和,在它们的公共存在区间成立着不等式0x x L 00e|)()(||)()(|--≤-x x x x ψϕψϕ (3.20)其中0x 为所考虑区间内的某一值.解对初值的连续依赖性定理 设),(y x f 在区域G 内连续,且关于y 满足局部利普希兹条件,G y x ∈),(00,),,(00y x x y ϕ=是(3.1) 的满足初始条件00)(y x y =的解,它在区间b x a ≤≤上有定义)(0b x a ≤≤,则对于任意给定的0>ε,存在正数),,(b a εδδ=使得当2200200)()(δ≤-+-y y x x 时,方程(3.1)的满足条件00)(y x y =的解),,(00y x x y ϕ=在区间b x a ≤≤上也有定义,并且b x a y x x y x x ≤≤≤-,|),,(),,(|0000εϕϕ证明(略,见P96)解对初值的连续性定理 若),(y x f 在区域G 内连续,且关于y 满足局部利普希兹条件,则方程(3.1)的解),,(00y x x y ϕ=作为00,,y x x 的函数在它的存在范围内是连续的. 3.3.3 解对初值的可微性解对初值的可微性定理 若),(y x f 及yf ∂∂都在区域G 内连续,则方程(3.1)的解),,(00y x x y ϕ=作为00,,y x x 的函数在它的存在范围内是可微的.证明(略,见P100)。

《常微分方程》第三章 一阶微分方程解的存在唯一性定理

《常微分方程》第三章 一阶微分方程解的存在唯一性定理
x
1(x) y0 x0 f ( , y0 )d
x
x0 f ( , y0 ) d M (x x0 ) Mh b
§ 3.1 Existence & Uniqueness Theorem & Progressive Method
1 (x) 在 x0 x x0 h 上有定义,连续
现在取 0 (x) y0 ,构造皮卡逐步逼近函数序列如下:
0 (x) y0
n (x) y0
x x0
f ( ,n1( ))d
x0 h x x0 h
(3.1.9)
0 (x) y0
x
1(x) y0 x0 f ( ,0 ( ))d
x0 x x0 h
命题2 对于所有的 (3.1.9) 中函数 n (x) 在
x0 x x0 h 上有定义、连续,即满足不等式:
n (x) y0 b (3.1.10)
证 明: (只在正半区间来证明,另半区间的证明类似)
x
当 n =1 时, 1(x) y0 x0 f (, y0 )d

MLn1 n!
(x
x0 )n
成立,
x
n1(x) n (x) x0 f (,n ( )) f (,n1( ))d
x
L x0 n ( ) n1( )d
MLn
n!
x
(
x0

x0 )n d

MLn (x (n 1)!
x0 ) n1

y0
'.............(3.1.4)
§ 3.1 Existence & Uniqueness Theorem & Progressive Method

【免费下载】第三章 一阶线性微分方程组 第一讲一阶微分方程组及解的存在唯一性定理

【免费下载】第三章 一阶线性微分方程组   第一讲一阶微分方程组及解的存在唯一性定理

韩山师范学院数学系常微分方程精品课程教案第一讲 一阶微分方程组及解的存在惟一性定理(2课时)一、目的与要求: 了解高阶微分方程与一阶微分方程组的等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理.二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理.三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质.四、教学方法:讲练结合法、启发式与提问式相结合教学法.五、教学手段:传统板书与多媒体课件辅助教学相结合.六、教学过程:1 课题引入在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质.例如,已知在空间运动的质点的速度与时间及(,,)P x y z t 该点的坐标的关系为(,,)x y z v v v v韩山师范学院数学系常微分方程精品课程教案123(,,,)(,,,)(,,,)x y z v f t x y z v f t x y z v f t x y z =⎧⎪=⎨⎪=⎩且质点在时刻经过点,求该质点的运动轨迹。

0t 000(,,)x y z 因为和, 所以这个问题其实就是求,x y dx dy v v dt dt ==z dz v dt =一阶微分方程组123(,,,)(,,,)(,,,)x f t x y z y f t x y z z f t x y z =⎧⎪=⎨⎪=⎩ 的满足初始条件 00(),x t x =00(),y t y =00()z t z =的解.(),(),()x t y t z t 另外,在n 阶微分方程(1.12)()(1)(,,,,)n n y f x y y y -'= 中,令就可(1)121,,,n n y y y y y y --'''=== 以把它化成等价的一阶微分方程组韩山师范学院数学系常微分方程精品课程教案11221111(,,,,)n n n n dy y dx dy y dx dy y dx dy f x y y y dx ----⎧=⎪⎪⎪=⎪⎪⎨⎪⎪=⎪⎪⎪=⎩ 注意,这是一个含n 个未知函数 的一阶微分11,,,n y y y - 方程组.含有n 个未知函数的一阶微分方程组的一般形12,,,n y y y 式为: (3.1)11122112112(,,,,)(,,,,)(,,,,)n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ⎧=⎪⎪⎪=⎪⎨⎪⎪⎪=⎪⎩ 如果方程组(3.1)右端函数不显含, 则相应的方程称为是自x 治的. 方程组(3.1)在上的一个解,是这样的一组函数[,]a b韩山师范学院数学系常微分方程精品课程教案12(),(),,()n y x y x y x 使得在上有恒等式[,]a b 12()(,(),(),,())i i n dy x f x y x y x y x dx = (1,2,,)i n = 含有n 个任意常数 的解12,,,n C C C 1112221212(,,,,)(,,,,)(,,,,)n n n n n y x C C C y x C C C y x C C C ϕϕϕ=⎧⎪=⎪⎨⎪⎪=⎩ 称为(3.1)的通解. 如果通解满足方程组11212212121212(,,,,,,,,)0(,,,,,,,,)0(,,,,,,,,)0n n n n n n n x y y y C C C x y y y C C C x y y y C C C Φ=⎧⎪Φ=⎪⎨⎪⎪Φ=⎩ 则称后者为(3.1)的通积分.如果已求得(3.1)的通解或通积分,要求满足初始条件 1010202000(),(),,()n n y x y y x y y x y ===韩山师范学院数学系常微分方程精品课程教案(3.2)的解,可以把初始条件(3.2)代入通解或通积分之中,得到关于的n 个方程式,如果从其中解得,12,,,n C C C 12,,,n C C C 再代回通解或通积分中,就得到所求的初值问题的解. 2 一阶微分方程组的向量和矩阵表示 为了简洁方便,经常采用向量与矩阵来研究一阶微分方程组(3.1). 令n 维向量函数 12()()(),()n y x y x Y x y x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 11221212(,,,,)(,,,,)(,)(,,,,)n n n n f x y y y f x y y y F x Y f x y y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 并定义 111(),dy dx dy dY x dx dx dy dx ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 00001()()()()x x x x n x x x n x f x dx f x dx F x dx f x dx ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎰⎰⎰⎰ 则(3.1)可记成向量形式(3.3)(,)dY F x Y dx =初始条件(3.2)可记为 其中 00(),Y x Y =102000n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ (3.2)′(3.3)的满足(3.2)′的初值问题可记为(3.4)00(,)()dY F x Y dx Y x Y ⎧=⎪⎨⎪=⎩这样,从形式上看,一阶方程组与一阶方程式完全一样了.进一步,对n 维向量Y 和矩阵,()ij A a =12,n y y Y y ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 111212122212n nn n nn a a a a a a A a a a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦定义 1,n i i Y y ==∑,1niji j A a ==∑易于证明以下性质:1., 且, 当且仅当0Y ≥0Y =0Y =( 表示零向量,下同);02.;1212Y Y Y Y +≤+3.对任意常数,有;αY Y αα=A 4.;0A ≥5.;A B A B +≤+6.对任意常数,有;γA A γγ=A 7.;AY A Y ≤A 8. .AB A B ≤A 称和分别为向量和矩阵的范数. 进而还有如Y A Y A 下性质韩山师范学院数学系常微分方程精品课程教案00()()x x x x F x dx F x dx≤⎰⎰有了维空间的范数定义后,我们可以定义按范数收敛n 的概念. 即:如果对 上的任意x ,有[,]a b lim ()()0n n Y x Y x →∞-=则称 在 上按范数收敛于Y (x ).如果上式对 ()n Y x [,]a b [,]a b 上的x 为一致的,则称 在上 按范数一致收敛()n Y x [,]a b 于.()Y x 另外, 如果对n 维向量函数F (x )有00lim ()()0x x F x F x →-=则称 在 连续. 如果 在区间 上每()F x 0x ()F x [,]a b 一点 都连续, 则称 在区间 上连续.0x ()F x [,]a b 有了以上准备,完全类似于第二章定理2.2,我们有如下的关于初值问题(3.4)的解的存在与唯一性定理.定理3.1 如果函数 在 维空间的区域(,)F x Y 1n +00:,R x x a Y Y b -≤-≤上满足:1) 连续;2) 关于满足李普希兹条件,即存在, 使对于上Y 0N >R 任意两点 ,有1(,),x Y 2(,)x Y韩山师范学院数学系常微分方程精品课程教案1212(,)(,)F x Y F x Y N Y Y -≤-则存在, 使初值问题(3.4)的解在 上存在00h >00x x h -≤且唯一,其中0min(,b h a M =.(,)max (,)x Y R M F x Y ∈= 定理的证明方法与定理2.2完全类似,也是首先证明(3.4)与积分方程 00()(,())x x Y x Y F x Y x dx =+⎰(3.5)同解.为证(3.5)的解在 上的存在性,同样用00x x h -≤逐次逼近法,其步骤可以逐字逐句重复定理2.2的证明.最后,唯一性的证明,同样用贝尔曼不等式完成. 对于方程组(3.3)也有类似第二章关于纯量方程(1.9)的解的延展定理和解对初值的连续依赖性定理,这只要在第二章相应定理中把纯量换成向量即可.y Y 最后,我们要指出方程组(3.3)解的几何意义:我们已经知道,纯量方程(1.9)的一个解是二维空间平面上的一条xoy 曲线,或称为积分曲线,那么,很自然地有方程组(3.3)的一韩山师范学院数学系常微分方程精品课程教案个解就是维空间中的一条曲线了,也称它为方程组x Y1n (,)(3.3)的积分曲线.本节要点:1.一阶微分方程组解的存在唯一性定理及解的几何意义.2.一阶线性微分方程组解的存在唯一性定理及其特征:系数和非齐次项连续区间上整体存在.作业: 完成定理3.1的证明. 。

《常微分方程指导与实验》第2章:一阶微分方程的解的存在定理

《常微分方程指导与实验》第2章:一阶微分方程的解的存在定理

第二章 一阶微分方程的解的存在定理§2.1 一阶微分方程解的基本理论主要内容一 导数已解出方程初值问题解的存在唯一性定理 考虑导数已解出的一阶DE 的初值问题()()00,y f x y y x y '=⎧⎪⎨=⎪⎩(2.1)(2.2)这里()y x f ,是在闭矩形域R : a x x ≤-0,b y y ≤-0上的连续函数。

定义2.1 如果存在常数0>L ,使得对于所有的点()1,y x ,()2,y x R ∈,都有不等式()()2121,,y y L y x f y x f -≤-成立,则称函数()y x f ,在R 上关于y 满足李普希兹(Lipschitz )条件。

1定理2.1 (毕卡存在唯一性定理) 如果()y x f ,在R 上满足条件: 1)连续;2)关于y 满足李普希兹条件,则初值(2.1)和(2.2)在区间h x x ≤-0上存在唯一解()x y y =,其中()M b a h ,m in=,()y x f M R y x ,max ),(∈=。

注1 取数h 的意义。

注意到()y x f M R y x ,max ),(∈=,从而积分曲线()x y y =在任一点()()R x y x ∈,处的切线斜率()M x y ≤'。

于是从点()o y x p ,0引两条斜率分别为M 和M -的直线1l 和2l ,便知过点P 的积分曲线必限制在图2.1和图2.2的阴影区域内。

而直线1l 和2l 相交情形有如下两种可能。

(i )若相交成如图 2.1所示的情况,则a Mb>,积分曲线()x y y =在a x x ≤-0上不越出R ,从而应取a h =。

(ii )若相交成如图 2.2所示的情况,则a Mb >,积分曲线()x y y =在Mb x x ≤-0上不越出R ,从而应取Mb h =。

总之,取()M ba h ,min =,就是为了使初值问题(2.1)和(2.2)的解在h x x ≤-0上总存在。

一阶微分方程的解的存在定理总结

一阶微分方程的解的存在定理总结

一阶微分方程的解的存在定理总结下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一阶微分方程的解的存在定理总结一阶微分方程是微积分中的重要内容,它描述了变量之间的变化率与变量本身的关系。

一阶常微分方程解的存在唯一性定理与逐步逼近法(20101022)

一阶常微分方程解的存在唯一性定理与逐步逼近法(20101022)

一阶常微分方程解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1)首先考虑导数已解出的一阶微分方程(3.1.1.1)这里是在矩形域(3.1.1.2)上的连续函数。

定义1 如果存在常数,使得不等式对于所有都成立,则函数称为在上关于满足利普希茨(Lipschitz)条件,称为利普希茨常数。

定理3.1 如果在上连续且关于满足利普希茨条件,则方程(3.1.1.1)存在唯一的解,定义于区间上,连续且满足初始条件(3.1.1.3)这里,。

我们采用皮卡(Picard)的逐步逼近法来证明这个定理。

为简单起见,只就区间来讨论,对于的讨论完全一样。

现在简单叙述一下运用逐步逼近法证明定理的主要思想。

首先证明求微分方程的初值问题的解等价于求积分方程的连续解。

然后去证明积分方程的解的存在唯一性。

任取一个连续函数代入上面积分方程右端的,就得到函数,显然也是连续函数,如果,那末就是积分方程的解。

否则,我们又把代入积分方程右端的,得到,如果,那末就是积分方程的解。

否则我们继续这个步骤。

一般地作函数(3.1.1.4)这样就得到连续函数序列:,,…,,….如果,那末就是积分方程的解。

如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数,即存在,因而对(3.1.1.4)取极限时,就得到即,这就是说是积分方程的解。

这种一步一步地求出方程的解的方法就称为逐步逼近法。

由(3.1.1.4)确定的函数称为初值问题(3.1.1.1)、(3.1.1.3)的第次近似解。

在定理的假设条件下,以上的步骤是可以实现的。

下面我们分五个命题来证明定理1。

常微分方程教程第三章信计09级命题1设是方程(3.1.1.1)的定义于区间上,满足初始条件(3.1.1.3)的解,则是积分方程(3.1.1.5) 的定义于上的连续解。

反之亦然。

证明因为是方程(3.1.1.1)的解,故有,两边从到取定积分得到把(3.1.1.3)代入上式,即有因此,是(3.1.1.5) 的定义于上的连续解。

常微分方程解的存在唯一性定理

常微分方程解的存在唯一性定理

常微分方程解的存在唯一性定理一阶微分方程⑴其中. 是在矩形域丄」’叭」上的连续函数。

定义1如果存在常数二11,使得不等式”(础)-/(砒)冏肝川对于所有--■■-1--- 都成立,贝U函数/、•称为在二上关于:'满足Lipschitz 条件。

定理1如果「二,在二上连续且关于「满足Lipschitz 条件,则方程(1)存在唯一的解y=叭心,定义于区间M ■阳卜月上,连续且满足初始条件W八-卄 A = r—)M = max' ■-.,这里」f,•心「。

Picard逐步逼近法来证明这个定理的主要思想首先证明求微分方程的初值冋题的解等价于求积分方程的连续解。

然后去证明积分方程的解的存在唯一性。

任取一个连续函数代入上面积分方程右端的,就得到函数俅沪)Vp(Z()⑴)必,显然J 也是连续函数,如果,那末l:-'就是积分方程的解。

否则,我们又把J二代入积分方程右端的「,得到汀0恥)皿,如果氛沪仍⑴,那末仇⑴就是积分方程的解。

否则我们继续这个步骤。

一般地作函数惦(3.1.1.4)这样就得到连续函数序列,...,〔「」,…如果二, 那末就是积分方程的解。

如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数厂:;;1,即'厂…I存在,因而对©Ji/)取极限时,就得到f「打「X FJr=y0+l=y0+祕幼必Jf祕x)=y n+/(X 矶兀))必/ 、即•血,这就是说机x)是积分方程的解。

这种一步一步地求出方程的解的方法就称为逐步逼近法。

函数''■■■■■'称为初值问题的第:次近似解。

命题1设—是方程(1)的定义于区间V —'■'‘上,满足初始条件Jf瞅)=刃的解,则厂曲)是积分方程y=y°+y (2曲碳心砒的定义于V ——'■上的连续解。

反之亦然。

现在取,构造皮卡逐步逼近函数序列如下: 京(X)=丹;保(方=丹+ f于(乙矶_1©)時从“英肿hJ*D(聊=12…)1命题2对于所有的卜,函数在J■:上有定义、连续且满足不等式命题3 函数序列"I「在J ------------ '."上是一致收敛的。

[整理]一阶常微分方程解的存在唯一性定理与逐步逼近法(1022).

[整理]一阶常微分方程解的存在唯一性定理与逐步逼近法(1022).

一阶常微分方程解的存在唯一性定理与逐步逼近法3.1.1 存在唯一性定理1)首先考虑导数已解出的一阶微分方程(3.1.1.1)这里是在矩形域(3.1.1.2)上的连续函数。

定义1 如果存在常数,使得不等式对于所有都成立,则函数称为在上关于满足利普希茨(Lipschitz)条件,称为利普希茨常数。

定理3.1 如果在上连续且关于满足利普希茨条件,则方程(3.1.1.1)存在唯一的解,定义于区间上,连续且满足初始条件(3.1.1.3)这里,。

我们采用皮卡(Picard)的逐步逼近法来证明这个定理。

为简单起见,只就区间来讨论,对于的讨论完全一样。

现在简单叙述一下运用逐步逼近法证明定理的主要思想。

首先证明求微分方程的初值问题的解等价于求积分方程的连续解。

然后去证明积分方程的解的存在唯一性。

任取一个连续函数代入上面积分方程右端的,就得到函数,显然也是连续函数,如果,那末就是积分方程的解。

否则,我们又把代入积分方程右端的,得到,如果,那末就是积分方程的解。

否则我们继续这个步骤。

一般地作函数(3.1.1.4)这样就得到连续函数序列:,,…,,….如果,那末就是积分方程的解。

如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数,即存在,因而对(3.1.1.4)取极限时,就得到即,这就是说是积分方程的解。

这种一步一步地求出方程的解的方法就称为逐步逼近法。

由(3.1.1.4)确定的函数称为初值问题(3.1.1.1)、(3.1.1.3)的第次近似解。

在定理的假设条件下,以上的步骤是可以实现的。

下面我们分五个命题来证明定理1。

命题1设是方程(3.1.1.1)的定义于区间上,满足初始条件(3.1.1.3)的解,则是积分方程(3.1.1.5) 的定义于上的连续解。

反之亦然。

证明因为是方程(3.1.1.1)的解,故有,两边从到取定积分得到把(3.1.1.3)代入上式,即有因此,是(3.1.1.5) 的定义于上的连续解。

第三章 一阶微分方程的解的存在性定理

第三章 一阶微分方程的解的存在性定理
0
n
x
n
lim n ( x ) y0 lim =y0
x0 x x0
x
n x0 x
f ( x , n1 ( x ))
f ( x , ( x ))dx f ( , ( ))d .

( x ) y0
4. ( x ) 是积分方程(2)在 [ x0 h, x0 h] 上的连续解. 逐步逼近法
问题:这样构造的函数列是否行得通, 即上述的积分是否
有意义?
命题2 对于所有的n,(3)中函数 n ( x ) 在 x0 x x0 h 上
有定义、连续且满足不等式
| n ( x ) y0 | b.
(4)
命题3 函数序列{ n ( x )} 在 x0 x x0 h上是一致收敛的. 现设
n
lim n ( x ) ( x ),
则 ( x ) 也在 x0 x x0 h 上连续,且 | ( x ) y0 | b. 命题4 ( x ) 是积分方程(2)的定义于 x0 x x0 h 上的
连续解. 命题5 设 ( x ) 是积分方程(2)的定义于 x0 x x0 h 上 的另一个连续解,则 ( x ) ( x )( x0 x x0 h).
证它是否关于y满足 Lipschitz条件一般比较困难,下面
给出在实际应用中容易判断的两个充分条件:
①如果 f ( x , y )在R上关于y的偏导数 f y ( x , y )存在且有界,
则 f ( x , y ) 在R上关于y满足Lipschitz条件.
②如果 f ( x , y )在R上关于y的偏导数 f y ( x , y )连续,则

常微分方程考研讲义 一阶微分方程解的存在定理

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理[教学目标]1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。

2.了解解的延拓定理及延拓条件。

3.理解解对初值的连续性、可微性定理的条件和结论。

[教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。

[教学方法] 讲授,实践。

[教学时间] 12学时[教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。

[考核目标]1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。

2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。

3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。

§1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。

在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。

而实际问题中所需要的往往是要求满足某种初始条件的解。

因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。

他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。

例如方程过点(0,0)的解就是不唯一,易知0y=是方程过(0,0)的解,此外,容易验证,2=或更一般地,函数y x都是方程过点(0,0)而且定义在区间01<<的任一数。

c≤≤上的解,其中c是满足01x解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。

另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。

常微分方程一阶微分方程的解的存在定理课件

常微分方程一阶微分方程的解的存在定理课件

THANKS
感谢您的观看
数学模型
弹簧振子模型一般采用一阶微分方程的形式,方程如下:mdx/dt² + bdx/dt + kx = 0,其中m表示质量,b表示阻尼系数,k表示弹簧刚度 。
传染病传播模型
01
总结词
传染病传播模型也是一阶微分方程的重要应用案例,通过 模型可以描述疾病的传播规律,预测疫情的发展趋势。
02 03
详细描述
常微分方程一阶微分 方程的解的存在定理
目录
CONTENTS
• 引言 • 一阶微分方程的基本概念 • 一阶微分方程解的存在定理 • 数值求解一阶微分方程的方法 • 一阶微分方程的稳定性分析 • 应用案例分析
01
引言
课程背景
• 在数学、物理学、工程学和其他许多学科中,常微分方程都有着广泛的应用。一阶微分方程作为常微分方程的 一个子类,具有非常重要的地位。研究一阶微分方程的解的存在性,对于理解其动力学行为、解决实际问题, 以及推动相关领域的发展都具有重要的意义。
通过应用存在定理,我们可以证明这些模型的一阶微分方 程存在解,进而用数值方法或解析方法求解该解,以预测 未来趋势或制定相应政策。
04
数值求解一阶微分 方程的方法
欧拉方法
简单介绍
欧拉方法是一种经典的数值求解 一阶微分方程的方法,其基本思 想是利用微分方程的离散化近似
来求解。
方法描述
欧拉方法基于一阶微分方程的离散 化近似,通过迭代过程不断逼近方 程的解。
传染病传播模型一般采用一阶微分方程的形式,其中感染 人数是时间的函数,并且受到疾病传播率、治愈率和死亡 率等因素的影响。根据不同的传播率和初始条件,可以求 解微分方程,得到感染人数随时间变化的解。

chapter-3 一阶微分方程的解的存在性定理

chapter-3 一阶微分方程的解的存在性定理

x3.1 解的存在唯一性定理与逐步逼近法
11
命题 2 对所有的 n,函数 有定义、连续且满足不等式
在区间

张强
常微分方程 第三章 一阶微分方程的解的存在性定理
x3.1 解的存在唯一性定理与逐步逼近法
12
证明:当 且
有定义、连续
张强
常微分方程 第三章 一阶微分方程的解的存在性定理
x3.1 解的存在唯一性定理与逐步逼近法
x3.3 解对初值的连续性和可微性定理
38
x3.3 解对初值的连续性和可微性定理
3.3.1 解关于初值的对称性
解关于初值的对称性定理 设初值问题 在此表达式中 即在解的存在区间
例 方程 定义在矩形区域 上的解,试利用存在唯一性定理确定经过点 (0,0) 的解的 存在区间,并求在此区间上与真解的误差不超过 0.05 的近 似解的表达式。

经过点 (0,0) 的解的存在区间为
张强
常微分方程 第三章 一阶微分方程的解的存在性定理
x3.1 解的存在唯一性定理与逐步逼近法
30
x3.1 解的存在唯一性定理与逐步逼近法
张强
常微分方程 第三章 一阶微分方程的解的存在性定理
x3.3 解对初值的连续性和可微性定理
37
x3.3 解对初值的连续性和可微性定理
初值问题 其解随着初值不同而变化。 可理解为自变量,以及初值的函数
满足 由此,我们可以讨论解关于初值的一下基本性质
张强
常微分方程 第三章 一阶微分方程的解的存在性定理
x3.1 解的存在唯一性定理与逐步逼近法
17
利普希茨条件 命题 3 函数序列 证明: 在 上是一致收敛的。

成立 为正项收敛级数 魏氏判别法

常微分方程--第三章 一阶微分方程的解的存在定理(3.1-3.2)_OK

常微分方程--第三章 一阶微分方程的解的存在定理(3.1-3.2)_OK

x
L x0 1( ) 0 ( )d
L
x x0
M (
x0 )d
ML 2
(x
x0 )2
其中第二个不等式是由Lipschitz条件得到的,
由Lipschitz条件
17
设对于正整数n, 有不等式
n (x) n1(x)
MLn1 n!
(x
x0
)n
,
则当x0 x x0 h时,由Lipschitz条件有
dy dx
f
(x, y), (3.1)
y(x0 ) y0
证明: 若y (x)为(3.1)的连续解,则
d ( x)
dx
f
( x, ( x)),
(x0 ) y0
对第一式从x0到x取定积分得
x

x (x) (x0 ) x0 f (x,(x))dx (x) y0 x0 f (x,(x))dx
x
f ( , ( )) f ( ,( )) d x0
x
x
L ( ) ( ) d L g( )d
x0
x0
令u(x) L
x
g( )d ,
x0
则u(x)是定义于[x0, x0 h]上连续可微函数,
且u(x0 ) 0,0 g(x) u(x), u'(x) Lg(x),于是
u(x) Lu(x), (u(x) Lu(x))eLx 0,
(4) (x)是积分方程(3.5)定义于[x0 h, x0 h]上连续解
且唯一.
9
下面分五个命题来证明定理,为此先给出
积分方程
如果一个数学关系式中含有定积分符号且在定积分符 号下含有未知函数, 则称这样的关系式为积分方程.

一阶微分方程的解的存在定理

一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理研究对象初值问题(Cauchy Problem)⎪⎩⎪⎨⎧==(3.2)3.1) 00)((),(y x y y x f dx dy 1 基本概念1)利普希兹(Lipschitz)条件函数),(y x f 称为在闭矩形区域 b y y a x x D ≤-≤-00,:上关于y 满足利普希兹条件,如果存在常数0>L 使得不等式2121),(),(y y L y x f y x f -≤-对所有D y x y x ∈),(),,(21都成立。

其中L 称为利普希兹常数。

2 )局部利普希兹条件称函数),(y x f 在区域2R G ⊂内关于y 满足局部利普希兹条件,如果对区域G 内的每一点,存在以其为中心的完全含于G 内的矩形域D ,在D 上),(y x f 关于y 满足利普希兹条件。

注意:对G 内不同的点,矩形域D 大小和常数L 可能不同。

3)一致利普希兹条件称函数),,(λy x f 在区域{}βλαG y x λy x G λ<<∈=,),(),,(R R ⨯⊂2内一致地关于y 满足局部利普希兹条件,如果对λG 内的每一点),,(λy x 都存在以),,(λy x 为中心的球λG S ⊂,使得对任何),,(1λy x ,S λy x ∈),,(2成立不等式2121),,(),,(y y L y x f y x f -≤-λλ其中L 是与λ无关的正数。

4)解的延拓设方程(3.1)右端函数),(y x f 在某一有界区域G 中有意义,],[),(b a x x y ∈=ϕ是初值问题(3.1)、(3.2)的解,若],[),(11b a x x y ∈=ψ也是初值问题的解,且],[],[11b a b a ⊂,当],[b a x ∈时,)()(x x ψϕ≡,则称解)(x ψ是解)(x ϕ在区间],[b a 上的一个延拓。

5)包络和奇解曲线族的包络是指这样的曲线,它本身并不包含在曲线族中,但过这条曲线上的每一点,有曲线族中的一条曲线与其在此点相切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章一阶微分方程解的存在定理[教学目标]1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。

2.了解解的延拓定理及延拓条件。

3.理解解对初值的连续性、可微性定理的条件和结论。

[教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。

[教学方法] 讲授,实践。

[教学时间] 12学时[教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。

[考核目标]1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。

2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。

3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。

§1 解的存在性唯一性定理和逐步逼近法微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。

在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。

而实际问题中所需要的往往是要求满足某种初始条件的解。

因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。

他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。

例如方程过点(0,0)的解就是不唯一,易知0y=是方程过(0,0)的解,此外,容易验证,2=或更一般地,函数y x都是方程过点(0,0)而且定义在区间01<<的任一数。

c≤≤上的解,其中c是满足01x解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。

另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。

而解的存在唯一性定理保证了所求解的存在性和唯一性。

1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dxdy= (3.1)这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。

定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y ,2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ϕ=,在区间0||x x h -≤上连续,而且满足初始条件00()x y ϕ=(3.3) 其中,min(,),max (,)x y R bh a M f x y M∈==,L 称为Lipschitz 常数.思路:1) 求解初值问题(3.1)的解等价于积分方程 的连续解。

2) 构造近似解函数列{()}n x ϕ任取一个连续函数0()x ϕ,使得00|()|x y b ϕ-≤,替代上述积分方程右端的y ,得到如果10()()x x ϕϕ≡,那么0()x ϕ是积分方程的解,否则,又用1()x ϕ替代积分方程右端的y ,得到如果21()()x x ϕϕ≡,那么1()x ϕ是积分方程的解,否则,继续进行,得到01()(,())xn n x x y f x x dx ϕϕ-=+⎰(3.4)于是得到函数序列{()}n x ϕ.3) 函数序列{()}n x ϕ在区间00[,]x h x h -+上一致收敛于()x ϕ,即 存在,对(3.4)取极限,得到 即00()(,())xx x y f x x dx ϕϕ=+⎰.4) ()x φ是积分方程00(,)xx y y f x y dx =+⎰在00[,]x h x h -+上的连续解.这种一步一步求出方程解的方法——逐步逼近法.在定理的假设条件下,分五个命题来证明定理.为了讨论方便,只考虑区间00x x x h ≤≤+,对于区间00x h x x -≤≤的讨论完全类似.命题1 设()y x ϕ=是方程(3.1)定义于区间00x x x h ≤≤+上,满足初始条件00()x y ϕ= (3.3)的解,则()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰ 00x x x h ≤≤+(3.5)的定义于00x x x h ≤≤+上的连续解.反之亦然.证明 因为()y x ϕ=是方程(3.1)满足00()x y ϕ=的解,于是有 两边取0x 到x 的积分得到即有00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+所以()y x ϕ=是积分方程00(,)xx y y f x y dx =+⎰定义在区间00x x x h ≤≤+上的连续解.反之,如果()y x ϕ=是积分方程(3.5)上的连续解,则00()(,())xx x y f x x dx ϕϕ=+⎰ 00x x x h ≤≤+(3.6)由于),(y x f 在R 上连续,从而(,())f x x ϕ连续,两边对x 求导,可得 而且 00()x y ϕ=,故()y x ϕ=是方程(3.1)定义在区间00x x x h ≤≤+上,且满足初始条件00()x y ϕ=的解. 构造Picard 的逐次逼近函数序列{()}n x ϕ.0000100()()(,()) x nn x x y x y f d x x x h ϕϕξϕξξ-=⎧⎪⎨=+≤≤+⎪⎩⎰(1,2,)n =(3.7)命题2 对于所有的n ,(3.6)中的函数()n x ϕ在00x x x h ≤≤+上有定义,连续且满足不等式0|()|n x y b ϕ-≤ (3.8)证明 用数学归纳法证明当1n =时,0100()(,)xx x y f y d ϕξξ=+⎰,显然1()x ϕ在00x x x h ≤≤+上有定义、连续且有 即命题成立.假设n k =命题2成立,也就是在00x x x h ≤≤+上有定义、连续且满足不等式 当1n k =+时,由于),(y x f 在R 上连续,从而(,())k f x x ϕ在00x x x h ≤≤+上连续,于是得知1()k x ϕ+在00x x x h ≤≤+上有定义、连续,而且有即命题2对1n k =+时也成立.由数学归纳法知对所有的n 均成立.命题3 函数序列{()}n x ϕ在00x x x h ≤≤+上是一致收敛的.记lim ()()n n x x ϕϕ→∞=,00x x x h ≤≤+证明 构造函数项级数011()[()()]k k k x x x ϕϕϕ∞-=+-∑ 00x x x h ≤≤+(3.9) 它的部分和为于是{()}n x ϕ的一致收敛性与级数(3.9)的一致收敛性等价. 为此,对级数(3.9)的通项进行估计.01000|()()||(,())|()xx x x f d M x x ϕϕξϕξξ-≤≤-⎰(3.10)由Lipschitz 条件得知 设对于正整数n ,有不等式成立,则由Lipschitz 条件得知,当00x x x h ≤≤+时,有 于是由数学归纳法可知, 对所有正整数k ,有1110|()()|() !!k k kk k k ML ML x x x x h k k ϕϕ----≤-≤ 00x x x h ≤≤+(3.11)由正项级数11!kK k h MLk ∞-=∑ 的收敛性,利用Weierstrass 判别法,级数(3.9)在00x x x h ≤≤+上一致收敛.因而序列{()}n x ϕ在00x x x h ≤≤+上一致收敛.设lim ()()n n x x ϕϕ→∞=,则()x ϕ也在00x x x h ≤≤+上连续,且命题4 ()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.证明 由Lipschitz 条件以及{()}n x ϕ在00x x x h ≤≤+上一致收敛于()x ϕ,可知(,())n f x x ϕ在00x x x h ≤≤+上一致收敛于(,())f x x ϕ.因此即 00()(,()) xn x x y f d ϕξϕξξ=+⎰故()x ϕ是积分方程(3.5)的定义在00x x x h ≤≤+上的连续解.命题5 设()x ψ是积分方程(3.5)的定义在00x x x h ≤≤+上的一个连续解,则()()x x ϕψ≡,00x x x h ≤≤+.证明 设()|()()|g x x x ϕψ=-,则()g x 是定义在00x x x h ≤≤+的非负连续函数,由于 而且(,)f x y 满足Lipschitz 条件,可得令0()()xx u x L g d ξξ=⎰,则()u x 是00x x x h ≤≤+的连续可微函数,且0()0u x =,0()()g x u x ≤≤,()()u x Lg x '=,()()u x Lu x '≤,(()())0Lx u x Lu x e -'-≤,即(())0Lx u x e -'≤,于是在00x x x h ≤≤+上, 00()()0Lx Lx u x e u x e --≤=故()()0g x u x ≤≤,即()0g x ≡,00x x x h ≤≤+,命题得证.对定理说明几点:(1)存在唯一性定理中min(,)bh a M=的几何意义. 在矩形域R 中(,)f x y M ≤,故方程过00(,)x y 的积分曲线()y x ϕ=的斜率必介于M -与M 之间,过点00(,)x y 分别作斜率为M -与M 的直线.当b M a ≤时,即ba M ≤,(如图(a)所示),解()y x ϕ=在00x a x x a -≤≤+上有定义;当b M a ≥时,即ba M≤,(如图(b)所示),不能保证解在00x a x x a -≤≤+上有定义,它有可能在区间内就跑到矩形R 外去,只有当00b bx x x M M-≤≤+才能保证解()y x ϕ=在R 内,故要求解的存在范围是0||x x h -≤.(2)、 由于李普希兹条件的检验是比较费事的,而我们能够用一个较强的,但却易于验证的条件来代替他,即如果函数),(y x f 在矩形域R 上关于y 的偏导数),('y x f y 存在并有界,即'(,)y f x y L ≤,则李普希兹条件条件成立. 事实上 这里12(,),(,),01x y x y R θ∈<<. 如果),('y x f y 在R 上连续,它在R 上当然满足李普希兹条件.但是,满足李普希兹条件的函数),(y x f 不一定有偏导数存在.例如函数(,)||f x y y =在任何区域都满足李普希兹条件,但它在0y =处没有导数. (3)、设方程(3.1)是线性的,即方程为易知,当(),()P x Q x 在区间[,]αβ上连续时,定理1的条件就能满足,且对任一初值000(,),[,]x y x αβ∈所确定的解在整个区间[,]αβ上有定义、连续.实际上,对于一般方程(3.1),由初值所确定的解只能定义在0||x x h -≤上,是因为在构造逐步逼近函数序列{()}n x ϕ时,要求它不越出矩形域R ,此时,右端函数对y 没有任何限制,只要取0[,]max |()()|x M P x y Q x αβ∈=+.(4)、Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件. 例如 试证方程经过xoy 平面上任一点的解都是唯一的.证明 0y ≠时, (,)ln ||f x y y y =,在0y ≠上连续, (,)1ln ||y f x y y '=+也在0y ≠上连续,因此对x 轴外的任一点00(,)x y ,方程满足00()y x y =的解都是唯一存在的.又由可得方程的通解为 x ce y e =±,其中xce y e =为上半平面的通解, xce y e =-为下半平面的通解,它们不可能与0y =相交.注意到0y =是方程的解,因此对x 轴上的任一点0(,0)x ,只有0y =通过,从而保证xoy 平面上任一点的解都是唯一的. 但是因为0lim |ln |||y y →=+∞,故不可能存在0L >,使得所以方程右端函数在0y =的任何邻域并不满足Lipschitz 条件.此题说明Lipschitz 条件 是保证初值问题解惟一的充分条件,而非必要条件.2)考虑一阶隐方程(,,)0F x y y '= (3.12)由隐函数存在定理,若在000(,,)x y y '的某一邻域内F 连续且000(,,)0F x y y '=,而0Fy ∂≠'∂,则必可把y 唯一地表为,x y 的函数(,)y f x y '= (3.13)并且(,)f x y 于00(,)x y 的某一邻域连续,且满足000(,)y f x y '= 如果F 关于所有变元存在连续的偏导数,则(,)f x y 对,x y 也存在连续的偏导数,并且/f F Fy y y ∂∂∂=-'∂∂∂ (3.14)显然它是有界的,由定理1可知,方程(3.13)满足初始条件的0()0y x =解存在且唯一.从而得到下面的定理.定理2 如果在点000(,,)x y y '的某一邻域中: ⅰ) (,,)F x y y '关于所有变元(,,)x y y '连续,且存在连续的偏导数;ⅱ)000(,,)0F x y y '=ⅲ)000(,,)0F x y y y '∂≠'∂则方程(3.12)存在唯一的解0() || y y x x x h =-≤(h 为足够小的正数) 满足初始条件0000(), ()y x y y x y ''== (3.15)1、 近似计算和误差估计求方程近似解的方法——Picard 的逐次逼近法对方程的第n 次近似解()n x ϕ和真正解()x ϕ在0||x x h -≤内的误差估计式1|()()|(1)!n n n ML x x h n ϕϕ+-≤+ (3.16)此式可用数学归纳法证明. 设有不等式 成立,则例1 讨论初值问题22dyx y dx=+, (0)0y = 解的存在唯一性区间,并求在此区间上与真正解的误差不超过0.05的近似解,其中, :11,11R x y -≤≤-≤≤.解 (,)1max |(,|2,1,1,min{,}2x y Rb M f x y a b h a M ∈======,由于|||2|2f y L y ∂=≤=∂,根据误差估计式(3.16)可知3n =.于是3()x ϕ就是所求的近似解,在区间1122x -≤≤上,这个解与真正解得误差不超过0.05.§2 解的延拓上节我们学习了解的存在唯一性定理,当),(y x f dx dy=的右端函数),(y x f 在R 上满足解的存在性唯一性条件时,初值问题⎪⎩⎪⎨⎧==)(),(00x y y y x f dxdy的解在0||x x h -≤上存在且唯一. 但是,这个定理的结果是局部的,也就是说解的存在区间是很小的.可能随着),(y x f 的存在区域的增大,而能肯定的解得存在区间反而缩小。

相关文档
最新文档