余热发电凝汽器铜管泄漏原因分析说明

余热发电凝汽器铜管泄漏原因分析说明
余热发电凝汽器铜管泄漏原因分析说明

凝汽器冷却水铜管泄漏故障

原因分析及防范措施

一、概述

我厂余热发电用凝汽器型式为横型表面接触单通道双回流再热型,设计真空度为-95.6kPa,冷却面积为670m2,冷却管规格为φ19.0×t1.0mm,管全长5313mm,数量2204根,材质C4430T(日本规格)。该设备自1998年3月起正式运行至今。为防止冷却水铜管内部泥沙淤积,影响热交换进而影响到凝汽器真空度及发电负荷,历次计划检修都将冷却水进出水室人孔门打开进行检查清洗。

二、故障经过

4月21日,发电系统因窑临停检修而停机进行检修,发电机于4月22日13:22并网运行。此时纯水箱液位在8.9m左右,至中班18:30左右,中控操作员发现纯水箱液位下降缓慢(8.7m),(正常情况因系统排污消耗,纯水箱液位下降速率在0.07m/h左右),即通知现场检查两锅炉连续排污情况及0537电收尘用省煤器喷水阀开度情况(该阀在AQC炉运行后即投入),现场检查确认锅炉排污正常,省煤器喷水阀开度正常。在观察多个小时后,发现纯水箱水位几乎未下降,锅炉运行报表显示,炉水电导率都在250us/cm以上,且均呈上升趋势。情况汇报工

段后,初步判断为凝汽器冷却水铜管发生了泄漏。为进一步确认,现场对凝结水及纯水电导率进行了检测,电导率均在35uS/cm左右,比正常状况下电导率略高。为进一步确认,工段要求对纯水箱液位、凝结水电导率、纯水电导率、炉水电导率、凝汽器真空以及发电负荷等参数进行每小时一次的表格记录。从后三日的记录数据及炉水电导率趋势在多次排污后仍缓慢上生的现象分析,认定凝汽器冷却铜管存在泄漏,但泄漏不严重。因此在各运行参数未明显恶化的情况下,加强了锅炉的定期排污,并继续监控,准备利用窑临停时机进行检查处理。29日一线窑临停检修,用凝汽器汽室充水检查法对泄漏情况进行了检查,检查结果发现进水管左右两侧的152组列中共6根铜管泄漏(如附图所示,左2右4),处理措施是对泄漏铜管用专用堵头进行了封堵处理。另外检查还发现大部分铜管内壁均有较严重的磨损腐蚀现象。

三、原因分析

1、该凝汽器至今已运行7年多时间,之前未发生过冷却铜管泄漏,因而可以排除是铜管材质不良所造成的泄漏。

2、从泄漏的部位看,6根泄漏铜管泄漏部位均在中部(具体位置点因未将铜管取出而无法确定),而并非由于管胀口松动所造成的泄漏。因此,也可以排除是排气温度高,内外温差大,使

胀口松动所造成的泄漏。

3、从检查中发现的大部分铜管内壁均有较严重的磨损腐蚀现象来看,泄漏原因应为冷却水水质不良,对铜管内壁造成的磨损腐蚀引起。我厂冷却水质并不十分理想,水中含泥沙、小石子等固体颗粒较多(清洗时往往捡出许多小石子,内壁附着淤泥较多),沙砾对管壁产生冲刷作用,使腐蚀加速进行,从而发生磨损腐蚀。水速越高,固体物含量越高,粒径越大,都会使磨损腐蚀加剧(粒径为50um时对铜管的磨损腐蚀速度比30um时要高出一倍以上)。

四、防范及应对措施

凝汽器是发电机组中的重要设备,是确保热力循环进行不可缺少的设备之一,与整台机组的经济性、安全性密切相关。由于冷却铜管水侧是含盐量较高的冷却水,铜管汽侧是低压蒸汽与高纯度的凝结水,容易引起严重的腐蚀问题,包括磨损腐蚀、应力腐蚀、点蚀、氨蚀等,其中以磨损腐蚀和管端应力腐蚀为主要形式。资料表明:汽轮机组运行至一个周期后,凝汽器冷却铜管磨损腐蚀泄漏故障开始发生(我厂汽轮机运行周期为5年,现已连续运行7年多时间),需要加强对凝汽器工况的跟踪监控,及时发现及时处理。轻微泄漏会引起炉水水质恶化,容易使传热管结垢引发爆管事故,严重泄漏则直接影响凝汽器真空,影响发电负荷,更直接威胁到锅炉系统的安

全运行,必须立即停机处理。

针对上述原因分析,发电部门应从以下四个方面采取相应措施,加强运行管理,加大停机检查力度,做好记录归档及备件申报工作。

1、加强凝汽器运行管理,现场岗位每周检测一次凝结水电导率并形成记录,部门管理人员设备点检OK表每周两次对凝汽器运行状况作全面检查;

2、加强中控、现场岗位人员对凝汽器工况异常变化的准确判断能力,同时加大停机检查力度,加强清洗并做好检查记录归档工作;

3、做好冷却铜管备件的国内订货申报工作;

4、对冷却水防腐、杀菌灭藻所加药品CLO2(二氧化氯)、HEDP的加药量、加药速度做适当调整,力求既加入量少又发挥其应有作用。

粗苯工段油汽换热器泄漏的原因分析及防范措施实用版

YF-ED-J5237 可按资料类型定义编号 粗苯工段油汽换热器泄漏的原因分析及防范措施实 用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

粗苯工段油汽换热器泄漏的原因分析及防范措施实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 一、引言: 沙钢焦化厂回收车间粗苯工段至20xx年投 产以来,多次出现油汽换热器泄漏。不仅污染 了粗苯质量,造成巨大的经济损失,还给生产 造成极大的安全隐患。为此焦化厂生产技术人 员通过认真分析,积极采取应对措施,取得了 较为明显的效果。 二、油汽换热器泄漏现象: 1)控制分离器、粗苯回流槽中的粗苯在短 时间内变成黑色;2)用听音棒紧贴油汽换热

器,可听到有“哧哧”的泄漏声音;3)若泄漏明显,油汽换热器富油压力会明显降低,分离水颜色变黑,分离水严重带油。 三、问题分析: 通过车间工艺技术人员分析、汇总,得出油汽换热器泄漏主要有以下几种原因造成; 洗油带水,造成油汽换热器压力升高,富油垫片泄漏;操作不当,造成油汽换热器压力过大,垫片泄漏;煤气质量不达标,造成油管腐蚀泄漏; 具体分析如下: 1)洗油带水,造成油汽换热器压力升高,油汽换热器浮头密封垫片泄漏。 典型案例:20xx年11月一回收车间粗苯工段开工时,由于粗苯工段水试运转刚结束,管

锅炉“四管”爆漏原因分析标准版本

文件编号:RHD-QB-K9840 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 锅炉“四管”爆漏原因分析标准版本

锅炉“四管”爆漏原因分析标准版 本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 腐蚀 锅炉"四管"受热面的腐蚀主要是管外的腐蚀和水品质不合格引起的管内化学腐蚀。当腐蚀严重时,可导致腐蚀爆管事故发生。烟气对管壁的高温腐蚀,主要是灰中的碱金属在高温下升华,与烟气中的SO3生成复合硫酸盐,在550-710℃范围内呈液态凝结在管壁上,破坏管壁表面的氧化膜,即发生高温腐蚀。导致受热面高温腐蚀的主要原因是炉内燃烧不良和烟气动力场不合理,控制局部烟温,保证管壁不超温,防止低熔点腐蚀性化合物贴附在金属表面上,使

烟气流程合理,尽量减少热偏差是减轻高温腐蚀的重要措施。水冷壁上如果产生结渣,在周围处于一定温度和还原性气体条件下,会产生较为严重的水冷壁管外腐蚀。水冷壁的高温腐蚀和还原性气体的存在有着密切的关系,CO浓度大的地方腐蚀就大。管壁温度对腐蚀的影响也很大,在300~500℃范围内,管壁外表面温度每升高50℃,腐蚀程度则增加一倍。水冷壁高温腐蚀部位多在热负荷较高、管壁温度较高的区域,如燃烧器附近。过热器、再热器区还原性气体比炉内低,腐蚀速度一般比水冷壁小。但是大容量锅炉的过热器、再热器的壁温较高,尤其是左右两侧烟温相差较大时,腐蚀现象也相当严重。在腐蚀温度范围内,除选用耐腐蚀的合金钢和奥氏体钢外,应控制炉膛出口烟温的升高和烟温偏差等因素,以免引起局部过高的壁温而使腐蚀速度增大。低温腐蚀是指硫酸

换热器泄漏原因分析及对策

换热器泄漏原因分析及对策 在装置运行和检修过程中,换热器泄漏是经常遇到的现象。就泄漏产生的形态而言,主要有腐蚀泄漏、磨损泄漏、静密封失效泄漏。原因有工艺方面的问题,也有设备的先天不足,还有施工习惯、质量控制等方面的缺陷。本文讨论的重点是通过加强对制造、安装、检修质量的控制来防止泄漏。 1·换热器芯子的泄漏 1.1管束与管板连接焊缝的泄漏 管束与管板间的连接有强度胀、强度焊、胀焊结合3种方式。强度胀如无过大的振动、温度变化和应力腐蚀,是比较理想的连接方式,但由于其工序复杂,对管束端部表面质量、硬度、管板的机加工精度、胀管经验要求很高,因此绝大部分芯子都是焊接方式。但该方式存在着不足:管束与管板的强度焊缝都是焊一遍,很容易出现焊接缺陷,因此,新制作的芯子在进行水压实验时从强度焊缝处泄漏是常有的事。同时,只进行强度焊接的芯子,管束与管孔之间存在着深且窄的间隙,焊缝在间隙内有很大的焊接残余应力,而且间隙中会积聚大量的Cl-,又处于贫氧状态,很容易产生缝隙腐蚀和应力腐蚀而出现腐蚀泄漏。1.2管束的腐蚀泄漏 1.2.1腐蚀泄漏的主要原因 (1)管束质量缺陷。管束表面往往存在着一些缺陷,如细小的砂眼、重皮、凹坑、局部擦伤等,这些缺陷可导致腐蚀的加强,容易产生泄漏。在制造管束的过程中,对管束的表面质量重视不够,认为只要试压不漏就行,实际上管束表面的这些缺陷往往是管束腐蚀泄漏的根源。

(2)折流板或支持板的负作用。主要表现在其管孔不合适或与管板间相互对中不好时会局部挤压管束。使受挤压处的防腐层难以涂上,如果由于外因而折流板或支持板相对于管束稍有错动,未防腐的部分就会裸露出来,从而加速管束的腐蚀。而且该处容易藏污纳垢,形成小的滞流区,导致缝隙腐蚀的产生。管孔外的锐角未去掉,穿管时会刮伤管束。另外,管孔不合适会造成管束的振动破坏。(3)吊装时钢丝绳对管束防腐层的破坏作用。在运输、安装过程中,采用的吊装工具几乎都是钢丝绳,由于其硬度高,很容易将管束的防腐层破坏,这也会造成腐蚀的产生。 (4)检修时吹扫、清洗、试压的负作用。检修时都是用蒸汽吹扫,用新鲜水清洗芯子和试压,而且试压从上水到放水经历的时间很长,结束后又不按要求吹干,这就会导致水分的增加,为腐蚀性介质的充分电离创造了条件;Cl-含量的增加,它们与管束中吸附的Cl-及H2S共同作用,会加剧腐蚀反应的进行;氧含量的增加,氧对碳钢芯子腐蚀起着很大的促进作用。水、腐蚀性介质、氧气的共同作用,使其腐蚀速度远高于水、氧含量低时的腐蚀速度。这就是“检修负效应”产生的主要原因。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式

锅炉省煤器泄漏原因分析及对策

编号:SM-ZD-86766 锅炉省煤器泄漏原因分析 及对策 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

锅炉省煤器泄漏原因分析及对策 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 某电厂一台东方锅炉厂生产的DG410/9.8-6型高温高压锅炉,采用悬挂JI型布置,直流燃烧器,按四角布置,煤粉悬浮切圆燃烧。1999年2月投产,累计运行时间约2万多小时。 该炉省煤器为非沸腾式,错列布置,上下2级省煤器与空气预热器交叉布置。下级省煤器分4组沿竖井烟道深度和宽度方向中心线对称布置。下级省煤器管共132片,264根,规格为32×4,管材为20G。 20xx年初,该炉曾在1个月内连续发生4次下级省煤器磨损泄漏故障,导致4次被迫停炉。检查发现,4次泄漏位置均在下级省煤器甲乙两侧中间U型弯头的迎风面处。裂纹为纵向,裂纹管壁明显减薄,最薄处约为1 mm。对下级省煤器前后箱甲乙侧下数一、二层所有U型弯管子迎风面用测厚仪检测发现,U型弯管子迎风面均有不同程度的磨损。具体情况是,壁厚小于2.5 mm的有93根,其中壁厚小于

管壳式换热器泄漏原因分析及对策

管壳式换热器泄漏原因分析及对策 发表时间:2018-12-18T09:59:15.190Z 来源:《基层建设》2018年第33期作者:许婵娟 [导读] 摘要:针对管壳式换热器在实际应用中出现的典型泄漏问题,本文综述了管壳式换热器在工业领域的作用及其使用现状,并对其在实际生产中的泄漏表现、位置和原因做了相关分析,并结合管壳式换热器的结构特点和工作原理,在设计、制造和操作方面提出行之有效的预防措施。 克莱门特捷联制冷设备(上海)有限公司上海 201419 摘要:针对管壳式换热器在实际应用中出现的典型泄漏问题,本文综述了管壳式换热器在工业领域的作用及其使用现状,并对其在实际生产中的泄漏表现、位置和原因做了相关分析,并结合管壳式换热器的结构特点和工作原理,在设计、制造和操作方面提出行之有效的预防措施。本文从设计、制造、使用等方面分析了管壳式换热器泄漏的原因,探讨了改进和保证同类换热设备密封性能的方法。本文的工作对换热器的运行管理具有一定的参考意义。 关键词:管壳式换热器泄漏预防措施 1前言 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量由温度较高的流体传递给温度较低的流体,使温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药及其他许多工业部门广泛使用的一种通用设备。在化工厂中,换热器的投资约占总投资的10%~20%;在炼油厂中,该项投资约占总投资的35%~40%。管壳式换热器是一种典型的间壁式换热器,这种换热器具有操作弹性大、结构简单坚固、制造方便、使用材料范围广、可靠性程度高等优点,是目前应用最为广泛的一种换热器。由于其在运行过程中经常会发生换热器泄漏故障,不仅直接影响设备的安全稳定运行,还会造成严重的安全事故,因此各换热器制造和使用厂家都在积极探索换热器防泄漏技术。有些研究人员从具体的换热器泄漏事故中找到泄漏原因进行了分析并提出应对措施,从而提出了提高换热管质量、减少换热管振动和在管束侧进行涂料防腐蚀处理的解决措施。部分文献还研究了换热器的腐蚀原因及位置,并分析了不同防腐蚀涂料的利与弊。本文主要总结最典型的介质是冷却水的管壳式换热器在发生泄漏时的状况、位置及原因,并在设计、制造和操作等方面提出相应的措施。 2管壳换热器发生泄漏的原因分析 2.1问题的提出 管壳式换热器是一种广泛使用的工艺设备,在使用中,管壳式换热器的泄漏不仅造成了材料和环境污染的浪费,而且影响了换热器的工作效率和正常的工艺性能。通过对管壳式换热器泄漏原因的分析,探讨了如何防止这种换热器的泄漏。泄漏是导致管壳式换热器发生故障的最常见原因之一,这种故障经常导致整个装置停车,泄漏的物料进入系统管路还会影响到其他设备的安全运行,同时也会严重危及工厂人员的人身安全。若不考虑设计制造和人为操作因素,管壳式换热器泄漏主要有法兰密封面泄漏、腐蚀泄漏和磨损泄漏这几种形式,泄漏的部位主要出现在法兰密封面、换热管和管板连接处、换热管和折流板接触处、换热管弯头处,泄漏的样式主要有管壁减薄、管子表面凹坑穿孔和管子断裂及法兰密封面的物料泄漏等。 2.2设计方面 法兰密封结构、密封表面形式、垫片类型和尺寸、法兰和螺栓尺寸以及材料选择对法兰密封面的泄漏有很大影响。换热器设计一般优先选用标准的压力容器法兰。在我国压力容器法兰设计计算的方法是基于Waters法的法兰设计方法;法兰标准主要是按工程使用经验进行编制的,当选用标准法兰时,不必按Waters法校核其强度,实践表明,压力容器法兰标准是安全可靠的。 法兰设计应考虑的主要失效模式是整个法兰接头的泄漏,还需顾及螺栓、垫片和法兰的强度,影响法兰接头密封性能的因素如下:(1)垫片本身的密封性能,以参数m和Y体现; (2)法兰接头安装时施加合适的螺栓预紧力,以使得在整个操作过程中保证垫片表面比压满足要求; 对于一个特定的螺栓而言,其预紧力的大小与螺栓的拧紧力矩、螺栓与螺母之间的摩擦力、螺母与被联接件之间的摩擦力相关;大量的试验和使用经验证明:;较高的螺栓预紧力对连接的可靠性和被连接的寿命都是有益的,特别对有密封要求的连接更为必要。当然,俗话说得好,“物及必反”,过高的预紧力,如若控制不当或者偶然过载,也常会导致连接的失效,因此,准确确定螺栓的预紧力是非常重要的。 换热器在长期的使用过程中,温度的降低对密封效果也有较大影响。管路在常温下安装,管路升温时膨胀压紧;温度下降时,管路收缩。法兰联接处的泄漏经常发生在温度下降(冷却)过程,因为冷却时法兰和螺栓的冷却速度不一样,冷却后垫片的压紧力发生变化,出现应力松弛,加之管道的冷收缩,产生朝螺栓拉伸方向的力,此力会促使泄漏产生,所以在低温介质场合选择垫片时,应注意:①采用低温下有弹性的垫片。②垫片厚度应尽可能小,法兰间隙尽可能小。③采用高强度螺栓,减小应变。 2.3发生泄漏的原因 2.3.1冷却水水质的影响 在工业生产过程中,设计人员普遍在换热器中使用蒸汽加热工艺介质,或使用冷却水来冷却工艺介质,工业用蒸汽一般都是去除氧、Ca2+和Mg2+等,是比较纯净的蒸汽,很少造成换热器的腐蚀泄漏,而冷却水多使用开放式冷却塔循环水,有的甚至采用高硬度、高碱度地下水,所以一般腐蚀泄漏都是在循环水侧。除此之外,冷却水在换热过程中获得热量成为热水,热水回到冷却塔与空气接触进行交换冷却,使水中溶解氧得到补充而处于饱和状态,同时还会吸收空气中大量的灰尘、泥沙等。然后,冷却水在通过冷却塔时水会被不断蒸发,浓缩后盐、各种矿物质和金属离子的含量都会有所增加,同时电导率也不断上升,由此导致水中的碳酸氢盐容易分解成垢。由于在管道壁上易形成积垢,且介质的温度越高管道内壁结垢的趋势就越严重,长期结垢导致管道流量减小及管道堵通截面积变小,不仅造成管道两端介质压力损失增大,而且水的流速减小会加剧管道结垢的趋势,造成换热效果的降低,同时诱发管道局部腐蚀、应力腐蚀和垢下腐蚀,导致管壁穿孔从而引发泄漏。 2.3.2管壳式换热器结构特点的影响 对于卧式管壳式换热器,由于结构的原因,冷却水可以完全流出,基本不存在死区;而对于立式管壳式换热器,壳程冷却水出口不在最高点,且出口与上管板之间是死区,死区内的冷却水不能完全流出,这导致换热管的端口相对其他部位要腐蚀得更为严重,若不凝气体

锅炉四管爆漏原因分析和预防措施正式样本

文件编号:TP-AR-L5637 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编制:_______________ 审核:_______________ 单位:_______________ 锅炉四管爆漏原因分析 和预防措施正式样本

锅炉四管爆漏原因分析和预防措施 正式样本 使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 锅炉"四管"爆漏占火力发电机组各类非计划停运 原因之首,严重影响火力发电厂安全、经济运行。总 结下电防"四管"泄漏管理经验,对锅炉"四管"爆漏 原因进行分析并提出预防措施。 所谓锅炉"四管"是指锅炉水冷壁、过热器、再热 器和省煤器,传统意义上的防止锅炉四管泄漏,是指 防止以上部位炉内金属管子的泄漏。锅炉四管涵盖了 锅炉的全部受热面,它们内部承受着工质的压力和一 些化学成分的作用,外部承受着高温、侵蚀和磨损的 环境,在水与火之间进行调和,是能量传递集中的所

在,所以很容易发生失效和泄漏问题。据历年不完全统计锅炉"四管"爆漏占火力发电机组各类非计划停运原因之首。锅炉一旦发生"四管"爆漏,增加非计划停运损失,增大检修工作量,有时还可能酿成事故,严重影响火力发电厂安全、经济运行。引起锅炉"四管"泄漏的原因较多,其中磨损、腐蚀、过热、拉裂是导致四管泄漏的主要原因。总结下电防"四管"泄漏管理经验及防磨防爆小组最近10年在下电、托电、盘电、张热电、石热等电厂的工作经验,对锅炉"四管"爆漏原因进行分析并提出预防措施。 一、锅炉"四管"爆漏原因分析 1.磨损 煤粉锅炉受热面的飞灰磨损和机械磨损,是影响锅炉长期安全运行的主要原因。飞灰磨损的机理是携带有灰粒和未完全燃烧燃料颗料的高速烟气通过受热

浮头式换热器泄漏原因分析

浮头式换热器泄漏原因分析 马岩军 (乌鲁木齐石化公司,830019) 摘要介绍乌鲁木齐石化炼油分公司II套常减压装置渣油冷却器运行情况,查找易内漏原因,从而针对原因制定相应解决办法。 主题词:换热器泄漏温度解决办法 浮头式换热器在正常使用过程中,因管束均匀受热,浮头侧可自由膨胀,管束不 但如果换热器管束受热不均匀,就会造成部分管束的膨胀或收缩与大多数管束的不同步,从而导致这部分管束产生巨大的热应力,使管束与管板间的焊缝被拉裂而发生泄 造成管束膨胀或收缩的原因主要有以下几种:

1、投用、停用造成泄漏隐患 在这两种过程中,或由于未严格按照操作规程中换热器投用程序执行操作,或由于操作规程中所规定的操作程序本身存在问题,使换热器部分管束受力过大,造成泄漏隐患。如:一般情况下,冷却器为热源走壳程,冷源走管程,在投用冷却器时,如果在管程中还未充满冷却介质时就投上了热源,就会造成顶部尚未充入冷却介质的管子温度上升到与热源查同的温度,远远高于下部的管子温度,从而产生强大的热应力,使管子焊缝拉裂。相反,在停用冷却器时,在壳程介质温度还很高的情况下即切水,可使露出水面的管子温度逐渐上升,当水将切尽时,大部分管子的温度都已升高到热源温度,最底层的几根管子仍在水中,因温度相差较大,热膨胀量不同,造成底部管子受到非常大的拉应力,焊缝是受力的薄弱部分,极易被破坏! 解决方案:对操作规程中涉及换热器操作的部分内容进行特别审定和修订,特殊情况应特殊对待。 以二常E-148/E-149为例,在渣油进罐区时投用,停进罐区时停用,经常性切换,使管束承受较大的热应力,可采用的方案为:1、每次停用时将换热器渣油侧吹扫干净后再切水,投用时按正常程序操作。防凝顶油时不经换热器而走付线,就可在很大程度上避免管束应力的发生,但不能从根本上杜绝热应力。2、将管束改为U形管,可彻底消除不均匀热膨胀所产生的热应力,避免焊缝开裂。这是最好的解决办法。 2、介质因素造成泄漏 事例一、冷却水中杂质含量高,生物粘泥量大,使部分管子被堵塞,冷却水不能通过,则这部分管子的温度将升高,产生热应力使焊缝开裂。典型现象为:杂质、泥沙等易在冷却器底部管束内沉积,使冷却器底部的管子焊缝开裂。二常冷却器的泄漏焊缝大多有这一特征。 解决方案:

省煤器泄漏的原因分析及处理措施

锅炉省煤器泄漏原因分析 我厂锅炉为济南锅炉厂生产的75t/h循环流化床锅炉,其中燃料有混煤、煤泥、煤气。从04年11月份投产运行至今。自2010年12月至2011年2月因省煤器泄漏停炉共计4次,其中2#炉两次,3#炉两次,目前1#炉已堵管8根,2#炉堵管9根,3#炉堵管10根。锅炉省煤器的频繁泄漏,致使电厂生产组织比较被动,针对省煤器的磨损、腐蚀、设备结构、生产操作等方面4月8日厂部组织召开分析讨论会,参会人员有技术装备部、总工办、生产运行部以及电厂司炉以上专业人员。通过大家讨论分析对电厂省煤器泄露得到以下结论: 一、省煤器泄漏机理分析 锅炉省煤器泄漏的原因非常复杂,主要由磨损、腐蚀引起。以下主要就这两方面探讨省煤器泄漏的机理。 1.磨损 由磨损导致的泄漏中,飞灰磨损是主要原因,影响的因素包括飞灰浓度、烟气流速、飞灰的磨损性能等方面;另外,省煤器的结构也会磨损。 1.1 飞灰浓度 飞灰浓度大,表明烟气中含灰量多,灰粒撞击受热面的次数增多,引起磨损加剧。煤质变差,灰分增加,发热量低,燃煤量也增加,造成烟气中飞灰浓度剧增,增加了省煤器的磨损。从去年8月份到今年二月份所消耗燃料统计如下:

从上表可以看出,最近4个月所消耗混煤明显增多,且灰分相对较高。这样所消耗燃料相等于去年单月的2—3倍,锅炉飞灰浓度也就增加了2—3倍,对受热面的磨损程度也就可想而知。 1.2烟气流速 烟气流速是影响受热面磨损的最主要因素。研究表明,磨损量与烟气流速的2.3次方成正比。烟气流速越高,则省煤器的磨损越严重。磨损量甚至能与烟气速度成n(n>3)次方关系。原因可以解释为:冲蚀磨损源于灰粒具有动能,颗粒动能与其速度的平方成正比。磨损还与灰浓度(灰浓度又与速度的一次方成正比)、灰粒撞击频率因子和灰粒对被磨损物体的相对速度有关。若近似地认为vp≈vg时,磨损量就将和烟气的三次方成正比。烟气速度的提高,会促使上述原因的作用加强,从而导致冲蚀磨损的迅猛发展,所以烟气流速越大时,n值也就越大。造成烟气流速高的原因: 受煤质影响,运行中一次风较大、总风量过大,使引风机电流偏高处于44-47A之间(正常应为38-41A),尾部烟道负压大(过热器前烟气温度经常处于980度以上),造成烟气流速高,加剧了对省煤器的磨损。 1.3煤颗度大,按要求应为0-8mm,但实际上有三分之一煤颗粒度最大能粒达到45mm,这样导致飞灰颗粒变大,对省煤器的冲刷加重。 1.4设备结构的影响 所选省煤器的型式和结构不同,其磨损程度不同。 (1)在相同条件下,光管、鳍片管、膜式管束其抗磨性能依次减弱,本厂属于鳍片管式省煤器。 (2)省煤器管束顺列布置比错列布置磨损要轻,本厂属于顺列布置。(3)错列布置磨损最严重的为第二排管子,顺列布置磨损最严重的则在第五排之后; (4)鳍片管省煤器的鳍片越高,磨损越严重。当鳍片高度较小(h=3㎜)时与光管的磨损程度较为接近。故加装小高度鳍片对防磨有利; (5)膜式省煤器错列布置时,大管径比小管径的管子磨损要轻。 2、腐蚀

省煤器中的问题

省煤器设计中的问题 一、省煤器的作用及种类 1.1省煤器的作用 省煤器是汽水系统中的承压部件,其任务是利用锅炉尾部烟气的热量加热锅炉给水。锅炉采用省煤器后,会带来以下好处: a.节省材料。 在现代锅炉中,燃料燃烧生成的高温烟气,虽经水冷壁,过热器和再热器的吸热,但其温度还很高,如直接排入大气,将造成很大的热损失。在锅炉尾部装设省煤器后,利用给水吸收烟气热量,可降低排烟温度,减少排烟热损失,提高锅炉效率,因而节省燃料。省煤器的名称也就由此而来。 b.改善了汽包的工作条件。 由于采用省煤器,提高了进入汽包的给水温度,减少了汽包壁与进水之间的温度差,也就减少了因温度差而引起的热应力。从而改善了汽包的工作条件,延长了使用寿命。c.降低了锅炉造价。 由于给水进入蒸发受热面之前,先在省煤器中加热,这样减少了水灾蒸发受热面中的吸热量。这就由管径较小、管壁较薄、价格较低的省煤器受热面代替了一部分管径较大、管壁较厚、价格较高的蒸发受热面,从而降低了锅炉造价。 因此,省煤器已是现代锅炉中不可缺少的部件。 1.2省煤器的种类 省煤器按使用材料可分为铸铁省煤器和钢管省煤器。铸铁省煤器强度低,不能承受高压,但耐磨耐腐蚀性较好,通常用在小容量锅炉上。目前,大容量锅炉广泛采用钢管省煤器,其优点是强度高,能承受冲击,工作可靠;同时传热性能好,重量轻,体积小,价格低廉。缺点是耐磨耐腐蚀性较差。 二、钢管式省煤器 1,钢管式省煤器的结构 钢管式省煤器结构是由许多并列的管径为42~51mm蛇形管与进、出口联箱组成。为使省煤器受热面结构紧凑,应力求减少管间距。省煤器管束的纵向节距s2受管子的最小弯曲半径的限制。当管子弯曲时,弯头的外侧管壁将变薄。弯曲半径愈小,外壁就愈薄,管壁强度降低的就愈多。通常,采用错列布置时,采用s1/d=2~2.5,s2/d=1~1.5;采用顺列布置时,s1/d=2~2.5,s2/d=2。 为便于检修,省煤器组的高度是有限制的。当管子为紧密布置(s2/d≤1.5)时,管组的高度不得大于1m;布置教稀时,则不得大于1.5m。如果省煤器受热面较多,沿烟气行程的高度较大时,就应将它分成几个管组。管组之间留有高度不小于600~800mm的空间。省煤器和其相邻的空气预热器间的空间高度应不小于800~1000mm,以便进行检修和清除受热面上

锅炉省煤器爆管的原因分析与处理措施标准版本

文件编号:RHD-QB-K5345 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 锅炉省煤器爆管的原因分析与处理措施标准版 本

锅炉省煤器爆管的原因分析与处理 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 1 省煤器超温爆管机理分析 省煤器超温爆管的原因非常复杂,主要由磨损、腐蚀以及振动引起。以下主要就这三方面探讨省煤器超温爆管的机理。 1.1 磨损 由磨损导致的爆管中,飞灰磨损是主要原因,影响的因素包括飞灰浓度、烟气流速、飞灰的磨损性能等方面;另外,省煤器的结构也会磨损。 1.1.1 飞灰浓度 飞灰浓度大,表明烟气中含灰量多,灰粒撞击受

热面的次数增多,引起磨损加剧。我国煤种的多样性和电厂用煤的不确定性,使当前许多电厂的燃煤含灰量大于设计值。有的燃料灰分高达40。煤质变差,灰分增加,燃煤量也增加,造成烟气中飞灰浓度剧增,增加了省煤器的磨损。 1.1.2 烟气流速 烟气流速是影响受热面磨损的最主要因素。一些研究表明,磨损量与烟气流速的2.3次次方成正比。烟气流速越高,则省煤器的磨损越严重。磨损量甚至能与烟气速度成n(n>3)次方关系。原因可以解释为:冲蚀磨损源于灰粒具有动能,颗粒动能与其速度的平方成正比。磨损还与灰浓度(灰浓度又与速度的一次方成正比)、灰粒撞击频率因子和灰粒对被磨损物体的相对速度有关。若近似地认为vp≈vg时,磨损量就将和烟气的三次方成正比。烟气速度的提高,

换热器泄漏原因和处理措施

换热换热器泄漏经常导致整套其他设备的安全运行,甚至引起目前应用最广泛的换热器泄漏威胁主机或其他设备的安全运列管式换热器介绍 列管式换热器是目前应用 体积设备所能提供的传热面积换热器泄漏原因和处理措施 致整套装置停车,不仅影响生产的经济性,还常常直接至引起严重的设备损害事故。 列管式换热器介绍器泄漏经常导致整套装置停车,不仅影响生产的经济性安全运行,甚至引起严重的设备损害事故。 前应用最广泛的一种换热设备。与其它几种间壁换热器热面积要大得多,传热效果也较好。 常直接威胁主机或 列管式换热器是经济性,还常常直接 换热器相比,单位

列管式换热器是由管子、在进行换热时,一种流体流出,这称之管程;另-种流体程。 列管式换热器泄漏原因 列管换热器内部管系泄漏管子、管板、折流板、壳体、端盖(管箱)等组成。种流体由封头的连结管处进入,在管流动,从封头另一种流体由壳体的接管进入,从壳体上的另一接管处流出原因 系泄漏主要分为管子本身泄漏和管子端口泄漏。 头另一端的出口管处流出,这称为壳

换热器管子端口泄漏原因1热应力过大 列管式换热器在操作时,由于冷、热流体温度不同,使壳体和管壁的温度互有差异。这种差异使壳体和管子的热膨胀不同,当两者温差较大时可能将管子扭弯,或使管子从花板上拉松,甚至毁坏整个换热器。对此,就必须结构上考虑热膨胀的影响,采用各种补偿的方法。 换热器在启停过程中温升率、温降率超过规定,使高加的管子和管板受到较大的热应力,使管子和管板相联接的焊缝或胀接处发生损坏,引起端口泄漏管板变形主要是管板的加工变形及加工时产生的变形,管子与管板相连,管板变形会使管子的端口发生泄漏。 3堵管工艺不当 一般常用锥形塞焊接堵管。打入锥形塞时用力要适度;捶击力量太大,引起管孔变形,影响邻近管子与管板连处,会造成损坏而使之出现新的泄漏。 焊接过程中,如预热、焊缝位置及尺寸不合适,会造成邻近管子与管板连接处的损坏。 采用其他堵管方法,如胀管堵管、爆炸堵管等,如工艺不当,也会引起邻近管口的泄漏。因此应遵循严格的堵管工艺。 换热器管子本身泄漏原因1冲刷侵蚀 一种原因是当蒸汽的流动速度较高且汽流中含有大的水滴时,管子外壁受汽、水两相流冲刷,变薄,发生穿孔或受给水压力而鼓破。 另一种原因是受到蒸汽或疏水的直接冲击。因防冲板材料和固定方式不合理。在运行中破碎或脱落,失去防冲刷保护作用;防冲板面积不够大,水滴随高速气流运动,撞击防冲板以外的管束;壳体与管束间的距离太小,使入口处的汽流速度很高。 2管子振动 给水温度过低或机组超负荷等情况下,通过换热器管子间蒸汽流量和流速超过设计值较多时,具有一定弹性的管束在壳侧流体扰动力的作用下会产生振动,当激振力的频率与管束自然振动频率或其倍数相吻合时,将引起管束共振,使振幅大大的增加,导致管子与管板的连接处受到反复作用力造成管束损坏。 3管子给水入口端的侵蚀 入口管端的侵蚀损坏只发生在碳钢换热器中,是一种侵蚀和腐蚀共同作用的损坏过程:其机理是管壁金属在表面形成的氧化膜被高紊流度的给水破坏并带走,金属材料不断损失。最终导致管子的破损。 4腐蚀 当低压换热器的管材为铜,低加铜管常因泄漏严重而被迫更换。pH 值8.5~8.8 时,铜的腐蚀率最低.而碳钢要求pH 值不小于9.5。锅炉给水pH 值过高,导致了铜管的腐蚀。 5材质、工艺不良

省煤器磨损泄漏的原因分析

省煤器磨损泄漏的原因分析 如果省煤器发生磨损泄漏的话,就会导致其被迫停炉。所以当省煤器发生磨损泄漏时,一定要及时分析其原因,才能知道应对措施。 1、实际燃料性质及煤粉细度与设计值不同 在磨损中起主要作用的是烟气中的那些大颗粒飞灰,且磨损程度与总灰量有关。总灰量愈多,灰粒对省煤器管子的撞击次数也就愈多,磨损就愈严重,而且总灰量决定于燃料灰分Ay和低位发热量Qdwy。 该炉设计煤种收到基灰分24.26%,实际燃煤应用基灰分(Ay)约39.50%;煤粉细度(R90)设计值为22~28,实际细度(R90)在30左右,均与设计煤种有较大偏差。煤粉粗、灰分大将导致灰粒和未完全燃烧的燃料颗粒增多,烟气中的飞灰浓度增高,加剧了对省煤器的磨损。 2、省煤器管束排列方式及安装质量的影响 烟气横向冲刷通豪省煤器管子时,管束排列方式不同,管子受磨损情况也不一样。错列管束受到的磨损要比顺列管束严重,第2排管束的磨损量要比第1排大2倍左右,且气流自上而下流动,灰粒在重力作用下其速度可能大于烟气速度,从而加剧了冲击磨损程度。该炉省煤器错列布置,并采用规格为32×4钢管,由于小口径管子刚性较差,管壁较薄。造成实际蛇形管排列不齐,加之安装的原因,无法保证整齐均匀的节距和管间距,导致省煤器管排中出现烟气走廊,使局部管壁金属磨损严重。 3、防磨措施不完善 在下级省煤器甲乙侧U型弯处,只是在最上面加装了防磨装置(挡风板),由于下级省煤器高度约为3 255 mm,上面的防磨装置对下面U型弯处的防磨没有作用,因此,下级省煤器下部U型弯处磨损严重。 4、燃烧工况的影响 锅炉运行中的燃烧风量过大会造成烟气量加大,而使磨损速度增加。计算表明,省煤器中过量空气系数由1.2增加到1.3时,磨损量增加25%。 5、其它因素 该炉容量占全厂锅炉总容量的50%,在供热期间长期满负荷运行,因而该炉省煤器管束受磨损的时间长,磨损量大,同时锅炉存在漏风现象。

板式换热器泄漏原因分析及防护措施

化工技术:板式换热器泄漏原因分析及防护措施 设备维护技术:摘要:文章介绍了板式换热器在使用中出现的泄漏故障,并对此进行了分析,同时针对本次事故发生的原因提出了相应的预防措施。关键词:板式换热器;密封;失效原因;措施板式换热器是一种结构紧凑、性能高效的换热器。与同样换热能力的管壳式换热器相比,板式换热器的占地面积只相当于管壳换热器的1/4左右。板式换热器传热效率高,能使两种热交换流体子较低的流速下增加扰动,强化传热,传热系数K值比管壳式换热器提高了3-5倍。板式换热器组装灵活,只要增减板片数量或改变板式组装流程既可满足板式换热器在生产上改变工艺条件和产量的要求,同时热损失小,不需要保温层,质量轻,检维修方便,广泛应用于化工装置中。1板式换热器的结构特点板式换热器主要有传热板、垫片和押金装置三部分组成。传热板式薄金属板冲压成人字形波纹而成。每块板的周边密封槽内粘有垫片。通过压紧装置压紧后可达到密封的目的,并由两块板之间形成流道。每块板的四个角上有一个孔道,借助与垫片的配合使两个对角方向的孔与板面上的流道接通。而另外的两个孔靠垫片与板面上流道隔开。一般情况下,冷热两种流体在通道内逆向流动,热介质将热能传递给板片,板片有将热能传递给板片另一侧的冷介质,从而达到热介质温度降低被冷却,冷介质温度升高得到加热的目的。2H126工艺流程炔烃萃取精馏岗位T-104塔顶送来的粗丁二烯气相加入脱重塔上塔T-112B第1板,与塔内下降的液相在塔盘上传质传热、精馏分离,最后塔顶得到脱除重组份的粗丁二烯,该丁二烯气相部分经流量仪表FRC705控制流量直接作为脱轻塔T-110加料,另一部分进入塔顶冷凝器H-126a/b/c/d冷凝为液相后,流入脱重塔回流罐R-129。冷凝器H-126A/B/C/D/E/F用循环水做冷剂,脱重系统压力由仪表PRC108通过调节循环水量来控制。脱重塔回流罐R-129液相由回流泵P-120a/b抽出,经回流罐液面仪表LRC116与回流量控制仪表FRC123串级调节后,送T-112B塔顶作为回流。3脱重塔顶冷凝器H126A/B/C/D/E/F检修中出现的问题抽提丁二烯装置中脱重塔顶冷凝器H126A/B/C/D/E/F六台板式换热器于1992年6月投入生产以来,运行良好,没有出现过任何泄漏故障。为了减少板式换热器的检修清洗次数,我们在冷热介质的进口管线上设有粗过滤器,防止3—5mm的颗粒杂物阻塞板片通道。2006年大检修我们按照惯例对H126A/B/C/D/E/F 进行检查,打开各进出口短管检查进出口短管是否堵塞,若有必要则进行解体检查清理更换密封垫,若不需要更换密封垫则直接恢复,这样可节约检维修费用近10万元。经查发现H126B/C/E关口堵塞严重,于是按照检修规程进行解体检查、清理更换密封垫。负荷切出H126B/C/E进行检修,打开后发现有不少垫片有不同程度的损坏,我们分析认为密封垫片存在质量问题,与厂家联系后,厂家认为密封垫片不会有质量问题,长期以来都是该厂家为我们供货,从来没有出现过质量问题。他们认为我们使用的密封胶质量不好,在安装过程中使用风动扳手时用力不均造成密封垫片受力不均发生断裂泄漏,但是我们一直都是按照检修规程进行检修,以前使用风动扳手也没有出现过这样的问题。最后双方达成协议由厂家现场指导检修和质量验收,我们则严格按照检修规程进行检修:把板片放在平地上用高压水枪清洗板片,用刮刀对密封槽内残余的粘剂进行清理;严格检查清洗后的板片、密封槽有没有裂纹、穿孔等缺陷;使用厂家提供的密封胶粘接密封垫,并由厂家现场指导;将粘好的板片逐步对齐叠放在御制好的钢板上,五十片板放一垛,上面再压上尺寸相近的钢板,借助槽钢用四条螺栓用力均匀把紧,在室温下固化24h以上;固化结束后再逐片检查,对局部余胶形成的高出胶峰予以清除,对胶条脱槽、滚动扭曲的挑出重新进行清理粘接,清洗固定夹板上流道密封槽,并在框架轨道上涂上二硫化钼,以便可拆卸框架、推拉方便,并按奇数板N—偶数板S—N—S的顺序交替挂在框架上,用手尽可能的拧紧螺栓到一定程度后,然后用专用增力扳手对称进行紧固,边紧边测量,夹板最终尺寸到达拆卸时的尺寸是紧固所有螺栓,试压查漏后投入生产。运行又不到一周后,H126B/C/E这三台经检修的换热器又相继发生了泄漏,于是又降低负荷,切出设备进行

锅炉省煤器泄漏原因分析

锅炉省煤器泄漏原因分析 一、省煤器泄漏机理分析 锅炉省煤器泄漏的原因非常复杂,主要由磨损、腐蚀引起。以下主要就这两方面探讨省煤器泄漏的机理。 1.磨损 由磨损导致的泄漏中,飞灰磨损是主要原因,影响的因素包括飞灰浓度、烟气流速、飞灰的磨损性能等方面;另外,省煤器的结构也会磨损。 1.1烟气流速 烟气流速是影响受热面磨损的最主要因素。研究表明,磨损量与烟气流速的2.3次方成正比。烟气流速越高,则省煤器的磨损越严重。磨损量甚至能与烟气速度成n(n>3)次方关系。原因可以解释为:冲蚀磨损源于灰粒具有动能,颗粒动能与其速度的平方成正比。磨损还与灰浓度(灰浓度又与速度的一次方成正比)、灰粒撞击频率因子和灰粒对被磨损物体的相对速度有关。若近似地认为vp≈vg时,磨损量就将和烟气的三次方成正比。烟气速度的提高,会促使上述原因的作用加强,从而导致冲蚀磨损的迅猛发展,所以烟气流速越大时,n 值也就越大。造成烟气流速高的原因:受煤质影响,运行中一次风较大、总风量过大,使引风机电流偏高处于44-47A之间(正常应为38-41A),尾部烟道负压大(过热器前烟气温度经常处于980度以上),造成烟气流速高,加剧了对省煤器的磨损。 1.2煤颗度大,按要求应为0-8mm,但实际上有三分之一煤颗粒度最

大能粒达到45mm,这样导致飞灰颗粒变大,对省煤器的冲刷加重。 1.3设备结构的影响 所选省煤器的型式和结构不同,其磨损程度不同。 (1)在相同条件下,光管、鳍片管、膜式管束其抗磨性能依次减弱,本厂属于鳍片管式省煤器。 (2)省煤器管束顺列布置比错列布置磨损要轻,本厂属于顺列布置。(3)错列布置磨损最严重的为第二排管子,顺列布置磨损最严重的则在第五排之后; (4)鳍片管省煤器的鳍片越高,磨损越严重。当鳍片高度较小(h=3㎜)时与光管的磨损程度较为接近。故加装小高度鳍片对防磨有利;(5)膜式省煤器错列布置时,大管径比小管径的管子磨损要轻。2、腐蚀 2.1省煤器腐蚀的类型 省煤器的腐蚀包括管内腐蚀和管外腐蚀。 管内腐蚀属于氧腐蚀,也叫吸氧腐蚀,是指锅炉给水虽然经过处理,但仍含有一定量的氧,而氧的化学性质很活泼,能与钢铁设备的铁元素发生反应,造成钢铁设备的腐蚀,生成铁的氧化物Fe2O3和Fe3O4,便是日常所说的铁锈。我厂近几年的运行除氧器的效果不好,锅炉给水的含氧量应低于15ug/L,而实际运行过程中除氧器的温度参数虽然能达到,但压力控制不下来,含氧量应远高于设计值。 根据上述氧腐蚀原理,在给水流经省煤器管内时,由于温度较高,极易发生省煤管内氧腐蚀,在管内壁上形成溃疡状腐蚀坑陷,危及省

列管式换热器泄漏分析及处理

列管式换热器泄漏分析及处理 过控08-1 林联柯 06082883 主要就换热器用途、结构、工作原理、泄漏位置,泄漏原因分析,处理方法、预防措施、检修注意事项等方面做了详细的阐述。 1 引言 列管式换热器是目前应用最广泛的一种换热设备。与其它几种间壁换热器相比,单位体积设备所能提供的传热面积要大得多,传热效果也较好。由于设备结构紧凑、坚固,且能选用多种材料来制造,故适应性较强,尤其在大型装置和高温、高压中得到广泛应用。 列管换热器主要有壳体、管束、关板(又称花板)和顶盖(又称封头)等部件组成。是化工企业的一种主要辅助设备。换热器泄漏是我们厂最出现频繁的问题之一,经常导致整套装置停车,换热器一旦发生故障,不仅影响生产的经济性,还常常直接威胁主机或其他设备的安全运行,甚至引起严重的设备损害事故。多年来厂里给水换热器各种故障中,管系泄漏所占比重最大。表面式回热换热器水侧压力大于汽侧压力,一旦管系泄漏,给水就会冲入壳体,引起汽侧满水。水将有可能沿着抽汽管道倒灌人汽轮机,造成汽轮机汽缸变形,胀差变化,机组振动,甚至叶片断裂等事故。这类由于换热器泄漏而引起整套装置停车和汽轮机进水的事故在厂里发生过多起。因此分析换热器泄漏原因,找出对策,以尽可能减少泄漏十分重要。 2 泄漏原因分析 列管换热器内部管系泄漏主要分为管子本身泄漏和端口泄漏。 2.1 管子端口泄漏原因 2.1.1 热应力过大 列管式换热器在操作时,由于冷、热流体温度不同,使壳体和管壁的温度互有差异。这种差异使壳体和管子的热膨胀不同,当两者温差较大时可能将管子扭弯,或使管子从花板上拉松,甚至毁坏整个换热器。对此,就必须结构上考虑热膨胀的影响,采用各种补偿的方法。换热器在启停过程中温升率、温降率超过规定,使高加的管子和管板受到较大的热应力,使管子和管板相联接的焊缝或胀接处发生损坏,引起端口泄漏:调峰时负荷变化速度太快以及主机或换热器故障而骤然停运换热器时,如果汽侧停止供汽过快,或汽侧停止供汽后,水侧仍继续进入给水,因管子管壁薄,收缩快,管板厚,收缩慢,常导致管子与管板的焊缝或胀接处损坏。这就是规定的温降率允许值只1.7℃/min- 2.0℃/min,比温升率允许值2℃/min- 5℃/min 要严格的原因。 2.1.2 管板变形 主要是管板的加工变形及加工时产生的变形,管子与管板相连,管板变形会

锅炉四管泄漏和爆破的原因及预防措施(新编版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 锅炉四管泄漏和爆破的原因及预 防措施(新编版)

锅炉四管泄漏和爆破的原因及预防措施(新 编版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 在电站锅炉运行中,锅炉四管(省煤器,水冷壁,过热器,再热器)的泄漏,爆破约占到各类事故总数的30%,有的机组甚至高达50%-70%的比例,由此可见认真做好防止锅炉受热面的泄漏和爆破工作,对减少机组非计划停运次数和提高设备健康水平将是十分关键的,下面简要分析引起锅炉受热面泄漏,爆破的原因及应该采取的预防措施。 造成锅炉四管泄漏或爆破的原因是多种多样的,较为常见的原因主要有:管材本身存在缺陷或运行年久管材老化,焊接质量不良,管内 结垢或被异物堵塞,由于管壁腐蚀或高温烟气冲刷,飞灰磨损等原因造成管壁减薄,管壁由于冷却条件恶化发生的短期大幅度超温或长期过 热超温,受热面设计或安装不合理,运行操作不当等. 为了防止锅炉受热面泄漏和爆破事故的频繁发生,从锅炉生产运 行角度分析应做好以下预防措施工作.

管壳式换热器泄漏原因分析及改进设计A

管壳式换热器泄漏原因分析及改进设计思路 摘要:分析管壳式换热器的泄漏现象,提出折流板与铜管之间存在微小间隙,在压缩空气的冲刷下,两者之间频繁的碰撞和摩擦,导致铜管壁破裂泄漏。文章还提出了在铜管与管板之间增加耐磨的聚四氟乙烯套管,来保护换热铜管的设计思路。 关键词:管壳式换热器;泄漏;分析;改进设计 1 故障现象 压缩空气是卷烟生产企业的必要动力之一,淮阴卷烟厂动力中心站房内安装使用压空设备是4台水冷式BOGE SO340无油螺杆空压机。设备于2001年投用,状态一直比较平稳,但近期却多次发生冷却器内漏的情况。其中一台冷却器漏水,由于发现不及时,导致冷却水进入了压缩机腔体,造成Ⅱ级转子抱死的严重情况,由于故障出现的较有规律性,因此对其进行了相关的调查和分析,并提出了一些改进建议,供同行借鉴。 2 泄漏原因调查 (1)冷却器的基本结构及有关参数BOGE SO340无油螺杆空压机为两级压缩,配置的冷却器为两回程管壳式换热器(结构见图1),冷却水走管程,压缩空气走壳程,换热器主要部件为紫铜管,管径8 mm,壁厚1 mm,共计232根换热管。

冷却器中冷却水进口温度在25—32℃之间(冬夏季有所差异),出口温度小于38℃,压缩空气出口温度在180—195℃之间,I级压缩出口压力在2 bar左右,Ⅱ级出口压力在7.0—7.5 bar之间。 (2)故障调查 通过对发生泄漏的4台换热器进行检漏,发现泄漏点多分布在换热器上部,即靠近压缩空气进口侧位置(如图1所示),共计有5处漏点,其中1位置处有2根管有漏点,2位置处有2根管有漏点,3位置处有1根管有漏点。进一步检查发现,漏点基本都分布在折流板与铜管接触的地方,5处漏点中有3处为局部穿孔泄漏,2处为局部裂纹泄漏,用手对换热铜管施加外力,发现上部的铜管有轻微的松动,铜管与折流板之间有擦痕,下部的铜管无此现象。 3 泄漏原因分析 (1)发生泄漏的部位多发生在冷却器的上部,此处是压缩空气出口与换热器接触的位置。由于压缩空气的出口温度(180—195℃)较高,因此换热器上部的铜管外壁温度也最高,机组长期运行特别是重载运行的时候,容易造成铜管受热,机械强度下降。但管壳式换热器的结构形式决定了这种情况是难以克服的。具体机械强度的影响有多大,难以准确判断,这里只能作定性分析。笔者认为对于本案例,这只是导致泄漏的一个次要原因。 (2)管壳式换热器在加工工艺中,换热铜管被穿过两头的管板和中间的折流板,然后用机械涨管的方法将铜管与管板固定。折流板和铜管之间为了穿管方便,一般折流板的孔洞都会留有公差配合,这就使得折流板与铜管之间存在一定的间隙(见图 2),也就是说折流板和铜管之间实际上是松动的。当空压机重载运行时,被压缩的高温(180—195℃)高速(查设备手册,压缩空气出口速度在10.6 m/s)空气进入换热器后持续的冲刷铜管,由于铜管两端是固定的,压缩空气的冲击力作用在铜管上,导致铜管受力扰动变形;

相关文档
最新文档