高中数学必修1复习学案

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

高中数学 第三章复习教学案 北师大版必修1

高中数学 第三章复习教学案 北师大版必修1
教案、学案用纸
年级高一 授课时间 学习重点 学习难点 学科数学 课题 撰写人 指数函数与对数函数的性质 灵活运用函数性质解决有关问题 第三章复习
学 习 目 标
理解指数与对数,指数函数与对数函数的联系;能更加熟练解决与指数函数、对数 函数有关问题
教 一



自 主 学 习
1. 回顾本章知识网络:
2. 指数与对数互化
) D. y
1 x
2、函数 y=log 2 x+3(x≥1)的值域是( A. 2, B.(3,+∞)
C. 3,
3、若 M {y | y 2x }, P {y | y A. { y | y 1} B. { y | y 1}
x 1} ,则 M∩P(
C. { y | y 0}
二 例 1 已知函数 f ( x) log a 并证明
师 生 互动
x5 ( a 0, a 1) ,判断 f ( x ) 在 x (, 5) 上的单调性, x5
2 ( x R) , 2 1 (1) 试证明:对于任意 a, f ( x) 在 R 为增函数; (2)试确定 a 的值,使 f ( x ) 为奇函数。



B、 ( 2 ,1) (1, 2 ) D、 ( 2,1) (1,2)
8、函数 f ( x) | log 1 x | 的单调递增区间是
2
1 A、 (0, ] 2
B、 (0,1]
C、 (0,+∞)来自D、 [1,)四 课 后 反 思
五 课 后 巩 固 练 习 1 、图中曲线分别表示 y l o g a x , y l o gb x , y l o g c x , y l o g d x 的图象, y

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

新教材 人教A版高中数学选择性必修第一册全册优秀学案(知识点考点汇总及配套习题,含解析)

人教A版高中数学选择性必修第一册全册学案第一章空间向量与立体几何........................................................................................................ - 2 -1.1空间向量及其运算......................................................................................................... - 2 -1.1.1空间向量及其线性运算...................................................................................... - 2 -1.1.2空间向量的数量积运算.................................................................................... - 16 -1.2空间向量基本定理....................................................................................................... - 29 -1.3空间向量及其运算的坐标表示................................................................................... - 38 -1.3.1空间直角坐标系................................................................................................ - 38 -1.3.2空间运算的坐标表示........................................................................................ - 46 -1.4空间向量的应用 .......................................................................................................... - 59 -1.4.1用空间向量研究直线、平面的位置关系........................................................ - 59 -第1课时空间向量与平行关系........................................................................ - 59 -第2课时空间向量与垂直关系........................................................................ - 69 -1.4.2用空量研究距离、夹角问题............................................................................ - 79 -章末总结 ............................................................................................................................... - 97 - 第二章直线和圆的方程............................................................................................................ - 113 -2.1直线的倾斜角与斜率................................................................................................. - 113 -2.1.1倾斜角与斜率 ................................................................................................. - 113 -2.1.2两条直线平行和垂直的判定.......................................................................... - 121 -2.2直线的方程 ................................................................................................................ - 131 -2.2.1直线点斜式方程.............................................................................................. - 131 -2.2.2直线的两点式方程.......................................................................................... - 137 -2.2.3直线的一般式方程.......................................................................................... - 145 -2.3直线的交点坐标与距离公式..................................................................................... - 154 -2.3.1两条直线的交点坐标...................................................................................... - 154 -2.3.2两点间的距离公式.......................................................................................... - 154 -2.3.3点到直线的距离公式...................................................................................... - 163 -2.3.4两条平行直线间的距离.................................................................................. - 163 -2.4圆的方程 .................................................................................................................... - 171 -2.4.1圆的标准方程 ................................................................................................. - 171 -2.4.2圆的一般方程 ................................................................................................. - 180 -2.5直线与圆、圆与圆的位置关系................................................................................. - 188 -2.5.1直线与圆的位置关系...................................................................................... - 188 -2.5.2圆与圆的位置关系.......................................................................................... - 199 -章末复习 ............................................................................................................................. - 208 - 第三章圆锥曲线的方程............................................................................................................ - 222 -3.1椭圆 ............................................................................................................................ - 222 -3.1.1椭圆及其标准方程.......................................................................................... - 222 -3.1.2椭圆的简单几何性质...................................................................................... - 234 -第1课时椭圆的简单几何性质...................................................................... - 234 -第2课时椭圆的标准方程及性质的应用...................................................... - 244 -3.2双曲线 ........................................................................................................................ - 256 -3.2.1双曲线及其标准方程...................................................................................... - 256 -3.2.2双曲线的简单几何性质.................................................................................. - 267 -3.3抛物线 ........................................................................................................................ - 281 -3.3.1抛物线及其标准方程...................................................................................... - 281 -3.3.2抛物线的简单几何性质.................................................................................. - 291 -章末复习 ............................................................................................................................. - 303 - 全书复习 ..................................................................................................................................... - 316 -第一章空间向量与立体几何1.1空间向量及其运算1.1.1空间向量及其线性运算学习目标核心素养1.理解空间向量的概念.(难点)2.掌握空间向量的线性运算.(重点)3.掌握共线向量定理、共面向量定理及推论的应用.(重点、难点) 1.通过空间向量有关概念的学习,培养学生的数学抽象核心素养.2.借助向量的线性运算、共线向量及共面向量的学习,提升学生的直观想象和逻辑推理的核心素养.国庆期间,某游客从上海世博园(O)游览结束后乘车到外滩(A)观赏黄浦江,然后抵达东方明珠(B)游玩,如图1,游客的实际位移是什么?可以用什么数学概念来表示这个过程?图1图2如果游客还要登上东方明珠顶端(D)俯瞰上海美丽的夜景,如图2,那么他实际发生的位移是什么?又如何表示呢?1.空间向量(1)定义:在空间,具有大小和方向的量叫做空间向量. (2)长度或模:空间向量的大小. (3)表示方法:①几何表示法:空间向量用有向线段表示;②字母表示法:用字母a ,b ,c ,…表示;若向量a 的起点是A ,终点是B ,也可记作:AB →,其模记为|a |或|AB →|.2.几类常见的空间向量名称方向 模 记法 零向量任意 0 0 单位向量任意 1 相反向量相反 相等 a 的相反向量:-a AB →的相反向量:BA → 相等向量 相同 相等 a =b3.(1)向量的加法、减法空间向量的运算 加法 OB →=OA →+OC →=a +b减法 CA →=OA →-OC →=a -b 加法运算律 ①交换律:a +b =b +a②结合律:(a +b )+c =a +(b +c )①定义:实数λ与空间向量a 的乘积λa 仍然是一个向量,称为向量的数乘运算.当λ>0时,λa 与向量a 方向相同;当λ<0时,λa 与向量a 方向相反;当λ=0时,λa =0;λa 的长度是a 的长度的|λ|倍.②运算律a .结合律:λ(μa )=μ(λa )=(λμ)a .b .分配律:(λ+μ)a =λa +μa ,λ(a +b )=λa +λb .思考:向量运算的结果与向量起点的选择有关系吗?[提示] 没有关系.4.共线向量(1)定义:表示若干空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量. (2)方向向量:在直线l 上取非零向量a ,与向量a 平行的非零向量称为直线l 的方向向量.规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(3)共线向量定理:对于空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使a =λb .(4)如图,O 是直线l 上一点,在直线l 上取非零向量a ,则对于直线l 上任意一点P ,由数乘向量定义及向量共线的充要条件可知,存在实数λ,使得OP →=λa .5.共面向量(1)定义:平行于同一个平面的向量叫做共面向量. (2)共面向量定理:若两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间一点P 位于平面ABC 内的充要条件:存在有序实数对(x ,y ), 使AP →=xAB →+yAC →或对空间任意一点O ,有OP →=OA →+xAB →+yAC →.思考:(1)空间中任意两个向量一定是共面向量吗?(2)若空间任意一点O 和不共线的三点A ,B ,C ,满足OP →=13OA →+13OB →+13OC →,则点P 与点A ,B ,C 是否共面?[提示] (1)空间中任意两个向量都可以平移到同一个平面内,成为同一个平面的两个向量,因此一定是共面向量.(2)由OP →=13OA →+13OB →+13OC →得OP →-OA →=13(OB →-OA →)+13(OC →-OA →)即AP →=13AB →+13AC →,因此点P 与点A ,B ,C 共面.1.思考辨析(正确的打“√”,错误的打“×”)(1)空间向量a ,b ,c ,若a ∥b ,b ∥c ,则a ∥c .( ) (2)相等向量一定是共线向量.( ) (3)三个空间向量一定是共面向量.( ) (4)零向量没有方向.( )[提示] (1)× 若b =0时,a 与c 不一定平行.(2)√ 相等向量一定共线,但共线不一定相等.(3)× 空间两个向量一定是共面向量,但三个空间向量可能是共面的,也可以是不共面的.(4)× 零向量有方向,它的方向是任意的.2.如图所示,在四棱柱ABCD -A 1B 1C 1D 1所有的棱中,可作为直线A 1B 1的方向向量的有( )A .1个B .2个C .3个D .4个D [共四条AB ,A 1B 1,CD ,C 1D 1.]3.点C 在线段AB 上,且|AB |=5,|BC |=3,AB →=λBC →,则λ=________. -53 [因为C 在线段AB 上,所以AB →与BC →方向相反,又因|AB |=5,|BC |=3,故λ=-53.]4.在三棱锥A -BCD 中,若△BCD 是正三角形,E 为其中心,则AB →+12BC →-32DE →-AD →化简的结果为________.0 [延长DE 交边BC 于点F ,连接AF ,则有AB →+12BC →=AF →,32DE →+AD →=AD→+DF →=AF →,故AB →+12BC →-32DE →-AD →=0.]空间向量的有关概念①若|a |=|b |,则a =b 或a =-b ;②若向量a 是向量b 的相反向量,则|a |=|b |;③在正方体ABCD -A 1B 1C 1D 1中,AC →=A 1C 1→;④若空间向量m ,n ,p 满足m =n ,n =p ,则m =p .其中正确命题的序号是________.(2)如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,顶点连接的向量中,与向量AA ′→相等的向量有________;与向量A ′B ′→相反的向量有________.(要求写出所有适合条件的向量)(1)②③④ (2)BB ′→,CC ′→,DD ′→ B ′A ′→,BA →,CD →,C ′D ′→ [(1)对于①,向量a 与b 的方向不一定相同或相反,故①错;对于②,根据相反向量的定义知|a |=|b |,故②正确;对于③,根据相等向量的定义知,AC →=A 1C 1→,故③正确;对于④,根据相等向量的定义知正确.(2)根据相等向量的定义知,与向量AA ′→相等的向量有BB ′→,CC ′→,DD ′→.与向量A ′B ′→相反的向量有B ′A ′→,BA →,CD →,C ′D ′→.]解答空间向量有关概念问题的关键点及注意点(1)关键点:紧紧抓住向量的两个要素,即大小和方向.(2)注意点:注意一些特殊向量的特性.①零向量不是没有方向,而是它的方向是任意的,且与任何向量都共线,这一点说明了共线向量不具备传递性.②单位向量方向虽然不一定相同,但它们的长度都是1.③两个向量模相等,不一定是相等向量;反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量. [跟进训练]1.下列关于空间向量的命题中,正确命题的个数是( )①长度相等、方向相同的两个向量是相等向量;②平行且模相等的两个向量是相等向量;③若a ≠b ,则|a |≠|b |;④两个向量相等,则它们的起点与终点相同.A .0B .1C .2D .3B [根据向量的定义,知长度相等、方向相同的两个向量是相等向量,①正确;平行且模相等的两个向量可能是相等向量,也可能是相反向量,②不正确;当a =-b 时,也有|a |=|b |,③不正确;只要模相等、方向相同,两个向量就是相等向量,与向量的起点与终点无关,④不正确.综上可知只有①正确,故选B.]空间向量的线性运算 1111为向量AC 1→的有( )①(AB →+BC →)+CC 1→;②(AA 1→+A 1D 1→)+D 1C 1→;③(AB →+BB 1→)+B 1C 1→;④(AA 1→+A 1B 1→)+B 1C 1→.A .1个B .2个C .3个D .4个(2)已知正四棱锥P -ABCD ,O 是正方形ABCD 的中心,Q 是CD 的中点,求下列各式中x ,y ,z 的值.①OQ →=PQ →+yPC →+zP A →;②P A →=xPO →+yPQ →+PD →.[思路探究] (1)合理根据向量的三角形和平行四边形法则,以及在平行六面体中,体对角线向量等于从同一起点出发的三条棱向量的和.如AC 1→=AB →+AD →+AA 1→.(2)根据数乘向量及三角形或平行四边形法则求解.(1)D [对于①,(AB →+BC →)+CC 1→=AC →+CC 1→=AC 1→;对于②,(AA 1→+A 1D 1→)+D 1C 1→=AD 1→+D 1C 1→=AC 1→;对于③,(AB →+BB 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→;对于④,(AA 1→+A 1B 1→)+B 1C 1→=AB 1→+B 1C 1→=AC 1→.](2)[解] ①如图,∵OQ →=PQ →-PO →=PQ →-12(P A →+PC →)=PQ →-12PC →-12P A →,∴y =z =-12.②∵O 为AC 的中点,Q 为CD 的中点,∴P A →+PC →=2PO →,PC →+PD →=2PQ →,∴P A →=2PO →-PC →,PC →=2PQ →-PD →,∴P A →=2PO →-2PQ →+PD →,∴x =2,y =-2.1.空间向量加法、减法运算的两个技巧(1)巧用相反向量:向量减法的三角形法则是解决空间向量加法、减法的关键,灵活运用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法则和平行四边形法则进行向量加、减法运算时,务必注意和向量、差向量的方向,必要时可采用空间向量的自由平移获得运算结果.2.利用数乘运算进行向量表示的技巧(1)数形结合:利用数乘运算解题时,要结合具体图形,利用三角形法则、平行四边形法则,将目标向量转化为已知向量.(2)明确目标:在化简过程中要有目标意识,巧妙运用中点性质. [跟进训练] 2.已知空间四边形ABCD ,连接AC ,BD ,设M ,G 分别是BC ,CD 的中点,则MG →-AB →+AD →等于( )A .32DB → B .3MG →C .3GM →D .2MG →B [MG →-AB →+AD →=MG →-(AB →-AD →)=MG →-DB →=MG →+BD →=MG →+2MG →=3MG →.]共线问题【例3】 (1)设e 1,e 2是空间两个不共线的向量,已知AB =e 1+k e 2,BC =5e 1+4e 2,DC →=-e 1-2e 2,且A ,B ,D 三点共线,实数k =________.(2)如图所示,已知四边形ABCD ,ABEF 都是平行四边形且不共面,M ,N 分别是AC ,BF 的中点,判断CE →与MN →是否共线.[思路探究] (1)根据向量共线的充要条件求解.(2)根据数乘向量及三角形法则,把MN →表示成λCE →的形式,再根据向量共线的充要条件求解.(1)1 [AD →=AB →+BC →+CD →=(e 1+k e 2)+(5e 1+4e 2)+(e 1+2e 2)=7e 1+(k +6)e 2. 设AD →=λAB →,则7e 1+(k +6)e 2=λ(e 1+k e 2),所以⎩⎨⎧ λ=7λk =k +6,解得k =1.] (2)[解] 法一:因为M ,N 分别是AC ,BF 的中点,且四边形ABCD ,四边形ABEF 都是平行四边形,所以MN →=MA →+AF →+FN →=12CA →+AF →+12FB →.又因为MN →=MC →+CE →+EB →+BN →=-12CA →+CE →-AF →-12FB →,以上两式相加得CE →=2MN →,所以CE →∥MN →,即CE →与MN →共线.法二:因为四边形ABEF 为平行四边形,所以连接AE 时,AE 必过点N . ∴CE →=AE →-AC →=2AN →-2AM →=2(AN →-AM →)=2MN →.所以CE →∥MN →,即CE →与MN →共线.证明空间三点共线的三种思路对于空间三点P ,A ,B 可通过证明下列结论来证明三点共线.(1)存在实数λ,使P A →=λPB →成立.(2)对空间任一点O ,有OP →=OA →+tAB →(t ∈R ).(3)对空间任一点O ,有OP →=xOA →+yOB →(x +y =1).[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 在A 1D 1上,且A 1E →=2ED 1→,F 在对角线A 1C 上,且A 1F →=23FC →.求证:E ,F ,B 三点共线.[证明] 设AB →=a ,AD →=b ,AA 1→=c , 因为A 1E →=2ED 1→,A 1F →=23FC →, 所以A 1E →=23A 1D 1→,A 1F →=25A 1C →, 所以A 1E →=23AD →=23b ,A 1F →=25(AC →-AA 1→)=25(AB →+AD →-AA 1→)=25a +25b -25c ,所以EF →=A 1F →-A 1E →=25a -415b -25c =25⎝ ⎛⎭⎪⎫a -23b -c .又EB →=EA 1→+A 1A →+AB →=-23b -c +a =a -23b -c , 所以EF →=25EB →,所以E ,F ,B 三点共线.向量共面问题1.什么样的向量算是共面向量?[提示] 能够平移到同一个平面内的向量称为共面向量. 2.能说明P ,A ,B ,C 四点共面的结论有哪些? [提示] (1)存在有序实数对(x ,y ),使得AP →=xAB →+yAC →.(2)空间一点P 在平面ABC 内的充要条件是存在有序实数组(x ,y ,z )使得OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(3)四点中任意两点的方向向量与另外两点的方向向量共线,如P A →∥BC →.3.已知向量a ,b ,c 不共面,且p =3a +2b +c ,m =a -b +c ,n =a +b -c ,试判断p ,m ,n 是否共面.[提示] 设p =x m +y n ,即3a +2b +c =x (a -b +c )+ y (a +b -c )=(x +y )a +(-x +y )b +(x -y )c .因为a ,b ,c 不共面,所以⎩⎨⎧x +y =3,-x +y =2,x -y =1,而此方程组无解,所以p 不能用m ,n 表示,即p ,m ,n 不共面.【例4】 已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若点M 满足OM →=13OA →+13OB →+13OC →.(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断M 是否在平面ABC 内.[思路探究] (1)根据向量共面的充要条件,即判断是否MA →=xMB →+yMC →;(2)根据(1)的结论,也可以利用OM →=xOA →+yOB →+zOC →中x +y +z 是否等于1.[解] (1)∵OA →+OB →+OC →=3OM →, ∴OA →-OM →=(OM →-OB →)+(OM →-OC →), ∴MA →=BM →+CM →=-MB →-MC →, ∴向量MA →,MB →,MC →共面.(2)由(1)知向量MA →,MB →,MC →共面,而它们有共同的起点M ,且A ,B ,C 三点不共线,∴M ,A ,B ,C 共面,即M 在平面ABC 内.1.[变条件]若把本例中条件“OM →=13OA →+13OB →+13OC →”改为“OA →+2OB →=6OP →-3OC →”,点P 是否与点A 、B 、C 共面.[解] ∵3OP →-3OC →=OA →+2OB →-3OP →=(OA →-OP →)+(2OB →-2OP →),∴3CP →=P A →+2PB →,即P A →=-2PB →-3PC →.根据共面向量定理的推论知:点P 与点A ,B ,C 共面.2.[变条件]若把本例条件变成“OP →+OC →=4OA →-OB →”,点P 是否与点A 、B 、C 共面.[解] 设OP →=OA →+xAB →+yAC →(x ,y ∈R ),则 OA →+xAB →+yAC →+OC →=4OA →-OB →,∴OA →+x (OB →-OA →)+y (OC →-OA →)+OC →=4OA →-OB →, ∴(1-x -y -4)OA →+(1+x )OB →+(1+y )OC →=0,由题意知OA →,OB →,OC →均为非零向量,所以x ,y 满足:⎩⎨⎧1-x -y -4=0,1+x =0,1+y =0,显然此方程组无解,故点P 与点A ,B ,C 不共面.3.[变解法]上面两个母题探究,还可以用什么方法判断? [解] (1)由题意知,OP →=16OA →+13OB →+12OC . ∵16+13+12=1,∴点P 与点A 、B 、C 共面. (2)∵OP →=4OA →-OB →-OC →,而4-1-1=2≠1. ∴点P 与点A 、B 、C 不共面.解决向量共面的策略(1)若已知点P 在平面ABC 内,则有AP →=xAB →+yAC →或OP →=xOA →+yOB →+zOC →(x +y +z =1),然后利用指定向量表示出已知向量,用待定系数法求出参数.(2)证明三个向量共面(或四点共面),需利用共面向量定理,证明过程中要灵活进行向量的分解与合成,将其中一个向量用另外两个向量来表示.1.一些特殊向量的特性(1)零向量不是没有方向,而是它的方向是任意的. (2)单位向量方向虽然不一定相同,但它们的长度都是1.(3)两个向量模相等,不一定是相等向量,反之,若两个向量相等,则它们不仅模相等,方向也相同.若两个向量模相等,方向相反,则它们为相反向量.2.OP →=OA →+xAB →+yAC →称为空间平面ABC 的向量表达式.由此可知空间中任意平面由空间一点及两个不共线向量唯一确定.3.证明(或判断)A ,B ,C 三点共线时,只需证明存在实数λ,使AB →=λBC →(或AB →=λAC →)即可,也可用“对空间任意一点O ,有OC →=tOA →+(1-t )OB →”来证明A ,B ,C 三点共线.4.空间一点P 位于平面MAB 内的充要条件是存在有序实数对(x ,y ),使MP →=xMA →+yMB →,满足这个关系式的点都在平面MAB 内;反之,平面MAB 内的任一点都满足这个关系式.这个充要条件常用于证明四点共面.5.直线的方向向量是指与直线平行或共线的非零向量,一条直线的方向向量有无穷多个,它们的方向相同或相反.6.向量p 与向量a ,b 共面的充要条件是在a 与b 不共线的前提下才成立的,若a 与b 共线,则不成立.1.下列条件中使M 与A ,B ,C 一定共面的是( ) A .OM →=2OA →-OB →-OC → B .OM →=15OA →+13OB →+12OC → C .MA →+MB →+MC →=0 D .OM →+OA →+OB →+OC →=0C [由MA →+MB →+MC →=0得MA →=-MB →-MC →,故M ,A ,B ,C 共面.] 2.已知正方体ABCD -A 1B 1C 1D 1,若点F 是侧面CD 1的中心,且AF →=AD →+mAB→-nAA 1→,则m ,n 的值分别为( )A .12,-12 B .-12,-12 C .-12,12D .12,12A [由于AF →=AD →+DF →=AD →+12(DC →+DD 1→)=AD →+12AB →+12AA 1→,所以m =12,n =-12,故答案为A.]3.化简:12(a +2b -3c )+5⎝ ⎛⎭⎪⎫23a -12b +23c -3(a -2b +c )=________. 56a +92b -76c [原式=12a +b -32c +103a -52b +103c -3a +6b -3c =⎝ ⎛⎭⎪⎫12+103-3a +⎝ ⎛⎭⎪⎫1-52+6b +⎝ ⎛⎭⎪⎫-32+103-3c =56a +92b -76c .] 4.给出下列四个命题:①方向相反的两个向量是相反向量;②若a ,b 满足|a |>|b |且a ,b 同向,则a >b ; ③不相等的两个空间向量的模必不相等; ④对于任何向量a ,b ,必有|a +b |≤|a |+|b |. 其中正确命题的序号为________.④ [对于①,长度相等且方向相反的两个向量是相反向量,故①错;对于②,向量是不能比较大小的,故不正确;对于③,不相等的两个空间向量的模也可以相等,故③错;只有④正确.]5.设两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,求k 的值. [解] ∵两非零向量e 1,e 2不共线,且k e 1+e 2与e 1+k e 2共线,∴k e 1+e 2=t (e 1+k e 2),则(k -t )e 1+(1-tk )e 2=0.∵非零向量e 1,e 2不共线,∴k -t =0,1-kt =0,解得k =±1.1.1.2 空间向量的数量积运算学习 目 标核心 素 养1.掌握空间向量夹角的概念及表示方法.2.掌握空间向量的数量积的定义、性质、运算律及计算方法.(重点)3.掌握投影向量的概念.(重点)4.能用向量的数量积解决立体几何问题.(难点)1.通过学习空间向量的数量积运算,培养学生数学运算的核心素养.2.借助投影向量概念的学习,培养学生直观想象和逻辑推理的核心素养.3.借助利用空间向量数量积证明垂直关系、求夹角和距离运算,提升学生的逻辑推理和数学运算核心素养.已知两个非零向量a 与b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB =θ叫做向量a 与b 的夹角.如果a 与b 的夹角为90°,则称a 与b 垂直,记作a ⊥b .已知两个非零向量a 与b ,它们的夹角为θ,把a ·b =|a ||b |cos θ叫做a 与b 的数量积(或内积)类比探究一下:两个空间向量的夹角以及它们的数量积能否像平面向量那样来定义呢?1.空间向量的夹角 (1)夹角的定义已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a ,b 的夹角,记作〈a ,b 〉.(2)夹角的范围空间任意两个向量的夹角θ的取值范围是[0,π].特别地,当θ=0时,两向量同向共线;当θ=π时,两向量反向共线,所以若a ∥b ,则〈a ,b 〉=0或π;当〈a ,b 〉=π2时,两向量垂直,记作a ⊥b .2.空间向量的数量积(1)定义:已知两个非零向量a ,b ,则|a ||b |cos 〈a ,b 〉叫做a ,b 的数量积,记作a ·b .即a ·b =|a ||b |cos 〈a ,b 〉.规定:零向量与任何向量的数量积为0. (2)常用结论(a ,b 为非零向量) ①a ⊥b ⇔a ·b =0.②a ·a =|a ||a |cos 〈a ,a 〉=|a |2. ③cos 〈a ,b 〉=a ·b|a ||b |. (3)数量积的运算律(2)若a ·b >0,则〈a ,b 〉一定是锐角吗?[提示] (1)若a ·b =0,则不一定有a ⊥b ,也可能a =0或b =0.(2)当〈a ,b 〉=0时,也有a ·b >0,故当a ·b >0时,〈a ·b 〉不一定是锐角. 3.投影向量 (1)投影向量在空间,向量a 向向量b 投影,可以先将它们平移到同一个平面内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,c =|a |cos 〈a ,b 〉b|b |,则向量c 称为向量a 在向量b 上的投影向量,同理向量b 在向量a 上的投影向量是|b |cos 〈a ,b 〉a|a |.(2)向量a 在平面β上的投影向量向量a 向平面β投影,就是分别由向量a 的起点A 和终点B 作平面β的垂线,垂足分别为A ′,B ′,得到向量A ′B ′→,则向量A ′B ′→称为向量a 在平面β上的投影向量.这时,向量a,A ′B ′→的夹角就是向量a 所在直线与平面β所成的角.[提醒] (1)两个向量的数量积是数量,而不是向量,它可以是正数、负数或零; (2)向量数量积的运算不满足消去律、作商和乘法的结合律 ,即a ·b =a ·c ⇒b =c ,a ·b =k ⇒b =k a ,(a ·b )·c =a ·(b·c )都不成立.1.思考辨析(正确的打“√”,错误的打“×”) (1)对于非零向量a ,b ,〈a ,b 〉与〈a ,-b 〉相等. ( ) (2)对于任意向量a ,b ,c ,都有(a ·b )c =a (b ·c ). ( ) (3)若a ·b =b ·c ,且b ≠0,则a =c . ( ) (4)(3a +2b )·(3a -2b )=9|a |2-4|b |2. ( )[提示] (1)× (2)× (3)× (4)√2.(教材P 8练习T 1改编)在正三棱柱ABC -A 1B 1C 1中,若AB =BB 1,则AB 1与BC 1所成角的余弦值为( )A .38B .14C .34D .18B [令底面边长为1,则高也为1,AB 1→=AB →+BB 1→,BC 1→=B C →+CC 1→,∴AB 1→·BC 1→=(AB →+BB 1→)·(BC →+CC 1→)=AB →·BC →+BB 1→·CC 1→=1×1×cos 120°+12=12,又|AB 1→|=|BC 1→|= 2.∴cos 〈AB 1,BC 1〉=122×2=14.故选B.]3.已知a =3p -2q ,b =p +q ,p 和q 是相互垂直的单位向量,则a·b =( ) A .1 B .2 C .3 D .4 A [由题意知,p·q =0,p 2=q 2=1.所以a ·b =(3p -2q )·(p +q )=3p 2+p ·q -2q 2=3-2=1.]4.设a ⊥b ,〈a ,c 〉=π3,〈b ,c 〉=π6,且|a |=1,|b |=2,|c |=3,则向量a +b +c 的模是________.17+63 [因为|a +b +c |2=(a +b +c )2=|a |2+|b |2+|c |2+2(a ·b +a ·c +b ·c )=1+4+9+2⎝ ⎛⎭⎪⎫0+1×3×12+2×3×32=17+63,所以|a +b +c |=17+6 3.]空间向量数量积的运算【例1】 (1)如图,三棱锥A -BCD 中,AB =AC =AD =2,∠BAD =90°,∠BAC=60°,则AB →·CD →等于( )A .-2B .2C .-2 3D .2 3(2)在四面体OABC 中,棱OA ,OB ,OC 两两垂直,且OA =1,OB =2,OC =3,G 为△ABC 的重心,求OG →·(OA →+OB →+OC →)的值.(1)A [∵CD →=AD →-AC →,∴AB →·CD →=AB →·(AD →-AC →)=AB →·AD →-AB →·AC →=0-2×2×cos 60°=-2.](2)[解] OG →=OA →+AG →=OA →+13(AB →+AC →) =OA →+13[(OB →-OA →)+(OC →-OA →)] =13OB →+13OC →+13OA →.∴OG →·(OA →+OB →+OC →)=⎝ ⎛⎭⎪⎫13OB →+13OC →+13OA →·(OA →+OB →+OC →)=13OB →2+13OC →2+13OA →2 =13×22+13×32+13×12=143.在几何体中求空间向量的数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化成已知模和夹角的向量的数量积. (3)根据向量的方向,正确求出向量的夹角及向量的模. (4)代入公式a·b =|a ||b |cos 〈a ,b 〉求解.[跟进训练]1.在长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =4,E 为侧面AA 1B 1B 的中心,F 为A 1D 1的中点,求下列向量的数量积:(1)BC →·ED 1→;(2)BF →·AB 1→.[解] 如图,设AB →=a ,AD →=b ,AA 1→=c ,则|a |=|c |=2,|b |=4,a·b =b·c =c·a =0.(1)BC →·ED 1→=BC →·(EA 1→+A 1D 1→)=b ·12(c -a )+b =|b |2=42=16.(2)BF →·AB 1→=(BA 1→+A 1F →)·(AB →+AA 1→)=c -a +12b ·(a +c )=|c |2-|a |2=22-22=0.利用数量积证明空间垂直关系=OC ,M ,N 分别是OA ,BC 的中点,G 是MN 的中点,求证:OG ⊥BC .[思路探究] 首先把向量OG →和BC →均用OA →、OB →、OC →表示出来,通过证明OG →·BC →=0来证得OG ⊥BC .[证明] 连接ON ,设∠AOB =∠BOC =∠AOC =θ,又设OA →=a ,OB →=b ,OC →=c , 则|a |=|b |=|c |. 又OG →=12(OM →+ON →) =12⎣⎢⎡⎦⎥⎤12OA →+12(OB →+OC →) =14(a +b +c ),BC →=c -b . ∴OG →·BC →=14(a +b +c )·(c -b ) =14(a ·c -a ·b +b ·c -b 2+c 2-b ·c ) =14(|a |2·cos θ-|a |2·cos θ-|a |2+|a |2)=0. ∴OG →⊥BC →,即OG ⊥BC .用向量法证明垂直关系的步骤 (1)把几何问题转化为向量问题; (2)用已知向量表示所证向量;(3)结合数量积公式和运算律证明数量积为0; (4)将向量问题回归到几何问题.[跟进训练]2.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .证明:P A ⊥BD .[证明] 由底面ABCD 为平行四边形,∠DAB =60°,AB =2AD 知,DA ⊥BD ,则BD →·DA →=0.由PD ⊥底面ABCD 知,PD ⊥BD ,则BD →·PD →=0.又P A →=PD →+DA →,∴P A →·BD →=(PD →+DA →)·BD →=PD →·BD →+DA →·BD →=0,即P A ⊥BD .夹角问题夹角〈a ,b 〉为( )A .30°B .45°C .60°D .以上都不对(2)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,求异面直线OA 与BC 的夹角的余弦值.[思路探究] (1)根据题意,构造△ABC ,使AB →=c ,AC →=b ,BC →=a ,根据△ABC 三边之长,利用余弦定理求出向量a 与b 之间的夹角即可.(2)求异面直线OA 与BC 所成的角,首先来求OA →与BC →的夹角,但要注意异面直线所成角的范围是⎝ ⎛⎦⎥⎤0,π2,而向量夹角的取值范围为[0,π],注意角度的转化.(1)D [∵a +b +c =0,|a |=2,|b |=3,|c |=4, ∴以这三个向量首尾相连组成△ABC ;令AB →=c ,AC →=b ,BC →=a ,则△ABC 三边之长分别为BC =2,CA =3,AB =4; 由余弦定理,得:cos ∠BCA =BC 2+CA 2-AB 22BC ·CA =22+32-422×2×3=-14, 又向量BC →和CA →是首尾相连,∴这两个向量的夹角是180°-∠BCA , ∴cos 〈a ,b 〉=14,即向量a 与b 之间的夹角〈a ,b 〉不是特殊角.](2)[解] ∵BC →=AC →-AB →,∴OA →·BC →=OA →·AC →-OA →·AB →=|OA →|·|AC →|·cos 〈OA →,AC →〉-|OA →|·|AB →|·cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120° =24-16 2.∴cos 〈OA →,BC →〉=OA →·BC →|OA →|·|BC →|=24-1628×5=3-225,∴异面直线OA 与BC 的夹角的余弦值为3-225.利用向量数量积求夹角问题的思路(1)求两个向量的夹角有两种方法:①结合图形,平移向量,利用空间向量夹角的定义来求,但要注意向量夹角的范围;②先求a ·b ,再利用公式cos 〈a ,b 〉=a ·b|a ||b |求出cos 〈a ,b 〉的值,最后确定〈a ,b 〉的值.(2)求两条异面直线所成的角,步骤如下:①根据题设条件在所求的异面直线上取两个向量(即直线的方向向量); ②将异面直线所成角的问题转化为向量夹角问题; ③利用数量积求向量夹角的余弦值或角的大小;④异面直线所成的角为锐角或直角,利用向量数量积求向量夹角的余弦值时应将余弦值加上绝对值,从而求出异面直线所成的角的大小.[跟进训练]3.如图,在正方体ABCD -A 1B 1C 1D 1中,求BC 1→与AC →夹角的大小.[解] 不妨设正方体的棱长为1,则BC 1→·AC →=(BC →+CC 1→)·(AB →+BC →) =(AD →+AA 1→)·(AB →+AD →)=AD →·AB →+AD →2+AA 1→·AB →+AA 1→·AD → =0+AD 2→+0+0=AD 2→=1, 又∵|BC 1→|=2,|AC →|=2,∴cos 〈BC 1→,AC →〉=BC 1→·AC →|BC 1→||AC →|=12×2=12.∵〈BC 1→,AC →〉∈[0,π],∴〈BC 1→,AC →〉=π3. 即BC 1→与AC →夹角的大小为π3.距离问题1.用数量积解决的距离问题一般有哪几种? [提示] 线段长度即点点距、点线距、点面距. 2.求模的大小常用哪些公式?[提示] 由公式|a |=a ·a 可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.3.如图,已知线段AB ⊥平面α,BC ⊂α,CD ⊥BC ,DF ⊥平面α,且∠DCF =30°,D 与A 在平面α的同侧,若AB =BC =CD =2,试求A ,D 两点间的距离.[提示] ∵AD →=AB →+BC →+CD →,∴|AD →|2=(AB →+BC →+CD →)2=|AB →|2+|BC →|2+|CD →|2+2AB →·BC →+2AB →·CD +2BC →·CD →=12+2(2·2·cos 90°+2·2·cos 120°+2·2·cos 90°)=8,∴|AD →|=22,即A ,D 两点间的距离为2 2.【例4】 如图所示,在平行四边形ABCD 中,AB =AC =1,∠ACD =90°,沿着它的对角线AC 将△ACD 折起,使AB 与CD 成60°角,求此时B ,D 间的距离.[思路探究] BD →=BA →+AC →+CD →―→|BD →|2 注意对〈BA →,CD →〉的讨论,再求出B ,D 间距离.[解] ∵∠ACD =90°,∴AC →·CD =0,同理可得AC →·BA →=0.∵AB 与CD 成60°角,∴〈BA →,CD →〉=60°或〈BA →,CD →〉=120°.又BD →=BA →+AC →+CD →,∴|BD →|2=|BA →|2+|AC →|2+|CD →|2+2BA →·AC →+2BA →·CD →+2AC →·CD →=3+2×1×1×cos 〈BA →,CD →〉.∴当〈BA →,CD →〉=60°时,|BD →|2=4,此时B ,D 间的距离为2;当〈BA →,CD →〉=120°时,|BD →|2=2,此时B ,D 间的距离为 2.求两点间的距离或线段长的方法(1)将相应线段用向量表示,通过向量运算来求对应向量的模.(2)因为a ·a =|a |2,所以|a |=a·a ,这是利用向量解决距离问题的基本公式.另外,该公式还可以推广为|a ±b |=(a ±b )2=a 2±2a ·b +b 2.(3)可用|a ·e |=|a ||cos θ|(e 为单位向量,θ为a ,e 的夹角)来求一个向量在另一个向量所在直线上的投影.[跟进训练]4.如图所示,在平面角为120°的二面角α-AB -β中,AC ⊂α,BD ⊂β,且AC ⊥AB ,BD ⊥AB ,垂足分别为A ,B .已知AC =AB =BD =6,求线段CD 的长.[解] ∵AC ⊥AB ,BD ⊥AB ,∴CA →·AB →=0,BD →·AB →=0.∵二面角α-AB -β的平面角为120°,∴〈CA →,BD →〉=180°-120°=60°. ∴CD →2=(CA →+AB →+BD →)2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2BD →·AB →=3×62+2×62×cos 60°=144,∴CD =12.1.空间两向量的数量积与平面向量的数量积类似,由于数量积不满足结合律,因此在进行数量积运算时,一次、二次式与实数运算相同,运算公式也相同,三次及以上必须按式中的运算顺序依次进行运算.2.空间向量数量积运算的两种方法(1)利用定义:利用a ·b =|a ||b |cos 〈a ,b 〉并结合运算律进行计算.(2)利用图形:计算两个向量的数量积,可先将各向量移到同一顶点,利用图形寻找夹角,再代入数量积公式进行运算.3.在几何体中求空间向量数量积的步骤(1)首先将各向量分解成已知模和夹角的向量的组合形式.(2)利用向量的运算律将数量积展开,转化为已知模和夹角的向量的数量积. (3)代入a ·b =|a ||b |cos 〈a ,b 〉求解.4.空间向量中求两向量夹角与平面向量中的求法完全相同,都是应用公式cos 〈a ,b 〉=a·b |a |·|b |,解题的关键就是求a ·b 和|a |、|b |.求模时注意|a |2=a ·a 的应用.1.如图,空间四边形ABCD 的每条边和对角线的长都等于1,E ,F ,G 分别是AB ,AD ,DC 的中点,则FG →·AB →=( )A .34B .14C .12D .32B [由题意可得FG →=12AC →,∴FG →·AB →=12×1×1×cos 60°=14.]2.已知两异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a·b =-12,则两直线的夹角为( )A .30°B .60°C .120°D .150°B [设向量a ,b 的夹角为θ,则cos θ=a·b|a ||b |=-12,所以θ=120°,则两个方向向量对应的直线的夹角为180°-120°=60°.]3.在空间四边形ABCD 中,AB →·CD →+BC →·AD →+CA →·BD →=________. 0 [原式=AB →·CD →+BC →·AD →+CA →·(AD →-AB →) =AB →·(CD →-CA →)+AD →·(BC →+CA →) =AB →·AD →+AD →·BA →=0.]4.如图所示,在一个直二面角α-AB -β的棱上有两点A ,B ,AC ,BD 分别是这个二面角的两个面内垂直于AB 的线段,且AB =4,AC =6,BD =8,则CD 的长为________.229 [∵CD →=CA →+AB →+BD →=AB →-AC →+BD →, ∴CD →2=(AB →-AC →+BD →)2=AB →2+AC →2+BD →2-2AB →·AC →+2AB →·BD →-2AC →·BD →=16+36+64=116, ∴|CD →|=229.]5.如图,已知空间四边形ABCD 的每条边和对角线的长都等于a ,点M ,N 分别是边AB ,CD 的中点.(1)求证:MN 为AB 和CD 的公垂线; (2)求MN 的长;(3)求异面直线AN 与MC 所成角的余弦值. [解] 设AB →=p ,AC →=q ,AD →=r .由题意,可知|p |=|q|=|r|=a ,且p ,q ,r 三向量两两夹角均为60°. (1)证明:MN →=AN →-AM →=12(AC →+AD →)-12AB → =12(q +r -p ), ∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2·cos 60°+a 2·cos 60°-a 2)=0 ∴MN ⊥AB ,同理可证MN ⊥CD . ∴MN 为AB 与CD 的公垂线. (2)由(1)可知MN →=12(q +r -p ),∴|MN →|2=(MN →)2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -q·p -r ·p )]=14(a 2+a 2+a 2+2⎝ ⎛⎭⎪⎫a 22-a 22-a 22]=14×2a 2=a 22.∴|MN →|=22a , ∴MN 的长度为22a .(3)设向量AN →与MC →的夹角为θ,∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p , ∴AN →·MC →=12(q +r )·⎝ ⎛⎭⎪⎫q -12p =12⎝ ⎛⎭⎪⎫q 2-12q ·p +r·q -12r ·p =12⎝ ⎛⎭⎪⎫a 2-12a 2·cos 60°+a 2cos 60°-12a 2·cos 60° =12⎝ ⎛⎭⎪⎫a 2-a 24+a 22-a 24=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →|·|MC →|·cos θ=32a·32a ·cos θ=a 22. ∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23. 从而异面直线AN 与MC 所成角的余弦值为23.1.2 空间向量基本定理学 习 目 标核 心 素 养1.了解空间向量基本定理及其意义.2.掌握空间向量的正交分解.(难点)3.掌握在简单问题中运用空间三个不共面的向量作为基底表示其他向量的方法.(重点)1.通过基底概念的学习,培养学生数学抽象的核心素养.2.借助基底的判断及应用,提升逻辑推理、直观想象及数学运算的核心素养.(1)共面向量定理:如果两个向量a 、b 不共线,则向量p 与向量a 、b 共面的充要条件是存在实数对(x ,y ),使得p =x a +y b .(2)共面向量定理的推论:空间一点P 在平面MAB 内的充要条件是存在有序实数对(x ,y ),使得MP →=xMA →+yMB →,或对于空间任意一定点O ,有OP →=xOM →+yOA →+zOB →(x +y +z =1).今天我们将对平面向量基本定理加以推广,应用上面的几个公式我们可以解决与四点共面有关的问题,得出空间向量基本定理.1.空间向量基本定理如果三个向量a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一的有序实数组(x ,y ,z ),使得p =x a +y b +z c .。

人教版(新教材)高中数学必修1(第一册)学案:2.2 第2课时 基本不等式的应用

人教版(新教材)高中数学必修1(第一册)学案:2.2 第2课时 基本不等式的应用

第2课时 基本不等式的应用学习目标 1.熟练掌握基本不等式及变形的应用.2.会用基本不等式解决简单的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.知识点 用基本不等式求最值用基本不等式x +y2≥xy 求最值应注意:(1)x ,y 是正数;(2)①如果xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P ; ②如果x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2.(3)讨论等号成立的条件是否满足. 预习小测 自我检验1.已知0<x <12,则y =x (1-2x )的最大值为________.『答 案』 18『解 析』 y =x (1-2x )=12·2x ·(1-2x )≤12⎝ ⎛⎭⎪⎫2x +1-2x 22=18, 当且仅当2x =1-2x ,即x =14时取“=”.2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________. 『答 案』 20『解 析』 总运费与总存储费用之和 y =4x +400x ×4=4x +1600x ≥24x ·1600x=160,当且仅当4x =1600x ,即x =20时取等号.3.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司每台机器年平均利润的最大值是________万元. 『答 案』 8『解 析』 年平均利润y x =-x +18-25x =-⎝⎛⎭⎫x +25x +18≤-225x·x +18=-10+18=8,当且仅当x =5时取“=”.4.已知x >2,则x +4x -2的最小值为________.『答 案』 6 『解 析』 x +4x -2=x -2+4x -2+2, ∵x -2>0,∴x -2+4x -2+2≥24+2=4+2=6.当且仅当x -2=4x -2,即x =4时取“=”.一、利用基本不等式变形求最值例1 已知x >0,y >0,且1x +9y =1,求x +y 的最小值.解 方法一 ∵x >0,y >0,1x +9y =1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9xy,又1x +9y =1,即x =4,y =12时,上式取等号. 故当x =4,y =12时,(x +y )min =16.方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).由1x +9y =1可知x >1,y >9, ∴x +y =(x -1)+(y -9)+10≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3, 即x =4,y =12时上式取等号, 故当x =4,y =12时,(x +y )min =16.延伸探究 若将条件换为:x >0,y >0且2x +8y =xy ,求x +y 的最小值. 解 方法一 由2x +8y -xy =0,得y (x -8)=2x . ∵x >0,y >0,∴x -8>0,y =2x x -8, ∴x +y =x +2xx -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2xy+10≥28y x ·2xy+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.反思感悟 应根据已知条件适当进行“拆”“拼”“凑”“合”“变形”,创造应用基本不等式及使等号成立的条件.当连续应用基本不等式时,要注意各不等式取等号时的条件要一致,否则也不能求出最值;特别注意“1”的代换.跟踪训练1 已知正数x ,y 满足x +y =1,则1x +4y 的最小值是________.『答 案』 9『解 析』 ∵x +y =1, ∴1x +4y =(x +y )⎝⎛⎭⎫1x +4y =1+4+y x +4x y.∵x >0,y >0,∴y x >0,4xy >0,∴y x +4xy≥2y x ·4xy=4, ∴5+y x +4x y≥9.当且仅当⎩⎪⎨⎪⎧x +y =1,y x =4x y,即x =13,y =23时等号成立.∴⎝⎛⎭⎫1x +4y min =9.二、基本不等式在实际问题中的应用例2 “足寒伤心,民寒伤国”,精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对山区乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品二次加工后进行推广促销,预计该批产品销售量Q 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为Q =x +12(其中推广促销费不能超过3万元).已知加工此批农产品还要投入成本2⎝⎛⎭⎫Q +1Q 万元(不包含推广促销费用),若加工后的每件成品的销售价格定为⎝⎛⎭⎫2+20Q 元/件. 那么当推广促销费投入多少万元时,此批产品的利润最大?最大利润为多少?(利润=销售额-成本-推广促销费) 解 设该批产品的利润为y , 由题意知y =⎝⎛⎭⎫2+20Q ·Q -2⎝⎛⎭⎫Q +1Q -x =2Q +20-2Q -2Q -x =20-2Q-x=20-4x +1-x =21-⎣⎢⎡⎦⎥⎤4x +1+(x +1),0≤x ≤3.∵21-⎣⎢⎡⎦⎥⎤4x +1+(x +1)≤21-24=17,当且仅当x =1时,上式取“=”, ∴当x =1时,y max =17.答 当推广促销费投入1万元时,利润最大为17万元.反思感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所掌握的数学知识解决问题(求解),最后要回应题意下结论(作答).使用基本不等式求最值,要注意验证等号是否成立. 跟踪训练2 2016年11月3日20点43分我国长征五号运载火箭在海南文昌发射中心成功发射,它被公认为是我国从航天大国向航天强国迈进的重要标志.长征五号运载火箭的设计生产采用了很多新技术新产品,甲工厂承担了某种产品的生产,并以x 千克/时的速度匀速生产时(为保证质量要求1≤x ≤10),每小时可消耗A 材料kx 2+9千克,已知每小时生产1千克该产品时,消耗A 材料10千克.消耗A 材料总重量为y 千克,那么要使生产1000千克该产品消耗A 材料最少,工厂应选取何种生产速度?并求消耗的A 材料最少为多少. 解 由题意,得k +9=10,即k =1, 生产1000千克该产品需要的时间是1000x ,所以生产1000千克该产品消耗的A 材料为 y =1000x (x 2+9)=1000⎝⎛⎭⎫x +9x ≥1000×29=6000, 当且仅当x =9x,即x =3时,等号成立,且1<3<10.故工厂应选取3千克/时的生产速度,消耗的A 材料最少,最少为6000千克.基本不等式在实际问题中的应用典例 围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图.已知旧墙的维修费用为45元/m ,新墙的造价为180 元/m.设利用的旧墙长度为x (单位:m),修建此矩形场地围墙的总费用为y (单位:元).试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解 设矩形的另一边长为a m ,则y =45x +180(x -2)+180×2a =225x +360a -360.由已知xa =360,得a =360x ,∴y =225x +3602x -360.∵x >0,∴225x +3602x ≥2225×3602=10800.∴y =225x +3602x -360≥10440.当且仅当225x =3602x时,等号成立.即当x =24m 时,修建围墙的总费用最小,最小总费用是10440元.『素养提升』 数学建模是对现实问题进行数学抽象,建立和求解模型的过程耗时费力,所以建立的模型要有广泛的应用才有价值.本例中所涉及的y =x +ax (a >0)就是一个应用广泛的函数模型.1.设x >0,则3-3x -1x 的最大值是( )A .3B .3-2 2C .-1D .3-2 3『答 案』 D『解 析』 ∵x >0,∴3x +1x≥23x ·1x =23,当且仅当x =33时取等号,∴-⎝⎛⎭⎫3x +1x ≤-23,则3-3x -1x≤3-23,故选D.2.已知x 2-x +1x -1(x >1)在x =t 时取得最小值,则t 等于( )A .1+ 2B .2C .3D .4『答 案』 B『解 析』 x 2-x +1x -1=x (x -1)+1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x -1=1x -1,即x =2时,等号成立.3.将一根铁丝切割成三段做一个面积为2m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( ) A .6.5mB .6.8mC .7mD .7.2m 『答 案』 C『解 析』 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l=a +b +a 2+b 2≥2ab +2ab =4+22≈6.828(m).∵要求够用且浪费最少,故选C.4.已知正数a ,b 满足a +2b =2,则2a +1b 的最小值为________.『答 案』 4『解 析』 2a +1b =⎝⎛⎭⎫2a +1b ×12(a +2b ) =12⎝⎛⎭⎫4+a b +4b a ≥12(4+24)=4. 当且仅当a b =4b a ,即a =1,b =12时等号成立,∴2a +1b的最小值为4. 5.设计用32m 2的材料制造某种长方体车厢(无盖),按交通法规定厢宽为2m ,则车厢的最大容积是________m 3. 『答 案』 16『解 析』 设车厢的长为b m ,高为a m. 由已知得2b +2ab +4a =32,即b =16-2aa +1,∴V =a ·16-2a a +1·2=2·16a -2a 2a +1.设a +1=t ,则V =2⎝⎛⎭⎫20-2t -18t ≤2⎝⎛⎭⎫20-22t ·18t =16,当且仅当t=3,即a=2,b=4时等号成立.1.知识清单:(1)已知x,y是正数.①若x+y=S(和为定值),则当x=y时,积xy取得最大值.②若x·y=P(积为定值),则当x=y时,和x+y取得最小值.即:“和定积最大,积定和最小”.(2)求解应用题的方法与步骤.①审题,②建模(列式),③解模,④作答.2.方法归纳:注意条件的变换,常用“1”的代换方法求最值.3.常见误区:缺少等号成立的条件.。

高中数学人教A版必修第一册 学案与练习 弧度制

高中数学人教A版必修第一册 学案与练习 弧度制

5.1.2 弧度制学习目标1.借助圆建立弧度制的概念,培养数学抽象、直观想象的核心素养.2.应用弧度制下的弧长公式和扇形的面积公式,培养逻辑推理和数学运算的核心素养.1.角的单位制及换算关系(1)角的单位制①角度制为1度的角,用度作为单位来度量角的单位制叫做角规定周角的1360度制.②弧度制长度等于半径长的圆弧所对的圆心角叫做1弧度的角.以弧度作为单位来度量角的单位制,叫做弧度制,它的单位符号是rad,读作弧度.③角的弧度数的求法在半径为r的圆中,弧长为l的弧所对的圆心角为α rad,那么|α|=l.r一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)角度与弧度的换算(3)一些特殊角与弧度数的对应关系2.弧度制下的弧长公式和扇形的面积公式角度与弧度的换算[例1] 将下列角度与弧度进行互化.(1)20°;(2)-800°;(3)7π12;(4)-11π5.解:(1)20°=20×π180 rad=π9rad.(2)-800°=-800×π180 rad=-40π9rad.(3)7π12 rad=712×180°=105°.(4)-11π5 rad=-115×180°=-396°.在进行角度与弧度的换算时,抓住关系式π rad=180°是关键,由它可以得到:度数×π180=弧度数,弧度数×(180π)°=度数.提醒:用弧度表示角,涉及π时,直接保留π,不要将π写成小数.针对训练1:将下列角度与弧度进行互化.(1)511π6;(2)-5π12;(3)10°;(4)-855°.解:(1)511π6 rad=5116×180°=15 330°.(2)-5π12 rad=-512×180°=-75°.(3)10°=10×π180=π18rad.(4)-855°=-855×π180=-19π4rad.弧度制的综合应用[例2] 在平面直角坐标系中,α=-2π3,β的终边与α的终边分别有如下关系时,求β.(1)若α,β的终边关于x 轴对称; (2)若α,β的终边关于y 轴对称; (3)若α,β的终边关于原点对称. 解:如图,在平面直角坐标系中,α=-2π3.(1)若α,β的终边关于x 轴对称,则{β|β=2π3+2k π,k ∈Z}.(2)若α,β的终边关于y 轴对称,则{β|β=-π3+2k π,k ∈Z}.(3)若α,β的终边关于原点对称,则{β|β=π3+2k π,k ∈Z}.(1)用弧度制表示终边相同的角2k π+α(k ∈Z)时,其中2k π是π的偶数倍,而不是整数倍.(2)在同一个式子中,角度与弧度不能混合用,必须保持单位统一,如α=2k π+30°,k ∈Z 是不正确的写法.针对训练2:若角β的终边落在直线y=-√33x 上,写出角β的集合;当β∈(-2π,2π)时,求角β.解:终边落在直线y=-√33x 上的角β组成的集合A={β|β=k π+5π6,k∈Z}.因为β∈(-2π,2π),则当k=-2,-1,0,1时,符合题意,所以β=-7π6,-π6,5π6,11π6.扇形的弧长公式和面积公式的应用[例3] 扇形AOB 的面积是4 cm 2,它的周长是10 cm ,求扇形的圆心角α的弧度数及弦AB 的长.解:设扇形弧长为l cm ,半径为r cm , 则由题意知{l +2r =10,12l ·r =4,解得{r =1,l =8或{r =4,l =2.当r=1,l=8时, α=lr =8>2π(舍去),所以r=4,l=2, 此时α=l r =12(rad).如图可知AB=2·r ·sin α2=2×4×sin 14=8sin 14(cm).扇形弧长公式及面积公式的应用类问题的解决方法首先,将角度转化为弧度表示,弧度制的引入使相关的弧长公式、扇形面积公式均得到了简化,所以解决这类问题时通常采用弧度制.一般地,在几何图形中研究的角,其范围是(0,2π);其次,利用α,l ,R ,S 四个量“知二求二”代入公式.在求解的过程中要注意 (1)看清角的度量制,选用相应的公式;(2)扇形的周长等于弧长加两个半径长,对于扇形周长或面积的最值问题,通常转化为某个函数的最值问题.针对训练3:已知扇形AOB 的周长为10 cm ,求该扇形的面积的最大值及取得最大值时圆心角的大小及弧长.解:设扇形圆心角的弧度数为θ(0<θ<2π),弧长为l ,半径为r ,面积为S ,由l+2r=10,得l=10-2r>0,所以0<r<5. S=12lr=12(10-2r)·r=5r-r 2=-(r-52)2+254,因为0<r<5,所以当r=52时,S 取得最大值254,这时l=10-2×52=5,所以θ=l r=552=2.故该扇形的面积的最大值为254cm 2,取得最大值时圆心角为2 rad ,弧长为5 cm.1.已知α=-2 rad ,则角α的终边在( C ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 解析:因为1 rad=(180π)°,所以α=-2 rad=-(360π)°≈-114.6°,故角α的终边在第三象限.故选C. 2.将300°化为弧度是( D )A.-π3B.7π6C.11π6D.5π3解析:300°=300×π180=5π3rad.故选D.3.设终边在y 轴的负半轴上的角的集合为M ,则( D ) A.M={α|α=3π2+k π,k ∈Z}B.M={α|α=3π2-kπ2,k ∈Z}C.M={α|α=-π2+k π,k ∈Z}D.M={α|α=-π2+2k π,k ∈Z}解析:在-π~π内,终边在y 轴的负半轴上的角为-π2,所以终边在y轴的负半轴上的角可以表示为{α|α=-π2+2k π,k ∈Z}.故选D.4.已知一个扇形的圆心角为30°,所对的弧长为π3,则该扇形的面积为( D ) A.π2540B.13C .π6D .π3解析:因为|α|=lr,所以r=l|α|=π3π6=2,所以该扇形的面积S=12lr=12×π3×2=π3.故选D.[例1] (多选题)下列说法正确的是( )A.“度”与“弧度”是度量角的两种不同的度量单位B.1°的角是周角的1360,1 rad 的角是周角的12πC.1 rad 的角比1°的角要大D.用弧度制度量角时,角的大小与圆的半径有关解析:对于A ,“度”与“弧度”是度量角的两种不同的度量单位,故选项A 正确;对于B ,周角为360°,所以1°的角就是周角的1360,周角为2π弧度,所以1 rad 的角是周角的12π,故选项B 正确; 对于C ,根据弧度制与角度制的互化,可得1 rad=(180π)°>1°,故选项C 正确;对于D ,用弧度制度量角时,角的大小与圆的半径是无关的,故选项D 错误. 故选ABC.[例2] (多选题)(2021·浙江绍兴期末)设扇形的圆心角为α,半径为r ,弧长为l ,面积为S ,周长为L ,则( ) A.若α,r 确定,则L ,S 唯一确定 B.若α,l 确定,则L ,S 唯一确定 C.若S ,L 确定,则α,r 唯一确定 D.若S ,l 确定,则α,r 唯一确定解析:由弧长公式得l=αr ,S=12lr=12αr 2,周长L=l+2r ,若α,r 确定,则l 确定,则L ,S 唯一确定,故A 正确; 若α,l 确定,则r 确定,则L ,S 唯一确定,故B 正确;若S ,L 确定,则{L =l +2r =αr +2r ,S =12αr 2,则α,r 不一定唯一确定,故C 错误;若S ,l 确定,则r 确定,则α唯一确定,故D 正确. 故选ABD.[例3] 如图所示,用弧度制表示顶点在原点,始边重合于x 轴的非负半轴,终边落在阴影部分的角的集合.解:(1)将阴影部分看成是由OA 逆时针转到OB 所形成, 故满足条件的角的集合为{α|3π4+2k π<α<4π3+2k π,k ∈Z}.(2)若将终边为OA 的一个角改写为-π6,此时阴影部分可以看成是OA逆时针旋转到OB 所形成,故满足条件的角的集合为{α|-π6+2k π<α<5π12+2k π,k ∈Z}.(3)将图中x 轴下方的阴影部分看成是由x 轴上方的阴影部分旋转π rad 而得到,故满足条件的角的集合为{α|k π≤α≤π2+k π,k ∈Z}.(4)将第二象限阴影部分旋转π rad 后可得到第四象限的阴影部分, 故满足条件的角的集合为{α|2π3+k π<α<5π6+k π,k ∈Z}.[例4] 已知α,β分别是第二象限角、第四象限角,试问:12(α+β)是第几象限角?12(β-α)呢?解:若α,β分别是第二象限角、第四象限角, 则2k π+π2<α<2k π+π,k ∈Z ,2t π-π2<β<2t π,t ∈Z ,则2(k+t)π<α+β<2(k+t)π+π,k ∈Z ,t ∈Z ,则(k+t)π<12(α+β)<(k+t)π+π2,k ∈Z ,t ∈Z ,则12(α+β)为第一或第三象限角.-2k π-π<-α<-2k π-π2,k ∈Z ,2(t-k)π-3π2<β-α<2(t-k)π-π2,k ∈Z ,t ∈Z ,则(t-k)π-3π4<12(β-α)<(t-k)π-π4,k ∈Z ,t ∈Z ,则12(β-α)位于第三象限或第四象限或y 轴的非正半轴,或者第一象限或第二象限或y 轴的非负半轴.选题明细表基础巩固1.(多选题)下列说法中,正确的是( ABC ) A.半圆所对的圆心角是π rad B.周角的大小等于2π radC.1弧度的圆心角所对的弧长等于该圆的半径D.长度等于半径的弦所对的圆心角的大小是1弧度解析:根据弧度的定义及角度与弧度的换算知A ,B ,C 均正确,D 中应为“长度等于半径长的圆弧,而不是弦”.故D 错误.故选ABC. 2.下列转化结果正确的是( D )A.60°化成弧度是π6radB.π12rad化成角度是30°C.1°化成弧度是180πradD.1 rad化成角度是(180π)°解析:对于A,60°化成弧度是π3rad,所以A错误;对于B,π12rad化成角度是15°,所以B错误;对于C,1°化成弧度是π180rad,所以C错误;对于D,1 rad化成角度是(180π)°,所以D正确.故选D.3.如果一个圆的半径变为原来的一半,而弧长变为原来的32倍,那么该弧所对的圆心角是原来的( D )A.12B.2倍 C.13D.3倍解析:设圆的半径为r,弧长为l,则该弧所对圆心角的弧度数为lr,若将半径变为原来的一半,弧长变为原来的32倍,则该弧所对圆心角的弧度数变为3 2 l1 2r=3·lr,即该弧所对的圆心角变为原来的3倍.故选D.4.3弧度的角终边在( B )A.第一象限B.第二象限C.第三象限D.第四象限解析:因为π2<3<π,所以3弧度的角终边在第二象限.故选B.5.若α是第三象限角,则3π2-α是第象限角.解析:因为α是第三象限角,则π+2kπ<α<3π2+2kπ,k∈Z,所以-3π2-2k π<-α<-π-2k π,k ∈Z ,则-2k π<3π2-α<π2-2k π,k ∈Z ,故在第一象限.答案:一6.一个半径为2的扇形,如果它的周长等于所在的半圆的弧长,那么扇形的圆心角是 弧度,扇形面积是 . 解析:由题意知r=2,l+2r=πr , 所以l=(π-2)r , 所以圆心角α=l r =(π-2)rr =(π-2)rad ,扇形面积S=12lr=12×(π-2)·r ·r=2(π-2)=2π-4. 答案:(π-2) 2π-4能力提升7.集合{α|k π+π4≤α≤k π+π2,k ∈Z}中角所表示的范围(阴影部分)是( C )解析:k 为偶数时,集合对应的区域为第一象限内直线y=x 左上部分(包含边界);k 为奇数时,集合对应的区域为第三象限内直线y=x 的右下部分(包含边界).故选C.8.中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是一幅书法扇面,其尺寸如图所示,则该扇面的面积为( A )A.704 cm 2B.352 cm 2C.1 408 cm 2D.320 cm 2解析:如图,设∠AOB=θ,OA=OB=r cm ,由弧长公式可得{24=rθ,64=(r +16)θ,解得r=485,所以S扇面=S扇形OCD-S扇形OAB=12×64×(485+16)-12×24×485=704(cm 2).故选A.9.(2021·安徽合肥高一期末)已知半径为r 的扇形OAB 的面积为1,周长为4,则r= .解析:由题意得S 扇=12lr=1,C 扇=2r+l=4,联立解得r=1.答案:110.已知角α=1 200°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角;(2)在区间[-4π,π]内找出所有与角α终边相同的角. 解:(1)因为α=1 200°=1 200×π180=20π3=3×2π+2π3,所以角α与角2π3的终边相同,又因为π2<2π3<π,所以角α是第二象限角.(2)因为与角α终边相同的角(含角α)可表示为2π3+2k π(k ∈Z),且-4π≤2π3+2k π≤π(k ∈Z),所以-73≤k ≤16(k ∈Z),所以k=-2或k=-1或k=0,所以在区间[-4π,π]内与角α终边相同的角有-10π3,-4π3,2π3.11.已知扇形面积为4,当扇形圆心角为多少弧度时,扇形周长最小?并求出最小值.解:设圆心角是α,扇形半径是r , 则S=12αr ·r=12r 2α=4,所以r 2α=8.设扇形的周长为L ,则L=2r+r α≥2√2r ·rα=2×4=8, 当且仅当2r=r α,即α=2时,取“=”, 所以α=2时,该扇形的周长最小,最小值为8.应用创新12.《九章算术》是我国古代的数学巨著,其中《方田》章给出的计算弧田面积所用的经验公式为:弧田面积=12×(弦×矢+矢2),弧田(如图阴影部分所示)是由圆弧和弦围成,公式中的“弦”指圆弧所对的弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,矢为2的弧田,按照上述方法计算出其面积是( A )A.2+4√3B.√3+12 C.2+8√3 D.4+8√3解析:如图,由题意可得∠AOB=2π3,在Rt△AOD中,∠AOD=π3,∠DAO=π6,所以OC=OA=2OD.结合题意可知矢=OC-OD=CD=2,则OD=2,半径OC=4,弦AB=2AD=2√16-4=4√3,所以弧田面积=12(弦×矢+矢2)=12(4√3×2+22)= 4√3+2.故选A.。

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

【新导学案】高中数学人教版必修一:11《集合(复习)》(2).doc

1.1《集合(复习)》导学案【学习目标】1.承植橐合6勺交、并、补集三种运算及有关性质,能运行性质解决一些简单的问题,掌握集合的有关术语和符号;2.能使用数轴分析、仏/加图表达集合的运算,体会直观图示对理解抽象概念的作用.【知识链接】(复习教材/广凡,找出疑惑之处)复习1:什么叫交集、并集、补集?符号语言如何表示?图形语言?AHB = _________________________ :A UB = _________________________ :q A二 _______________________ •复习2:交、并、补有如下性质.AC\A= ________ ;AH 0 = _________ ;AUA= __________ ;AU 0=. ;人门((7异)= __ ; AU(C u A)= _________5 (Q, A) = ______ .你还能写出一些吗?【学习过程】探典型例题例1 设庐R, A = {x\-5<x<5}, ^ = {x|0<x<7}.求AC B、AU B、C(j A、久B、(%) Q Q、(CuA)U(Cu®、5 (AU 3、GUM.小结:(1)不等式的交、并、补集的运算,可以借助数轴进行分析,注意端点;(2)由以上结果,你能得岀什么结论吗?例 2 已知全集1/ = {1,2,3,4,5},若AU3二",ARBH0, A (1(0 = {1,2},求集合力、B.小结:列举法表示的数集问题用仏/加图示法、观察法.例 3 -4x+3 = 0j,Z?=|x|x2 -ar+ty-l = oj, C = |x x2 -nu4-1 = oj .fi.A\J B = A,AC}C = C ,求实数臼、刃的值或取值范围.变式:设y4 = {x|r-8x+15 = 0}, B = {x\ax-\ = 0},若BJ,求实数日组成的集合、.探动手试试练 1.设A = {x\x2-ax + 6 = 0}, B = {x\^-x+c = 0}f且〃门〃={2},求AU B.练2.已知用{刘攻-2或兀>3},伊{刘仆+/水0},当A^B时,求实数刃的取值范围。

人教版高中数学必修1教案学案汇编湖南版

人教版高中数学必修1教案学案汇编湖南版

新人教版高中数学必修1教案学案目录集合的概念教案 (1)集合的含义与表示教案 (3)集合间的基本关系教案 (8)集合的基本运算学案 (10)函数的概念教案 (27)函数的概念练习题 (30)函数的表示法教案 (32)函数单调性学案 (36)函数基本性质学案 (39)课题函数的最值学案 (42)奇偶性1学案 (45)奇偶性2学案 (47)双周清试题 (50)小题 (52)一元二次方程根与系数的关系(韦达定理)练习 (54)因式分解练习 (57)有理数指数幂的运算学案 (60)指数函数1学案 (61)指数函数2学案 (64)指数函数3学案 (66)指数与指数幂的运算学案 (68)对数函数及其性质学案 (69)集合的概念教案教学目标:(1) 了解集合、元素的概念,体会集合中元素的三个特征;(2) 理解元素与集合的“属于”和“不属于”关系;(3) 掌握常用数集及其记法;教学重点:掌握集合的基本概念;教学难点:元素与集合的关系;教学过程:一、引入课题军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合.二、阅读课本P 2-P 3内容,解答下列问题:1. 一般地,我们把研究对象统称为______(element ),一些元素组成的总体叫_____(set ),也简称______。

2. 判断以下元素的全体是否组成集合,并说明理由:(1) 大于3小于11的偶数;(2) 我国的小河流;(3) 非负奇数;(4) 方程210x +=的解;(5) 某校2007级新生;(6) 血压很高的人;(7) 著名的数学家;(8) 平面直角坐标系内所有第三象限的点(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题:关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

人教A版高中数学必修第一册 同步学案1-1-2 第2课时集合的表示

人教A版高中数学必修第一册 同步学案1-1-2 第2课时集合的表示

第2课时集合的表示1.掌握用列举法表示有限集.2.理解描述法格式及其适用情形.3.学会在集合不同的表示法中作出选择和转换.1.列举法把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.温馨提示:(1)元素与元素之间必须用“,”隔开.(2)集合中的元素必须是明确的.(3)集合中的元素不能重复.(4)集合中的元素可以是任何事物.2.描述法(1)定义:一般地,设A表示一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.温馨提示:(1)写清楚集合中元素的符号.如数或点等.(2)说明该集合中元素的共同特征,如方程、不等式、函数式或几何图形等.(3)不能出现未被说明的字母.1.观察下列集合:①方程x2-4=0的根;②20的所有正因数组成的集合.(1)上述两个集合中的元素能一一列举出来吗?(2)如何表示上述两个集合?[答案] (1)能.①中的元素为-2,2;②中的元素为1,2,4,5,10,20(2)用列举法表示2.观察下列集合:①不等式x -2≥3的解集;②函数y =x 2-1的图象上的所有点. (1)这两个集合能用列举法表示吗?(2)你觉得用什么方法表示这两个集合比较合适? [答案] (1)不能 (2)利用描述法3.判断正误(正确的打“√”,错误的打“×”)(1)由1,1,2,3组成的集合可用列举法表示为{1,1,2,3}.( ) (2)集合{(1,2)}中的元素是1和2.( )(3)集合A ={x|x -1=0}与集合B ={1}表示同一个集合.( ) (4)集合{x|4<x<5}可用列举法表示.( ) [答案] (1)× (2)× (3)√ (4)×题型一 用列举法表示集合【典例1】 用列举法表示下列集合:(1)方程x(x -1)2=0的所有实数根组成的集合; (2)不大于10的非负偶数集;(3)一次函数y =x 与y =2x -1图象的交点组成的集合.[思路导引] 用列举法表示集合的关键是弄清集合中的元素是什么,还要弄清集合中的元素个数. [解] (1)方程x(x -1)2=0的实数根为0,1, 故其实数根组成的集合为{0,1}.(2)不大于10的非负偶数即为从0到10的偶数,故不大于10的非负偶数集为{0,2,4,6,8,10}.(3)由⎩⎪⎨⎪⎧y =x y =2x -1,解得⎩⎪⎨⎪⎧x =1,y =1.故一次函数y =x 与y =2x -1图象的交点组成的集合为{(1,1)}.用列举法表示集合的3个步骤[针对训练]1.用列举法表示下列集合: (1)我国现有的所有直辖市; (2)绝对值小于3的整数集合;(3)一次函数y =x -1与y =-23x +43的图象交点组成的集合.[解] (1)我国现有的直辖市有北京市、天津市、上海市和重庆市,故我国现有的所有直辖市组成的集合为{北京市,天津市,上海市,重庆市}.(2)绝对值小于3的整数有-2,-1,0,1,2,故绝对值小于3的整数集合为{-2,-1,0,1,2}.(3)由⎩⎪⎨⎪⎧y =x -1,y =-23x +43,解得⎩⎪⎨⎪⎧x =75,y =25.故一次函数y =x -1与y =-23x +43的图象交点组成的集合为⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫75,25.题型二 用描述法表示集合【典例2】 用描述法表示下列集合: (1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合; (4)不等式3x -2<4的解集.[思路导引] 用描述法表示集合的关键是确定代表元素的属性和表示元素的共同特征.[解] (1)偶数可用式子x =2n,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x|x =2n,n ∈N *}.(2)设被3除余2的数为x,则x =3n +2,n ∈Z,但元素为正整数,故x =3n +2,n ∈N,所以被3除余2的正整数集合可表示为{x|x =3n +2,n ∈N}.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy =0,故坐标轴上的点的集合可表示为{(x,y)|xy =0}.(4)不等式3x -2<4可化简为x<2, 所以不等式3x -2<4的解集为{x|x<2}.用描述法表示集合应注意的3点(1)用描述法表示集合,首先应弄清楚集合的属性,是数集、点集还是其他的类型.一般地,数集用一个字母代表其元素,而点集则用一个有序数对来表示.(2)用描述法表示集合时,若描述部分出现元素记号以外的字母,要对新字母说明其含义或取值范围. (3)多层描述时,应当准确使用“且”和“或”,所有描述的内容都要写在集合内.[针对训练]2.用描述法表示下列集合: (1)所有被5整除的数;(2)方程6x 2-5x +1=0的实数解集; (3)直线y =x 上去掉原点的点的集合.[解] (1)被5整除的数可用式子x =5n,n ∈Z 表示,所以所有被5整除的数的集合可表示为{x|x =5n,n ∈Z}.(2)由6x 2-5x +1=0解得x =12或x =13,所以方程6x 2-5x +1=0的实数解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =12或x =13. (3)直线y =x 上除去原点,即x ≠0,所以直线y =x 上去掉原点的点的集合为{(x,y)|y =x,且x ≠0}. 题型三 集合表示方法的应用【典例3】 (1)若集合A ={x|ax 2-8x +16=0,a ∈R}中只有一个元素,则a 的值为( ) A .1 B .4 C .0D .0或1(2)已知A ={x|kx +2>0,k ∈R},若-2∈A,则k 的取值范围是________. [思路导引] 借助描述法求值或范围的关键是弄清集合中元素的特征. [解析] (1)①当a =0时,原方程为16-8x =0. ∴x =2,此时A ={2};②当a ≠0时,由集合A 中只有一个元素, ∴方程ax 2-8x +16=0有两个相等实根, 则Δ=64-64a =0,即a =1. 从而x 1=x 2=4,∴集合A ={4}. 综上所述,实数a 的值为0或1.故选D . (2)∵-2∈A,∴-2k +2>0,得k<1.[答案] (1)D (2)k<1[变式] (1)本例(1)中条件“有一个元素”改为有“两个元素”,其他条件不变,求a 的取值范围. (2)本例(2)中条件“-2∈A ”改为“-2∉A ”,其他条件不变,求k 的取值范围. [解] (1)由题意可知方程ax 2-8x +16=0有两个不等实根.∴⎩⎪⎨⎪⎧a ≠0,Δ=64-64a>0,解得a<1,且a ≠0.(2)∵-2∉A,∴-2k +2≤0,得k ≥1.集合表示方法的应用的注意点(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键. (2)与方程ax 2-8x +16=0的根有关问题易忽视a =0的情况.[针对训练]3.已知集合A ={x|x 2-ax +b =0},若A ={2,3},求a,b 的值.[解] 由A ={2,3}知,方程x 2-ax +b =0的两根为2,3,由根与系数的关系得,⎩⎪⎨⎪⎧2+3=a ,2×3=b ,因此a =5,b =6.4.设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪⎪62+x ∈N. (1)试判断元素1,2与集合B 的关系; (2)用列举法表示集合B.[解] (1)当x =1时,62+1=2∈N.当x =2时,62+2=32∉N.所以1∈B,2∉B. (2)∵62+x ∈N,x ∈N,∴2+x 只能取2,3,6.∴x 只能取0,1,4.∴B ={0,1,4}.课堂归纳小结1.表示集合的要求(1)根据要表示的集合元素的特点,选择适当方法表示集合,一般要符合最简原则.(2)一般情况下,元素个数无限的集合不宜用列举法表示,描述法既可以表示元素个数无限的集合,也可以表示元素个数有限的集合.2.在用描述法表示集合时应注意的问题(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式? (2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.1.用列举法表示集合{x|x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1}D .{x 2-2x +1=0}[解析] ∵x 2-2x +1=0,即(x -1)2=0,∴x =1,选B. [答案] B2.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A .-1∈A B .0∈A C.3∈AD .1∈A[解析] ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A,选D. [答案] D3.一次函数y =x -3与y =-2x 的图象的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}[解析] 由⎩⎪⎨⎪⎧y =x -3,y =-2x 得⎩⎪⎨⎪⎧x =1,y =-2,∴交点为(1,-2),故选D.[答案] D4.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B 为________. [解析] 当t =-2时,x =4; 当t =2时,x =4; 当t =3时,x =9; 当t =4时,x =16; ∴B ={4,9,16}. [答案] {4,9,16}5.选择适当的方法表示下列集合: (1)绝对值不大于2的整数组成的集合;(2)方程(3x -5)(x +2)=0的实数解组成的集合;(3)一次函数y=x+6图象上所有点组成的集合.[解] (1)绝对值不大于2的整数是-2,-1,0,1,2,共有5个元素,则用列举法表示为{-2,-1,0,1,2}.(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为⎩⎨⎧⎭⎬⎫53,-2.(3)一次函数y=x+6图象上有无数个点,用描述法表示为{(x,y)|y=x+6}.课内拓展课外探究集合的表示方法1.有限集、无限集根据集合中元素的个数可以将集合分为有限集和无限集.当集合中元素的个数有限时,称之为有限集;而当集合中元素的个数无限时,则称之为无限集.当集合为有限集,且元素个数较少时宜采用列举法表示集合;对元素个数较多的集合和无限集,一般采用描述法表示集合.对于元素个数较多的集合或无限集,其元素呈现一定的规律,在不产生误解的情况下,也可以列举出几个元素作为代表,其他元素用省略号表示.【典例1】用列举法表示下列集合:(1)正整数集;(2)被3整除的数组成的集合.[解] (1)此集合为无限集,且有一定规律,用列举法表示为{1,2,3,4,…}.(2)此集合为无限集,且有一定规律,用列举法表示为{…,-6,-3,0,3,6,…}.[点评] (1){1,2,3,4,…}一般不写成{2,1,4,3,…};(2)此题中的省略号不能漏掉.2.集合含义的正确识别集合的元素类型多是以数、点、图形等形式出现的.对于已知集合必须弄清集合元素的形式,特别是对于用描述法给定的集合要弄清它的代表元素是什么,代表元素有何属性(如表示数集、点集等).【典例2】已知下面三个集合:①{x|y=x2+1};②{y|y=x2+1};③{(x,y)|y=x2+1}.问:它们是否为同一个集合?它们各自的含义是什么?[解] ∵三个集合的代表元素互不相同,∴它们是互不相同的集合.集合①{x|y=x2+1}的代表元素是x,即满足条件y=x2+1中的所有x,∴{x|y=x2+1}=R.集合②{y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,∴{y|y=x2+1}={y|y≥1}.集合③{(x,y)|y=x2+1}的代表元素是(x,y),可认为是满足条件y=x2+1的实数对(x,y)的集合,也可认为是坐标平面内的点(x,y),且这些点的坐标满足y =x 2+1.∴{(x,y)|y =x 2+1}={P|P 是抛物线y =x 2+1上的点}.[点评] 使用特征性质描述来表示集合时,首先要明确集合中的元素是什么,如本题中元素的属性都与y =x 2+1有关,但由于代表元素不同,因而表示的集合也不一样.课后作业(二)复习巩固一、选择题1.已知M 中有三个元素可以作为某一个三角形的边长,则此三角形一定不是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等腰三角形[解析] 集合M 的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的,故选D. [答案] D2.下列集合中,不同于另外三个集合的是( ) A .{x|x =1} B .{x|x 2=1} C .{1}D .{y|(y -1)2=0}[解析] {x|x 2=1}={-1,1},另外三个集合都是{1},选B. [答案] B3.已知M ={x|x -1<2},那么( ) A .2∈M,-2∈M B .2∈M,-2∉M C .2∉M,-2∉MD .2∉M,-2∈M[解析] 若x =2,则x -1=1<2,所以2∈M ;若x =-2,则x -1=-3<2,所以-2∈M.故选A. [答案] A4.下列集合的表示方法正确的是( )A .第二、四象限内的点集可表示为{(x,y)|xy ≤0,x ∈R,y ∈R}B .不等式x -1<4的解集为{x<5}C .{全体整数}D .实数集可表示为R[解析] 选项A 中应是xy<0;选项B 的本意是想用描述法表示,但不符合描述法的规范格式,缺少了竖线和竖线前面的代表元素x ;选项C 的“{ }”与“全体”意思重复.[答案] D5.方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9的解集是( )A .(-5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}[解析] 解方程组⎩⎪⎨⎪⎧x +y =1,x 2-y 2=9,得⎩⎪⎨⎪⎧x =5,y =-4,故解集为{(5,-4)},选D.[答案] D 二、填空题6.设集合A ={1,-2,a 2-1},B ={1,a 2-3a,0},若A,B 相等,则实数a =________.[解析] 由集合相等的概念得⎩⎪⎨⎪⎧a 2-1=0,a 2-3a =-2,解得a =1.[答案] 17.设-5∈{x|x 2-ax -5=0},则集合{x|x 2+ax +3=0}=________. [解析] 由题意知,-5是方程x 2-ax -5=0的一个根, 所以(-5)2+5a -5=0,得a =-4, 则方程x 2+ax +3=0,即x 2-4x +3=0, 解得x =1或x =3,所以{x|x 2-4x +3=0}={1,3}. [答案] {1,3}8.若A ={-2,0,2,3},B ={(x,y)|y =x 2,x ∈A},用列举法表示集合B 为________. [解析]由⎩⎪⎨⎪⎧x =-2,y =4,⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =2,y =4,⎩⎪⎨⎪⎧x =3,y =9,得集合B ={(-2,4),(0,0),(2,4),(3,9)}.[答案] {(-2,4),(0,0),(2,4),(3,9)} 三、解答题9.用适当的方法表示下列集合: (1)一年中有31天的月份的全体;(2)由直线y =-x +4上的横坐标和纵坐标都是自然数的点组成的集合. [解] (1){1月,3月,5月,7月,8月,10月,12月}.(2)用描述法表示该集合为M ={(x,y)|y =-x +4,x ∈N,y ∈N},或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.10.含有三个实数的集合A =⎩⎨⎧⎭⎬⎫a 2,b a ,a ,若0∈A 且1∈A,求a 2019+b 2019的值. [解] 由0∈A,“0不能做分母”可知a ≠0,故a 2≠0,所以b a =0,即b =0.又1∈A,可知a 2=1或a =1.当a =1时,得a 2=1,由集合元素的互异性,知a =1不合题意.当a2=1时,得a=-1或a=1(舍).故a=-1,b=0,所以a2019+b2019的值为-1.综合运用11.集合A={y|y=x2+1},集合B={(x,y)|y=x2+1}(A,B中x∈R,y∈R).选项中元素与集合的关系都正确的是( )A.2∈A,且2∈BB.(1,2)∈A,且(1,2)∈BC.2∈A,且(3,10)∈BD.(3,10)∈A,且2∈B[解析] 集合A中元素y是实数,不是点,故选项B,D不对.集合B的元素(x,y)是点而不是实数,2∈B 不正确,所以A错.[答案] C12.定义P*Q={ab|a∈P,b∈Q},若P={0,1,2},Q={1,2,3},则P*Q中元素的个数是( )A.6个B.7个 C.8个D.9个[解析] 若a=0,则ab=0;若a=1,则ab=1,2,3;若a=2,则ab=2,4,6.故P*Q={0,1,2,3,4,6},共6个元素.[答案] A13.已知集合A={-1,0,1},集合B={y|y=|x|,x∈A},则B=________.[解析] ∵x∈A,∴当x=-1时,y=|x|=1;当x=0时,y=|x|=0;当x=1时,y=|x|=1.[答案] {0,1}14.用描述法表示图中阴影部分的点构成的集合为________.[解析] 依题设知:该集合为一点集,且其横坐标满足0≤x≤2,纵坐标满足0≤y≤1,所以该集合为{(x,y)|0≤x≤2,0≤y≤1}.[答案] {(x,y)|0≤x≤2,0≤y≤1}15.设集合A={x|x2+ax+1=0}.(1)当a=2时,试求出集合A;(2)a为何值时,集合A中只有一个元素;(3)a为何值时,集合A中有两个元素.[解] 集合A是方程x2+ax+1=0的解构成的集合.(1)当a=2时,x2+2x+1=0,即(x+1)2=0,x=-1,所以A={-1}.(2)A中只有一个元素,即方程x2+ax+1=0有两个相等实根,由Δ=a2-4=0,得a=±2.所以a=±2时,集合A中只有一个元素.(3)A中有两个元素,即方程x2+ax+1=0有两个不相等的实根,由Δ=a2-4>0,得a<-2或a>2. 所以a<-2或a>2时,集合A中有两个元素.。

苏教版必修1高中数学1.3 交集、并集(2)学案

苏教版必修1高中数学1.3 交集、并集(2)学案

高中数学 1.3 交集、并集(2)学案
苏教版必修1
一、复习引入
1、复习交、并、补的概念及性质
2、问题
(1)能否在数轴上表示集合,集合吗?
(2)能否在数轴上表示和?
3、建构
(1)利用数轴来求集合的交集、并集
(2)介绍区间概念
二、例题分析
例1、集合,,用列举法表示集合.
例2、设集合,集合或,分别就下列条件,求实数a的范围.①= ②≠③= 例3、已知,,=,求由实数构成的集合.
例4、已知全集,,,
求、.
三、随堂练习
1、:
2、
3、8
2、已知,则= ____________,=_______________.
3、设全集,,,求实数和的值.
四、回顾小结
运用交、并、补的性质解题.
五、巩固练习
1、设全集为,集合,,求.
2、已知集合,,若,求实数的取值范围.
3、已知集合,,
且=求实数的值.。

人教版(新教材)高中数学必修1(第一册)学案:4.5.2 用二分法求方程的近似解

人教版(新教材)高中数学必修1(第一册)学案:4.5.2 用二分法求方程的近似解

4.5.2 用二分法求方程的近似解学习目标 1.了解二分法的原理及其适用条件.2.掌握二分法的实施步骤.3.体会二分法中蕴含的逐步逼近与程序化思想.知识点一二分法对于在区间『a,b』上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.由函数的零点与相应方程根的关系,可用二分法来求方程的近似解.思考已知函数y=f(x)在区间(a,b)内有零点,采用什么方法能进一步有效缩小零点所在的区间?『答案』可采用“取中点”的方法逐步缩小零点所在的区间.知识点二用二分法求函数f(x)零点近似值的步骤1.确定零点x0的初始区间『a,b』,验证f(a)·f(b)<0.2.求区间(a,b)的中点c.3.计算f(c),并进一步确定零点所在的区间:(1)若f(c)=0(此时x0=c),则c就是函数的零点;(2)若f(a)·f(c)<0(此时x0∈(a,c)),则令b=c;(3)若f(c)·f(b)<0(此时x0∈(c,b)),则令a=c.4.判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤(2)~(4).以上步骤可简化为:定区间,找中点,中值计算两边看;同号去,异号算,零点落在异号间;周而复始怎么办?精确度上来判断.1.如果函数零点两侧函数值同号,不适合用二分法求此零点近似值.(√)2.要用二分法,必须先确定零点所在区间.(√)3.用二分法最后一定能求出函数零点.(×)4.达到精确度后,所得区间内任一数均可视为零点的近似值.(√)一、二分法概念的理解例1以下每个图象表示的函数都有零点,但不能用二分法求函数零点的是()考点二分法的概念题点判断是否能用二分法求解零点『答案』 C『解析』使用二分法必先找到零点所在区间『a,b』,且f(a)·f(b)<0,但C中找不到这样的区间.反思感悟运用二分法求函数的零点应具备的条件(1)函数图象在零点附近连续不断.(2)在该零点左右函数值异号.只有满足上述两个条件,才可用二分法求函数零点.跟踪训练1已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的个数分别为()A.4,4B.3,4C.5,4D.4,3『答案』 D『解析』图象与x轴有4个交点,所以零点的个数为4;左右函数值异号的零点有3个,所以可以用二分法求解的个数为3,故选D.二、用二分法求方程的近似解例2(1)在用二分法求函数f(x)零点近似值时,第一次取的区间是(-2,4),则第三次所取的区间可能是()A.(1,4) B.(-2,1)C.(-2,2.5) D.(-0.5,1)『答案』 D『解析』因为第一次所取的区间是(-2,4),所以第二次所取的区间可能是(-2,1),(1,4),第三次所取的区间可能为(-2,-0.5),(-0.5,1),(1,2.5),(2.5,4),故选D.(2)用二分法求方程2x3+3x-3=0的一个正实数近似解.(精确度0.1)解令f(x)=2x3+3x-3,经计算,f(0)=-3<0,f(1)=2>0,f(0)·f(1)<0,所以函数f(x)在(0,1)内存在零点,即方程2x3+3x-3=0在(0,1)内有解.取(0,1)的中点0.5,经计算f(0.5)<0,又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有解.如此继续下去,得到方程的正实数根所在的区间,如表:由于|0.6875-0.75|=0.0625<0.1,所以0.75可作为方程的一个正实数近似解.反思感悟利用二分法求方程的近似解的步骤(1)构造函数,利用图象确定方程的解所在的大致区间,通常取区间(n,n+1),n∈Z.(2)利用二分法求出满足精确度的方程的解所在的区间M.(3)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.跟踪训练2(1)用二分法求方程2x+3x-7=0在区间『1,3』内的根,取区间的中点为x0=2,那么下一个有根的区间是________.『答案』(1,2)『解 析』 设f (x )=2x +3x -7,f (1)=2+3-7=-2<0,f (3)=10>0,f (2)=3>0,f (x )零点所在的区间为(1,2),所以方程2x +3x -7=0下一个有根的区间是(1,2). (2)用二分法求函数f (x )=x 3-3的正零点.(精确度0.02) 考点 用二分法求函数零点的近似值 题点 用二分法求方程的近似解 解 由于f (0)=-3<0, f (1)=-2<0,f (2)=5>0,故可取区间(1,2)作为计算的初始区间. 用二分法逐次计算,列表如下:区间 中点的值 中点函数值(或近似值)(1,2) 1.5 0.375 (1,1.5) 1.25 -1.047 (1.25,1.5) 1.375 -0.400 (1.375,1.5) 1.4375 -0.030 (1.4375,1.5) 1.46875 0.168 (1.4375,1.46875) 1.4531250.068 (1.4375,1.453125)因为|1.453125-1.4375|=0.015625<0.02,所以函数f (x )=x 3-3的零点的近似值可取为1.4375.1.下列函数中,必须用二分法求其零点的是( ) A .y =x +7 B .y =5x -1 C .y =log 3x D .y =⎝⎛⎭⎫12x-x『答 案』 D『解 析』 A ,B ,C 项均可用解方程求其根,D 项不能用解方程求其根,只能用二分法求零点.2.观察下列函数的图象,判断能用二分法求其零点的是( )考点 二分法的概念题点 判断是否能用二分法求解零点 『答 案』 A3.用二分法求函数f (x )=x 3+5的零点可以取的初始区间是( ) A .『-2,-1』 B .『-1,0』 C .『0,1』 D .『1,2』『答 案』 A4.在用二分法求函数f (x )的一个正实数零点时,经计算,f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.6B .0.75C .0.7D .0.8 『答 案』 C『解 析』 已知f (0.64)<0,f (0.72)>0, 则函数f (x )的零点的初始区间为『0.64,0.72』. 又0.68=0.64+0.722,且f (0.68)<0,所以零点在区间(0.68,0.72)上, 因为|0.68-0.72|=0.04<0.1,因此所求函数的一个正实数零点的近似值可为0.7, 故选C.5.用二分法求函数y =f (x )在区间(2,4)上的唯一零点的近似值时,验证f (2)·f (4)<0,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间是________.考点 用二分法求函数零点的近似值 题点 用二分法判断函数零点所在的区间 『答 案』 (2,3)1.知识清单: (1)二分法的定义.(2)利用二分法求函数的零点、方程的近似解.2.方法归纳:(1)化归思想:把求方程f(x)=0的近似解转化为求函数y=f(x)的近似零点.(2)逼近思想:二分法是求函数零点的一种常用方法,是“逐步逼近”的数学思想的应用.3.常见误区:利用二分法并不适用于所有零点,只能求函数的变号零点.。

2017-2018学年北师大版高中数学必修1全册学案

2017-2018学年北师大版高中数学必修1全册学案

2017-2018学年高中数学北师大版必修1全册同步学案目录第一章1 第1课时集合的含义第一章1 第2课时集合的表示第一章2 集合的基本关系第一章3.1 交集与并集第一章3.2 全集与补集第一章章末复习课第三章1 正整数指数函数第三章2 指数扩充及其运算性质第三章3 指数函数(一)第三章3 指数函数(二)第三章4 第1课时对数第三章4 第2课时对数的运算第三章5.1 对数函数的概念5.2 对数函数y=log2x的图像和性质第三章5.3 对数函数的图像和性质第三章6 指数函数、幂函数、对数函数增长的比较第三章习题课对数函数第三章章末复习课第二章1 生活中的变量关系第二章2.1 函数概念第二章2.2 函数的表示法(一)第二章2.2 函数的表示法(二)2.3 映射第二章3 函数的单调性(一)第二章3 函数的单调性(二)第二章4 二次函数性质的再研究第二章5 简单的幂函数(一)第二章5 简单的幂函数(二)第二章章末复习课第四章1.1 利用函数性质判定方程解的存在第四章1.2 利用二分法求方程的近似解第四章2 实际问题的函数建模第四章章末复习课第1课时 集合的含义学习目标 1.了解集合与元素的含义.2.理解集合中元素的特征,并能利用它们进行解题.3.理解集合与元素的关系.4.掌握数学中一些常见的集合及其记法.知识点一 集合的概念思考 有首歌中唱道“他大舅他二舅都是他舅”,在这句话中,谁是集合?谁是集合中的元素?梳理 元素与集合的概念(1)集合:一般地,________________________称为集合.集合常用大写字母A ,B ,C ,D ,…标记.(2)元素:集合中的____________叫作这个集合的元素.常用小写字母a ,b ,c ,d ,…表示集合中的元素.知识点二 元素与集合的关系思考 1是整数吗?12是整数吗?有没有这样一个数,它既是整数,又不是整数?梳理 元素与集合的关系有且只有两种,分别为________、__________,数学符号分别为________、________.知识点三元素的三个特性思考1某班所有的“帅哥”能否构成一个集合?某班身高高于175厘米的男生能否构成一个集合?集合元素确定性的含义是什么?思考2构成单词“bee”的字母形成的集合,其中的元素有多少个?思考3“中国的直辖市”构成的集合中,元素包括哪些?甲同学说:“北京、上海、天津、重庆”;乙同学说:“上海、北京、重庆、天津”,他们的回答都正确吗?由此说明什么?怎么说明两个集合相等?梳理元素的三个特性是指__________、__________、__________.知识点四常用数集及表示符号类型一判断给定的对象能否构成集合例1考察下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某班的所有高个子同学;(4)3的近似值的全体.反思与感悟 判断给定的对象能不能构成集合,关键在于是否给出一个明确的标准,使得对于任何一个对象,都能按此标准确定它是不是给定集合的元素. 跟踪训练1 下列各组对象可以组成集合的是( ) A .数学必修1课本中所有的难题 B .小于8的所有素数C .直角坐标平面内第一象限的一些点D .所有小的正数类型二 元素与集合的关系命题角度1 判定元素与集合的关系 例2 给出下列关系:①12∈R ;②2∉Q ;③|-3|∉N ; ④|-3|∈Q ;⑤0∉N ,其中正确的个数为( ) A .1 B .2 C .3 D .4反思与感悟 要判断元素与集合的关系,首先要弄清集合中有哪些元素(涉及常用数集,如N ,R ,Q ,概念要清晰);其次要看待判定的元素是否具有集合要求的条件. 跟踪训练2 用符号 “∈”或“∉”填空. -2________R ;-3________Q ; -1________N ;π________Z .命题角度2 根据已知的元素与集合的关系推理例3 集合A 中的元素x 满足63-x ∈N ,x ∈N ,则集合A 中的元素为________.反思与感悟 判断元素和集合关系的两种方法 (1)直接法①使用前提:集合中的元素是直接给出的.②判断方法:首先明确集合是由哪些元素构成,然后再判断该元素在已知集合中是否出现. (2)推理法①使用前提:对于某些不便直接表示的集合.②判断方法:首先明确已知集合的元素具有什么特征,然后判断该元素是否满足集合中元素所具有的特征.跟踪训练3 已知集合A 中的元素x 满足2x +a >0,a ∈R ,若1∉A,2∈A ,则( )A.a>-4 B.a≤-2C.-4<a<-2 D.-4<a≤-2类型三元素的三个特性的应用例4已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x.(1)若-3∈A,求a的值;(2)若x2∈B,求实数x的值;(3)是否存在实数a,x,使A=B.反思与感悟元素的无序性主要体现在:①给出元素属于某集合,则它可能表示集合中的任一元素;②给出两集合相等,则其中的元素不一定按顺序对应相等.元素的互异性主要体现在求出参数后要代入检验,同一集合中的元素要互不相等.跟踪训练4已知集合M是由三个元素-2,3x2+3x-4,x2+x-4组成的,若2∈M,求x.1.下列给出的对象中,能组成集合的是()A.一切很大的数B.好心人C.漂亮的小女孩D.方程x2-1=0的实数根2.下面说法正确的是()A.所有在N中的元素都在N+中B.所有不在N+中的数都在Z中C.所有不在Q中的实数都在R中D.方程4x=-8的解既在N中又在Z中3.由“book中的字母”构成的集合中元素个数为()A.1 B.2 C.3 D.44.下列结论不正确的是()A.0∈N B.33C.0∉Q D.-1∈Z5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为() A.2 B.3C.0或3 D.0,2,3均可1.考察对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),依此特征(或标准)能确定任何一个个体是否属于这个总体.如果有,能构成集合;如果没有,就不能构成集合.2.元素a与集合A之间只有两种关系:a∈A,a∉A.3.集合中元素的三个特性(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属不属于这个集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.答案精析问题导学 知识点一思考 “某人的舅”是一个集合,“某人的大舅、二舅”都是这个集合中的元素. 梳理 (1)指定的某些对象的全体 (2)每个对象 知识点二思考 1是整数;12不是整数;没有.梳理 属于 不属于 ∈ ∉ 知识点三思考1 某班所有的“帅哥”不能构成集合,因“帅哥”无明确的标准.高于175厘米的男生能构成一个集合,因标准确定.元素确定性的含义:集合中的元素必须是确定的,也就是说,给定一个集合A ,那么任何一个对象a 是不是这个集合中的元素就确定了. 思考2 2个.集合中的元素互不相同,这叫元素的互异性.思考3 两个同学都说出了中国直辖市的所有城市,因此两个同学的回答都是正确的.由此说明,集合中的元素是无先后顺序的,这就是元素的无序性.只要构成两个集合的元素一样,我们就称这两个集合是相等的. 梳理 确定性 互异性 无序性 知识点四N N *或N + Z Q R 题型探究例1 解 (1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合. (2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数如“2”是不是它的近似值,所以不能构成集合.跟踪训练1 B [A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合.] 例2 B [12是实数,①对;2不是有理数,②对; |-3|=3是自然数,③错; |-3|=3为无理数,④错; 0是自然数,⑤错. 故选B.]跟踪训练2 ∈ ∈ ∉ ∉ 例3 0,1,2解析 ∵x ∈N ,63-x ∈N ,∴0≤x ≤2且x ∈N .当x =0时,63-x =63=2∈N ;当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N .∴A 中元素有0,1,2. 跟踪训练3 D [∵1∉A , ∴2×1+a ≤0,a ≤-2.又∵2∈A ,∴2×2+a >0,a >-4, ∴-4<a ≤-2.]例4 解 (1)由-3∈A 且a 2+1≥1, 可知a -3=-3或2a -1=-3, 当a -3=-3时,a =0; 当2a -1=-3时,a =-1. 经检验,0与-1都符合要求. ∴a =0或-1.(2)当x =0,1,-1时,都有x 2∈B ,但考虑到集合元素的互异性,x ≠0,x ≠1,故x =-1. (3)显然a 2+1≠0.由集合元素的无序性, 只可能a -3=0或2a -1=0. 若a -3=0,则a =3, A ={a -3,2a -1,a 2+1} ={0,5,10}≠B .若2a -1=0,则a =12,A ={a -3,2a -1,a 2+1} ={0,-52,54}≠B .故不存在实数a ,x ,使A =B . 跟踪训练4 解 当3x 2+3x -4=2, 即x 2+x -2=0时,x =-2,或x =1. 经检验,x =-2,x =1均不合题意. 当x 2+x -4=2,即x 2+x -6=0时, 则x =-3或x =2.经检验,x =-3或x =2均合题意. ∴x =-3或x =2. 当堂训练1.D 2.C 3.C 4.C 5.B第2课时 集合的表示学习目标 1.了解空集、有限集、无限集的概念.2.掌握用列举法表示有限集.3.理解描述法的格式及其适用情形.4.学会在不同的集合表示法中作出选择和转换.知识点一 集合的分类思考 集合{x ∈R |x 2<0}中有多少个元素?{x ∈R |x 2=0}呢?{x ∈R |x 2>0}呢?梳理 按集合中的元素个数分类,不含有任何元素的集合叫作空集,记作∅;含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集. 知识点二 列举法思考 要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?梳理把集合中的元素____________出来写在大括号内的方法叫作列举法.适用于元素较少的集合.知识点三描述法思考能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?梳理描述法:用确定的条件表示某些对象属于一个集合并写在大括号内的方法.符号表示为{|},如{x∈A|p(x)}.类型一用列举法表示集合例1用列举法表示下列集合.(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合.反思与感悟(1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.(2)列举法表示的集合的种类①元素个数少且有限时,全部列举,如{1,2,3,4};②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.跟踪训练1用列举法表示下列集合.(1)由所有小于10的既是奇数又是素数的自然数组成的集合;(2)由1~20的所有素数组成的集合.类型二用描述法表示集合例2试用描述法表示下列集合.(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.引申探究用描述法表示函数y=x2-2图像上所有的点组成的集合.反思与感悟用描述法表示集合时应注意的四点(1)写清楚该集合中元素的代号.(2)说明该集合中元素的性质.(3)所有描述的内容都可写在集合符号内.(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.跟踪训练2用描述法表示下列集合.(1)方程x2+y2-4x+6y+13=0的解集;(2)二次函数y=x2-10图像上的所有点组成的集合;(3)由所有小于10或大于20的实数组成的集合.类型三集合表示的综合应用命题角度1选择适当的方法表示集合例3用适当的方法表示下列集合.(1)由x=2n,0≤n≤2且n∈N组成的集合;(2)抛物线y=x2-2x与x轴的公共点的集合;(3)直线y=x上去掉原点的点的集合.反思与感悟用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.跟踪训练3若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________________.命题角度2新定义的集合例4对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m ※n =m +n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n =mn ,则在此定义下,集合M ={(a ,b )|a ※b =16}中的元素个数是( ) A .18 B .17 D .16 D .15反思与感悟 命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解应用此定义,在新的情况下完成某种推理证明或指定要求. 跟踪训练4 定义集合运算:A ※B ={t |t =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A ※B 的所有元素之和为________.1.下面四个判断,正确的个数是( ) (1)0∈∅; (2){0}是空集;(3)⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪x +y =12x +2y =-2是空集;(4){x 2+y +1=0}是空集. A .0 B .1 C .2 D .42.一次函数y =x -3与y =-2x 的图像的交点组成的集合是( ) A .{1,-2} B .{x =1,y =-2} C .{(-2,1)}D .{(1,-2)}3.设A ={x ∈N |1≤x <6},则下列正确的是( ) A .6∈A B .0∈A C .3∉A D .3.5∉A 4.第一象限的点组成的集合可以表示为( ) A .{(x ,y )|xy >0} B .{(x ,y )|xy ≥0} C .{(x ,y )|x >0且y >0} D .{(x ,y )|x >0或y >0}5.下列集合不等于由所有奇数构成的集合的是( ) A .{x |x =4k -1,k ∈Z }B .{x |x =2k -1,k ∈Z }C.{x|x=2k+1,k∈Z} D.{x|x=2k+3,k∈Z}1.在用列举法表示集合时应注意:(1)元素间用分隔号“,”.(2)元素不重复.(3)元素无顺序.(4)列举法可表示有限集,也可以表示无限集.若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.2.在用描述法表示集合时应注意(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.答案精析问题导学知识点一思考0个;1个;无限多个.知识点二思考把它们一一列举出来.梳理一一列举知识点三思考不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.题型探究例1解(1)设小于10的所有自然数组成的集合为A,那么A={0,1,2,3,4,5,6,7,8,9}.(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}.跟踪训练1解(1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.(2)设由1~20的所有素数组成的集合为C,那么C={2,3,5,7,11,13,17,19}.例2解(1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.(2)设大于10小于20的整数为x,它满足条件x∈Z,且10<x<20.故用描述法表示为B={x∈Z|10<x<20}.引申探究解{(x,y)|y=x2-2}.跟踪训练2解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y =-3.所以方程的解集为{(x,y)|x=2,y=-3}.(2)“二次函数y=x2-10图像上的所有点”用描述法表示为{(x,y)|y=x2-10}.(3){x|x<10或x>20}.例3解(1)列举法:{0,2,4}.或描述法{x|x=2n,0≤n≤2且n∈N}.(2)列举法:{(0,0),(2,0)}.(3)描述法:{(x,y)|y=x,x≠0}.跟踪训练3{2 000,2 001,2 004}解析由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.例4B[因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.]跟踪训练46解析由题意得t=0,2,4,即A※B={0,2,4},又0+2+4=6,故集合A※B的所有元素之和为6.当堂训练1.B 2.D 3.D 4.C 5.A学习目标 1.理解子集、集合相等、真子集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集思考如果把“马”和“白马”视为两个集合,则这两个集合中的元素有什么关系?梳理一般地,对于两个集合A与B,如果集合A中的______________元素都是集合B中的元素,即若a∈A,则a∈B,我们就说集合A包含于集合B,或集合B包含集合A,称集合A为集合B的子集,记作____________(或__________),读作“____________”(或“____________”).子集的有关性质:(1)∅是任何集合A的子集,即∅⊆A.(2)任何一个集合是它本身的子集,即________.(3)对于集合A,B,C,如果A⊆B,且B⊆C,那么________.(4)若A⊆B,B⊆A,则称集合A与集合B相等,记作A=B.知识点二真子集思考在知识点一里,我们知道集合A是它本身的子集,那么如何刻画至少比A少一个元素的A的子集?梳理如果集合A⊆B,但A≠B,称集合A是集合B的真子集,记作:__________(或__________),读作:________________(或______________).知识点三Venn图思考图中集合A,B,C的关系用符号可表示为__________.梳理一般地,用平面上________曲线的内部代表集合,这种图称为Venn图.Venn图可以直观地表达集合间的关系.类型一求集合的子集例1(1)写出集合{a,b,c,d}的所有子集;(2)若一个集合有n(n∈N)个元素,则它有多少个子集?多少个真子集?验证你的结论.反思与感悟为了罗列时不重不漏,要讲究列举顺序,这个顺序有点类似于从1到100数数:先是一位数,然后是两位数,在两位数中,先数首位是1的等等.跟踪训练1适合条件{1}⊆A{1,2,3,4,5}的集合A的个数是()A.15 B.16C.31 D.32类型二判断集合间的关系命题角度1概念间的包含关系例2设集合M={菱形},N={平行四边形},P={四边形},Q={正方形},则这些集合之间的关系为()A.P⊆N⊆M⊆QB.Q⊆M⊆N⊆PC.P⊆M⊆N⊆QD.Q⊆N⊆M⊆P反思与感悟一个概念通常就是一个集合,要判断概念间的关系首先要准确理解概念的定义.跟踪训练2我们已经知道自然数集、整数集、有理数集、实数集可以分别用N、Z、Q、R 表示,用符号表示N、Z、Q、R的关系为______________.命题角度2数集间的包含关系例3设集合A={0,1},集合B={x|x<2或x>3},则A与B的关系为()A.A∈B B.B∈AC.A⊆B D.B⊆A反思与感悟判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.跟踪训练3已知集合A={x|-1<x<4},B={x|x<5},则()A.A∈B B.A BC.B A D.B⊆A类型三由集合间的关系求参数(或参数范围)例4已知集合A={x|x2-x=0},B={x|ax=1},且A⊇B,求实数a的值.反思与感悟集合A的子集可分三类:∅、A本身,A的非空真子集,解题中易忽略∅.跟踪训练4已知集合A={x|1<x<2},B={x|2a-3<x<a-2},且A⊇B,求实数a的取值范围.1.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A,则A≠∅.其中正确的个数是()A.0 B.1 C.2 D.32.集合P={x|x2-1=0},T={-1,0,1},则P与T的关系为()A.P T B.P∈T C.P=T D.P⃘T3.下列关系错误的是()A.∅⊆∅B.A⊆AC.∅⊆A D.∅∈A4.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是()5.若A={x|x>a},B={x|x>6},且A⊆B,则实数a可以是()A.3 B.4 C.5 D.61.对子集、真子集有关概念的理解(1)集合A中的任何一个元素都是集合B中的元素,即由x∈A,能推出x∈B,这是判断A ⊆B的常用方法.(2)不能简单地把“A⊆B”理解成“A是B中部分元素组成的集合”,因为若A=∅时,则A 中不含任何元素;若A=B,则A中含有B中的所有元素.(3)在真子集的定义中,A B首先要满足A⊆B,其次至少有一个x∈B,但xD∈/A.2.集合子集的个数求集合的子集问题时,一般可以按照子集元素个数分类,再依次写出符合要求的子集.集合的子集、真子集个数的规律为:含n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.写集合的子集时,空集和集合本身易漏掉.3.由集合间的关系求参数问题的注意点及常用方法(1)注意点:①不能忽视集合为∅的情形;②当集合中含有字母参数时,一般需要分类讨论.(2)常用方法:对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.答案精析问题导学 知识点一思考 所有的白马都是马,马不一定是白马.梳理 任何一个 A ⊆B B ⊇A A 包含于B B 包含A (2)A ⊆A (3)A ⊆C 知识点二 思考 用真子集.梳理 A B B A A 真包含于B B 真包含A 知识点三 思考 A ⊆B ⊆C 梳理 封闭 题型探究例1 解 (1)∅,{a },{b },{c },{d },{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d },{a ,b ,c ,d }.(2)若一个集合有n (n ∈N )个元素,则它有2n 个子集,2n -1个真子集.如∅,有1个子集,0个真子集.跟踪训练1 A [这样的集合A 有{1},{1,2},{1,3},{1,4},{1,5},{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5}共15个.]例2 B [正方形都是菱形,菱形都是平行四边形,平行四边形都是四边形,所以选B.] 跟踪训练2 NZ Q R例3 C [∵0<2,∴0∈B . 又∵1<2,∴1∈B . ∴A ⊆B .]跟踪训练3 B [由数轴易知A 中元素都属于B ,B 中至少有一个元素如-2∉A ,故有A B .]例4 解 A ={x |x 2-x =0}={0,1}. (1)当a =0时,B =∅⊆A ,符合题意. (2)当a ≠0时,B ={x |ax =1}={1a},∵1a ≠0,要使A ⊇B ,只有1a =1,即a =1. 综上,a =0或a =1.跟踪训练4 解 (1)当2a -3≥a -2, 即a ≥1时,B =∅⊆A ,符合题意. (2)当a <1时,要使A ⊇B , 需满足⎩⎪⎨⎪⎧a <1,2a -3≥1,a -2≤2,这样的实数a 不存在.综上,实数a 的取值范围是{a |a ≥1}. 当堂训练1.B 2.A 3.D 4.B 5.D3.1 交集与并集学习目标 1.理解并集、交集的概念.2.会用符号、V enn 图和数轴表示并集、交集.3.会求简单集合的并集和交集.知识点一 并集思考 某次校运动会上,高一(1)班有10人报名参加田赛,有12人报名参加径赛.已知两项都报的有3人,你能算出高一(1)班参赛人数吗?梳理 (1)定义:一般地,________________________________的所有元素组成的集合,称为集合A与B的并集,记作__________(读作“A并B”).(2)并集的符号语言表示为A∪B=_________________________________.(3)图形语言:、,阴影部分为A∪B.(4)性质:A∪B=__________,A∪A=________,A∪∅=________,A∪B=A⇔__________,A________A∪B.知识点二交集思考一副扑克牌,既是红桃又是A的牌有几张?梳理(1)定义:一般地,由既______________________________的所有元素组成的集合,称为A与B的交集,记作__________(读作“A交B”).(2)交集的符号语言表示为A∩B=_____________________________________.(3)图形语言:,阴影部分为A∩B.(4)性质:A∩B=__________,A∩A=________,A∩∅=________,A∩B=A⇔________,A∩B______A∪B,A∩B________A,A∩B________B.类型一求并集命题角度1数集求并集例1(1)已知集合A={3,4,5},B={1,3,6},则集合A∪B是()A.{1,3,4,5,6} B.{3}C.{3,4,5,6} D.{1,2,3,4,5,6}(2)A={x|-1<x<2},B={x|1<x<3},求A∪B.反思与感悟有限集求并集就是把两个集合中的元素合并,重复的保留一个;用不等式表示的,常借助数轴求并集.由于A∪B中的元素至少属于A,B之一,所以从数轴上看,至少被一道横线覆盖的数均属于并集.跟踪训练1(1)A={-2,0,2},B={x|x2-x-2=0},求A∪B.(2)A={x|-1<x<2},B={x|x≤1或x>3},求A∪B.命题角度2点集求并集例2集合A={(x,y)|x>0},B={(x,y)|y>0},求A∪B,并说明其几何意义.反思与感悟求并集要弄清楚集合中的元素是什么,是点还是数.跟踪训练2A={(x,y)|x=2},B={(x,y)|y=2}.求A∪B,并说明其几何意义.类型二求交集例3(1)若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B等于()A.{x|-3<x<2} B.{x|-5<x<2}C.{x|-3<x<3} D.{x|-5<x<3}(2)若集合M={x|-2≤x<2},N={0,1,2},则M∩N等于()A.{0} B.{1} C.{0,1,2} D.{0,1}(3)集合A={(x,y)|x>0},B={(x,y)|y>0},求A∩B并说明其几何意义.反思与感悟两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.数轴是集合运算的好帮手,但要画得规范.跟踪训练3(1)集合A={x|-1<x<2},B={x|x≤1或x>3},求A∩B;(2)集合A={x|2k<x<2k+1,k∈Z},B={x|1<x<6},求A∩B;(3)集合A={(x,y)|y=x+2},B={(x,y)|y=x+3},求A∩B.类型三并集、交集性质的应用例4已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∪B=B,求a的取值范围.反思与感悟 解此类题,首先要准确翻译,诸如“A ∪B =B ”之类的条件.在翻译成子集关系后,不要忘了空集是任何集合的子集.跟踪训练4 设集合A ={x |2x 2+3px +2=0},B ={x |2x 2+x +q =0},其中p 、q 为常数,x ∈R ,当A ∩B ={12}时,求p 、q 的值和A ∪B .1.已知集合M ={-1,0,1},N ={0,1,2},则M ∪N 等于( ) A .{-1,0,1} B .{-1,0,1,2} C .{-1,0,2}D .{0,1}2.已知集合A ={x |x 2-2x =0},B ={0,1,2},则A ∩B 等于( ) A .{0} B .{0,1} C .{0,2}D .{0,1,2}3.已知集合A ={x |x >1},B ={x |0<x <2},则A ∪B 等于( ) A .{x |x >0} B .{x |x >1} C .{x |1<x <2}D .{x |0<x <2}4.已知A ={x |x ≤0},B ={x |x ≥1},则集合A ∩B 等于( ) A .∅ B .{x |x ≤1} C .{x |0≤x ≤1}D .{x |0<x <1}5.已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m 等于( ) A .0或 3 B .0或3 C .1或 3 D .1或31.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A 、B 两者之一的元素组成的集合. (2)A ∩B 中的元素是“所有”属于集合A 且属于集合B 的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.答案精析问题导学知识点一思考19人.参赛人数包括参加田赛的,也包括参加径赛的,但由于元素互异性的要求,两项都报的不能重复计算,故有10+12-3=19人.梳理(1)由属于集合A或属于集合B A∪B(2){x|x∈A,或x∈B}(4)B∪A A A B⊆A⊆知识点二思考1张.红桃共13张,A共4张,其中两项要求均满足的只有红桃A一张.梳理(1)属于集合A又属于集合BA∩B(2){x|x∈A,且x∈B}(4)B∩A A∅A⊆B⊆⊆⊆题型探究例1(1)A[A∪B是将两集合的所有元素合并到一起构成的集合(相同元素算一个),因此A ∪B={1,3,4,5,6},故选A.](2)解如图:由图知A∪B={x|-1<x<3}.跟踪训练1解(1)B={-1,2},∴A∪B={-2,-1,0,2}.(2)如图:由图知A∪B={x|x<2或x>3}.例2解A∪B={(x,y)|x>0或y>0}.其几何意义为平面直角坐标系内去掉第三象限和x轴、y轴的非正半轴后剩下的区域内所有点.跟踪训练2解A∪B={(x,y)|x=2或y=2},其几何意义是直线x=2和直线y=2上所有的点组成的集合.例3(1)A[在数轴上将集合A,B表示出来,如图所示,由交集的定义可得A∩B为图中阴影部分,即A∩B={x|-3<x<2},故选A.](2)D [M ={x |-2≤x <2},N ={0,1,2}, 则M ∩N ={0,1},故选D.](3)解 A ∩B ={(x ,y )|x >0且y >0},其几何意义为第一象限所有点的集合. 跟踪训练3 解 (1)A ∩B ={x |-1<x ≤1}. (2)A ∩B ={x |2<x <3或4<x <5}. (3)A ∩B =∅.例4 解 A ∪B =B ⇔A ⊆B . 当2a >a +3,即a >3时, A =∅,满足A ⊆B . 当2a =a +3,即a =3时, A ={6},满足A ⊆B .当2a <a +3,即a <3时,要使A ⊆B ,需⎩⎪⎨⎪⎧ a <3,a +3<-1或⎩⎪⎨⎪⎧a <3,2a >5, 解得a <-4,或52<a <3.综上,a 的取值范围是{a |a >3}∪{a |a =3}∪{a |a <-4或52<a <3}={a |a <-4,或a >52}.跟踪训练4 解 ∵A ∩B ={12},∴12∈A , ∴2×(12)2+3p ×12+2=0,∴p =-53,∴A ={12,2}.又∵A ∩B ={12},∴12∈B ,∴2×(12)2+12+q =0,∴q =-1.∴B ={12,-1}.∴A ∪B ={-1,12,2}.当堂训练1.B 2.C 3.A 4.A 5.B3.2全集与补集学习目标 1.理解全集、补集的概念.2.准确翻译和使用补集符号和Venn图.3.会求补集,并能解决一些集合综合运算的问题.知识点一全集思考老和尚问小和尚:“如果你前进是死,后退是亡,那你怎么办?”小和尚说:“我从旁边绕过去.”在这一故事中,老和尚设定的运动方向共有哪些?小和尚设定的运动方向共有哪些?梳理(1)定义:在研究某些集合时,这些集合往往是某个给定集合的________集,这个给定的集合叫作全集,全集含有我们所要研究的这些集合的全部元素.(2)记法:全集通常记作________.知识点二补集思考实数集中,除掉大于1的数,剩下哪些数?梳理A∪(∁A)=U,A∩(∁A)=∅,∁(∁A)=A。

高中数学人教A版必修1学案:2.1指数函数知识导学案及答案

高中数学人教A版必修1学案:2.1指数函数知识导学案及答案

2.1 指数函数知识导学在初中代数的学习过程中,我们接触过平方根和立方根的概念.对于平方根的定义我们在上面复习时已经提到了.立方根的定义是:如果x 3=a,那么x 就叫a 的立方根.如此类推,我们便得出了n 次实数方根的定义.当根式的被开方数的指数能被根指数整除时,根式可以写成分数指数幂的形式,并由此引出了正数的正分数指数幂的意义,然后依照负整数指数幂的意义规定了负分数指数幂的意义,从而将指数幂的概念推广到有理数.除此之外,还可将有理数指数幂推广到实数指数幂,有理数指数幂的运算性质对实数指数幂同样适用.比较大小是指数函数性质应用的常见题型.当底数相同时,直接比较指数即可;当底数和指数不同时,要借助于中间量进行比较.不同类的函数值的大小常借助中间量0、1等进行比较.指数函数的图象和性质分别从形和数两个方面对指数函数加以剖析,因此在考查指数函数的题目中有关数形结合的思想有着广泛的应用.关于函数的图象和性质,需注意的几个问题:(1)单调性是指数函数的重要性质,特别是由函数图象的无限伸展,x 轴是函数图象的渐近线.当0<a<1时,x →+∞,y →0;当a>1时,x →-∞,y →0.当a>1时,a 的值越大,图象越靠近y 轴,递增速度越快;当0<a<1时,a 的值越小,图象越靠近y 轴,递减的速度越快.(2)熟悉指数函数y=10x ,y=2x ,y=(21)x ,y=(101)x 在同一直角坐标系中的图象的相对位置,由此掌握指数函数图象的位置与底数大小的关系.记忆口诀:(1)方根口诀正数开方要分清,根指奇偶大不同,根指为奇根一个,根指为偶双胞生.负数只有奇次根,算术方根零或正,正数若求偶次根,符号相反值相同.负数开方要慎重,根指为奇才可行,根指为偶无意义,零取方根仍为零.(2)指数函数性质口诀指数增减要看清,抓住底数不放松,反正底数大于0,不等于1已表明;底数若是大于1,图象从下往上增;底数0到1之间,图象从上往下减.无论函数增和减,图象都过(0,1)点.疑难导析用语言叙述这三个公式:(1)非负实数a 的n 次方根的n 次幂是它本身.(2)n 为奇数时,实数a 的n 次幂的n 次方根是a 本身;n 为偶数时,实数a 的n 次幂的n 次方根是a 的绝对值.(3)若一个根式(算术根)的被开方数是一个非负实数的幂,那么这个根式的根指数和被开方数的指数都乘以或者除以同一个正整数,根式的值不变.在指数函数的定义中我们限定底数的范围为a>0,且a ≠1,这主要是使函数的定义域为实数集,且具有单调性.判断一个函数是否是指数函数,关键是看它是否能写成y=a x (a>0,a ≠1)的形式.问题导思指数函数是同学们完全陌生的一类函数,也是一类非常重要的函数,对指数函数的性质的理解和掌握是学习的关键,找出函数的共同特征,把共同的特点和性质归纳和总结出来. 另外,底数a 对图象特征的影响也可这样来叙述:当a>1时,底数越大,函数图象就越靠近y 轴;当0<a<1时,底数越小,函数图象就越靠近y 轴.一定要注意底数a 对函数值变化的影响. 典题导考绿色通道根据第(1)题的思考,在这里把计算中的不同运算形式统一成分数指数幂更方便些. 第(1)题能把式中的数化成3的指数幂的形式来做吗?黑色陷阱做这类带有指数幂和根式的混合运算,容易发生解答过程中的形式混乱,从而影响解题. 典题变式1.计算下列各式(式中字母都是正数): (1)(232a 21b )(-621a 31b )÷(-361a 65b ); (2)(41m 83-n )8. 答案:(1)4a;(2)32nm . 2.已知21a +21-a =3,求a 2+a -2的值. 答案:47.3.已知函数f(x)=a x +a -x (a>0且a ≠1),f(1)=3,则f(0)+f(1)+f(2)的值为_________.答案:12绿色通道比较而言,还是第二种方法更简便些.但对学生的思维要求较高,不仅要求迅速画出略图,而且能对m 、n 的定位进行判断.黑色陷阱如果不注意原题中的条件:1>n>m>0,而取m=2,n=3,将会出现误选B 的情形.典题变式 如图2-1-5,曲线C 1、C 2、C 3、C 4分别是指数函数y=a x 、y=b x 、y=c x 和y=d x 的图象,则a 、b 、c 、d 与1的大小关系是( )图2-1-5A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<c<dD.b<a<1<d<c 答案:D绿色通道1.对同底数幂大小的比较用的是指数函数的单调性.首先,必须要明确所给的两个值是哪个指数函数的两个函数值;其次,必须要明确所给指数函数的底与1的大小关系;再根据指数函数图象的性质来判断.2.对不同底数幂的大小的比较可以与中间值1进行比较.典题变式1.设y 1=40.9,y 2=80.44,y 3=(21)-1.5,则( ) A.y 3>y 1>y 2 B.y 2>y 1>y 3 C.y 1>y 2>y 3 D.y 1>y 3>y 2答案:D2.当x>0时,函数f(x)=(a 2-1)x 的值总大于1,则实数a 的取值范围是( )A.1<|a|<2B.|a|<1C.|a|>1D.|a|>2 答案:D绿色通道本题实际上是一个平均增长率的问题,求解非常简单,但是该题从科学家富兰克林的介绍入手设置了一个情景.这是一个比较典型的模型,背景也可以更换为增长率问题.典题变式1.某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原来价格比较,变化的情况是( )A.增加7.84%B.减少7.84%C.减少9.5%D.不增不减答案:B2.某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留1个有效数字).答案:约经过4年,剩留量是原来的一半.黑色陷阱解这类题容易出现的问题是,对于个体问题生搬硬套公式,从而导致解题失误.典题变式 家用电器(如冰箱)使用的氟化物的释放破坏了大气上层的臭氧层.臭氧含量Q 呈指数函数型变化,满足关系式Q=Q 0e -0.002 5t ,其中Q 0是臭氧的初始量,t 的单位是年.(1)随时间的增加,臭氧的含量是增加了还是减少了?(2)多少年以后将会有一半的臭氧消失?答案:(1)减少;(2)用计算器完成,大约277年.。

人教A版高中数学必修第一册 同步学案4-3-1 对数的概念

人教A版高中数学必修第一册 同步学案4-3-1 对数的概念

4.3 对数4.3.1 对数的概念1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.1.对数的定义一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.常用对数与自然对数通常我们将以10为底的对数叫做常用对数,记为lgN.在科学技术中常使用以无理数e=2.71828…为底的对数,以e为底的对数称为自然对数,并记为lnN.3.指数与对数的互化当a>0,a≠1时,a x=N⇔x=log a N.4.对数的性质(1)log a1=0;(2)log a a=1;(3)零和负数没有对数.1.指数方程3x=3如何求解?[答案] 化为3x=312,求得x=122.如何求解3x=2?[答案] x=log323.判断正误(正确的打“√”,错误的打“×”)(1)log a N是log a与N的乘积.( )(2)(-2)3=-8可化为log(-2)(-8)=3.( )(3)对数运算的实质是求幂指数.( )(4)等式log a1=0对a∈R均成立.( )[答案] (1)×(2)×(3)√(4)×题型一 指数式与对数式的互化【典例1】 将下列指数式化为对数式,对数式化为指数式: (1)3-2=19;(2)⎝ ⎛⎭⎪⎫14-2=16;(3)log 1327=-3;(4)log x64=-6.[思路导引] 借助a b=N ⇔b =log a N(a>0,且a ≠1)转化. [解] (1)∵3-2=19,∴log 319=-2.(2)∵⎝ ⎛⎭⎪⎫14-2=16,∴log 1416=-2.(3)∵log 1327=-3,∴⎝ ⎛⎭⎪⎫13-3=27.(4)∵logx 64=-6,∴(x)-6=64.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式; (2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式. [针对训练]1.将下列指数式化为对数式,对数式化为指数式: (1)2-7=1128;(2)3a=27;(3)10-1=0.1;(4)log 12 32=-5;(5)lg0.001=-3. [解] (1)log 21128=-7.(2)log 327=a. (3)lg0.1=-1.(4)⎝ ⎛⎭⎪⎫12-5=32. (5)10-3=0.001. 题型二 对数的计算【典例2】 求下列各式中的x 的值:(1)log 64x =-23;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x.[思路导引] 把对数式化为指数式求解.求对数值的3个步骤(1)设出所求对数值. (2)把对数式转化为指数式. (3)解有关方程,求得结果. [针对训练]2.求下列各式中的x 值: (1)log x 27=32;(2)log 2x =-23;(3)x =log 2719;(4)x =log 12 16.(3)由x =log 2719,可得27x=19,∴33x =3-2,∴x =-23.(4)由x =log 1216,可得⎝ ⎛⎭⎪⎫12x=16.∴2-x=24,∴x =-4.题型三 对数的性质[思路导引] 首先利用对数的基本性质化“繁”为“简”,再求值. [解] (1)由log (2x 2-1)(3x 2+2x -1)=1 得⎩⎪⎨⎪⎧3x 2+2x -1=2x 2-1,3x 2+2x -1>0,2x 2-1>0且2x 2-1≠1,解得x =-2.(2)由log 2[log 3(log 4x)]=0可得log 3(log 4x)=1,故log 4x =3,所以x =43=64.对数性质的应用要点(1)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.这就要求首先要牢记对数恒等式alog a N=N及其格式.[针对训练]3.求下列各式中x的值:(1)log2(log4x)=0;(2)log3(lgx)=1.[解] (1)∵log2(log4x)=0,∴log4x=20=1,∴x=41=4.(2)∵log3(lgx)=1,∴lgx=31=3,∴x=103=1000.课堂归纳小结1.对数概念的理解(1)规定a>0且a≠1.(2)由于在实数范围内,正数的任何次幂都是正数,所以a b=N中,N总是正数,即零和负数没有对数.(3)对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N⇔log a N=b(a>0且a≠1,N>0),据此可得两个常用恒等式:①log a a b=b;②a log a N=N.2.在关系式a x=N中,已知a和x求N的运算称为求幂运算,而如果已知a和N求x的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.1.下列指数式与对数式互化不正确的一组是( ) A .e 0=1与ln1=0 B .8-13 =12与log 812=-13C .log 39=2与9 12=3 D .log 77=1与71=7[解析] 由log 39=2,得32=9,故选C. [答案] C2.已知log x 16=2,则x 等于( ) A .4 B .±4 C .256D .2[解析] ∵log x 16=2,∴x 2=16,又x>0,∴x =4. [答案] A 3.设5log 5(2x -1)=25,则x 的值等于( )A .10B .13C .100D .±100[解析] 由5 log 5(2x -1)=2x -1=25,得x =13.[答案] B 4.式子2log 25+log 321的值为________.[解析] 原式=5+0=5. [答案] 5课后作业(二十九)复习巩固一、选择题1.使对数log a(5-a)有意义的a的取值范围为( )A.(0,1)∪(1,+∞) B.(0,5)C.(0,1)∪(1,5) D.(-∞,5)[解析] 由对数的概念可知a需满足a>0且a≠1且5-a>0,解得0<a<5且a≠1. [答案] C[解析] 根据对数的定义可知,-3=log3127.[答案] C3.已知lnx=2,则x等于( )A.±2B.e2C.2e D.2e[解析] 由lnx=2得,e2=x,所以x=e2.[答案] B4.已知log7[log3(log2x)]=0,那么x等于( )A.9 B.8C.7 D.6[解析] 由条件知,log3(log2x)=1,所以log2x=3,所以x=8. [答案] B[解析] 由原方程得=31,所以log x24=1,即x2=4,即x=±2,经检验知x=±2都是方程的解.[答案] D二、填空题[答案] 2[解析] 原式=2log23+0-102·10lg2=3-200=-197.[答案] -197[答案] 4 3三、解答题9.将下列指数式化为对数式,对数式化为指数式.(1)53=125;(2)4-2=116;(3)log128=-3;(4)log3127=-3.[解] (1)∵53=125,∴log5125=3.(2)∵4-2=116,∴log 4116=-2.(3)∵log 128=-3,∴⎝ ⎛⎭⎪⎫12-3=8.(4)∵log 3127=-3,∴3-3=127.10.若log 12x =m,log 14y =m +2,求x2y的值.[解] ∵log 12 x =m,∴⎝ ⎛⎭⎪⎫12m =x,x 2=⎝ ⎛⎭⎪⎫122m .∵log 14 y =m +2,∴⎝ ⎛⎭⎪⎫14m +2=y,y =⎝ ⎛⎭⎪⎫122m +4.∴x 2y =⎝ ⎛⎭⎪⎫122m ⎝ ⎛⎭⎪⎫122m +4=⎝ ⎛⎭⎪⎫122m -(2m +4)=⎝ ⎛⎭⎪⎫12-4=16. 综合运用11.若log a 5b =c,则下列关系式中正确的是( ) A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a[解析] 由log a 5b =c,得a c =5b,∴b =(a c )5=a 5c. [答案] A12.已知log a x =2,log b x =1,log c x =4(a,b,c,x>0且x ≠1),则log x (abc)=( ) A.47 B.27 C.72 D.74[答案] D13.方程log 3(2x 2-1)=1的解为x =________. [解析] 由log 3(2x 2-1)=1,得2x 2-1=3, ∴2x 2=4,x =± 2. [答案] ± 214.⎝ ⎛⎭⎪⎫12-1+log 0.54的值为________. [解析] ⎝ ⎛⎭⎪⎫12-1+log 0.54=⎝ ⎛⎭⎪⎫12-1·=2×4=8.[答案] 8[解] (1)∵log 2[log 3(log 4x)]=0, ∴log 3(log 4x)=1, ∴log 4x =3,∴x =43=64. 由log 4(log 2y)=1,知log 2y =4, ∴y =24=16.。

人教版高中数学必修一《集合的基本运算》课时学案

人教版高中数学必修一《集合的基本运算》课时学案

课 题: 1.1.3 集合的基本运算(一)交集、并集教学目标:理解交集与并集的概念,掌握交集与并集的区别与联系,会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题。

教学重点:交集与并集的概念,数形结合的思想。

教学难点:理解交集与并集的概念、符号之间的区别与联系。

教学过程: 一、复习准备:1.已知A={1,2,3}, S={1,2,3,4,5},则A S , {x|x ∈S 且x ∉A}= 。

2.用适当符号填空:0 {0} 0 Φ Φ {x|x 2+1=0,X ∈R} {0} {x|x<3且x>5} {x|x>6} {x|x<-2或x>5} {x|x>-3} {x>2} 二、讲授新课:1.教学交集、并集概念及性质:① 探讨:设{4,5,6,8}A =,{3,5,7,8}B =,试用Venn 图表示集合A 、B 后,指出它们的公共部分(交)、合并部分(并).② 讨论:如何用文字语言、符号语言分别表示两个集合的交、并?③ 定义交集:一般地,由所有属于集合A 且属于集合B 的元素所组成的集合,叫作A 、B 的交集(intersection set ),记作A ∩B ,读“A 交B ”,即:A ∩B ={x|x ∈A 且x ∈B}。

④ 讨论:A ∩B 与A 、B 、B ∩A 的关系? →A ∩A = A ∩Φ= ⑤ 图示五种交集的情况:… ⑥ 练习(口答):A ={x|x>2},B ={x|x<8},则A ∩B = ;A ={等腰三角形},B ={直角三角形},则A ∩B = 。

⑦定义并集:由所有属于集合A 或属于集合B 的元素所组成的集合,叫做A 与B 的并集(union set )。

记作:A ∪B ,读作:A 并B 。

用描述法表示是:…⑧分析:与交集比较,注意“所有”与“或”条件;“x ∈A 或x ∈B ”的三种情况。

⑨讨论:A ∪B 与集合A 、B 的关系?→ A ∪A = A ∪Ф= A ∪B 与B ∪A ⑩练习(口答): A ={3,5,6,8},B ={4,5,7,8},则A ∪B = ; 设A ={锐角三角形},B ={钝角三角形},则A ∪B = ; A ={x|x>3},B ={x|x<6},则A ∪B = ,A ∩B = 。

人教版(新教材)高中数学必修1(第一册)学案:4.3.2 对数的运算

人教版(新教材)高中数学必修1(第一册)学案:4.3.2 对数的运算

4.3.2 对数的运算学习目标 1.掌握积、商、幂的对数运算性质,理解其推导过程和成立条件.2.掌握换底公式及其推论.3.能熟练运用对数的运算性质进行化简求值.知识点一 对数运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 知识点二 换底公式1.log a b =log c blog c a (a >0,且a ≠1;c >0,且c ≠1;b >0).2.对数换底公式的重要推论:(1)log a N =1log N a (N >0,且N ≠1;a >0,且a ≠1);(2)log n m a b =mnlog a b (a >0,且a ≠1,b >0);(3)log a b ·log b c ·log c d =log a d (a >0,b >0,c >0,d >0,且a ≠1,b ≠1,c ≠1). 预习小测 自我检验1.计算log 84+log 82=________. 『答 案』 12.计算log 510-log 52________. 『答 案』 13.(1)lg 10=________;(2)已知ln a =0.2,则ln ea =________.『答 案』 (1)12 (2)0.84.log 29log 23=________. 『答 案』 2一、对数运算性质的应用 例1 计算下列各式: (1)log 53625;(2)log 2(32×42); (3)log 535-2log 573+log 57-log 595.解 (1)原式=13log 5625=13log 554=43.(2)原式=log 232+log 242=5+4=9.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2. 反思感悟 对数式化简与求值的基本原则和方法 (1)基本原则对数式的化简求值一般是正用或逆用公式,对真数进行处理,选哪种策略化简,取决于问题的实际情况,一般本着便于真数化简的原则进行. (2)两种常用的方法①“收”,将同底的两对数的和(差)收成积(商)的对数; ②“拆”,将积(商)的对数拆成同底的两对数的和(差). 跟踪训练1 计算下列各式的值: (1)(lg5)2+2lg2-(lg2)2; (2)lg3+25lg9-35lg 27lg81-lg27.解 (1)原式=(lg5+lg2)(lg5-lg2)+2lg2 =lg10(lg5-lg2)+2lg2 =lg5-lg2+2lg2 =lg5+lg2=1.(2)原式=lg3+45lg3-910lg34lg3-3lg3=⎝⎛⎭⎫1+45-910lg3(4-3)lg3=910. 二、对数换底公式的应用例2 (1)计算:(log 43+log 83)log 32=________. 『答 案』 56『解 析』 原式=⎝⎛⎭⎫1log 34+1log 38log 32 =⎝⎛⎭⎫12log 32+13log 32log 32 =12+13=56. (2)已知log 189=a ,18b =5,求log 3645.(用a ,b 表示) 解 因为18b =5,所以b =log 185. 所以log 3645=log 1845log 1836=log 18(5×9)log 18(2×18)=log 185+log 189log 182+log 1818=a +b 1+log 182=a +b 1+log 18189=a +b 2-log 189=a +b 2-a .延伸探究若本例(2)条件不变,求log 915.(用a ,b 表示) 解 因为18b =5,所以log 185=b . 所以log 915=log 1815log 189=log 18(3×5)log 189=log 183+log 185a =log 189+ba=1218log9ba=12log189+ba=12a+ba=a+2b2a.反思感悟 利用换底公式化简与求值的思路跟踪训练2 (1)log 89log 23的值是( )A.23B.32C .1D .2 『答 案』 A『解 析』 方法一 将分子、分母利用换底公式转化为常用对数, 即log 89log 23=lg9lg8lg3lg2=2lg33lg2·lg2lg3=23. 方法二 将分子利用换底公式转化为以2为底的对数, 即log 89log 23=log 29log 28log 23=2log 233log 23=23. (2)计算:log 52·log 79log 513·log 734.解 原式=log 52log 513·log 79log 73423122114233log 2log log 23log 3==⋅=-12·log 32·3log 23=-32.三、对数的综合应用例3 2018年我国国民生产总值为a 亿元,如果平均每年增长8%,估计约经过多少年后国民生产总值是2018年的2倍?(lg2≈0.3010,lg1.08≈0.0334,精确到1年) 解 设经过x 年后国民生产总值为2018年的2倍. 经过1年,国民生产总值为a (1+8%), 经过2年,国民生产总值为a (1+8%)2, …,经过x 年,国民生产总值为a (1+8%)x =2a , 所以1.08x =2,所以x =log 1.082=lg2lg1.08=0.30100.0334≈9,故约经过9年后国民生产总值是2018年的2倍. 反思感悟 解决对数应用题的一般步骤跟踪训练3 在不考虑空气阻力的情况下,火箭的最大速度v (单位:m/s)和燃料的质量M (单位:kg),火箭(除燃料外)的质量m (单位:kg)满足e v =⎝⎛⎭⎫1+Mm 2000(e 为自然对数的底数,ln3≈1.099).当燃料质量M 为火箭(除燃料外)质量m 的两倍时,求火箭的最大速度(单位:m/s).解 因为v =ln ⎝⎛⎭⎫1+Mm 2000 =2000·ln ⎝⎛⎭⎫1+M m , 所以v =2000·ln3≈2000×1.099=2198(m/s).故当燃料质量M 为火箭质量m 的两倍时,火箭的最大速度为2198m/s.1.计算:log 123+log 124等于( ) A .1B .2C .3D .4 『答 案』 A2.若lg2=m ,则lg5等于( ) A .m B.1m C .1-m D.10m『答 案』 C 『解 析』 lg 5=lg102=lg 10-lg 2=1-m . 3.化简12log 612-2log 62的结果为( )A .62B .122C .log 63D.12『答 案』 C『解 析』 原式=log 612-log 62=log 6122=log 6 3. 4.下列各等式正确的为( ) A .log 23·log 25=log 2(3×5) B .lg3+lg4=lg(3+4) C .log 2xy=log 2x -log 2yD .lg nm =1n lg m (m >0,n >1,n ∈N *)『答 案』 D『解 析』 A ,B 显然错误,C 中,当x ,y 均为负数时,等式右边无意义. 5.计算:log 513·log 36·log 6125=________.『答 案』 2『解 析』 原式=lg 13lg5·lg6lg3·lg 125lg6=-lg3lg5·lg6lg3·-2lg5lg6=2.1.知识清单: (1)对数的运算性质. (2)换底公式. (3)对数的实际应用. 2.方法归纳:(1)利用对数的运算性质,可以把乘、除、乘方运算转化为加、减、乘的运算,加快计算速度. (2)利用结论log a b ·log b a =1,log n m a b =m n log a b 化简求值更方便.3.常见误区:要注意对数的运算性质(1)(2)的结构形式,易混淆.。

高中数学人教版(新教材)必修1学案 1.5.2 全称量词命题和存在量词命题的否定

高中数学人教版(新教材)必修1学案 1.5.2 全称量词命题和存在量词命题的否定

1.5 全称量词与存在量词1.5.1 全称量词与存在量词1.5.2全称量词命题和存在量词命题的否定课前自主学习知识点1全称量词和全称量词命题(1)短语“”“”在逻辑中通常叫做全称量词,并用符号“”表示.含有全称量词的命题,叫做全称量词命题.(2)将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示.那么,全称量词命题“对M中任意一个x,p(x)成立”可用符号简记为:.『微体验』1.思考辨析(1)命题“任意一个自然数都是正整数”是全称量词命题.()(2)命题“三角形的内角和是180°”是全称量词命题.()(3)命题“存在一个菱形,它的四条边不相等”是全称量词命题.()2.下列命题中,不是全称量词命题的是()A.任何一个实数乘以0都等于0B.自然数都是正整数C.每一个向量都有大小D.一定存在没有最大值的二次函数知识点2存在量词和存在量词命题(1)短语“”“”在逻辑中通常叫做存在量词,并用符号“”表示.含有存在量词的命题,叫做存在量词命题.(2)存在量词命题“存在M中的元素x,p(x)成立”可用符号简记为:.『微体验』1.思考辨析(1)命题“有些菱形是正方形”是全称命题.()(2)命题“存在一个菱形,它的四条边不相等”是存在量词命题.()(3)命题“有的无理数的平方不是有理数”是存在量词命题.()2.以下量词“所有”“任何”“一切”“有的”“有些”“有一个”“至少”中是存在量词的有() A.2个B.3个C.4个D.5个知识点3全称量词命题和存在量词命题的否定(1)全称量词命题的否定:一般来说,对含有一个量词的全称量词命题进行否定,我们只需把“所有的”“任意一个”等全称量词,变成“并非所有的”“并非任意一个”等短语即可.也就是说,假定全称量词命题为“∀x∈M,p(x)”,则它的否定为“并非∀x∈M,p(x)”,也就是“∃x∈M,p(x)不成立”.通常,用符号“¬p(x)”表示“p(x)不成立”.(2)对于含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:∀x∈M,p(x),它的否定:∃x∈M,.也就是说,全称量词命题的否定是命题.(3)存在量词命题的否定:一般来说,对含有一个量词的存在量词命题进行否定,我们只需把“存在一个”“至少有一个”“有些”等存在量词,变成“不存在一个”“没有一个”等短语即可.也就是说,假定存在量词命题为“∃x∈M,p(x)”,则它的否定为“不存在x∈M,使p(x)成立”,也就是“∀x∈M,p(x)不成立”.(4)对于含有一个量词的存在量词命题的否定,有下面的结论:存在量词命题:∃x∈M,p(x),它的否定:∀x∈M,.也就是说,存在量词命题的否定是命题.『微体验』1.思考辨析(1)命题¬p的否定是p.()(2)∃x∈M,p(x)与∀x∈M,¬p(x)的真假性相反.()(3)从存在量词命题的否定看,是对“量词”和“p (x )”同时否定.( )2.若命题p :∃x >0,x 2-3x +2>0,则命题¬p 为( )A .∃x >0,x 2-3x +2≤0B .∃x ≤0,x 2-3x +2≤0C .∀x >0,x 2-3x +2≤0D .∀x ≤0,x 2-3x +2≤03.已知命题p :∀x >2,x 3-8>0,那么¬p 是__________.课堂互动探究探究一 全称量词命题和存在量词命题的判定例1 (1)下列命题中全称量词命题的个数是( )①任意一个自然数都是正整数;②有的等差数列也是等比数列;③三角形的内角和是180°.A .0B .1C .2D .3(2)下列语句不是存在量词命题的是( )A .有的无理数的平方是有理数B .有的无理数的平方不是有理数C .对于任意x ∈Z ,2x +1是奇数D .存在x ∈R ,2x +1是奇数『方法总结』判断一个语句是全称量词命题还是存在量词命题的思路跟踪训练1 用全称量词或存在量词表示下列语句.(1)不等式x 2+x +1>0恒成立;(2)当x 为有理数时,13x 2+12x +1也是有理数; (3)方程3x -2y =10有整数解.探究二全称量词命题和存在量词命题的真假判断例2 (多选题)下面的命题中正确的是()A.∀x∈R,x2+2>0B.∀x∈N,x4≥1C.∃x∈Z,x3<1D.∃x∈Q,x2=3『方法总结』全称量词命题与存在量词命题的真假判断的技巧(1)全称量词命题的真假判断要判定一个全称量词命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判定全称量词命题是假命题,却只要能举出集合M中的一个x,使得p(x)不成立即可(这就是通常所说的“举出一个反例”).(2)存在量词命题的真假判断要判定一个存在量词命题是真命题,只要在限定集合M中,找到一个x,使p(x)成立即可;否则,这一存在量词命题就是假命题.跟踪训练2判断下列命题的真假.(1)∀x∈{1,3,5},3x+1是偶数;(2)∃x∈R,x2-6x-5=0;(3)∃x∈R,x2-x+1=0;(4)∀x∈R,|x+1|>0.探究三全称量词命题和存在量词命题的否定例3 写出下列命题的否定,并判断真假.(1)任何一个平行四边形的对边都平行;(2)非负数的平方是正数;(3)有的四边形没有外接圆;(4)∃x,y∈Z,使得2x+y=3.『方法总结』对含有一个量词的命题的否定要注意以下问题(1)确定命题类型,是全称量词命题还是存在量词命题.(2)改变量词:把全称量词改为恰当的存在量词;把存在量词改为恰当的全称量词.(3)否定结论:原命题中的“是”“有”“存在”“成立”等改为“不是”“没有”“不存在”“不成立”等.(4)无量词的全称命题要先补回量词再否定.跟踪训练3 判断下列命题的真假,并写出它们的否定.(1)对任意x ∈R ,x 3-x 2+1≤0;(2)所有能被5整除的整数都是奇数;(3)对任意的x ∈Q ,13x 2+12x +1是有理数.随堂本课小结1.判定一个命题是全称量词命题还是存在量词命题时,主要方法是看命题中是否含有全称量词或存在量词,要注意的是有些全称量词命题中并不含有全称量词,这时我们就要根据命题所涉及的意义去判断.2.含有一个量词的命题的否定(1)全称量词命题的否定是存在量词命题.全称量词命题p :∀x ∈M ,p (x );¬p :∃x ∈M ,¬p (x ).(2)存在量词命题的否定是全称量词命题.存在量词命题p :∃x ∈M ,p (x );¬p :∀x ∈M ,¬p (x ).——★ 参*考*答*案 ★——课前自主学习知识点1全称量词和全称量词命题(1)所有的任意一个∀(2)∀x∈M,p(x)『微体验』1.(1)√(2)√(3)×2.D『解析』A,B,C都是全称命题,D是特称命题.知识点2存在量词和存在量词命题(1)存在一个至少有一个∃(2)∃x∈M,p(x)『微体验』1.(1)×(2)√(3)√2.C『解析』“有的”“有些”“有一个”“至少”都是存在量词.知识点3全称量词命题和存在量词命题的否定(2)¬p(x) 存在量词(4)¬p(x) 全称量词『微体验』1.(1)√(2)√(3)√2.C『解析』命题p是一个存在量词命题,¬p为:∀x>0,x2-3x+2≤0.3.∃x>2,x3-8≤0『解析』命题p为全称量词命题,其否定为存在量词命题,则¬p:∃x>2,x3-8≤0.课堂互动探究探究一全称量词命题和存在量词命题的判定例1 (1)C『解析』观察分析命题是否含有“任意”“所有的”“每一个”等全称量词.命题①含有全称量词,而命题③可以叙述为“每一个三角形的内角和都是180° ”,故有两个全称命题.(2)C『解析』因为“有的”“存在”为存在量词,“任意”为全称量词,所以选项A ,B ,D 均为存在量词命题,选项C 为全称量词命题.跟踪训练1 解 (1)对任意实数x ,不等式x 2+x +1>0成立.(2)对任意有理数x ,13x 2+12x +1是有理数. (3)存在一对整数x ,y ,使3x -2y =10成立.探究二 全称量词命题和存在量词命题的真假判断例2 AC『解析』对A ,由于∀x ∈R ,都有x 2≥0,因而有x 2+2≥2>0,即x 2+2>0.所以命题“∀x ∈R ,x 2+2>0”是真命题.对B ,由于0∈N ,当x =0时,x 4≥1不成立.所以命题“∀x ∈N ,x 4≥1”是假命题.对C ,由于-1∈Z ,当x =-1时,x 3<1成立.所以命题“∃x ∈Z ,x 3<1”是真命题.对D ,由于使x 2=3成立的数只有±3,±3都不是有理数,因此没有任何一个有理数的平方等于3.所以命题“∃x ∈Q ,x 2=3”是假命题.跟踪训练2 解 (1)∵3×1+1=4,3×3+1=10,3×5+1=16,它们均为偶数,∴该命题是真命题.(2)∵方程x 2-6x -5=0中,Δ=36+20=56>0,∴方程有两个不相等的实根.∴该命题是真命题.(3)∵方程x 2-x +1=0中,Δ=1-4=-3<0,∴x 2-x +1=0无实数解.∴该命题是假命题.(4)∵x =-1时,|-1+1|=0,∴该命题是假命题.探究三 全称量词命题和存在量词命题的否定例3 解 (1)命题的否定:“存在一个平行四边形的对边不都平行”.由平行四边形的定义知,这是假命题.(2)命题的否定:“存在一个非负数的平方不是正数”.因为02=0,不是正数,所以该命题是真命题.(3)命题的否定:“所有四边形都有外接圆”.因为只有对角互补的四边形才有外接圆,所以原命题为真,所以命题的否定为假命题.(4)命题的否定:“∀x ,y ∈Z ,都有2x +y ≠3”.∵当x =0,y =3时,2x +y =3,∴原命题为真,命题的否定为假命题.跟踪训练3 解 (1)当x =2时,23-22+1=5>0,故(1)是假命题.命题的否定:存在x ∈R ,x 3-x 2+1>0.(2)10能被5整除,10是偶数,故(2)是假命题.命题的否定:存在一个能被5整除的整数不是奇数.(3)有理数经过加、减、乘运算后仍是有理数,故(3)是真命题.命题的否定:存在x ∈Q ,13x 2+12x +1不是有理数.。

人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念

人教A版高中数学第一册(必修1)学案1:3.1.1 函数的概念

第三章函数的概念与性质3.1 函数的概念及其表示3.1.1函数的概念课前自主学习知识点1函数的定义及相关概念(1)函数的定义:一般地,设A,B是非空的实数集,如果对于集合A中的任意一个实数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)相关概念:x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,函数值的集合{f(x)| x∈A }叫做函数的. 显然,值域是集合B的.(3)同一个函数:如果两个函数的相同,并且完全一致,即相同的自变量对应的函数值相同,那么这两个函数是同一个函数.『微思考』(1)任何两个集合之间都可以建立函数关系吗?(2)什么样的对应可以构成函数关系?知识点2区间及相关概念(1)一般区间的表示设a,b是两个实数,而且,我们规定:定义名称符号数轴表示{x|a≤x≤b}闭区间{x|a<x<b}开区间{x|a≤x<b}半闭半开区间{x|a<x≤b}半开半闭区间(2)实数集R可以用区间表示为,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.(3)特殊区间的表示定义区间数轴表示{x|x≥a}{x|x>a}{x|x≤b}{x|x<b}『微体验』1.下列区间与集合{x|x<-2或x≥0}相对应的是()A.(-2,0)B.(-∞,-2』∪『0,+∞)C.(-∞,-2)∪『0,+∞)D.(-∞,-2』∪(0,+∞)2.下列集合不能用区间的形式表示的个数为()①A={0,1,5,10};②{x|2<x≤10,x∈N};③∅;④{x|x是等边三角形};⑤{x|x≤0或x≥3};⑥{x|x>1,x∈Q}.A.2B.3 C.4D.53.{x|x>1且x≠2}用区间表示为________.课堂互动探究探究一函数关系的判断例1 下列对应中是A 到B 的函数的个数为( ) (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =『-1,1』,B ={0},f :x →y =0;(4)A ={1,2,3},B ={a ,b },对应关系如下图所示:(5)A ={1,2,3},B ={4,5,6},对应关系如下图所示:A .1B .2C .3D .4『方法总结』判断对应关系是否为函数,主要从以下三个方面去判断 (1)A ,B 必须是非空数集;(2)A 中任何一个元素在B 中必须有元素与其对应; (3)A 中任何一个元素在B 中的对应元素必须唯一. 跟踪训练1 对于函数y =f (x ),以下说法正确的有( )①y 是x 的函数;②对于不同的x 值,y 的值也不同;③f (a )表示当x =a 时函数f (x )的值,是一个常量;④f (x )一定可以用一个具体的式子表示出来. A .1个B .2个C .3个D .4个探究二 求函数定义域问题 例2 求下列函数的定义域:(1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3;(3)y =ax -3(a 为常数).变式探究 将本例(1)改为y =(x +1)2x +1-1-x 2,其定义域如何?『方法总结』求函数定义域的常用依据(1)若f (x )是分式,则应考虑使分母不为零; (2)若f (x )是偶次根式,则被开方数大于或等于零;(3)若f (x )是指数幂,则函数的定义域是使指数幂运算有意义的实数集合; (4)若f (x )是由几个式子构成的,则函数的定义域要使各个式子都有意义; (5)若f (x )是实际问题的『解 析』式,则应符合实际问题,使实际问题有意义. 跟踪训练2 (1)设全集为R ,函数f (x )=2-x 的定义域为M ,则∁R M 为( ) A .(2,+∞)B .(-∞,2)C .(-∞,2』D .『2,+∞)(2)函数f (x )=xx -1的定义域为________.探究三 求函数值和函数值域问题例3 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (2))的值; (3)求f (x ),g (x )的值域.『方法总结』求函数值域的原则及常用方法(1)原则:①先确定相应的定义域;②再根据函数的具体形式及运算确定其值域.(2)常用方法:①逐个求法:当定义域为有限集时,常用此法;②观察法:如y=x2,可观察出y≥0;③配方法:对于求二次函数值域的问题常用此法;④换元法:对于形如y=ax+b+cx+d的函数,求值域时常用换元法,令t=cx+d,将原函数转化为关于t的二次函数;⑤分离常数法:对于形如y=cx+dax+b的函数,常用分离常数法求值域;⑥图象法:对于易作图象的函数,可用此法,如y=1x-1.跟踪训练3求下列函数的值域:(1)y=3x-1,x∈{1,3,5,7};(2)y=-x2+2x+1,x∈R;(3)y=x+1-2x.探究四同一个函数的判定例4 下列各组函数是同一个函数的是________.(填序号)①f(x)=-2x3与g(x)=x-2x;②f(x)=x0与g(x)=1x0;③f(x)=x2-2x-1与g(t)=t2-2t-1.『方法总结』判断同一个函数的三个步骤和两个注意点(1)判断函数是否相等的三个步骤.(2)两个注意点.①在化简『解析』式时,必须是等价变形;②与用哪个字母表示变量无关.跟踪训练4下列各组中的两个函数是否为同一个函数?(1)y1=(x+3)(x-5)x+3,y2=x-5;(2)y1=x+1·x-1,y2=(x+1)(x-1).随堂本课小结1.对函数概念的五点说明(1)对数集的要求:集合A,B为非空数集.(2)任意性和唯一性:集合A中的数具有任意性,集合B中的数具有唯一性.(3)对符号“f”的认识:它表示对应关系,在不同的函数中f的具体含义不一样.(4)一个区别:f(x)是一个符号,不表示f与x的乘积,而f(a)表示函数f(x)当自变量x取a时的一个函数值.(5)函数三要素:定义域、对应关系和值域是函数的三要素,三者缺一不可.2.求函数的定义域就是求使函数『解析』式有意义的自变量的取值范围,列不等式(组)是求函数定义域的基本方法.3.求函数的值域常用的方法有:观察法、配方法、换元法、分离常数法、图象法等.——★参*考*答*案★——课前自主学习知识点1函数的定义及相关概念(2)自变量定义域函数值值域子集(3)定义域对应关系『微思考』(1)提示:不一定,两个集合必须是非空的数集.(2)提示:两个非空数集之间是一一对应关系或多对一可构成函数关系.知识点2区间及相关概念(1)a<b『a,b』(a,b) 『a,b) (a,b』(2) (-∞,+∞)(3) 『a,+∞)(a,+∞)(-∞,b』(-∞,b)『微体验』1.C『『解析』』集合{ x|x<-2或x≥0}可表示为(-∞,-2)∪『0,+∞).2.D『『解析』』用区间表示的集合必须是连续的实数构成的集合,只有⑤是连续实数构成的集合,因此只有⑤可以用区间表示.3.(1,2)∪(2,+∞)『『解析』』{x|x>1且x≠2}用区间表示为(1,2)∪(2,+∞).课堂互动探究探究一函数关系的判断例1 B『『解析』』(1)A中的元素0在B中没有对应元素,故不是A到B的函数;(2)对于集合A中的任意一个整数x,按照对应关系f:x→y=x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A到集合B的函数;(3)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合B的函数;(4)集合B 不是确定的数集,故不是A 到B 的函数;(5)集合A 中的元素3在B 中没有对应元素,且A 中元素2在B 中有两个元素5和6与之对应,故不是A 到B 的函数. 跟踪训练1 B『『解 析』』①③正确,②是错误的,对于不同的x 值,y 的值可以相同,这符合函数的定义,④是错误的,f (x )表示的是函数,而函数并不是都能用具体的式子表示出来. 探究二 求函数定义域问题例2 解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1,且x ≠-1,即函数的定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数的定义域为{x |x ≤5,且x ≠±3}.(3)要使函数有意义,必须使ax -3≥0.当a >0时,原函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≥3a ; 当a <0时,原函数的定义域为⎩⎨⎧ x ⎪⎪⎭⎬⎫x ≤3a; 当a =0时,ax -3≥0的解集为∅,不符合函数的定义,故此时不是函数.变式探究 解 由⎩⎪⎨⎪⎧x +1≠0,1-x 2≥0,解得{x |-1<x ≤1}.跟踪训练2 (1)A『『解 析』』由2-x ≥0,解得x ≤2,所以M =(-∞,2』,所以∁R M =(2,+∞). (2){x |x ≥0,且x ≠1}『『解 析』』要使xx -1有意义,需满足⎩⎪⎨⎪⎧x ≥0,x -1≠0,解得x ≥0,且x ≠1,故函数f (x )的定义域为{x |x ≥0,且x ≠1}.探究三 求函数值和函数值域问题例3 解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6.(2)f (g (2))=f (6)=11+6=17. (3)f (x )=11+x 的定义域为{x |x ≠-1},∴值域是{y |y ≠0}.g (x )=x 2+2的定义域为R ,最小值为2,∴值域是{y |y ≥2}.跟踪训练3 解 (1)(逐个求法)将x =1,3,5,7依次代入『解 析』式,得y =2,8,14,20.∴函数的值域是{2,8,14,20}.(2)(配方法)∵y =-x 2+2x +1=-(x -1)2+2≤2, ∴函数的值域是(-∞,2』.(3)(换元法或配方法)令1-2x =t ,则x =1-t 22,且t ≥0,∴原函数化为y =1-t 22+t =-12t 2+t +12=-12(t -1)2+1≤1.∴所求函数的值域是(-∞,1』. 探究四 同一个函数的判定 例4 ②③『『解 析』』①f (x )=-x -2x ,g (x )=x -2x ,对应关系不同,故f (x )与g (x )不是同一个函数;②f (x )=x 0=1(x ≠0),g (x )=1x 0=1(x ≠0),对应关系与定义域均相同,故是同一个函数;③f (x )=x 2-2x -1与g (t )=t 2-2t -1,对应关系和定义域均相同,故是同一个函数. 跟踪训练4 解 (1)两函数定义域不同,所以不是同一个函数.(2)y 1=x +1·x -1的定义域为{x |x ≥1},而y 2=(x +1)(x -1)的定义域为{x |x ≥1或x ≤-1},定义域不同,所以不是同一个函数.。

高一数学复习教案通用5篇

高一数学复习教案通用5篇

高一数学复习教案通用5篇高一数学复习教案通用5篇高一数学教案怎么写。

如果教师有一份明确的说课稿,将会大大提升教学效率,提升课堂活跃性,提升学生学习兴趣。

下面小编给大家带来关于高一数学复习教案,希望会对大家的工作与学习有所帮助。

高一数学复习教案(篇1)高一第一学期是初中向高中的重要转折点,学生能否在短期内快速适应高中英语学习是摆在我们面前的重要任务,特制定高一英语教学计划如下:一、指导思想以学校工作计划为指导思想,全面贯彻落实新课程改革和素质教育的精神,落实学科教学常规,营造良好的教研氛围,不断改革课堂教学,探究科学有效的教学形式。

针对高一新生普遍英语底子差,基础薄的实际,打算在高一起始阶段的英语教学中,本着低起点,爬坡走,抓习惯的原则,长期不懈地抓好学生的学习英语的的兴趣和习惯养成。

在本学期的英语教学中,要坚持以下理念的应用:1、坚定不移地突出学生主体,让学生成为学习的主人。

2、面向全体学生,关注每个学生的情感,激发他们学习英语的兴趣,帮助他们建立学习的成就感和自信心。

3、尊重个体差异,让学生在老师的指导下构建知识,提高技能,磨练意志,活跃思维,展现个性,发展心智和拓展视野;4、让学生在使用英语中学习英语,让他们在使用和学习英语的过程中,体味到轻松和成功的快乐。

二、工作重点全面做好初高中衔接工作初中和高中在教学对象、教学内容、教学要求、教学方式和学习方式方面均存在着一定的差异,因此,帮助高一新生了解这些差异,引导他们尽快适应高中的学习与生活,是摆在新学期高一教师面前的迫在眉睫的任务。

具体来说我们要做好以下工作:知识衔接(词汇补充、语法回顾)。

在开新课之前,拿出一周左右的时间搞好高初中之间的词汇衔接和语法衔接,为开新课做好准备。

1、培养习惯,打好基础。

培养基础与指导学法是一致的,培养习惯的过程也是打下扎实基础的过程。

高一起始教学阶段,除重视基础知识的落实巩固,基本技能的培养训练外,最主要的是培养良好的学习习惯和正确的学习方法。

高中数学 4.4函数应用复习教学案 北师大版必修1

高中数学 4.4函数应用复习教学案 北师大版必修1
A B C D
练一练
为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:
发送
解密
加密
明文密文密文明文
已知加密为 为明文、 为密文 ,如果明文“ ”通过加密后得到密文为“ ”,再发送,接受方通过解密得到明文“ ”,若接受方接到密文为“ ”,则原发的明文是。
例2已知二次方程 的两个根分别属于(-1,0)和(0,2),求 的取值范围.
三巩固练习
1.函数 的实数解落在的区间是().
A. [0,1] B. [1,2]
C. [2,3] D. [3,4]
2.下列函数关系中,可以看着是指数型函数 ( 模型的是().
A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)
B.我国人口年自然增长率为1﹪,这样我国人口总数随年份的变化关系
教学过程
一自主学习
1如果函数 在区间 上的图象是连续不断的一条曲线,并且有,那么,函数 在区间 内有零点.
复习2:二分法基本步骤.
①确定区间 ,验证 ,给定精度ε;
②求区间 的中点 ;
③计算 :若 ,则 就是函数的零点;若 ,则令 (此时零点 );若 ,则令 (此时零点 );
④判断是否达到精度ε;即若 ,则得到零点零点值a(或b);否则重复步骤②~④.
四课后反思
五课后巩固练习
1.如图,△OAB是边长为2的正三角形,记△OAB位于直线 左侧的图形的面积为 ,则函数 的解析式为_____________.
2.已知,求证此函数有且仅有一个零点,并求此零点的近似值
教案、学案用纸函数应用复习课
年级高一
学科数学
课题
函数应用复习课
授课时间

高中数学必修一复习计划教案

高中数学必修一复习计划教案

本文将介绍一份实用性强的小学四年级数学教案《邮票的张数》,该教案将有助于提高学生对邮票的认知和数学计算能力,让学生更深入地了解邮票这一文化符号并加深数学知识的理解和应用。

一、教学目标1、知识目标通过本课的学习,学生能够掌握邮票这一文化符号的相关知识,理解邮票的含义和价值;掌握数学计算方法,会求解邮票的张数问题。

2、能力目标通过本课的学习,学生能够培养自己的观察能力、分析能力和解决问题能力,能够运用所学知识进行邮票的计算,并将所学知识应用到实际生活中。

3、情感目标通过本课的学习,学生能够增强自己的文化自信心,了解邮票这一文化符号在国内外的重要地位,增强对自己喜欢的事物的热爱和自信,培养良好的协作意识和团队精神。

二、教学重点和难点1、教学重点通过邮票计算的方法巩固和提高学生对于数学的认识和理解。

通过邮票学习的方法,加深学生对于邮票的认知和理解。

2、教学难点帮助学生建立邮票计算的概念和方法,且掌握不同种类邮票的相关计算方法和规律。

三、教学过程1、导入教师将展示一组邮票,让学生们了解邮票的基本形式和内容,了解邮票是一种文化符号。

2、讲解教师会给学生讲解有关邮票的相关知识,包括邮票的起源和历史、邮票的种类和分类、邮票的价值和收藏等方面的知识。

3、实操教师可以通过例子演示如何计算邮票的张数,让学生听、看、思考,再通过实际操作进行思路的挖掘和分析。

4、探究在计算邮票张数的过程中,教师可以帮助学生发现其中的规律和联系,并进行解释和总结。

5、复习在课堂的一部分,教师可以进行简单的口试,加深学生对邮票计算的理解,并找到问题解决的方法。

四、授课建议1、学科交叉在教学过程中,可以将语文、历史等学科与数学进行结合,使学生学习更加丰富多彩。

2、灵活运用在教学过程中,老师不仅要注重知识的传授,还要注重提高学生的实际操作能力。

在教学时应灵活运用多种方法,如分组讨论、游戏竞赛、实物比较、小组合作等方式,丰富教学内容,提升教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

v1.0 可编辑可修改§1-1 集合及其运算【知识点回忆】阅读教材完成下面填空 1.元素与集合的关系:用 或 表示; 2.集合中元素具有 、 、 3.集合的分类:①按元素个数可分: 限集、 限集 ;②按元素特征分:数集,点集等 4.集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N={0,1,2,3,…}; ②描述法③字母表示法:常用数集的符号:自然数集N ;正整数集*N N +或;整数集Z ;有理数集Q 、实数集R;5.集合与集合的关系:6.熟记:①任何一个集合是它本身的子集;②空集是任何集合的子集;空集是任何非空集合的真子集;③如果B A ⊆,同时A B ⊆,那么A = B ;如果A B ⊆,B C ⊆,A C ⊆那么.④n 个元素的子集有2n个;n 个元素的真子集有2n-1个;n 个元素的非空真子集有2n-2个. 7.集合的运算(用数学符号表示)交集A∩B= ; 并集A ∪B= ;补集C U A= ,集合U 表示全集. 8.集合运算中常用结论:;A B A B A ⊆⇔=A B A B B ⊆⇔=【5分钟练习】课前完成下列练习,课前5分钟回答下列问题 1.下列关系式中正确的是( ) A. 0∈∅ B. 0{0}∈ C. 0{0}⊆ D. {0}⊂∅≠ 2. 方程3231x y x y +=⎧⎨-=⎩解集为______.3.全集{0,1,2,3,4,5,6,7,8,9}I =,{1,2,3}A = {2,5,6,7}B =,则AB = ,A B = ,()I C A B =4.设{}220,M x x x x R =++=∈,a =lg(lg10),则{a }与M 的关系是( )A .{a }=MB . M{a }C .{a }∉MD .M ⊇{a } 强调(笔记):v1.0 可编辑可修改【实践】5.集合{}|37A x x =≤<,{}|210B x x =<<,求A B ,A B ,()R C A B6. 设{}{}24,21,,9,5,1A a a B a a =--=--,已知{}9A B =,求实数a 的值.7. 已知集合M=2{|1}y y x =+,N={|x y =x ∈R},求M∩N8.集A ={-1,3,2m -1},集B ={3,2m }.若B A ⊆,则实数m = 强调(笔记):知识整理、理解记忆要点1.2.3.4. 自主落实,未懂则问1.已知全集,U R =且{}|12,A x x =->{}2|680,B x x x =-+<则()U C A B 等于 A .[1,4)- B .(2,3) C .(2,3] D .(3,4)2.设集合{}22,A x x x R =-≤∈,{}2|,B y y x ==-,则()R C AB 等于( )A .(,0]-∞B .{},0x x R x ∈≠ C .(0,)+∞ D .∅3.已知全集U Z =,{1,0,1,2},A =-,2{|}B x x x ==则U A C B 为4.{}2|60A x x x =+-=,{}|10B x mx =+=,且AB A =,满足条件的m 集合是______5.已知全集U ={2,4,1-a },A ={2,a 2-a +2},如果{}1UA =-,那么a 的值为____v1.0 可编辑可修改必修1第一章§1-2 函数的概念及定义域阅读教材完成下面填空1.定义:设A、B是两个非空集合,如果按照某种对应关系f,使对于集合A中的一个数x,在集合B中确定的数f(x)和它对应,那么就称:f A B→为集合A到集合的一个,记作:2.函数的三要素、、3.函数的表示法:解析法(函数的主要表示法),列表法,图象法;4. 同一函数:相同,值域,对应法则 .5.定义域:自变量的取值范围求法:(1)给定了函数解析式:使式子中各部分均有意义的x的集合;(2) 活生实际中,对自变量的特殊规定.5.常见表达式有意义的规定:①分式分母有意义,即分母不能为0;②{|0}x x≥③00无意义④指数式、对数式的底a满足:{|0,1}a a a>≠,对数的真数N满足:{|0}N N>课前完成下列练习, 5分钟回答下列问题1.设)(xf232x x=-+,求(1)f x+2.已知1392)2(2+-=-xxxf,求)(xf.3.求函数y=4.函数)13lg(13)(2++-=xxxxf的定义域是A.),31(+∞- B. )1,31(-C. )31,31(- D. )31,(--∞强调(笔记):v1.0 可编辑可修改边听边练边落实5.已知()f x 是一次函数,且满足3(1)2(1)217f x f x x +--=+,求()f x6. 已知()y f x =的定义域为[-1,1],试求1(2)()2y f x f x =-+的定义域7.设()xxx f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛x f x f 22的定义域为 A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --8.设22 (1)() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x =9.判断下列各组中的两个函数是同一函数的为( )⑴3)5)(3(1+-+=x x x y ,52-=x y ;⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x =⑸21)52()(-=x x f ,52)(2-=x x f 。

A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、 强调(笔记):知识整理、理解记忆要点1.2.3.4. 自主落实,未懂则问 1.函数422--=x x y 的定义域2.函数0y =定义域是__________3.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +v1.0 可编辑可修改4.已知2211()11x x f x x --=++,则()f x 的解析式为( ) A .21x x + B .212x x+- C .212x x + D .21xx +- 5.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .13必修1 第一章§1-3 函数的表示与值域阅读教材完成下面填空 1.函数的表示法: , , 2.函数的值域:{f (x )|x ∈A}为值域。

3.求值域的常用的方法:①配方法(二次或四次);②判别式法;③反解法;④换元法(代数换元法);⑤不等式法;⑥单调函数法.4. 常用函数的值域,这是求其他复杂函数值域的基础。

① 函数),0(R x k b kx y ∈≠+=的值域为R; ② 二次函数),0(2R x a c bx ax y ∈≠++= 当0>a 时值域是24[,)4ac b a-+∞,当0<a 时值域是(,-∞ab ac 442-];③ 反比例函数)0,0(≠≠=x k xk y 的值域为}0|{≠y y ;④ 指数函数),1,0(R x a a a y x ∈≠>=且的值域为+R ;⑤ 对数函数x y a log =)0,1,0(>≠>x a a 且的值域为R ; ⑥ 函数sin ,cos ()y x y x x R ==∈的值域为[-1,1];⑦ 函数 2k x ,tan ππ+≠=x y ,cot x y =),(Z k k x ∈≠π的值域为R ;后四个函数的值域以后会慢慢复习到。

【】完成下列练习,回答下列问题 1.图中的图象所表示的函数的解析式为(A)|1|23-=x y (0≤x ≤2) (B) |1|2323--=x y (0≤x ≤2)(C) |1|23--=x y (0≤x ≤2)v1.0 可编辑可修改(D) |1|1--=x y (0≤x ≤2) 2. 求函数的值域:y=-3x 2+2;3.求函数的值域:y=12++x x 强调(笔记):【】边听边练边落实 4. 求函数y =432+x x的最值5.求函数y=34252+-x x 的值域.6.求函数的值域:y=5+21+x (x ≥-1).7. 求223([2,3])y x x x =-++∈的值域强调(笔记):【】 知识整理、理解记忆要点1.2.3.4.【】 自主落实,未懂则问1.如图示:U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是: A .()M P S B .()M P S C .()UMP Sv1.0 可编辑可修改D .()UM P S2.求223y x x =++的值域3.求2sin 2sin 3y x x =++的值域4.求1xxe y e=+的值域5.求函数22 (01)() 2 (12)5 (5)x x f x x x x ⎧≤≤⎪=+<<⎨⎪≥⎩的值域必修1 第一章 §1-4 函数的单调性【】阅读教材完成下面填空1.设函数)(x f y =的定义域为A ,区间A I ⊆如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I 上是 ,I 称为)(x f y =的如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I 上是 ,I 称为)(x f y =的2.对函数单调性的理解(1) 函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域;(2) 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即12x x <;三是同 属于一个单调区间,三者缺一不可;(4)关于函数的单调性的证明,如果用定义证明)(x f y =在某区间I 上的单调性,那么就要用严格的四个步骤,即①取值;②作差;③判号;④下结论。

但是要注意,不能用区间I 上的两个特殊值来代替。

而要证明)(x f y =在某区间I 上不是单调递增的,只要举出反例就可以了,即只要找到区间I 上两个特殊的1x ,2x ,若21x x <,有)()(21x f x f ≥即可。

相关文档
最新文档