平面直角坐标系(人教版)(含答案)

合集下载

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (71)

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (71)

人教版七年级数学下册第七章第一节平面直角坐标系习题(含答案)一、单选题1.在平面直角坐标系中,点P(﹣2,﹣3)到y轴的距离为()A.3 B.﹣3 C.2 D.﹣2【答案】C【解析】【分析】根据点到直线的距离的定义即可解答.【详解】解:点到y轴的距离即是点的横坐标的绝对值,则点P(−2,−3)到y轴距离是2.故选择C..【点睛】本题考查点的坐标的几何意义,解题的关键是知道到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.2.点P(﹣5,﹣3)在平面直角坐标系中所在的位置是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】【分析】根据点在各个坐标的特点进行解答即可.解:因为点P(﹣5,﹣3)的横坐标是负数,纵坐标是负数,所以点P在平面直角坐标系的第三象限.故选:C.【点睛】本题考查点的坐标,解题的关键是掌握四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.在平面直角坐标系中,以A(0,2),B(﹣1,0),C(0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D的坐标是()A.(﹣1,4)B.(﹣1,﹣4)C.(﹣2,0)D.(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB为对角线,则BD∥AC,BD=AC=4,∴D(-1,4)若以BC为对角线,则BD∥AC,BD=AC=4,∴D(-1,-4)若以AC为对角线,B,D关于y轴对称,∴D(1,0)故选C.本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.4.在平面直角坐标系中,点()P 3,6-关于y 轴的对称点的坐标为( )A .()3,6--B .()3,6C .()3,6-D .()6,3-【答案】B【解析】【分析】利用关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数,∴点()3,6P -关于y 轴的对称点的坐标为()3,6, 故选B .【点睛】本题考查关于y 轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A 、D 的坐标分别是(0,0),(2,3),AB=5,则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)【答案】C【分析】分别过点D ,点C 作垂线垂直于x 轴于E ,F ,如解析中的图所示,证明三角形ADE 与三角形BCF 全等,得到BF 的值,则点C 的横坐标的值即为AB+BF=AF 的长度.又因为DC ∥AB ,所以点C 的纵坐标与D 的纵坐标相等.【详解】如图所示:过点D ,C 分别作x 轴的垂线于点E ,F∵四边形ABCD 是平行四边形∴AD=BC ,DAE CBF ∠=∠∵DE x CF x ⊥⊥轴轴∴DEA CFB ∠=∠90=在DEA △与CFB 中DAE CBF DEA CFB AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴DEA CFB ≅∴AE=BF∵AE 是点D 横坐标的值,AE=2∴AF=AB+BF=7∴点C 的横坐标的值为7又∵ DC ∥AB∴点C 的纵坐标的值等于点D 纵坐标的值,即为3∴点C 的坐标为(7,3)故答案为C【点睛】本题解题主要注意的是点D 点C 的纵坐标是相等的,而横坐标可以通过找线段的关系进行分析解答.所以涉及到做垂线构造三角形全等,来找到点D 点C 横坐标的数量关系.6.在平面直角坐标系中,点(-3,-3m +1)在第二象限,则m 的取值范围是( )A .13m < B .13m <- C .13m > D .13m > 【答案】A【解析】【分析】 由题意可知,点在第二象限,则该点的横坐标为负数,纵坐标为正数.即-3m +1大于 0,解不等式,可得到m 的取值范围.【详解】点(-3,-3m +1)在第二象限,则-3m +1 > 0解不等式-3m +1 > 0得-3m > -1 即13m <故答案应为A.【点睛】本题考查了点所在的象限,务必清楚是是平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.7.平面直角坐标系中,点P(3,-4)位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】首先清楚的是,平面直角坐标系的四个象限横纵坐标的正负情况,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负. 然后根据p点横纵坐标正负判断所在象限.【详解】因为平面直角坐标系中,从第一象限到第四象限横纵坐标的正负情况分别为:正正,负正,负负,正负.点p(3,-4),横纵坐标正负情况为正负,所以位于第四象限.故选D.【点睛】本题考查了点的象限,解题关键是知道直角坐标系每个象限点的横纵坐标正负情况,通过横纵坐标的正负情况,判断所在象限.P,则点P在()8.在平面直角坐标系中,已知点()1,2A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据第一象限内点的坐标特征:横坐标大于零,纵坐标大于零,即可解答.【详解】解:点(1,2)P在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限+-.--;第四象限(,)(,)-+;第三象限(,)9.在平面直角坐标系中,点(﹣5,2)所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:点(﹣5,2)在第二象限.故选:B.【点睛】此题考查象限及点的坐标的有关性质,解题关键在于掌握其性质.10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,-1)C .(2019,1)D .(2018,-1) 【答案】B【解析】【分析】 由题意可算出P 点1秒所走的长度,再算出P 点所走的路径也就是每个半圆的长度,然后求出运动时间为1秒、2秒时点P 的坐标,找出规律即可求出答案.【详解】解:半径为1个单位长度的半圆的周长为1π2π2=, ∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度, ∴点P 每秒走12个半圆, 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,−1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,以上可以得出P点横坐标每秒加1,纵坐标4个一循环分别是:1,0,﹣1,0∵2019÷4=5043,∴第2019秒时P点坐标是(2019,−1),故选:B.【点睛】本题考查了平面直角坐标系下的规律探究题目,做此类题目时,可先将前几个点P的坐标求解出来,之后根据这几个点的坐标寻找规律,注意考虑点的坐标所在的象限.。

人教版七年级数学下册第七章 平面直角坐标系练习(含答案)

人教版七年级数学下册第七章 平面直角坐标系练习(含答案)

第七章 平面直角坐标系一、单选题1.下列数据不能确定物体位置的是( ) A .电影票5排8号 B .北偏东30°C .希望路25号D .东经118︒,北纬40︒2.点P 的横坐标是一3,且到x 轴的距离为5,则点P 的坐标是( ) A .()3,5-B .()3,5--C .()5,3-或()3,5-D .()3,5-或()3,5--3.若点A (2,﹣2),B (﹣1,﹣2),则直线AB 与x 轴和y 轴的位置关系分别是( ) A .相交,相交 B .平行,平行 C .平行,垂直相交 D .垂直相交,平行4.点P(2,3)到y 轴的距离是( ) A .3B .2C .1D .05.点A 到x 轴的距离是3,到y 轴的距离是6,且点A 在第二象限,则点A 的坐标是( ) A .(-3,6)B .(-6,3)C .(3,-6)D .(6,-3)6.如果()5,y 在第四象限,则y 的取值范围是( ) A .0y >B .0y <C .0y ≥D .0y ≤7.如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点( )A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)8.如图,是A,B,C,D四位同学的家所在位置,若以A同学家的位置为坐标原点建立平面直角坐标系,那么C同学家的位置的坐标为(1,5),则B,D两同学家的坐标分别为( )A.(2,3),(3,2)B.(3,2),(2,3)C.(2,3),(-3,2)D.(3,2),(-2,3) 9.如图,在边长为1的正方形网格中,两个三角形的顶点都在格点(网线的交点)上,下列方案中不能把△ABC平移至△DEF位置的是()A.先把△ABC沿水平方向向右平移4个单位长度,再向上平移3个单位长度B.先把△ABC向上平移3个单位长度,再沿水平方向向右平移4个单位长度C.把△ABC沿BE方向移动5个单位长度D.把△ABC沿BE方向移动6个单位长度10.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2018,0)B.(2017,1)C.(2019,1)D.(2019,2)二、填空题11.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C 的坐标为___________.P-先向右平移2个单位,再向下平移3个单位,得到点P',则点P'的坐标12.将点(2,3)为__________.13.若点P(3a﹣2,2a+7)在第二、四象限的角平分线上,则点P的坐标是_____.14.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动一个单位,依次得到点P1(0,1);P2(1,1);P3(1,0);P4(1,﹣1);P5(2,﹣1);P6(2,0)……,则点P2019的坐标是_____.三、解答题15.如图所示,△BCO是△BAO经过折叠得到的.(1)图中A与C的坐标之间的关系是什么?(2)如果△AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?16.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,−1)→(0,−1)→(−1,−2)→(−3,−1)的路线转了一下,又回到家里,写出路上她经过的地方.17.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,AQ=3,求Q点的坐标.18.已知:△ABC与△A'B'C在平面直角坐标系中的位置如图.(1)分别写出B、B'的坐标:B______;B′______;(2)若点P(a,b)是△ABC内部一点,则平移后△A'B'C内的对应点P′的坐标为______;(3)求△ABC的面积答案2.D3.C4.B5.B6.B7.B8.D9.D10.D11(-1)12.(0,0)13.(﹣5,5).14.(673,0)15.解:(1)△A(5,3),C(5,-3)△点A与点C的横坐标相同,纵坐标互为相反数;(2)△△BCO和△BAO中对应点坐标,横坐标相同,纵坐标互为相反数,△△AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是:N(x,-y)16.(1)汽车站(1,1),消防站(2,﹣2);(2)(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,邮局.17.解:(1)△点P在y轴上△2m-6=0△m+2=3+2=5△P(0,5)(2)根据题意可得PQ△x轴,且过A(2,3)点,△m+2=3△m=1△2m-6=-4△P(-4,3)△PQ=3△Q点横坐标为-4+3=-1,或-4-3=-7△Q点坐标为(-1,3)或(-7,3)18.解:(1)由图知点B′的坐标为(2,0)、点B坐标为(-2,-2),故答案为:(2,0)、(-2,-2);(2)由图知△ABC向左平移4个单位,再向下平移2个单位可得到△A'B'C′,则平移后△A'B'C内的对应点P′的坐标为(a-4,b-2),故答案为:(a-4,b-2);(3)△ABC的面积为2×3-12×1×3-12×1×1-12×2×2=2。

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)

人教版七年级下册数学平面直角坐标系课时练习(附答案)一、单选题1.在平面直角坐标系中,点P(3,-4)到x轴的距离是()A.3B.-3C.4D.-42.在平面直角坐标系中,已知点A(m﹣1,2m﹣2),B(﹣3,2).若直线AB∥y轴,则线段AB的长为()A.2B.4C.6D.83.如果把电影票上“5排3座”记作(5,3),那么(4,9)表示()A.“4排4座”B.“9排4座”C.“4排9座”D.“9排9座”4.若点A(-3,m)在x轴上,那么点B(m+1,m-2)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,点P(a,b)在第二象限,则点P(−a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.在平面直角坐标系中,点A(x,y)在第四象限,且|x|=2,|y|=3,将点A向左平移3个单位长度后得到点A′,则点A′的坐标是()A.(−2,3)B.(5,−3)C.(−1,−3)D.(2,−6)7.已知点A(2x−4,x+3)在第二象限,则x的取值范围是()A.−3<x<2B.x>−3C.x<2D.x>28.在平面直角坐标系中,点A(0,a),点B(0,4﹣a),且A在B的下方,点C(1,2),连接AC,BC,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a的取值范围为()A.﹣1<a≤0B.0<a≤1C.1≤a<2D.﹣1≤a≤1二、填空题9.在平面直角坐标系中,点M在第四象限,且到x轴y轴的距离分别为6,4,则点M的坐标为.10.若点A(m+3,m−3)在x轴上,则m=.11.点(2,3)在哪个象限.12.已知平面直角坐标系中的点P(a﹣3,2)在第二象限,则a的取值范围是13.已知点P的坐标为(2,﹣5),则P点到x轴的距离为个单位长度.14.在平面直角坐标系中,若点P(m+3,3−m)在y轴上,则m的值是.15.已知点P(-2x,3x+1)是平面直角坐标系中第二象限内的点,且点P到两坐标轴的距离之和为11,则点P的坐标16.点A(m−1,m+2)在x轴上,则此点坐标为;点B(3,a−1)在二、四象限的角分线上,则此点坐标为;点C在x轴下方,距离x轴2个单位长度,距离y轴3个单位长度,则此点的坐标为.17.点P(3+a,a+1)到x轴距离为3,则点P到y轴的距离为.18.如图,李老师家在2街与2巷的十字路口附近,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示李老师从家到学校上班的一条路线.请你用同样的方式写出从家到学校的另外一线:.19.在平面直角坐标系中,若点A(a,−b)在第三象限,则点B(−ab,b)在第象限.20.如图,在平面直角坐标系中,一个质点P从点P1(−1,0)出发,运动到点P2(−1,−1),运动到点P3(1,−1),运动到点P4(1,1),运动到点P5(−2,1),运动到点P6(−2,−2)……按照上述规律运动下去,则点P2022的坐标为.三、作图题21.对于边长为6的等边三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.22.如图,是由边长为1个单位长度的小正方形组成的网格图.⑴请在图中建立平面直角坐标系,使A、B两点的坐标分别为A(2,3)、B(﹣2,0);⑴正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形,在图中画出格点⑴ABC使得AB=AC,请写出在⑴中所建坐标系内所有满足条件的点C的坐标.四、解答题23.如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.24.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.答案1.C 2.D 3.C 4.D 5.A 6.C 7.A 8.B 9.(4,﹣6)10.3 11.第一象限12.a<3 13.5 14.-3 15.(-4,7)16.(−3,0);(3,−3);(−3,−2)或(3,−2)17.1或518.答案不唯一:如(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4)19.一20.(-506,-506)21.解:以BC边所在直线为x轴,BC边的垂直平分线为y轴建立如图所示的直角坐标系.OA=√AC2−OC2=√62−32=√27=3√3∴各顶点坐标分别为:A(0,3√3),B(−3,0),C(3,0).22.解:⑴如图所示:⑴如图所示,点C即为所求,其坐标为(﹣3,3)或(﹣1,﹣1)或(2,﹣2)或(5,﹣1)或(6,0)或(7,3).23.解:答案不唯一,如:⑴(3,5)→(4,5)→(4,4)→(5,4)→(5,3);⑴(3,5)→(4,5)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(4,4)→(5,4)→(5,3);⑴(3,5)→(3,4)→(4,4)→(4,3)→(5,3);⑴(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.24.解:∵白棋已经有三个在一条直线上,∴甲必须在(5,3)或(1,7)位置上落子,才不会让乙马上获胜.。

平面直角坐标系(坐标系及其象限特征)(人教版)(含答案)

平面直角坐标系(坐标系及其象限特征)(人教版)(含答案)

111学生做题前请先回答以下问题问题1:坐标系把平面分成了______个象限,第一象限内点的坐标特征是(+,+),第二象限内点的坐标特征是(___,___),第三象限内点的坐标特征是(____,____),第四象限内点的坐标特征是(___,___).问题2:x轴上的点____坐标等于零,y轴上的点_____坐标等于零.问题3:平行于x轴的直线上的点____坐标相同;平行于y轴的直线上的点____坐标相同.平面直角坐标系(坐标系及其象限特征)(人教版)一、单选题(共14道,每道7分)1.下列描述不能确定物体位置的是( )A.五栋四楼B.1单元6楼8号C.和平路125号D.东经110°,北纬80°答案:A解题思路:五栋四楼有很多房间,因此不能确定物体的位置.故选A.试题难度:三颗星知识点:位置的确定2.下列各点中,在第二象限的点是( )A.(3,2)B.(3,-2)C.(-3,2)D.(-3,-2)答案:C解题思路:第二象限的点的符号特征为(-,+),符合这一特征的只有C选项.故选C.试题难度:三颗星知识点:点的坐标3.下列各点中,在第三象限的点是( )111A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)答案:D解题思路:第三象限的点的符号特征为(-,-),符合这一特征的只有D选项.故选D.试题难度:三颗星知识点:点的坐标4.如图,在平面直角坐标系中,点E的坐标是( )A.(1,2)B.(2,1)C.(-1,2)D.(1,-2)答案:A解题思路:∵点E在第一象限内,∴点E的符号为(+,+)又∵E到x轴的距离是2,到y轴的距离是1,∴点E的纵坐标是2,横坐标是1,故点E的坐标为(1,2).故选A.试题难度:三颗星知识点:点的坐标5.如图,在平面直角坐标系中,坐标是(0,-3)的点是( )A.点AB.点BC.点CD.点D答案:D解题思路:根据题意可知,横坐标等于零,纵坐标是负数,这个点在y轴负半轴上.故选D.试题难度:三颗星知识点:坐标确定位置6.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是( )A.点AB.点BC.点CD.点D答案:B解题思路:根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,即向西走为x轴负方向,向南走为y轴负方向,则(10,20)表示的位置是向东10米,向北20米,即点B所在位置.故选B.试题难度:三颗星知识点:坐标确定位置7.如图,在正方形ABCD中,点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D 的坐标分别为( )A.(2,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)答案:B解题思路:因为点A和点C的坐标分别为(-2,3)和(3,-2),四边形ABCD为正方形,AB平行于y轴,CD平行于y轴,AD平行于x轴,BC平行于x轴,所以点B的横坐标为-2,纵坐标为-2,点D的横坐标为3,纵坐标为3.故选B.试题难度:三颗星知识点:坐标与图形的性质8.若点P(8-3a,a)的横坐标与纵坐标互为相反数,则点P一定在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:B解题思路:由题可知8-3a+a=0,解得a=4,因此点P(-4,4)在第二象限.故选B.试题难度:三颗星知识点:坐标确定位置9.如果点P(m,n)是第四象限内的点,那么点Q(0,-n)在( )A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上答案:C解题思路:因为点P(m,n)是第四象限内的点,所以m为正,n为负,那么-n为正,所以点Q(0,-n)在y轴正半轴上.故选C.试题难度:三颗星知识点:坐标确定位置10.如图,是象棋盘的一部分.若“帅”位于点(1,-2)上,“相”位于点(3,-2)上,则“炮”位于点( )上.A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)答案:C解题思路:由题意知,坐标原点、坐标轴所在的位置如图所示,∴“炮”所在的点的坐标为(-2,1).111 故选C.试题难度:三颗星知识点:点的坐标11.已知点M(2m-1,2-m)在x轴上,则m的值为( )A. B.2C.3D.0答案:B解题思路:∵点M在x轴上,∴2-m=0,∴m=2.故选B.试题难度:三颗星知识点:坐标确定位置12.在平面直角坐标系中,点(-7,m+1)在第三象限,则m的取值范围是( )A.m 1B.m 1C.m-1D.m-1答案:C解题思路:因为点(-7,m+1)在第三象限,第三象限点的符号特征为(-,-),所以m+10,解得m-1.故选C.试题难度:三颗星知识点:点的坐标13.平面直角坐标系中有一点P(a,b),如果ab=0,那么点P的位置在( )A.原点B.x轴上C.y轴上D.坐标轴上答案:D解题思路:因为ab=0,所以a和b中至少有一个为0,因此点P一定在坐标轴上.故选D.111 试题难度:三颗星知识点:坐标确定位置14.如果点P(a,b)在第四象限,那么点Q(-a,b-4)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第一象限或第三象限答案:C解题思路:∵点P(a,b)在第四象限∴a0,b0∴-a0,b-40∴点Q(-,-)在第三象限故选C.试题难度:三颗星知识点:坐标的象限特征。

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (60)

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (60)

人教版七年级数学下册第七章第一节平面直角坐标系习题(含答案)在平面直角坐标系中,有(2,2)A a -+,(3,4)B a -,(4,)C b b -三点. (1)当ABx 轴时,求A 、B 两点间的距离;(2)当CD x ⊥轴于点D ,且3CD =时,求点C 的坐标. 【答案】(1)1;(2)点C 的坐标为(1,3)-、(7,3)-- 【解析】 【分析】 (1)根据ABx 轴可知点,A B 的纵坐标一样解得a 的值,再求解B 的横坐标,最后即可求得两点间的距离;(2)根据CD x ⊥轴于点D ,且3CD =,即(4,)C b b -的纵坐标3b =±,即可得出点C 的坐标.【详解】 解:(1)由AB x 轴可得,24a +=,即2a =,∴31a -=-,∴A 、B 两点间的距离为1(2)1---=. (2)由题意得||3b =,即3b =或3-, ∴41b -=-或47b -=-, ∴点C 的坐标为(1,3)-、(7,3)-- 【点睛】本题主要考查坐标于图形的性质,熟练掌握性质是关键.92.如下图所示,在直角坐标系中,第一次将△OAB 变换成11OA B ,第二次将11OA B,第三次将22OA B变换成22OA B,已知A(1,2),OA B△变换成33A(2,2),2A(4,2)3A(8,2),B(2,0),1B(4,0),2B(8,0),3B(16,0).1(1)观察每次变换前后的三角形有何变化,找出规律,按此规律再将33OA B 变换成44OA B,则4A的坐标为,4B的坐标为..(2)可以发现变换过程中123A,A,A……An的纵坐标均为(3)按照上述规律将△OAB进行n次变换得到n n△,则可知A n的坐标OA B为,n B的坐标为.(4)线段nOA的长度为.【答案】(1)(16,2);(32,0);(2)2;(3)(2n,2);(2n+1,0);(4【解析】【分析】(1)根据A1、A2、A3和B1、B2、B3的坐标找出规律,求出A4的坐标、B4的坐标;(2)根据A1、A2、A3的纵坐标找出规律,根据规律解答;(3)根据将△OAB进行n次变换得到△OA n B n的坐标变化总结规律,得到答案;(4)根据勾股定理计算.【详解】(1)∵A1(2,2),A2(4,2)A3(8,2),∴A4的坐标为(16,2),∵B1(4,0),B2(8,0),B3(16,0),∴B4的坐标为(32,0),故答案为:(16,2);(32,0);(2)变换过程中A1,A2,A3……A n的纵坐标均为2,故答案为:2;(3)按照上述规律将△OAB进行n次变换得到△OA n B n,则可知A n的坐标为(2n,2),B n的坐标为(2n+1,0)故答案为:(2n,2);(2n+1,0);(4)∵A n的横坐标为2n,B n﹣1的横坐标为2n,∴A n B n﹣1⊥x轴,又A n的纵坐标2,由勾股定理得,线段OAn【点睛】本题考查的是坐标与图形、图形的变换、图形的变化规律,正确找出变换前后的三角形的变化规律、掌握勾股定理是解题的关键.93.对于平面直角坐标系x O y中的点P(a,b),若点P′的坐标为(a+kb,k≠),则称点P′为点P的“k属派生点”.例如:P(1,ka+b)(其中k为常数,且04)属派生点为P′(1+2×4,2×1+4),即P′(9,6).(1)点P(-2,3)的“2属派生点”P′的坐标为__________.(2) 若点P的“3属派生点”P′的坐标为(6,2),求点P的坐标;(3) 若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.【答案】(1)(4,-1);(2)P(0,2);(3)2k=±【解析】【分析】(1)根据“k属派生点”计算可得;(2)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(3)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【详解】(1)点P(-2,3)的“2属派生点”P′的坐标为(-2+3×2,-2×2+3),即(4,-1),故答案为:(4,-1);(2)设点P的坐标为(x、y),由题意知3632x yx y+⎧⎨+⎩==,解得:2xy⎧⎨⎩==,即点P的坐标为(0,2),故答案为:(0,2);(3)∵点P 在x 轴的正半轴上, ∴b=0,a >0.∴点P 的坐标为(a ,0),点P ′的坐标为(a ,ka ) ∴线段PP ′的长为P ′到x 轴距离为|ka|. ∵P 在x 轴正半轴,线段OP 的长为a , ∴|ka|=2a ,即|k|=2, ∴k=±2.【点睛】此题考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.94.如图,网格图中的每小格均是边长是1的正方形,ABC ∆与A B C '''∆的顶点均在格点上,请完成下列各题:(1)在平面直角坐标系中画出与ABC ∆关于x 轴对称的111A B C ∆,并写出将111A B C ∆沿着x 轴向右平移几个单位后得到A B C '''∆;(2)在x 轴上求作一点P ,使得PC PB '-的值最大。

人教版初中七年级数学下册第七单元《平面直角坐标系》经典习题(含答案解析)

人教版初中七年级数学下册第七单元《平面直角坐标系》经典习题(含答案解析)

一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位3.在平面直角坐标系中,若点(),A a b -在第三象限,则下列各点在第四象限的是( ) A .(),a b -B .(),a b -C .(),a b --D .(),a b 4.点A(-π,4)在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .26.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,在一单位长度为1cm 的方格纸上,依如所示的规律,设定点1A 、2A 、3A 、4A 、5A 、6A 、7A 、n A ,连接点O 、1A 、2A 组成三角形,记为1∆,连接O 、2A 、3A 组成三角形,记为2∆,连O 、n A 、1n A +组成三角形,记为n ∆(n 为正整数),请你推断,当n 为50时,n ∆的面积=( )2cmA.1275B.2500C.1225D.12508.过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,则点B的坐标为()A.(0,﹣2)B.(3,0)C.(0,3)D.(﹣2,0)9.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.在平面直角坐标系中,点P(﹣2019,2018)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)12.在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)13.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 14.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为( )A .44B .45C .46D .4715.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题16.已知点P 的坐标为()2,6a -,且点P 到两坐标轴的距离相等,则a 的值为_________.17.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.18.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 19.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若(1,1)P -,(2,3)Q ,则P ,Q 的“实际距离”为5,即5PS SQ +=或5PT TQ +=.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为(2,2)A ,(4,2)B -,(2,4)C --,若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为______.20.若点P位于x轴上方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,则点P的坐标是_____________.21.如图,在平面直角坐标系中,已如点A(1,1),B(-1,1),C(-1,-2),D(1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A→→→→的规律紧绕在四边形ABCD的边上,则细线的另一端所处,并按A B C D A在位置的点的坐标是__________.22.已知点A(3a﹣6,a+4),B(﹣3,2),AB∥y轴,点P为直线AB上一点,且PA=2PB,则点P的坐标为_____.23.在平面直角坐标系中,有点A(a﹣2,a),过点A作AB⊥x轴,交x轴于点B,且AB=2,则点A的坐标是___.24.如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形A1B1C1D1,已知A(﹣3,5),B(﹣4,3),A1(3,3),则B1的坐标为_____.25.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A2020的坐标是________.26.若点A(-2,n)在x轴上,则点B(n-2,n+1)在第_____象限.三、解答题27.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.28.已知点()24,1P m m +-,试分别根据下列条件,求出P 点的坐标.(1)点P 到x 轴的距离是5;(2)点P 在过点()2,3A 且与x 轴平行的直线上.29.在平面直角坐标系中,画出点(0,0)A ,(4,0)B ,(3,3)C ,(0,5)D ,并求出BCD 的面积.30.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.。

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (81)

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (81)

人教版七年级数学下册第七章第一节平面直角坐标系习题(含答案)一、单选题1.在平面直角坐标系xOy 中,对于点(),P a b 和点(),Q a b ',给出下列定义:若()()11b a b b a ⎧≥⎪=<'⎨-⎪⎩,则称点Q 为点P 的限变点,例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--,如果一个点的限变点的坐标是)1-,那个这个点的坐标是( )A .(-B .()1-C .)1-D .)【答案】C【解析】【分析】 根据新定义的叙述可知:这个点和限变点的横坐标不变,当横坐标a ≥1时,这个点和限变点的纵坐标不变;当横坐标a <1时,纵坐标是互为相反数;据此可做出判断.【详解】1∴-1)故选:C .【点睛】此题考查点的坐标,解题关键在于准确找出这个点与限变点的横、纵坐标与a 的关系即可.2.若点(),P a b 在第四象限,则( )A .0a >,0b >B .0a <,0b <C .0a <,0b >D .0a >,0b <【答案】D【解析】【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】由点P (a ,b )在第四象限内,得a >0,b <0,故选:D .【点睛】此题考查各象限内点的坐标,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 3.已知第二象限的点2()2P a b --,,那么点P 到y 轴的距离为( ) A .2a -B .2a -C .2b -D .2b -【答案】B【解析】【分析】根据点到y 轴的距离是横坐标为绝对值,结合点P 的位置,即可得到答案.【详解】解:P 到y 轴的距离是|2|a -,由于P 在第二象限,20a ∴-<.|2|(2)2a a a ∴-=--=-;故选:B .【点睛】本题考查的是点的坐标的几何意义:点到x 轴的距离为点的纵坐标的绝对值,到y 轴的距离为点的横坐标的绝对值.4.如图,长方形ABCD 的边AB 平行于x 轴,物体甲和物体乙由点()2,0P 同时出发,沿长方形ABCD 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第4次相遇点的坐标是( )A .()1,1-B .()2,0C .()1,1-D .()1,1--【答案】C【解析】【分析】 由坐标得到矩形的周长,得到第四次相遇时所走的总路程,求解第四次相遇的时间,再计算甲所走的路程可得相遇点的坐标.【详解】解:(42)212ABCD C =+⨯=(个)单位,两个物体第4次相遇,共走12448⨯=.相遇时间:48(12)16÷+=(秒),甲所走的路程是16116⨯=(个)单位又12ABCD C =(个)单位,16124-=(个)单位,故从P 逆时针走4个单位,即为()1,1-,故选C【点睛】本题考查的平面直角坐标系内点的运动与坐标的变化,掌握运动规律是解题关键.5.已知点1,0A ,()0,2B ,点P 在x 轴的负半轴上,且PAB ∆的面积为5,则点P 的坐标为( )A .()0,4-B .()0,8-C .()4,0-D .()6,0 【答案】C【解析】【分析】由三角形的面积公式求解PA 的长度,结合1,0A 直接得到答案.【详解】 解:152APB S PA OB ∆=⋅=, 525252PA OB ⨯⨯∴===. (1,0)A ,点P 在x 轴负半轴()4,0P ∴-.故选C .【点睛】本题考查的是坐标系内三角形的面积,同时考查坐标轴上线段的长度与坐标的关系,掌握相关知识点是解题关键.6.在平面直角坐标系中,若点(),3A a -在第三象限,则点()3,B a 所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:∵(),3A a -在第三象限内, ,∴a<0,∴点()3,B a 所在的象限是第四象限.故选D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7.已知点P (a ﹣1,2a +1)关于原点对称的点在第一象限,则a 的取值范围是( )A .12a >-B .12a <-C .a <1D .a >﹣1【答案】B【解析】【分析】由对称点在第一象限,得到10210a a -+⎧⎨--⎩>>,即可解得a 的取值范围. 【详解】∵点P (a ﹣1,2a +1)关于原点对称的点在第一象限,∴10210a a -+⎧⎨--⎩>>, 解得:a <﹣12. 故选:B .【点睛】此题考查点的对称性,各象限内点的坐标特点,根据点所在的象限得到关于a 的不等式组由此求得a 的取值范围是解题的关键.8.在平面直角坐标系中,点A (﹣2,4)位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.在平面直角坐标系中,点M(3,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据平面直角坐标系中,点的坐标与点所在的象限的关系,即可得到答案.【详解】∵3>0,2>0,∴点M(3,2)在第一象限,故选A.【点睛】本题主要考查点的坐标与点所在象限的关系,掌握点的坐标的正负性与所在象限的关系,是解题的关键.10.已知坐标平面内点M(a,-b)在第三象限,那么点N(b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】根据第三象限点的横坐标与纵坐标都是负数表示出a、b,再根据各象限内点的坐标特征解答.【详解】∵点M(a,-b)在第三象限,∴a<0,-b<0,∴b>0,∴点N(b,−a)在第一象限.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).。

人教版数学七年级下册--第七章 平面直角坐标系(1)含答案解析

人教版数学七年级下册--第七章 平面直角坐标系(1)含答案解析

平面直角坐标系1一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014D.3×()20135.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.若0<m<2,则点p(m﹣2,m)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第_________象限.11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是_________.12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为_________.13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为_________.14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为_________.15点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为_________.(填一个即可)16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是_________.17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是_________.三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C 为顶点的三角形与△AOB相似,求点D的坐标.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.平面直角坐标系1参考答案与试题解析一.选择题(共9小题)1.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四考点:点的坐标.分析:由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.解答:解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选D.点评:本题考查了点的坐标,观察图形,判断出a、b的取值范围是解题的关键.2.若点M(x,y)满足(x+y)2=x2+y2﹣2,则点M所在象限是()A.第一象限或第三象限 B.第二象限或第四象限C.第一象限或第二象限 D.不能确定考点:点的坐标;完全平方公式.分析:利用完全平方公式展开得到xy=﹣1,再根据异号得负判断出x、y异号,然后根据各象限内点的坐标特征解答.解答:解:∵(x+y)2=x2+2xy+y2,∴原式可化为xy=﹣1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选:B.点评:本题考查了点的坐标,求出x、y异号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即从点B 向下沿BC2个单位所在的点的坐标即为所求,也就是点(﹣1,﹣1).故选:D.点评:本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.4.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A1的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2014的纵坐标为()A.0 B.﹣3×()2013C.(2)2014 D.3×()2013考点:规律型:点的坐标.专题:压轴题;规律型.分析:根据含30度的直角三角形三边的关系得OA2=OC2=3×;OA3=OC3=3×()2;OA4=OC4=3×()3,于是可得到OA2014=3×()2013,由于2014=4×503+2,则可判断点A2014在y轴的正半轴上,所以点A2014的纵坐标为3×()2013.解答:解:∵∠A2OC2=30°,OA1=OC2=3,∴OA2=OC2=3×;∵OA2=OC3=3×,∴OA3=OC3=3×()2;∵OA3=OC4=3×()2,∴OA4=OC4=3×()3,∴OA2014=3×()2013,而2014=4×503+2,∴点A2014在y轴的正半轴上,∴点A2014的纵坐标为:3×()2013.故选:D.点评:本题考查了规律型,点的坐标:通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系.5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D.5个考点:坐标与图形性质;三角形的面积.分析:根据点A、B的坐标判断出AB∥x轴,然后根据三角形的面积求出点C到AB的距离,再判断出点C的位置即可.解答:解:由图可知,AB∥x轴,且AB=3,设点C到AB的距离为h,则△ABC的面积=×3h=3,解得h=2,∵点C在第四象限,∴点C的位置如图所示,共有3个.故选:B.点评:本题考查了坐标与图形性质,三角形面积,判断出AB∥x轴是解题的关键.6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.专题:计算题.分析:由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.解答:解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选B.点评:本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.7.若0<m<2,则点p(m﹣2,m)在()A.第一象限B.第二象限 C 第三象限D.第四象限考点:点的坐标.分析:根据m的取值范围求出(m﹣2)的正负情况,然后根据各象限内点的坐标特征解答.解答:解:∵0<m<2,∴m﹣2<0,∴点p(m﹣2,m)在第二象限.故选B.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.如果点P(a,b)在第四象限,那么点Q(﹣a,b﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:根据第四象限的点的坐标特征确定出a、b的正负情况,再确定出点Q的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征判断即可.解答:解:∵点P(a,b)在第四象限,∴a>0,b<0,∴﹣a<0,b﹣4<0,∴点Q(﹣a,b﹣4)在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.如果m是任意实数,则点P(m,1﹣2m)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:判断出m<0时,1﹣2m>0,再根据各象限内点的坐标特征解答.解答:解:∵m<0时,1﹣2m>0,∴点P(m,1﹣2m)一定不在第三象限.故选C.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二.填空题(共8小题)10.在平面直角坐标系中,点(﹣4,4)在第二象限.考点:点的坐标.分析:根据各象限内点的坐标特征解答.解答:解:点(﹣4,4)在第二象限.故答案为:二.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣1).考点:规律型:点的坐标.专题:规律型.分析:根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.解答:解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2014÷10=201…4,∴细线另一端在绕四边形第202圈的第4个单位长度的位置,即线段BC的中间位置,点的坐标为(﹣1,﹣1).故答案为:(﹣1,﹣1).点评:本题主要考查了点的变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2014个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.12.如图,在在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,得到等腰直角三角形A2014OB2014,则点A2014的坐标为(﹣22014,0).考点:规律型:点的坐标.专题:规律型.分析:根据题意得出A点坐标变化规律,进而得出点A2014的坐标位置,进而得出答案.解答:解:∵将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O…,依此规律,∴每4次循环一周,A1(0,﹣2),A2(﹣4,0),A3(0,8),A4(16,0),∵2014÷4=503…2,∴点A2014与A2同在x轴负半轴,∵﹣4=﹣22,8=23,16=24,∴点A2014(﹣22014,0).故答案为:(﹣22014,0).点评:此题主要考查了点的坐标变化规律,得出A点坐标变化规律是解题关键.13.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B2014的横坐标为10070.考点:规律型:点的坐标;坐标与图形变化-旋转.专题:压轴题;规律型.分析:首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.解答:解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,∴点B2014的横坐标为:×10=10070.故答案为:10070.点评:此题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题关键.14.在平面直角坐标系中,若点P(m+3,m﹣1)在第四象限,则m的取值范围为﹣3<m<1.考点:点的坐标.分析:点在第四象限的条件是:横坐标是正数,纵坐标是负数.解答:解:∵点P(m+3,m﹣1)在第四象限,∴可得,解得:﹣3<m<1.故填:﹣3<m<1.点评:本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.15.点P在第二象限内,且到两坐标轴的距离相等,则点P的坐标可以为(﹣2,2).(填一个即可)考点:点的坐标.专题:开放型.分析:根据四个象限内点的坐标符合,可得P点坐标横纵标为负,纵坐标为正,再根据到两坐标轴的距离相等可得答案.解答:解:∵点P在第二象限内,∴则P点坐标横纵标为负,纵坐标为正,∵到两坐标轴的距离相等,∴P(﹣2,2),故答案为:(﹣2,2).点评:此题主要考查了点的坐标,关键是掌握点的坐标符号.16.直角坐标系中,第四象限内一点P到x轴的距离为2,到y轴的距离为5,那么点P的坐标是(5,﹣2).考点:点的坐标.分析:根据第四象限点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:∵第四象限内一点P到x轴的距离为2,到y轴的距离为5,∴点P的横坐标是5,纵坐标是﹣2,∴点P(5,﹣2).故答案为:(5,﹣2).点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.17.点A(m﹣1,3﹣m)在第四象限,则m的取值范围是m>3.考点:点的坐标;解一元一次不等式组.分析:根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.解答:解:∵点A(m﹣1,3﹣m)在第四象限,∴,解不等式①得,m>1,解不等式②得,m>3,∴m>3.故答案为:m>3.点评:本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).三.解答题(共6小题)18.在直角坐标系中,已知点A(﹣2,0),B(0,4),C(0,3),过点C作直线交x轴于点D,使得以D,O,C 为顶点的三角形与△AOB相似,求点D的坐标.考点:坐标与图形性质;相似三角形的判定.分析:过C点作AB的平行线,交x轴于D1点,由平行得相似可知D1点符合题意,根据对称得D2点;改变相似三角形的对应关系得D3点,利用对称得D4点,都满足题意.解答:解:过C点作AB的平行线,交x轴于D1点,则△DOC∽△AOB,,即,解得OD=,∴D1(﹣,0),根据对称得D2(,0);由△COD∽△AOB,得D3(﹣6,0),根据对称得D4(6,0).点评:本题考查了利用相似比求线段的长,根据线段长确定点的坐标的方法.19.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.考点:坐标确定位置.分析:方法1:用有序实数对(a,b)表示;方法2:用方向和距离表示.解答:解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.点评:本题考查了确定物体位置的两种方法.无论运用哪种方法表示一个点在平面中的位置,都要用两个数据才能表示.20.请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(0,2),B点坐标为(﹣2,0);(2)在x轴上画点C,使△ABC为等腰三角形,请画出所有符合条件的点C,并直接写出相应的C点坐标.考点:坐标与图形性质;等腰三角形的性质.专题:网格型.分析:(1)根据A点坐标为(0,2),B点坐标为(﹣2,0),则点A所在的纵线一定是y轴,B所在的横线一定是x轴.(2)分AB时底边或腰两种情况进行讨论.解答:解:(1)在网格中建立平面直角坐标系如图所示:(2)满足条件的点有4个:C1:(2,0);C2:(,0);C3:(0,0);C4:(,0).点评:本题考查了等腰三角形的性质及坐标与图形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.21.如图,四边形ABCD是一正方形,已知A(1,2),B(5,2)(1)求点C,D的坐标;(2)若一次函数y=kx﹣2(k≠0)的图象过C点,求k的值.(3)若y=kx﹣2的直线与x轴、y轴分别交于M,N两点,且△OMN的面积等于2,求k的值.考点:坐标与图形性质;待定系数法求一次函数解析式;正方形的性质.专题:代数几何综合题.分析:根据正方形的定义得到正方形的边长是4,C,D的坐标容易求出;把C点坐标代入一次函数y=kx﹣2(k≠0)的解析式,就可以求出k的值;根据△OMN的面积等于2,就可以求出k的值.解答:解:(1)∵ABCD为正方形,又A(1,2),B(5,2)则AB=4,∴C(5,6),D(1,6)(2分)(2)∵y=kx﹣2经过C点,∴6=5k﹣2,∴k==1.6 (4分)(3)y=kx﹣2与x轴的交点为My=0时,kx﹣2=0,x=,M(,0),N(0,﹣2)又S△OMA=|OM|•|ON|=×|﹣2|•||=2∴|K|=1,k=±1故k=±1时,△OMN的面积为2个单位(少一个k值扣1分)(6分).点评:本题结合坐标考查了函数的性质,注意结合图形是解决本题的关键.22.已知点A在x轴上,点A与点B(1,3)的距离是5,求点A的坐标.考点:两点间的距离公式.分析:根据已知条件“点A在x轴上”可以设点A的坐标为(x,0);然后利用两点间的距离公式列出关于x的一元二次方程(x﹣1)2=42,通过解方程即可求得x的值,即点A的坐标.解答:解:设点A的坐标为(x,0).根据题意,得∴(x﹣1)2=42∴x1=5,x2=﹣3,经检验:x1=5,x2=﹣3都是原方程的根,∴点A的坐标为(5,0)或(﹣3,0).点评:本题考查了两点间的距离公式.属于基础题,关键是掌握设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=.23.如图,在平面直角坐标系中,已知点A(﹣2,0),B(2,0).(1)画出等腰三角形ABC(画一个即可);(2)写出(1)中画出的三角形ABC的顶点C的坐标.考点:坐标与图形性质;等腰三角形的性质.分析:(1)由题意可得,AB的中垂线是y轴,则在y轴上任取一点即可;(2)根据所画情况而定,如(0,3)解答:解:(1)如图;(2)C(0,3)或(0,5)都可以(答案不唯一).点评:本题综合考查了图形的性质和坐标的性质及等腰三角形的性质;发现并利用AB的中垂线是y轴是正确解答本题的关键.。

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (8)

人教版七年级数学下册第七章第一节平面直角坐标系试题(含答案) (8)

人教版七年级数学下册第七章第一节平面直角坐标系习题(含答案)下列各点中,在第一象限的点是()A.(2,3)B.(2,﹣1)C.(﹣2,6)D.(﹣1,﹣5)【答案】A【解析】【分析】根据第一象限内点的坐标特征即可得答案.【详解】∵第一象限内点的特征是(+,+),∴符合条件的选项只有A(2,3),故选:A.【点睛】本题考查平面直角坐标系中各象限内点的符号特征,熟记第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)的特征是解题关键.二、解答题62.(1)如图,要把小河里的水引到田地A处,就作AB⊥l(垂足为B),沿AB挖水沟,水沟最短.理由是___________.(2)把命题“平行于同一直线的两直线平行”写成“如果……,那么……”的形式._____________________________ .(313- . (4)已知22-2m xy -与423m n x y +是同类项,则m -3n 的平方根是___.(5)已知点P 的坐标为(3a+6,2﹣a ),且点P 到两坐标轴的距离相等,则点P 的坐标是______.(6) 如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P 的坐标是______________【答案】垂线段最短 如果两条直线都和同一条直线平行,那么这两条直线也互相平行 < ±6 (3,3)或(-6,6) (2018,0)【解析】 【分析】(1)根据垂线段最短解答; (2)根据命题的形式解答即可;(3即可相比较得到答案; (4)根据同类项的定义得到m 、n ,即可得到答案; (5)根据点到坐标轴的距离列方程解答即可;(6)根据图形发现点是按照四次一循环的规律变化的,找到点坐标的变化规律即可得到答案.【详解】(1)∵AB ⊥直线l , ∴AB 最短,理由是:垂线段最短, 故答案为:垂线段最短;(2)把命题“平行于同一直线的两直线平行”写成“如果……,那么……”的形式是如果两条直线都和第三条直线平行,那么这两条直线也互相平行,故答案为:如果两条直线都和第三条直线平行,那么这两条直线也互相平行;(3)=12-,且12-<13-,<13-,故答案为:<; (4)∵22-2m xy -与423m n x y +是同类项,∴m-2=4,2m+n=2, ∴m=6,n=-10, ∴m-3n=6+30=36, ∴m -3n 的平方根是6±,故答案为:6±;(5)∵点P 的坐标为(3a+6,2﹣a ),且点P 到两坐标轴的距离相等, ∴36(2)a a +=±-,∴362a a +=-或36(2)a a +=--, ∴a=-1或a=-4;当a=-1时,点P 的坐标是(3,3), 当a=-4时,点P 的坐标是(-6,6), 故答案为:(3,3)或(-6,6); (6)第1次运动到点(1,1), 第2次运动到点(2,0), 第3次运动到点(3,2), 第4次运动到点(4,0), 第5次运动到点(5,1), 第6次运动到点(6,0), 第7次运动到点(7,2) 第8次运动到点(8,0), ,由此得到规律:图形每4次变化一次,且点的横坐标与点运动的次数相同,纵坐标依次是1、0、2、0循环变化,∵201845042÷=,∴经过第2018次运动后,动点P 的坐标是(2018,0), 故答案为:(2018,0).【点睛】此题考查垂线段的性质,命题的形式,立方根的计算,比较实数的大小,同类项的定义,点到坐标轴的距离与点的坐标的关系,坐标的变化规律探究,是一道综合考查题型.63.在平面直角坐标系中,有点()13A a -,,()221B a a +-,. (1)若线段//AB x 轴,求点A 、B 的坐标;(2)当点B 到y 轴的距离与点A 到x 轴的距离相等时,求点B 所在的象限. 【答案】(1)点A (1,3),B (4,3);(2)第一象限或第三象限. 【解析】 【分析】(1)由AB ∥x 轴知纵坐标相等求出a 的值,再得出点A ,B 的坐标即可; (2)根据点B 到y 轴的距离等于点A 到x 轴的距离得出关于a 的方程,解之可得;【详解】解:(1)∵线段AB ∥x 轴, ∴2a-1=3, 解得:a =2,∴点A (1,3),B (4,3);(2)∵点B 到y 轴的距离与点A 到x 轴的距离相等时, ∴|a+2|=3,解得:a =1或a =-5,∴点B 的坐标为(3,1)或(-3,-11),∴点B所在的位置为第一象限或第三象限.【点睛】本题主要考查坐标与图形的性质,重点在于理解点到坐标轴的距离与点坐标之间的关系.64.如图,在平面直角坐标系中,线段AB的两个端点坐标分别为(﹣2,1)和(2,3).(1)在图中分别画出线段AB关于x轴的对称线段A1B1,并写出A1、B1的坐标.(2)在x轴上找一点C,使AC+BC的值最小,在图中作出点C,并直接写出点C的坐标.【答案】(1)图见解析,A1的坐标为(﹣2,﹣1)、B1的坐标为(2,﹣3);(2)图见解析,点C坐标为(﹣1,0)【解析】【分析】(1)分别作出点A、B关于x轴的对称点,再连接即可得;(2)连接1AB ,与x 轴的交点即为所求;再根据点1,A B 坐标、以及等腰直角三角形的判定与性质可求出OC 的长,从而可得点C 坐标.【详解】(1)如图所示,11A B 即为所求:由点关于x 轴对称的坐标变换规律:横坐标不变,纵坐标变为相反数1A 的坐标为1(2,1)A --,1B 的坐标为1(2,3)B -; (2)由轴对称的性质得:1BC B C = 则1AC BC AC B C +=+要使AC BC +的值最小,只需1AC B C +的值最小 由两点之间线段最短得:1AC B C +的值最小值为1AB 因此,连接1AB ,与x 轴的交点即为所求的点C ,如图所示:1(2,1),(2,3)B A --11(3)4,2(2)4,1,2AD B D AE OE ∴=--==--=== 则1Rt ADB ∆是等腰直角三角形,145DAB ∠=︒Rt AEC ∴∆是等腰直角三角形 1CE AE ∴==211OC OE CE ∴=-=-= 故点C 坐标为(1,0)C -【点睛】本题考查了在平面直角坐标系中,点关于坐标轴对称的规律、等腰直角三角形的判定与性质等知识点,较难的是题(2),根据点1,A B 坐标利用到等腰直角三角形的性质是解题关键.65.平面直角坐标系中,ABC ∆三个顶点的坐标为(3,4),(1,2),(5,1)A B C . (1)直接写出,,A B C 关于y 轴对称的点111,,A B C 的坐标:1A ;1B ;1C ;(2)若ABC ∆各顶点的横坐标不变,纵坐标都乘以1-,请直接写出对应点2A ,2B ,2C 的坐标,并在坐标系中画出222A B C ∆.【答案】(1)(3,4);(1,2);(5,1)---(2)222(3,4),(1,2),(5,1)A B C ---;图见解析.【解析】 【分析】(1)根据点坐标关于y 轴对称的规律即可得;(2)根据“横坐标不变,纵坐标都乘以1-”可得点222,,A B C 坐标,再在平面直角坐标系中描出222,,A B C 三点,然后顺次连接即可得222A B C ∆.【详解】(1)在平面直角坐标系中,点坐标关于y 轴对称的规律为:横坐标变为相反数,纵坐标不变(3,4),(1,2),(5,1)A B C111(3,4),(1,2),(5,1)A B C ∴---故答案为:()3,4-;(1,2)-;(5,1)-; (2)横坐标不变,纵坐标都乘以1-222(3,4),(1,2),(5,1)A B C ∴---在平面直角坐标系中,先描出222,,A B C 三点,再顺次连接即可得222A B C ∆,结果如图所示:【点睛】本题考查了点坐标关于y 轴对称的规律、在平面直角坐标系中画三角形,熟练掌握平面直角坐标系中,点的坐标变换规律是解题关键.66.如图,ABC 的三个顶点的坐标分别是33A (,),11B (,),41C -(,).(1)直接写出点A 、B 、C 关于x 轴对称的点1A 、1B 、1C 的坐标;1( , )A , 1( , )B ,1( , )C ; (2)在图中作出ABC 关于y 轴对称的图形222A B C △. (3)求ABC 的面积.【答案】(1)3,3-; 1,1-;4,1;(2)图见解析;(3)5 【解析】 【分析】(1)根据关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论;(2)先分别找到A 、B 、C 关于y 轴的对称点222A B C 、、,然后连接22A B 、22A C 、22B C 即可;(3)用一个长方形框住△ABC ,再利用长方形的面积减去三个直角三角形的面积即可.【详解】解:(1)根据关于x 轴对称的两点坐标关系:()3,3A 关于x 轴的对称点1A 的坐标为()3,3-;()1,1B 关于x 轴的对称点1B 的坐标为()1,1-;()4,1C -关于x 轴的对称点1C 的坐标为()4,1.故答案为:3,3-; 1,1-;4,1.(2)先分别找到A 、B 、C 关于y 轴的对称点222A B C 、、,然后连接22A B 、22A C 、22B C ,如下图所示:222A B C △即为所求;(3)如上图所示,用一个长方形框住△ABC , 由图可知:S △ABC =3×4-111223241222⨯⨯-⨯⨯-⨯⨯=5. 【点睛】此题考查的是求关于x 轴对称点的坐标、画关于y 轴对称的图形和求网格中三角形的面积,掌握关于x 轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数、关于y 轴对称的图形的画法是解决此题的关键.67.直角坐标平面内,已知点(1,0)A -,(5,4)B ,在y 轴上求一点P ,使得ABP ∆是以P ∠为直角的直角三角形.【答案】点P 的坐标为(0,5)或(0,1)P -. 【解析】 【分析】设()0P y ,,根据勾股定理用y 表示出AP 、BP ,根据勾股定理列出方程,解方程得到答案.【详解】 设(0,)P y由勾股定理得:222AB=++,(51)4222=+,1AP y222=+-,5(4)BP y∵90P,∵222AB AP BP=+,即222222y y++=+++-,(51)415(4)解得:15y=,21y=-,∵点P的坐标为(0,5)或(0,1)P-.【点睛】本题考查的是勾股定理、坐标与图形性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么222+=.a b c68.如图,在7×7正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,点A、B、C都为格点,且点A(1,2),请分别仅用一把无刻度的直尺画图;(1)过点C画一条线段AB的平行线段CD,直接写出格点D的坐标;(2)过点C画一条线段AB的垂直线段CE,直接写出格点E的坐标;(3)作∠DCE的角平分线CF,直接写出格点F的坐标;(4)作∠ABM,使∠ABM=45°,直接写出格点M的坐标;【答案】(1)作图见解析,D(6,2);(2)作图见解析,E(3﹣3);(3)作图见解析,F(7,﹣2);(4)作图见解析,M(2,﹣2).【解析】【分析】(1)线段AB是1×4格的对角线,即可画出平行线段CD;(2)根据线段AB的平行线段CD,即可画线段AB的垂直线段CE;(3)作∠DCE的角平分线CF,点F在格点即可;(4)根据(3)的画法即可画出∠ABM=45°.【详解】如图:根据画图可知:(1)D(6,2)(2)E(3﹣3)(3)F(7,﹣2)(4)M(2,﹣2).【点睛】本题考查了作图、应用与设计作图,解决本题的关键是建立平面直角坐标系.69.在平面直角坐标系中,描出下列各点:A(2,2),B(-2,2),C(-2,-3),并指出直线AB与x轴的位置关系及直线BC与y轴的位置关系.【答案】描点见解析,直线AB与x轴平行,直线BC与y轴平行【解析】【分析】利用描点法,描出各个点,根据直线的位置关系即可解决问题.【详解】如图,A,B,C各点如下:∵A,B的纵坐标相等,∵直线AB与x轴平行∵B,C的横坐标相等,∵直线BC与y轴平行.【点睛】本题考查描点法作图、两直线的位置关系,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.70.如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______; (3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______. 【答案】(1)3;(2)6;(3)0,1,0,5 【解析】 【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答; (2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x −3|=6,即|x −3|=2,所以x =5或x =1,即可解答.【详解】(1)∵C (−1,−3), ∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3), ∴AB =4−(−2)=6,AC=BC = (3)(3)设点P 的坐标为(0,y ),∵△ABP的面积为6,A(−2,3)、B(4,3),∴12。

人教版七下数学7.1平面直角坐标系专题练习(含答案)

人教版七下数学7.1平面直角坐标系专题练习(含答案)

平面直角坐标系【诊断自测】1、点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.2、在直角坐标系中,点(2,﹣3)在第象限.3、若点A(x,2)在第二象限,则x的取值范围是.4.在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第象限.【考点突破】类型一: 点的坐标特征例1、在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限例2、若点A(﹣3,n)在x轴上,则点B(n﹣1,n+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限类型二:点到坐标轴的距离例3、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是.类型三:平行或垂直于坐标轴直线上的点坐标特征例4、经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C..经过原点D.无法确定类型四:点坐标的规律性例5、如图,一个粒子在第一象限和x,y轴的正半轴上运动,在第一秒内,它从原点运动到(0,1),接着它按图所示在x轴、y轴的平行方向来回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…)且每秒运动一个单位长度,那么2010秒时,这个粒子所处位置为()A.(14,44)B.(15,44)C.(44,14)D.(44,15)例6、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…按这样的运动规律,经过第2016次运动后,动点P的坐标是.类型五:坐标与面积例7、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0)B.(6,0) C.(﹣4,0)或(6,0) D.无法确定例8、如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.类型六:坐标与几何变换例9、如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.例10、已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC 平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1) B.B(1,7)C.(1,1) D.(2,1)例11、如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是.类型七:坐标确定位置例12、如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A.(2,﹣3)B.(2,3) C.(3,2) D.(3,﹣2)例13.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(﹣2,1),则表示棋子“炮”的点的坐标为()A.(﹣3,3)B.(3,2) C.(0,3) D.(1,3)【易错精选】1、在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()2、定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序非负实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1 B.2 C.3 D.43、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(﹣a,b);②○(a,b)=(﹣a,﹣b);③Ω(a,b)=(a,﹣b),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于.4.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P60的坐标是.【精华提炼】1、常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

人教版七年级下册数学第七章 平面直角坐标系含答案(成绩突破)

人教版七年级下册数学第七章 平面直角坐标系含答案(成绩突破)

人教版七年级下册数学第七章平面直角坐标系含答案一、单选题(共15题,共计45分)1、若点A(a+1,b﹣1)在第二象限,则点B(﹣1,b)在()A.第一象限B.第二象限C.第三象限D.第四象限2、如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标E,F的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A,B,C,D的位置时,其中表示错误的是( )A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)3、有甲、乙、丙三人,它们所在的位置不同,他们三人都以相同的单位长度建立不同的坐标系,甲说:“如果以我为坐标原点,乙的位置是”;丙说:“以我为坐标原点,乙的位置是”;如果以乙为坐标原点,甲和丙的位置分别是()A. B. C. D.4、抛物线y=x2﹣2x的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限5、点P(m+3、m+1)在x轴上,则P点的坐标为()A.(0,1)B.(1,0)C.(0,-2)D.(2,0)6、如图,把直角三角形ABO放置在平面直角坐标系中,已知,B 点的坐标为(0,2),将△ABO沿着斜边AB翻折后得到△ABC,则点C的坐标是()A. B. C. D.7、如图在平面直角坐标系中若菱形ABCD的顶点的坐标分别为,点D在y轴上,则点C的坐标是()A. B. C. D.8、在平面直角坐标系中,点M(﹣2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限9、平面直角坐标系中,⊙P的圆心坐标为(-4,-5),半径为5,那么⊙P与y 轴的位置关系是()A.相交B.相离C.相切D.以上都不是10、在平面直角坐标系中,若点在第二象限,则的取值范围为()A. B. C. D.11、如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1),若平移点A到点C,使得以点O,A,B,C为顶点的四边形为菱形,正确的是()A.向左平移1个单位,再向下平移1个单位.B.向右平移1个单位,再向上平移1个单位.C.向左平移个单位,再向下平移1个单位.D.向右平移个单位,再向上平移1个单位.12、如图是小强画出的一张脸的简笔画,他对小刚说:“我用(0,2)表示左眼的位置,用(2,2)表示右眼的位置,”那么嘴的位置可表示成()A.(1,0)B.(﹣1,0)C.(0,1)D.(1,﹣1)13、如图,点的坐标分别为、,将沿轴向右平移,得到三角形,已知,则点的坐标为()A. B. C. D.14、已知点P(m,n)在第三象限,则点Q(-m,│n│)在().A.第一象限B.第二象限C.第三象限D.第四象限15、点A(﹣0.2,10)在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋②的坐标是________.17、如图,一甲虫从原点出发按图示方向作折线运动,第1次从原点到A1(1,0),第2次运动到A2(1,1),第3次运动到A3(-1,1),第4次运动到A4(-1,-1),第5次运动到A5(2,-1)……则第2020次运动到的点A2020的坐标是________.18、如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设B′的坐标是(3,﹣1),则点B的坐标是________.19、平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为________.20、若A()在轴上,则A点坐标为________.21、如果点P(2a﹣1,2a)在y轴上,则P点的坐标是________.22、点在轴上,则的值为________.23、点P(-2,5)关于原点对称的点的坐标是________.24、如图,点O(0,0),B(0,1)是正方形OBB1C的两个顶点,以对角线OB1为一边作正方形OB1B2C1,再以正方形OB1B2C1的对角线OB2为一边作正方形OB2B3C2,……,依次下去.则点B6的坐标________.25、如果点P(m+3,m﹣2)在x轴上,那么m=________.三、解答题(共6题,共计25分)26、类似于平面直角坐标系,如图1,在平面内,如果原点重合的两条数轴不垂直,那么我们称这样的坐标系为斜坐标系.若P是斜坐标系xOy中的任意一点,过点P分别作两坐标轴的平行线,与x轴、y轴交于点M、N,如果M、N在x轴、y轴上分别对应的实数是a、b,这时点P的坐标为(a,b).(1)如图2,在斜坐标系xOy中,画出点A(﹣2,3);(2)如图3,在斜坐标系xOy中,已知点B(5,0)、C(0,4),且P(x,y)是线段CB上的任意一点,则y与x之间的等量关系式为;(3)若(2)中的点P在线段CB的延长线上,其它条件都不变,试判断(2)中的结论是否仍然成立,并说明理由.27、连接AB,直线AB与x轴交于点C,与y轴交于点D,平面内有一点E(3,1),直线BE与x轴交于点F.直线AB的解析式记作y1=kx+b,直线BE解析式记作y2=mx+t.求:(1)直线AB的解析式△BCF的面积;(2)当x等于多少时,kx+b>mx+t;当x等于多少时,kx+b<mx+t;当x等于多少时,kx+b=mx+t;(3)在x轴上有一动点H,使得△OBH为等腰三角形,求H的坐标.28、如图,将四边形ABCD向左平移1个单位后再上平移2个单位,(1)求出四边形ABCD的面积;(2)写出四边形ABCD的四个顶点坐标.29、如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在x 轴上行驶,从原点O出发.(1)汽车行驶到什么位置时离A村最近?写出此点的坐标;(2)汽车行驶到什么位置时离B村最近?写出此点的坐标;(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?30、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、D5、D6、C7、B8、B9、A11、B12、A13、B14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面直角坐标系(人教版)
试卷简介:平面直角坐标系,坐标,象限,用坐标表示平移
一、单选题(共18道,每道5分)
1.下列数据不能确定物体位置的是( )
A.五栋四楼
B.1单元6楼8号
C.和平路125号
D.东经110°,北纬114°
答案:A
解题思路:五栋四楼有很多房间,因此不能确定物体的位置,故选A.
试题难度:三颗星知识点:坐标确定位置
2.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案:D
解题思路:点A(a,b)在第三象限,所以a<0,b<0,因此-a+1>0,3b-5<0,即点C在第四象限,故选D.
试题难度:三颗星知识点:坐标确定位置
3.若点P(m,6-2m)的横坐标与纵坐标互为相反数,则点P一定在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案:D
解题思路:由题可知m+6-2m=0,解得m=6,因此点P(6,-6)在第四象限,故选D.
试题难度:三颗星知识点:坐标确定位置
4.平面直角坐标系中有一点P(a,b),如果ab=0,那么点P的位置在( )
A.原点
B.x轴上
C.y轴上
D.坐标轴上
答案:D
解题思路:因为ab=0,所以a和b中至少有一个为0,因此点P一定在坐标轴上,故选D. 试题难度:三颗星知识点:坐标确定位置
5.点M在x轴的上侧,距离x轴5个单位长度,距离y轴3个单位长度,则点M的坐标为( )
A.(5,3)
B.(-5,3)或(5,3)
C.(3,5)
D.(-3,5)或(3,5)
答案:D
解题思路:点M在x轴上侧,距离x轴5个单位长度,可知点M的纵坐标是5,距离y轴
3个单位长度,可知点M的横坐标为3或-3,故选D.
试题难度:三颗星知识点:点的坐标
6.点P(x,y)在第二象限,且|x+1|=2,|y-2|=3,则点P的坐标是( )
A.(-3,5)
B.(1,-1)
C.(-3,-1)
D.(1,5)
答案:A
解题思路:点P在第二象限,所以x<0,y>0,由|x+1|=2,|y-2|=3可得x=-3,y=5,故选A.
试题难度:三颗星知识点:点的坐标
7.在平面直角坐标系中,若点A(x+3,x)在第四象限,则x的取值范围为( )
A.x>0
B.x<-3
C.-3<x<0
D.x>-3
答案:C
解题思路:第四象限的点符号是(+,-),可得,解得,故选C.
试题难度:三颗星知识点:点的坐标
8.以下是甲、乙、丙三人看地图时对四个地标的描述:甲:从学校向北直走500公尺,再向东直走100公尺可到图书馆.乙:从学校向西直走300公尺,再向北直走200公尺可到邮局.丙:邮局在火车站西方200公尺处.根据三人的描述,若从图书馆出发,判断下列哪一种走法,其终点是火车站( )
A.向南直走300公尺,再向西直走200公尺
B.向南直走300公尺,再向西直走600公尺
C.向南直走700公尺,再向西直走200公尺
D.向南直走700公尺,再向西直走600公尺
答案:A
解题思路:以图书馆为坐标原点,可知学校对应的坐标为(-100,-500),邮局对应的坐标是(-400,-300),火车站对应的坐标是(-200,-300),因此从图书馆出发,向南直走300公尺,再向西直走200公尺,终点是火车站,故选A.
试题难度:三颗星知识点:点的坐标
9.下列说法错误的是( )
A.若点A在y轴上,位于原点的上方,距离原点2个单位长度,则点A(0,2)
B.若点B在x轴上,位于原点的左侧,距离原点1个单位长度,则点B(-1,0)
C.若点C在x轴上方,距离每条坐标轴都是3个单位长度,则C(3,3)
D.若点D在x轴上方,y 轴左侧,距离x轴2个单位长度,距离y轴4个单位长度,则D(-4,2)
答案:C
解题思路:若点C在x轴上方,距离每条坐标轴都是3个单位长度,则C(3,3)或者C(-3,3),故选C.
试题难度:三颗星知识点:点的坐标
10.如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )
A.(-1,1)
B.(-2,-1)
C.(-3,1)
D.(1,-2)
答案:C
解题思路:由“帅”和“马”的坐标可知棋盘中的一个小格为一个单位长度,“炮”所在的位置为坐标原点,因此可知“兵”位于点(-3,1),故选C.
试题难度:三颗星知识点:点的坐标
11.在平面直角坐标系中,长方形ABCD的三个顶点坐标分别为A(-1,2),B(3,2),C(3,-1),则点D的坐标为( )
A.(1,-1)
B.(-1,1)
C.(-1,-1)
D.(1,1)
答案:C
解题思路:ABCD为长方形,且点A(-1,2),B(3,2),可知点D的横坐标和点A相同,纵坐标和点C相同,即点D(-1,-1),故选C
试题难度:三颗星知识点:点的坐标
12.在直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为( )
A.15
B.7.5
C.6
D.3
答案:D
解题思路:,故选D
试题难度:三颗星知识点:平面直角坐标系中面积的计算
13.已知点A(0,4),B点在x轴上,AB与坐标轴围成的三角形的面积为2,B点坐标为( )
A.(1,0)或(-1,0)
B.(1,0)
C.(-1,0)
D.(0,-1)或(0,1)
答案:A
解题思路:坐标原点设为O(0,0),所以,因此,
可知B点坐标为(1,0)或(-1,0),故选A.
试题难度:三颗星知识点:平面直角坐标系中面积的计算
14.将点P向左平移4个单位,再向上平移2个单位得到P′(-2,5),则点P的坐标是( )
A.(-6,7)
B.(2,3)
C.(2,7)
D.(-6,3)
答案:B
解题思路:设点P(x,y),根据“左右平移横坐标减加,上下平移纵坐标加减”,所以x-4=-2,y+2=5,解得x=2,y=3.故选B.
试题难度:三颗星知识点:平面直角坐标系之平移
15.如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标为( )
A.(-1,-1),(2,3),(5,1)
B.(-1,1),(3,2),(5,1)
C.(-1,1),(2,3),(5,1)
D.(1,-1),(2,2),(5,1)
答案:A
解题思路:三角形三个顶点原来的坐标为(-1,1),(2,-1),(-4,-3),根据“左右平移横坐标减加,上下平移纵坐标加减”,得到平移后的坐标为(2,3),(5,1),(-1,-1).故选A.
试题难度:三颗星知识点:平面直角坐标系之平移
16.在平面直角坐标系中,已知A(-1,0)和B(1,2),连接AB,平移线段AB得到线段A1B1.若点A的对应点A1的坐标为(3,-1),则点B的对应点B1的坐标是( )
A.(5,3)
B.(5,1)
C.(-1,3)
D.(-1,1)
答案:B
解题思路:平移之后点A1(3,-1),由可知点A(-1,0)向右平移4个单位,向下平移1个单位,根据“左右平移横坐标减加,上下平移纵坐标加减”,可知点B1(5,1),故选B.
试题难度:三颗星知识点:平面直角坐标系之平移
17.若过A(5,m),B(n,-6)两点的直线与x轴平行,且AB=5,则n=( )
A.5
B.10
C.0
D.10或0
答案:D
解题思路:两点的直线与x轴平行,可知m=-6,因为AB=5,所以,因此n的值为10或0,故选D.
试题难度:三颗星知识点:点的坐标
18.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…,用你发现的规律确定点A10的坐标为( )
A.(10,101)
B.(9,80)
C.(9,82)
D.(10,99)
答案:D
解题思路:由点①A1(1,0),②A2(2,3),③A3(3,8),④A4(4,15)发现横坐标的规律是跟序号一致,纵坐标的规律是序号的平方减一,因此点A10的坐标为(10,99),故选D.
试题难度:三颗星知识点:直角坐标系中的规律探究。

相关文档
最新文档