高中数学选修1-1《常用逻辑用语》知识点讲义
高中数学(人教版选修1-1)配套课件:第1章 常用逻辑用语1.2.2
题型探究
题型一 充要条件的判断 例1 (1)“x=1”是“x2-2x+1=0”的( A ) A.充要条件 B.充分而不必要条件 C.必要而不充分条件 D.既不充分也不必要条件 解析 解x2-2x+1=0得x=1, 所以“x=1”是“x2-2x+1=0”的充要条件.
重点突破
解析答案
(2)判断下列各题中,p是否为q的充要条件? ①在△ABC中,p:∠A>∠B,q:sin A>sin B; 解 在△ABC中,显然有∠A>∠B⇔sin A>sin B, 所以p是q的充要条件. ②若a,b∈R,p:a2+b2=0,q:a=b=0; 解 若a2+b2=0,则a=b=0,即p⇒q; 若a=b=0,则a2+b2=0,即q⇒p,故p⇔q, 所以p是q的充要条件. ③p:|x|>3,q:x2>9. 解 由于p:|x|>3⇔q:x2>9,所以p是q的充要条件.
学习
顺序式 学习
冲刺式 学习
什么是学习力-高效学习必备习
惯
积极 主动
以终 为始
分清 主次
不断 更新
高效学习模型
高效学习模型-学习的完整过程
方向
资料
筛选
认知
高效学习模型-学习的完整过程
消化
固化
模式
拓展
小思考
TIP1:听懂看到≈认知获取; TIP2:什么叫认知获取:知道一些概念、过程、信息、现象、方法,知道它们 大概可以用来解决什么问题,而这些东西过去你都不知道; TIP3:认知获取是学习的开始,而不是结束。
如何利用规律实现更好记忆呢?
超级记忆法-记忆规律
记忆后
选择巩固记忆的时间 艾宾浩斯遗忘曲线
超级记忆法-记忆规律
(人教版)高中数学选修1-1课件:第1章 常用逻辑用语1.3
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
1.3 简单的逻辑联结词
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
自主学习 新知突破
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
(1) 因为 p 假 q 真,所以 “ p 或 q” 为真, “ p
且q”为假,“非p”为真. (2)因为p真q假,所以“p或q”为真,“p且q”为假,“非p” 为假. (3)p 或 q : 0∈∅ 或 0∈{x|x2 - 3x - 5<0} , p 且 q : 0∈∅ 且
D.(¬p)∧(¬q)
p 为真命题, q 为假命题,则 A , B , D 均为假命
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
3 .判断下列命题的形式 ( 从“ p∨q”“p∧q” 和“ ¬p” 中选填 一种):
(1)π不是整数:________;
[思路点拨 ]
将命题分解还原为“p或q” ,“p且q” ,“非
p”形式的结构是解决问题的关键.
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破 合作探究 课堂互动 高效测评 知能提升
解析: (1)是非p形式的复合命题, 其中p:若α是一个三角形的最小内角,则α≤60°. (2)是p且q形式的复合命题,
(2)6≤8:________; (3)2是偶数且2是素数:________. 答案: (1)¬p (2)p∨q (3)p∧q
【精品】人教版高中数学选修1-1课件:《第1章常用逻辑用语1.4.1、2、3》课件ppt
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.观察下列语句: (1)x>3; (2)3x-1是整数; (3)对任意一个x∈Z,3x-1是整数; (4)存在x,使x2+2x+1=0成立. [问题1] 语句(1)(2)是命题吗?语句(3)(4)是命题吗? [提示1] 语句(1)(2)不是命题,语句(3)(4)是命题. [问题2] 判断语句(3)(4)的真假. [提示2] (3)(4)为真命题.
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
存在量词和特称命题
存在量词 符号表示 特称命题
形式
__存__在__一__个__、 ___至__少__有__一__个_、__有__些__、_有__的___
∃ 含有___存__在__量__词___的命题 “存在M中的一个x0,使p(x0)成立”,可用符号 记为__“__∃_x_0_∈__M_,__p_(_x_0_)”__
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.4 全称量词与存在量词
1.4.1 全称量词 1.4.2 存在量词 1.4.3 含有一个量词的命题的否定
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
自主学习 新知突破
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
2.对特称命题的理解 (1)含有存在量词的命题,不管包含的程度多大,都是特称 命题. (2)有些特称命题表面上看不含量词,需根据命题中所叙述 对象的特征,挖掘出存在量词.如“边长为1 cm的正方形的面 积是1 cm2”,表明存在一个正方形的面积是1 cm2.
高中数学 复习课(一)常用逻辑用语讲义(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学教
复习课(一) 常用逻辑用语命题及其关系通过选择题、填空题的方式设置一些多知识点、知识跨度大的试题,考查命题及其关系,以及对命题真假的判断.[考点精要]四种命题的相互改写交换原命题的条件和结论,所得的命题是原命题的逆命题;同时否定原命题的条件和结论,所得的命题是原命题的否命题;交换原命题的条件和结论,并且同时否定,所得的命题是原命题的逆否命题.[注意] 互为逆否命题的两个命题,它们具有相同的真假性.[典例] 将下列命题改写成“若p,则q”的形式,并写出它的逆命题、否命题和逆否命题并判断它们的真假.(1)垂直于同一平面的两条直线平行;(2)当mn<0时,方程mx2-x+n=0有实数根.[解] (1)将命题写成“若p,则q”的形式为:若两条直线垂直于同一个平面,则这两条直线平行.它的逆命题、否命题和逆否命题如下:逆命题:若两条直线平行,则这两条直线垂直于同一个平面.(假命题)否命题:若两条直线不垂直于同一个平面,则这两条直线不平行.(假命题)逆否命题:若两条直线不平行,则这两条直线不垂直于同一个平面.(真命题)(2)将命题写成“若p,则q”的形式为:若mn<0,则方程mx2-x+n=0有实数根.它的逆命题、否命题和逆否命题如下:逆命题:若方程mx2-x+n=0有实数根,则mn<0.(假命题)否命题:若mn≥0,则方程mx2-x+n=0没有实数根.(假命题)逆否命题:若方程mx2-x+n=0没有实数根,则mn≥0.(真命题)[类题通法]简单命题真假的判断方法[题组训练]1.命题“若函数f (x )=x 2-ax +3在[1,+∞)上是增函数,则a ≤2”的否命题( ) A .与原命题同为假命题 B .与原命题一真一假 C .为假命题D .为真命题解析:选D 原命题显然为真,原命题的否命题为“若函数f (x )=x 2-ax +3在[1,+∞)上不是增函数,则a >2”,为真命题,故选D.2.下列命题中为真命题的是( ) A .命题“若a >b ,则3a >3b”的逆命题 B .命题“若x 2≤1,则x ≤1”的否命题 C .命题“若x =1,则x 2-x =0”的否命题 D .命题“若a >b ,则1a <1b”的逆否命题解析:选A 对于A ,逆命题是“若3a >3b,则a >b ”,是真命题;对于B ,否命题是“若x 2>1,则x >1”,是假命题,因为x 2>1⇔x >1或x <-1;对于C ,否命题是“若x ≠1,则x 2-x ≠0”,是假命题,因为当x =0时,x 2-x =0;对于D ,逆否命题是“若1a ≥1b,则a ≤b ”,是假命题,如a =1,b =-1.故选A.3.下列说法中错误的个数是( )①命题“余弦函数是周期函数”的否命题是“余弦函数不是周期函数” ②命题“若x >1,则x -1>0”的否命题是“若x ≤1,则x -1≤0” ③命题“两个正数的和为正数”的否命题是“两个负数的和为负数”④命题“x =-4是方程x 2+3x -4=0的根”的否命题是“x =-4不是方程x 2+3x -4=0的根”A .1B .2C .3D .4解析:选C ①错误,否命题是“若一个函数不是余弦函数,则它不是周期函数”;②正确;③错误,否命题是“若两个数不全为正数,则它们的和不为正数”;④错误,否命题是“若一个数不是-4,则它不是方程x 2+3x -4=0的根”.充分条件与必要条件充要条件是数学的重要概念之一,在数学中有着非常广泛的应用,在高考中有着较高的考查频率,其特点是以高中数学的其他知识为载体考查充分条件、必要条件、充要条件的判断.[考点精要]充分条件、必要条件与充要条件(1)如果p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件; (2)如果p ⇒q ,q ⇒p ,则p 是q 的充要条件.[典例] (1)(2017·某某高考)已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4+S 6>2S 5”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2)(2017·某某高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6,故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分而不必要条件. [答案] (1)C (2)A [类题通法]充要关系的判断方法(1)定义法:直接判断若p则q,若q则p的真假.(2)等价法:利用A⇒B与綈B⇒綈A,B⇒A与綈A⇒綈B,A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)利用集合间的包含关系判断:若A⊆B,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件.[题组训练]1.设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“AC⊥BD”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选A 若四边形ABCD为菱形,则AC⊥BD,反之,若AC⊥BD,则四边形ABCD不一定是菱形,故选A.2.设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选B 当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥β⇒/ α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.3.对于任意实数x,〈x〉表示不小于x的最小整数,例如〈1.1〉=2,〈-1.1〉=-1,那么“|x-y|<1”是“〈x〉=〈y〉”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件解析:选B 当x=1.8,y=0.9时,满足|x-y|<1,但〈1.8〉=2,〈0.9〉=1,即〈x〉≠〈y〉;当〈x〉=〈y〉时,必有|x-y|<1,所以“|x-y|<1”是“〈x〉=〈y〉”的必要不充分条件,故选B.含有逻辑联结词、量词的命题的真假,以及全称命题,特称命题的否定.[考点精要]1.含有逻辑联结词的命题与集合之间的关系2.全称命题、特称命题的否定全称命题“∀x ∈M ,p (x )”的否定是“∃x 0∈M ,綈p (x 0)”,特称命题“∃x 0∈M ,p (x 0)”的否定是“∀x ∈M ,綈p (x )”.[典例] (1)已知命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 B .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)≤0 C .∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0 D .∀x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0(2)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题:p 1:|a +b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,2π3; p 2:|a +b |>1⇔θ∈⎝⎛⎦⎥⎤2π3,π;p 3:|a -b |>1⇔θ∈⎣⎢⎡⎭⎪⎫0,π3;p 4:|a -b |>1⇔θ∈⎝ ⎛⎦⎥⎤π3,π.其中的真命题是( ) A .p 1,p 4 B .p 1,p 3 C .p 2,p 3D .p 2,p 4[解析] (1)已知全称命题p :∀x 1,x 2∈R ,[f (x 2)-f (x 1)]·(x 2-x 1)≥0,则綈p :∃x 1,x 2∈R ,[f (x 2)-f (x 1)](x 2-x 1)<0,故选C.(2)由|a +b |>1可得:a 2+2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b >-12.故θ∈⎣⎢⎡⎭⎪⎫0,2π3.当θ∈⎣⎢⎡⎭⎪⎫0,2π3时,a ·b >-12,|a +b |2=a 2+2a ·b +b 2>1,即|a +b |>1;由|a -b |>1可得:a 2-2a ·b +b 2>1,∵|a |=1,|b |=1,∴a ·b <12.故θ∈⎝ ⎛⎦⎥⎤π3,π,反之也成立.[答案] (1)C (2)A [类题通法]1.判断含有逻辑联结词的命题真假的方法 (1)先确定简单命题p ,q .(2)分别确定简单命题p ,q 的真假. (3)利用真值表判断所给命题的真假. 2.判断含有量词的命题真假的方法(1)全称命题的真假判定:要判定一个全称命题为真,必须对限定集合M 中每一个x 验证 p (x )成立,一般用代数推理的方法加以证明;要判定一个全称命题为假,只需举出一个反例即可.(2)特称命题的真假判定:要判定一个特称命题为真,只要在限定集合M 中,能找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题为假.(3)全称命题的否定一定是特称命题,特称命题的否定一定是全称命题.首先改变量词,把全称量词改为存在量词,把存在量词改为全称量词,然后把判断词加以否定.[题组训练]1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( )A .p 为真B .綈q 为假C .p ∧q 为假D .p ∨q 为真解析:选C 由题意p 与q 均为假命题,故p ∧q 为假.2.命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________________.解析:这里给出的是一个特称命题,其否定是一个全称命题.等于的否定是不等于. 答案:对任意的x ∈R ,都有x 2+2x +5≠03.已知p :点M (2,3)在直线ax -y +1=0上,q :方程x 2+y 2+x +y +a =0表示圆,p ∨q 是假命题,某某数a 的取值X 围.解:当p 是真命题时,2a -3+1=0,即a =1, 所以当p 是假命题时,a ≠1;当q 是真命题时,1+1-4a >0,即a <12,所以当q 是假命题时,a ≥12.又p ∨q 是假命题,所以p ,q 均为假命题, 所以a ≥12且a ≠1,所以实数a 的取值X 围是⎣⎢⎡⎭⎪⎫12,1∪(1,+∞).1.设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∃x ∈A,2x ∈B B .綈p :∃x ∉A,2x ∈B C .綈p :∃x ∈A,2x ∉BD .綈p :∀x ∉A,2x ∉B解析:选C 命题p 是全称命题:∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.2.命题p :若ab =0,则a =0;命题q :若a =0,则ab =0,则( ) A .“p 或q ”为假 B .“p 且q ”为真 C .p 真q 假D .p 假q 真解析:选D 由条件易知:命题p 为假命题,命题q 为真命题,故p 假q 真.从而“p 或q ”为真,“p 且q ”为假.3.下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab=-1 D .a >1,b >1是ab >1的充分条件解析:选D ∵∀x ∈R ,e x >0,∴A 错;∵函数y =2x 与y =x 2的图象有交点,如点(2,2),此时2x=x 2,∴B 错;∵当a =b =0时,a +b =0,而0作分母无意义,∴C 错;a >1,b >1,由不等式可乘性知ab >1,∴D 正确.4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 先证“α⊥β⇒a ⊥b ”.∵α⊥β,α∩β=m ,b ⊂β,b ⊥m ,∴b ⊥α.又∵a ⊂α,∴b ⊥a ;再证“a ⊥b ⇒/ α⊥β”.举反例,当a ∥m 时,由b ⊥m 知a ⊥b ,此时二面角αm β可以为(0,π]上的任意角,即α不一定垂直于β.故选A.5.下列有关命题的说法错误的是( )A .命题“若x 2-1=0,则x =1”的逆否命题为“若x ≠1,则x 2-1≠0” B .“x =1”是“x 2-3x +2=0”的充分不必要条件 C .若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =1D .对于命题p :∃x 0∈R ,使得x 20+x 0+1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0 解析:选C A 显然正确;当x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,x =1或x =2,故“x =1”是“x 2-3x +2=0”的充分不必要条件,B 正确;若集合A ={x |kx 2+4x +4=0}中只有一个元素,则k =0或k =1,故C 错误;D 显然正确.6.已知p :m -1<x <m +1,q :(x -2)(x -6)<0,且q 是p 的必要不充分条件,则m 的取值X 围是( )A .(3,5)B .[3,5]C .(-∞,3)∪(5,+∞)D .(-∞,3]∪[5,+∞)解析:选B p :m -1<x <m +1,q :2<x <6.因为q 是p 的必要不充分条件,所以由p 能得到q ,而由q 得不到p ,所以可得⎩⎪⎨⎪⎧m -1>2,m +1≤6或⎩⎪⎨⎪⎧m -1≥2,m +1<6.解得3≤m ≤5.7.命题“在△ABC 中,如果∠C =90°,那么c 2=a 2+b 2”的逆否命题是__________________________________.答案:在△ABC 中,若c 2≠a 2+b 2,则∠C ≠90°8.设p :x >2或x <23;q :x >2或x <-1,则綈p 是綈q 的________条件.解析:綈p :23≤x ≤2.綈q :-1≤x ≤2.因为綈p ⇒綈q ,但綈q ⇒/ 綈p . 所以綈p 是綈q 的充分不必要条件. 答案:充分不必要9.已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值X 围是________.解析:命题p :“∀x ∈[1,2],x 2-a ≥0”为真,则a ≤x 2,x ∈[1,2]恒成立,所以a ≤1. 命题q :“∃x 0∈R ,x 20+2ax 0+2-a =0”为真, 则“4a 2-4(2-a )≥0,即a 2+a -2≥0”,解得a ≤-2或a ≥1. 若命题“p 且q ”是真命题,则实数a 的取值X 围是(-∞,-2]∪{1}. 答案:(-∞,-2]∪{1}10.已知p :x 2-8x -20>0,q :x 2-2x +1-a 2>0,若p 是q 的充分不必要条件,求正实数a 的取值X 围.解:p :x 2-8x -20>0⇔x <-2或x >10, 令A ={x |x <-2或x >10},∵a >0,∴q :x <1-a 或x >1+a , 令B ={x |x <1-a 或x >1+a }, 由题意p ⇒q 且q ⇒/ p ,知A B ,应有⎩⎪⎨⎪⎧a >0,1+a <10,1-a ≥-2或⎩⎪⎨⎪⎧a >0,1+a ≤10,1-a >-2⇒0<a ≤3,∴a 的取值X 围为(0,3].11.已知函数f (x )=⎩⎪⎨⎪⎧-x -1,x <-2,x +3-2≤x ≤12.(1)求函数f (x )的最小值;(2)已知m ∈R ,命题p :关于x 的不等式f (x )≥m 2+2m -2对任意m ∈R 恒成立;q :函数y =(m 2-1)x是增函数.若“p 或q ”为真,“p 且q ”为假,某某数m 的取值X 围.解:(1)作出函数f (x )的图象,可知函数f (x )在(-∞,-2)上单调递减,在⎝ ⎛⎭⎪⎫-2,12上单调递增,故f (x )min =f (-2)=1.(2)对于命题p ,m 2+2m -2≤1, 故-3≤m ≤1; 对于命题q ,m 2-1>1,故m >2或m <- 2.由于“p 或q ”为真,“p 且q ”为假,则p 与q 一真一假.①若p 真q 假,则⎩⎨⎧-3≤m ≤1,-2≤m ≤2,解得-2≤m ≤1.②若p 假q 真,则⎩⎨⎧m >1或m <-3,m <-2或m >2,解得m <-3或m > 2. 故实数m 的取值X 围是(-∞,-3)∪[-2,1]∪(2,+∞).。
苏教版高中数学选修1-1知识讲解_常用逻辑用语全章复习巩固(文)_基础
常用逻辑用语全章复习巩固(文): :【学习目标】1. 理解命题的概念;了解逻辑联结词“或”、“且”、“非”的含义.2.了解命题“若p,则q ”的形式及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3. 理解必要条件、充分条件与充要条件的意义.4. 理解全称量词与存在量词的意义;能正确地对含有一个量词的命题进行否定. 【知识网络】【要点梳理】要点一:命题的四种形式如果用p 和q 分别表示原命题的条件和结论,用⌝p 和⌝q 分别表示p 和q 的否定,则命题的四种形式为:原命题:若p 则q ; 逆命题:若q 则p ; 否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p. 四种命题的关系常用逻辑用语命题四种命题及其关系充要条件全称量词、存在量词互为逆否命题等价逻辑联结词简单命题与复合命题充分、必要、充要、既不充分也不必要或、且、非①原命题⇔逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一. ②逆命题⇔否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系. 要点二:充分条件、必要条件、充要条件 对于“若p 则q ”形式的命题:①若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;②若p ⇒q ,但q ⇒/p ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件; ③若既有p ⇒q ,又有q ⇒p ,记作p ⇔q ,则p 是q 的充分必要条件(充要条件). 判断命题充要条件的三种方法 (1)定义法:(2)等价法:由于原命题与它的逆否命题等价,否命题与逆命题等价,因此,如果原命题与逆命题真假不好判断时,还可以转化为逆否命题与否命题来判断.即利用A B ⇒与B A ⌝⌝⇒;B A ⇒与A B ⌝⌝⇒;A B ⇔与B A ⌝⌝⇔的等价关系,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法.(3)利用集合间的包含关系判断,比如A ⊆B 可判断为A ⇒B ;A=B 可判断为A ⇒B ,且B ⇒A ,即A ⇔B.如图:“ÜA B ”⇔“x A ∈⇒x B ∈,且x B ∈⇒/x A ∈”⇔x A ∈是x B ∈的充分不必要条件.“A B =”⇔“x A ∈⇔x B ∈”⇔x A ∈是x B ∈的充分必要条件.要点诠释:(1)在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断.(2)充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.要点三:逻辑联结词“或”“且”“非” “或”、“且”、“非”这些词叫做逻辑联结词.(1)不含逻辑联结词的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫做复合命题.(2)复合命题的构成形式:①p 或q ;②p 且q ;③非p (即命题p 的否定). (3)复合命题的真假判断(利用真值表):①当p 、q 同时为假时,“p 或q ”为假,其它情况时为真,可简称为“一真必真”; ②当p 、q 同时为真时,“p 且q ”为真,其它情况时为假,可简称为“一假必假”。
北师大版选修1-1高中数学第一章《常用逻辑用语》ppt章末归纳总结课件
[解析] 由 x2-4ax+3a2<0 且 a<0,得 3a<x<a, ∴p:3a<x<a. 由 x2-x-6≤0 得,-2≤x≤3, ∴q:-2≤x≤3. ∵¬q⇒¬p,∴p⇒q.
3a≥-2 ∴a≤3
a<0
,解得-23≤a<0,
∴a 的取值范围是[-23,0).
• [点评] 根据充分条件、必要条件、充要条件求参
¬p 为假⇒p 为真⇒p 或 q 为真,p 或 q 为真⇒p 真或 q 真⇒/ ¬p 为真,③正确;
④错误,故选 B.
7.(2014·福建省闽侯二中、永泰二中、连江侨中、长乐二 中联考)设命题 p:实数 x 满足(x-a)(x-3a)<0,其中 a>0,命 题 q:实数 x 满足xx- -32≤0.
• [点评] 命题的否定形式与命题的否命题不同,前 者只否定原命题的结论,而后者同时否定条件和结 论.
• 若m≤0或n≤0,则m+n≤0,写出其逆命题、否命
题、逆否命题,同时分别指出它们的真假.
• [答案] 逆命题:若m+n≤0,则m≤0或n≤0,逆命
题为真.
• 否命题:若m>0且n>0,则m+n>0,否命题为真.(逆
∵x∈[-1,1],故|a2|≤1 或|1a|≤1,∴|a|≥1.
只有一个实数 x 满足不等式 x2+2ax+2a≤0. 即抛物线 y=x2+2ax+2a 与 x 轴只有一个交点, ∴Δ=4a2-8a=0,∴a=0 或 a=2. 又命题“p 或 q”是假命题, ∴p 假且 q 假,∴|aa≠|<10,且a≠2, ∴-1<a<0 或 0<a<1, 故 a 的取值范围为 a∈(-1,0)∪(0,1).
高中数学(人教版选修1-1)配套课件:第1章 常用逻辑用语1.3
答案
知识点四 含有逻辑联结词的命题的真假判断
p
q
p∨q
p∧q
綈p
真
真
_真__
_真__
_假__
真
假
_真__
_假__
_假__
假
真
_真__
_假__
_真__
假
假
_假__
_假__
_真__
答案
思考 (1)逻辑联结词“或”与生活用语中的“或”的含义是否相同? 答案 生活用语中的“或”表示不兼有,而在数学中所研究的“或” 则表示可兼有但不一定必须兼有. (2)命题的否定与否命题有什么区别? 答案 命题的否定只否定命题的结论,而否命题既否定命题的条件, 又否定命题的结论.
解析答案
(3)p: 3是无理数,q: 3是实数; 解 p∧q: 3是无理数且是实数; ∵p真,q真,∴p∧q为真. p∨q: 3是无理数或是实数; ∵p真,q真,∴p∨q为真.
解析答案
(4)p:方程x2+2x+1=0有两个相等的实数根,q:方程x2+2x+1=0两根 的绝对值相等. 解 p∧q:方程x2+2x+1=0有两个相等的实数根且两根的绝对值相等; ∵p真,q真,∴p∧q为真. p∨q:方程x2+2x+1=0有两个相等的实数根或两根的绝对值相等; ∵p真,q真,∴p∨q为真.
第一章 常用逻辑用语
§1.3 简单的逻辑联结词
学习 目标
1.了解联结词“且”“或”“非”的含义. 2.会用联结词“且”“或”“非”联结或改写某些数学命题, 并判断新命题的真假. 3.通过学习,明白对条件的判定应该归结为判断命题的真假.
栏目 索引
知识梳理 题型探究 当堂检测
自主学习 重点突破 自查自纠
高中数学 1-1-1第一章 常用逻辑用语 新人教A版选修1-1
• [解析] (1)祈使句,不是命题.
• (2)x2+4x+4=(x+2)2≥0,它包括x2+4x+4>0,或x2+4x +4=0,对于x∈R,可以判断真假,它是命题.
• (3)是疑问句,不涉及真假,不是命题.
• (4)是命题,人群中有的人喜欢苹果,也存在着不喜欢苹 果的人.
• 3.关于“若p,则q”型的命题
• 许多命题都可写成“若p,则q”的形式.其中p为条件,q 为结论,p和q本身也可为一个简单命题,这种命题形式 明确、简洁,是我们研究命题的主要形式之一.很多命 题表面上不是“若p,则q”型的,但是,可以改写成“若 p,则q”型.
• 注意:并非所有的命题都可写成 “若p,则 q” 型,如 “ 是无理数”.
选修1-1
• ●课程目标
• 1.双基目标
• (1)了解命题的概念,会判断命题的真假.
• (2)通过生活和数学中的丰富实例,理解全称量词与存在 量词的意义,会用符号语言表示全称命题和特称命题, 并能判断其真假,能正确地对含一个量词的命题进行否 定.
• (3)通过数学实例,了解逻辑联结词“或”“且”“非” 的含义及相应命题的意义和真假判断.
• (3)通过本章的学习体会用对立统一的思想认识数学问题, 培养学生的辩证唯物主义思想方法.
• ●重点难点
• 本章重点:命题与量词;基本逻辑联结词 “或”“且”“非”;充分条件、必要条件与命题四种 形式之间的逻辑关系,对含有一个量词的命题进行否 定.
• 本章难点:对一些代数命题真假的判定和对全称命题和 特称命题的否定,以及对命题的充分条件,必要条件的 判定.
• [解析] (1)“f(x)=3x(x∈R)是指数函数”是陈述句并且它 是真的,因此它是命题.
(人教版)高中数学选修1-1课件:第1章常用逻辑用语1.1.1
解析: (1)是真命题.(2)设 a=1>b=-2,但 a2<b2,假命 题.(3)设 x=4>-3,但 x2+x-6=14>0,假命题.(4)设 a=( 2) 2, b= 2,则 ab=( 2)2=2 是有理数,假命题.
答案: 1
改写命题的结构情势
•
把下列命题写成“若p,则q”的情势,
并判断其真假.
【错因】 (1)的易错点是认为“大的倒数反而小”,所以命 题为真,忽视了 a,b 可以是任意实数,
当 ab>0,即a1b>0 时,1a<1b; 当 ab<0,即a1b<0 时,1a>1b; 当 a=0 或 b=0 时,1a或1b无意义. (2)的易错点是方程的两根是 x=1 或 x=2,故命题为真. 【正解】 (1)假命题;(2)真命题.
• 解析: (1)是陈说句,但不能判断真假,故不 是命题.
• (2)是祈使句,故不是命题. • (3)(4)是陈说句,能判断真假,是命题. • 答案: (3)(4)
命题真假的判断
•
判断下列命题的真假:
• (1)一个数的算术平方根一定是正数;
• (2)若直线l不在平面α内,则直线l与平面α平 行;
第一 章
常用逻辑用语
•1.1 命题及其关系
•1.1.1 命题
自主学习 新知突破
• 1.了解命题的概念. • 2.会将一些简单的命题改写为“若p,则q”的情 势. • 3.会判断一些简单命题的真假.
观察下列语句的特点: ①求证: 2是无理数;②x2-2x+3≥0; ③你是高二的学生吗?④x≤3; ⑤今天天气真好啊!⑥请把电脑打开; ⑦7 能被 2 整除;⑧若 x=-3,则 x2=9.
• (3)是假命题.原因是当G=a=0时,a, G,b不是等比数列.
高中数学新课标人教A版选修1-1《第一章 常用逻辑用语》归纳整合
充分也不必要条件. 充要条件可以与各章节内容相结合,所以是历年高考考查的热 点之一.
【例2】 下列选项中,p是q的必要不充分条件的是( A.p:a+c>b+d,q:a>b且c>d
).
B.p:a>1,b>1,q:f(x)=ax-b(a>0且a≠1)的图象不过第二象限 C.p:x=1,q:x2=x D.p:a>1,q:f(x)=logax(a>0且a≠1)在(0,+∞)上为增函数 解析 B选项中,当b=1,a>1时,q推不出p成立,因而p为q的充分 不必要条件.C选项中,q:x=0或1,不能够推出p成立,因而p为q 的充分不必要条件.D选项中,p、q可以互推,因而p为q的充要条 件.故本题选A. 答案 A
专题三 简单的逻辑联结词的综合应用 解决这类问题时,应先根据题目条件,即新命题的真假情况, 推出每一个命题的真假(有时不一定只有一种情况),然后再求 出每个命题是真命题时参数的取值范围,最后根据每个命题的 真假情况,求出参数的取值范围.
【例3】 已知:p:方程x2+mx+1=0有两个不等的负实数 根;q:方程4x2+4(m-2)x+1=0无实数根,若“p∨q”为真 命题,且“p∧q”是假命题,求实数m的取值范围. 解 p:方程x2+mx+1=0有两个不等的负实数根⇔
(3)p、q“换位”且“换质”:交换原命题的条件和结论,并 且同时否定,所得的命题是逆否命题:“若綈q,则綈p”.
原命题与它的逆命题、原命题与它的否命题之间的真假是不确 定的,而原命题与它的逆否命题(它的逆命题与它的否命题)之 间在真假上是始终保持一致的:同真同假.
【例1】 判断下列命题的真假. (1)若x∈A∪B,则x∈B的逆命题与逆否命题; (2)若0<x<5,则|x-2|<3的否命题与逆否命题; (3)设a、b为向量,如果a⊥b,则a· b=0的逆命题和否命题. 解 (1)若x∈A∪B,则x∈B是假命题,故其逆否命题为假,逆 命题为若x∈B,则x∈A∪B,为真命题. (2)∵0<x<5,∴-2<x-2<3,∴0≤|x-2|<3. 原命题为真,故其逆否命题为真. 否命题:若x≤0或x≥5,则|x-2|≥3. 1 1 5 例如当x=-2,|-2-2|=2<3.故否命题为假.
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.1 命题》赛课课件_10
本章主要内容:
⑴命题及四种命题之间的关系。⑵充分条件与必要条件。
⑶简单的逻辑联结词。
⑷全称量词与存在量词。
本章学习目标:
⑴掌握常用逻辑用语的用法, ⑵能纠正出现的逻辑错误, ⑶体会运用常用逻辑用语表述数学内容的准确性、简洁性。
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1)若直线a∥b,则直线a和直线b无公共点; (2)2+4=7; (3)垂直于同一条直线的两个平面平行; (4)若x2=1,则x=1; (5)两个全等三角形的面积相等; (6)3能被2整除.
(2)两个全等三角形的面积相等; 若两个三角形全等,则这两个三角形的面积相等。 真
(3) 3能被2整除
若一个数是3,则这个数能被2整除。
假
(4) 负数的立方是负数
若一个数是负数,则这个数的立方是负数。
真
(5) 对顶角相等
若两个角是对顶角,则这两个角相等。
真
(6) 能被2整除的整数是偶数 若一个整数能被2整除,则这个整数是偶数。 真
上面(2)(4)具有“若p,则q”的形式.本章中我们只讨论这种形式. “若p,则q”也可写成“如果p,那么q”“只要p,就有q”等形式.
其中p叫做命题的条件,q叫做命题的结论.
例2 指出下列命题中的条件p和结论q; (1)若整数a能被2整除,则a是偶数; (2)若四边形是菱形,则它的对角线互相垂直且平分.
特点:①都是陈述句 ②都可以判断真假 (1)(3)(5)为真,(2)(4)(6)为假.
1.命题的概念
一般地,在数学中,我们把用语言、符号 或式子表达的,可以判断真假的陈述句叫做 命题
判断为真的语句叫真命题。
判断为假的语句叫假命题。
例1 判断下列语句中哪些是命题?是真命题还是假命题?
高中数学选修1-1知识点及课本例题
第一章常用逻辑用语1.1 命题及其关系1、命题(1)一般地,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。
其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。
(2)“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论。
2、四种命题(1)对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题。
其中一个命题叫做原命题(“若p,则q”),另一个叫做原命题的逆命题(“若q,则p”)。
(2)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题。
如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题(“若p⌝,则q⌝”)。
(3)对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题。
如果把其中的一个命题叫做原命题,那么另一个叫做原命题的逆否命题(“若q⌝,则p⌝”)。
3、四种命题间的相互关系例1下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)2)2-;(2=(6)15x。
>例2指出下列命题中的条件p和结论q:(1)若整数a能被2整除,则a是偶数;(2)若四边形是菱形,则它的对角线互相垂直且平分。
例3将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等。
例4证明:若022=x,则0=+yx。
-y1.2 充分条件与必要条件1、充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理得出q。
这是,我们就说,由p可推出q,记作qp⇒,并且说p是q的充分条件,q是p的必要条件。
2、充要条件一般地,如果既有qq⇒,就记作qp⇔。
人教A版高中数学选修1-1《一章 常用逻辑用语 1.1 命题及其关系 1.1.2 四种命题》赛课课件_6
特别提醒
在已知原命题写其他三个命题时,一定要记清 p、q 的位置的 变化及是否需要被否定.
问题探究 1:在四种命题中,原命题是固定的吗?
证明:法一:原命题的逆否命题为“已知函数 f(x)是(-∞, +∞)上的增函数,a,b∈R,若 a+b<0,则 f(a)+f(b)<f(-a)+ f(-b).”
若 a+b<0,则 a<-b,b<-a. 又∵f(x)在(-∞,+∞)上是增函数, ∴f(a)<f(-b),f(b)<f(-a). ∴f(a)+f(b)<f(-a)+f(-b), 即逆否命题为真命题. ∴原命题为真命题.
3.由于原命题和它的逆否命题有相同的真假性,即互为逆 否命题的命题具有等价性,所以我们在直接证明某一个命题为真 命题有困难时,可以通过证明它的逆否命题为真命题,来间接地 证明原命题为真命题.
成功体验
(对应学生用书 P5)
1.已知 a,b,c,d 是实数,若 a≠b,且 c≠d,则 a+c≠b
+d.对原命题、逆命题、否命题、逆否命题而言,其中的真命题
【思路启迪】 首先分清命题的条件和结论,再按照定义写 出逆命题、否命题、逆否命题;对于(2),则应先将命题改写为“若 p,则 q”的形式.
【解】 (1)原命题:若 x>-2,则 x+3>0,所以: 逆命题:若 x+3>0,则 x>-2; 否命题:若 x≤-2,则 x+3≤0; 逆否命题:若 x+3≤0,则 x≤-2.
解析:(1)原命题是真命题;逆命题:若方程 x2+2x+q=0 有实根,则 q<1,是假命题;否命题:若 q≥1,则方程 x2+2x +q=0 无实根,是假命题;逆否命题:若方程 x2+2x+q=0 无 实根,则 q≥1,是真命题.
(人教版)高中数学选修1-1课件:第1章 常用逻辑用语1.2
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.(1)已知p:x2-x-2<0,q:x(x-3)<0,则p是q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
(2)“x2-2x-3<0”是“x<3”的( )
A.充分不必要条件 B.必要不充分条件
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
合作探究 课堂互动
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
充分条件、必要条件、充要条件的判断
在下列各项中选择一项填空:
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2)≥0}=xx≤-12
或x≥2;
2分
N={x|x2-2(a-1)x+a(a-2)≥0}={x|(x-a)[x-(a-2)]≥0}
={x|x≤a-2 或 x≥a},
4分
由已知 p⇒q 且 q p,得 M N.
6分
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
(2)由x2-2x-3<0得-1<x<3. 又∵(-1,3) (-∞,3), ∴“x2-2x-3<0”是“x<3”的充分不必要条件. 答案: (1)D (2)A
数学 选修1-1
第一章 常用逻辑用语
自主学习 新知突破
合作探究 课堂互动
高二数学选修1-1第一章常用逻辑用语
常用逻辑用语一、命题及其关系考点:要点1.命题:一般地,把用语言、符号或式子表达的,可以推断真假的陈述句叫做命题.其中推断为真的语句叫做真命题,推断为假的语句叫做假命题.要点2.四种命题:(1)一般地,用p和q分别表示命题的条件和结论,用¬p和¬q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p,则q;逆命题:若q,则p;否命题:若¬p,则¬q;逆否命题:若¬q,则¬p.要点3.四种命题的关系:互为逆否的两个命题同真假.考点1. 命题及其真假推断:例1、推断下列语句是否是命题?若是,推断其真假并说明理由。
1)x>1或x=1;2)假如x=1,那么x=33)x2-5x+6=0; 4)当x=4时,2x<0; 5)垂直于同一条直线的两条直线必平行吗?6)矩形莫非不是平行四边形吗? 7)矩形是平行四边形吗?;8)求证:若x∈R,方程x2-x+1=0无实根.解析:1)不是,x值不确定。
2)是,假命题3)不是命题.因为语句中含有变量x,在不给定变量的值之前,我们无法确定这语句的真假.同样如“2x>0”也不是命题.4)是命题.它是作出推断的语言,它是一个假命题.5)不是命题.因为并没有对垂直于同一条直线的两条直线平行作出推断,疑问句不是命题.6)是命题.通过反意疑问句对矩形是平行四边形作出了推断,它是真命题.7)不是.不是陈述句8)不是命题.它是祈使句,没有作出推断.如“把门关上”是祈使句,也不是命题.练一练: 1. 推断下列语句是不是命题。
(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)986能被11整除;(5)非典型性肺炎是怎样传播的? (6)(6)x ≤3。
2. 推断下列语句是不是命题。
(1)矩形莫非不是平行四边形吗? (2)垂直于同一条直线的两条直线平行吗? (3)一个数不是合数就是质数。
(4)大角所对的边大于小角所对的边; (5)y+x 是有理数,则x 、y 也是有理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 常用逻辑用语
一、命题
1、定义:可以判断真假的陈述语句,分为真命题和假命题.
2p q 、一般形式:“若则”.
二、四种命题
()
()
()
()
p q p q q p q p p q p q q p q p ⇒⇒⌝⌝⌝⇒⌝⌝⌝⌝⇒⌝原命题:若则逆命题:若则否命题:若则逆否命题:若则
例:原:若一个数是负数,则它的平方是正数.(真)
逆:若一个数的平方是正数,则这个数是负数.(假)
否:若一个数不是负数,则它的平方不是正数.(假)
逆否:若一个数的平方不是正数,则这个数不是负数.(真)
结论:①互为逆否的命题同真,同假.
②原命题与逆命题、原命题与否命题的真假无关.
三、充分条件与必要条件
1,,,p q p q q p p q p q q p p q q p p q p q p q ⇒≠>⇒⇒⇔、若称是的充分条件,是的必要条件.
2、若称不是的充分条件,不是的必要条件.
3、若而且记作“”,称是的充分必要条件,简称是的充要条件.
p q p q p q p q ≠⊆⇒⊂⇒注:可以借助集合关系来判定:
是的充分条件.
是的充分不必要条件.
例:
四、复合命题真假的表格.
1、 2、 3、
()()⊆⇒“福州人”“福建人”集合“福州人”“福建人”命题“福州人”是“福建人”的充分条件.“福建人”是“福州人”的必要条件.
五、全称量词、存在量词
()
()
01:,:,p x M P x p x M P x ∀∈⌝∃∈、全称命题它的否定 ()()00:,:,p x M P x p x M P x ∃∈⌝∀∈2、特称命题它的否定
例:“四边形都有外接圆”
():,.P ABCD A B C D ∀四边形都有、、、共圆全称命题
()()
0111111:+=20.P A B C D A C A B C D ⌝∃∠∠四边形其中,其中、、、不共圆特称命题
200020x R x x ∈+≤“存在,使+2"
2000:20P x R x x ∃∈+≤,使+2 2:20P x R x x ⌝∀∈+>,+2。