高中数学(人教,选修2-3)第一章《计数原理》测试题A卷
2021-2022学年高中数学 第一章 计数原理测评(含解析)新人教A版选修2-3

第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。
高中数学选修2-3计数原理测试题(含答案)

高中数学选修2-3计数原理测试题(本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若m 为正整数,则乘积()()()=+++2021m m m m ( )A .20m AB .21m AC .2020+m AD .2120+m A2.若直线0=+By Ax 的系数B A ,同时从0,1,2,3,5,7六个数字中取不同的值,则这些方程表示不同的直线条数 ( ) A . 22 B . 30 C . 12 D . 153.四个编号为1,2,3,4的球放入三个不同的盒子里,每个盒子只能放一个球,编号为1的球必须放入,则不同的方法有 ( ) A .12种 B .18种 C .24种 D .96种4.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第几个数 ( ) A .6 B .9 C .10 D .8 5.把一个圆周24等分,过其中任意三个分点可以连成圆的内接三角形,其中直角三角形的个数是 ( ) A .2024 B .264 C .132 D .1226. 在(a-b)99的展开式中,系数最小的项为( )A.T 49B.T 50C.T 51D.T 52 7. 数11100-1的末尾连续为零的个数是( )A.0B.3C.5D.78. 若425225+=x x C C ,则x 的值为 ( )A .4B .7C .4或7D .不存在9.以正方体的顶点为顶点,能作出的三棱锥的个数是 ( ) A .34CB .3718C CC .3718C C -6D . 1248-C10.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n 种.在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m ,则nm等于( ) A .101B .51 C .103 D .52第Ⅱ卷(非选择题,共100分)二、填空题(本大题共5小题,每小题5分,共25分)11.设含有8个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则TS 的值为___________.12.有4个不同的小球,全部放入4个不同的盒子内,恰好有两个盒子不放球的不同放法的总数为 .13.在(x-1)11的展开式中,x 的偶次幂的所有项的系数的和为 .14. 六位身高全不相同的同学在“一滩”拍照留念,老师要求他们前后两排各三人,则后排每个人的身高均比前排同学高的概率是 . 15. 用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x .三、解答题(共计75分) 16.(12分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线? (2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条? (4)分别以其中两点为起点和终点,最多可作出几个向量? 17.(12分)在二次项12)(n mbx ax (a >0,b >0,m,n ≠0)中有2m+n =0,如果它的展开式中系数最大的项恰是常数项,求它是第几项?18.(12分)由1,2,3,4,5,6,7的七个数字,试问:(1)能组成多少个没有重复数字的七位数?(2)上述七位数中三个偶数排在一起的有几个?(3)(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?(4)(1)中任意两偶然都不相邻的七位数有几个?19.(12分)2006年6月9日世界杯足球赛将在德国举行,参赛球队共32支,(1)先平均分成8个小组,在每组内进行单循环赛(即每队之间轮流比赛一次),决出16强(即取各组前2名)。
高中数学人教版 选修2-3(理科) 第一章 计数原理1.2.2组合A卷(练习)

高中数学人教版选修2-3(理科)第一章计数原理1.2.2组合A卷(练习)姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)三层书架,上层有10本不同的语文书,中层有9本不同的数学书,下层有8本不同的英语书,从书架上任取两本不同学科的书,不同取法共有()A . 245种B . 242种C . 54种D . 27种2. (2分)从4种不同的蔬菜品种中选出3种,分别种在3块不同的土质的土地上进行试验,共有种植方法数为()A .B .C .D .3. (2分)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一班,则不同分法的种数为()A . 18B . 24C . 30D . 364. (2分)(2018·朝阳模拟) 某单位安排甲、乙、丙、丁名工作人员从周一到周五值班,每天有且只有人值班每人至少安排一天且甲连续两天值班,则不同的安排方法种数为()A .B .C .D .5. (2分) (2019高二下·阜平月考) 如图所示的五个区域中,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A . 24种B . 48种C . 72种D . 96种6. (2分)设集合A={a1,a2,a3,a4,a5},记n(A)是ai+aj的不同值的个数,其中且,n(A),的最大值为k,n(A)的最小值为m,则()A .B .C .D .7. (2分)如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有()A . 50种B . 51种C . 140种D . 141种8. (2分) (2020高二下·龙江期末) 2020年4月30日,我国的5G信号首次覆盖了海拔8000米的珠穆朗玛峰峰顶和北坡登山路线,为了保证中国登山队珠峰高程测量的顺利直播,现从海拔5300米、5800米和6500米的三个大本营中抽出了4名技术人员,派往北坡登山路线中的3个崎岖路段进行信号检测,每个路段至少安排1名技术人员,则不同的安排方法共有()A . 72B . 36C . 48D . 54二、填空题 (共3题;共3分)9. (1分) (2020高三上·浙江月考) 从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成________个没有重复数字的四位偶数.10. (1分) (2020高三上·青浦期末) 某地开展名优教师支教活动,现有五名名优教师被随机分到、、三个不同的乡镇中学,现要求甲乙两位名优教师同时分到一个中学,可以有乡镇中学不分配到名优教师,则不同的分配方案共有________种11. (1分) (2020高三上·浙江月考) 某地需要安排人员分别在上午、下午、前半夜、后半夜四个时间段值班,要求每班至少含一名民警和一名医务人员,且至少有一名女性,每人值一班.现有民警4人(4男),医务人员6人(5女1男),其中民警甲不排上午,男医生不排上午、下午,则不同的安排方法有________种.三、解答题 (共3题;共30分)12. (5分)设r,s,t为整数,集合{a|a=2r+2s+2t ,0≤t<s<r}中的数由小到大组成数列{an}.(1)写出数列{an}的前三项;(2)求a36 .13. (10分)用这六个数字,完成下面两个小题.(1)若数字不允许重复,可以组成多少个能被整除的且百位数字不是的不同的五位数;(2)若直线方程中的可以从已知的六个数字中任取个不同的数字,则直线方程表示的不同直线共有多少条?14. (15分) (2017高二下·莆田期末) 某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影.(1)求其中的甲乙两人必须相邻的站法有多少种?(2)求其中的甲乙两人不相邻的站法有多少种?(3)求甲不站最左端且乙不站最右端的站法有多少种?参考答案一、选择题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共3题;共3分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:三、解答题 (共3题;共30分)答案:12-1、考点:解析:答案:13-1、答案:13-2、考点:解析:答案:14-1、答案:14-2、答案:14-3、考点:解析:。
人教版数学高二A版选修2-3单元测试第一章计数原理

第一章过关检测(时间90分钟,满分100分)一、选择题(每小题4分,共40分) 1.若A 3m =6C 4m ,则m 等于( )A.9B.8C.7D.62.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.C 16C 294B.C 16C 299C.C 3100-C 394D.C 3100-C 2944.从5位男教师和4名女教师中选出3位教师,派到3个班担任班主任(每班一位班主任),要求这三位班主任中男女教师都有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种5.现有6个人分乘两辆不同的出租车,每辆车最多乘4人(不含司机),则不同的乘车方案的种数是( )A.50B.60C.70D.806.在10)3( x 的展开式中,x 6的系数为( )A.-27C 610B.27C 410C.-9C 610D.9C 4107.把1,2,3,4,5,6,7,8,9这9个数字填入图中的表格,从上到下,从左到右,依次增大.当3、4固定在图中位置,余下的数的填法有( )A.6种B.12种C.18种D.24种8.把4个不同的小球全部放入3个不同的盒子里,使得每个盒子都不空的放法总数是( )A.C 13A 33B.C 34A 22C.C 24A 33D.C 14C 34C 229.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种10.已知(1-3x)9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( ) A.29 B.49 C.39 D.1 二、填空题(每小题4分,共16分)11. 8次投篮中,投中3次,其中恰有2次连续命中的情形有______种.12.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_______.13.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 54种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的方案有_______种.14.若nx x )(13-+展开式中,第5项是常数,问中间项是第_______项.三、解答题(共44分)15.(10分)如右图,若灯不亮,则元件R 1,R 2,R 3断路的情况共有多少种?16.(10分)解关于n 的不等式:C 4n >C 6n .17.(12分)求84)21(xx +展开式中系数最大的项.18.(12分)“十一”国庆期间,公司从网络部抽4名人员、人事部抽3名人员(两个部门的主任都在内),从10月1号至7号,安排每人值班一天,分别回答下列问题: (1)两个部门的主任不能安排在1号和7号;(2)若各部门的人员安排不能连续(即同部门的人员相间安排); (3)若人事部因工作需要,他们的值班必须安排在连续三天; (4)网络部主任比人事部主任先值班.参考答案1解析:由m(m -1)(m -2)=1234)3)(2)(1(6⨯⨯⨯---•m m m m ,解得m =7. 答案:C2解析:设女生有x 人,则30128=•-C C x x ,即302)7)(8(=•--x x x .解得x =2或3. 答案:A3 解析:不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法. 答案:C4解析:分两类:第一类2男1女,则不同的选派方案有C 25C 14A 33=240种. 第二类1男2女,则不同的选派方案有C 15C 24A 33=180种. 由分类加法计数原理得:共有240+180=420种不同的选派方案. 答案:B5解析:分三类:第一辆车乘2人,第二辆车乘4人,有C 26种乘法;第一、二辆车各乘3人,有C 36种乘法;第一辆车乘4人,第二辆车乘2人,有C 46种乘法,由分类加法计数原理,共有C 26+C 36+C 46=50种. 答案:A6 解析:T5=C410x10-4·(-3)4=9·C410 x6.答案:D7解析:左上角格必须填1,右下角格必须填9,第二行最左端格必须填2,如图.A、B从余下的5,6,7,8四个数中任选两个,从左到右依次增大填入,有C24种.剩余的两个数由上到下,依次增大填入C、D即可.故共有C24=6种不同的填法.答案:A8解析:选2个小球捆在一起看成1个元素,有C24种选法.把3个元素放入3个不同的盒中,有A33种放法.故共有C24·A33种不同的放法.答案:C9 解析:分两类:第一类2号盒内放2个球,有C24种放法(剩余的球放入1号盒内即可);第二类,2号盒内放3个小球,有C34种放法(剩余的球放入1号盒内即可).由分类加法计数原理,共有C24+C34=10种不同的放法.答案:A10解析:由展开式可知a1,a3,a5,a7,a9都小于0,a0,a2,a4,a6,a8都大于0,故|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9,只需令x=-1即可得:(1+3)9=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9=49.答案:B11解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26种.答案:3012 解析:将其中两名学生视为一个元素,其余二名同学分别视为一个元素,然后将三个元素分配到三所学校,所以不同的保送方案的总数为C 24A 33=36. 答案:3613解析:分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14种不同的实验方案. 答案:1414解析:由通项公式可得第5项3164434414---+==n n n nxx xT C C,即n =16,所以中间项是第9项. 答案:915解:每个元件都有通或断两种可能,以m,n,p 表示元件的通断,m,n,p 可取值均为0(表示断),1(表示通),故所有可能情况为(m,n,p)的可能情况共有2×2×2=8种.因为是串联电路,所以一断则断,只要排除全通的情况(m =1,n =1,p =1)即可,所以若灯不亮,则元件R 1,R 2,R 3断路的情况共有8-1=7种. 16解:因为C 4n >C 6n ,所以⎪⎩⎪⎨⎧≥->-,6,)!6(!6!)!4(!4!n n n n n即⎩⎨⎧≥<--.6,01092n n n 所以6≤n <10. 又因为n ∈N *,所以满足不等式的n 的取值为{6,7,8,9}. 17 解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎨⎧≥≥+-.,11k k k k T T T T 又1182+--•=r r r C T ,那么有⎪⎩⎪⎨⎧•≥••≥•-+--+--+--,22,228118228118kk k k k k k k C C C C 即⎪⎪⎩⎪⎪⎨⎧-•≥⨯-•-⨯-•-≥-•-,)!8(!!82)!9()!1(!8,2)!10()!2(!8)!9()!1(!8k k k k k k k k所以⎪⎩⎪⎨⎧≥--≥-.192,10211kk k k 解得3≤k≤4.所以系数最大的项为第3项257x 和第4项477x .18解:(1)第一步,在2号至6号五天中安排两名主任,有A 25种排法;第二步,剩下五人安排在剩下的五天有A 55种排法,故共有A 25·A 55=2 400种排法.(2)两个部门的人员相间安排,先排4名网络部人员,有A 44种;然后在他们的三个空档中插入三名人事部人员,有A 33种,故共有A 44·A 33=144种排法.(3)把人事部三个人看成一个人,再与网络部4人,有A 55种排法;人事部三个人的内部排列,有A 33种,故共有A 55·A 33=720种排法.(4)不考虑任何限制的排法有A 77,两人中排谁先值班的可能性相同,故有52022177=A种排法.。
高中数学人教A版选修2-3检测:第一章1.3-1.3.1二项式定理 Word版含解析

第一章计数原理1.3 二项式定理1.3.1 二项式定理A级基础巩固一、选择题1.化简多项式(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的结果是()A.(2x+2)5B.2x5C.(2x-1)5D.32x5解析:原式=[(2x+1)-1]5=(2x)5=32x5.答案:D2.在⎝⎛⎭⎪⎪⎫x+13x24的展开式中,x的幂指数是整数的项共有() A.3项B.4项C.5项D.6项解析:T r+1=C r24x24-r2·x-r3=Cr24·x12-56r,则r分别取0,6,12,18,24时,x的幂指数为整数,所以x的幂指数有5项是整数项.答案:C3.若⎝⎛⎭⎪⎪⎫x-123xn的展开式中第四项为常数项,则n=() A.4 B.5C .6D .7解析:由二项展开式可得T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =(-1)r 2-r C rn x n -r 2·x -r 3,从而T 4=T 3+1=(-1)32-3C 3n x n -52,由题意可知n -52=0,n =5.答案:B4.在(1-x 3)(1+x )10的展开式中,x 5的系数是( ) A .-297 B .-252 C .297D .207解析:(1-x 3)(1+x )10=(1+x )10-x 3(x +1)10展开式中含x 5的项的系数为:C 510-C 210=207.答案:D5.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =5,n =5 B .x =5,n =4 C .x =4,n =4D .x =4,n =3解析:C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,检验得B 正确.答案:B 二、填空题6.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答).解析:T r +1=C r 6·16-r ·(-2x )r =(-2)r C r 6·x r ,令r =2, 得T 3=(-2)2C 26x 2=60x 2.故x 2的系数为60.答案:607.⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝ ⎛⎭⎪⎪⎫-13x 3=-160x . 答案:-160x8.如果⎝⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第三项,则自然数n =________.解析:T r +1=C rn (3x 2)n -r⎝ ⎛⎭⎪⎫1x r =C r n x2n -5r3,由题意知r =2时,2n -5r3=2,所以n =8. 答案:8 三、解答题9.在⎝⎛⎭⎪⎫2x -1x 6的展开式中,求:(1)第3项的二项式系数及系数; (2)含x 2的项及项数.解:(1)第3项的二项式系数为C 26=15,又T 3=C 26(2x )4⎝⎛⎭⎪⎫-1x 2=24C 26x ,所以第3项的系数为24C 26=240.(2)T k +1=C k n (2x )6-k ⎝⎛⎭⎪⎫-1x k=(-1)k 26-k C r 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2.10.在二项式⎝ ⎛⎭⎪⎫3x -123x n的展开式中,前三项系数的绝对值成等差数列.(1)求展开式的第四项; (2)求展开式的常数项. 解:T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 13n -23r . 由前三项系数的绝对值成等差数列, 得C 0n +⎝⎛⎭⎪⎫-122C 2n =2×12C 1n , 解得n =8或n =1(舍去). (1)展开式的第四项为:T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为⎝ ⎛⎭⎪⎫-124C 48=358.B 级 能力提升1.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n的展开式中含有非零常数项,则正整数n 的最小值为( )A .3B .5C .6D .10解析:⎝ ⎛⎭⎪⎫3x 2-2x 3n展开式的通项表达式为C r n (3x 2)n -r ·⎝ ⎛⎭⎪⎫-2x 3r=C r n 3n -r(-2)r x 2n -5r ,若C r n 3n -r(-2)r x 2n -5r 为非零常数项,必有2n -5r =0,得n =52r ,所以正整数n 的最小值为5.答案:B2.设二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中,x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,C 26(-a )2=C 46(-a )4,解得a =2(舍去a =-2). 答案:23.如果f (x )=(1+x )m +(1+x )n (m ,n ∈N *)中,x 项的系数为19,求f (x )中x 2项系数的最小值.解:x 项的系数为C 1m +C 1n =19,即m +n =19,当m ,n 都不为1时,x 2项的系数为C 2m +C 2n =m (m -1)2+(19-m )(18-m )2=m 2-19m +171=⎝ ⎛⎭⎪⎫m -1922+171-1924,因为m ∈N *,所以当m =9或10时,x 2项的系数最小,为81.当m 为1或n 为1时,x 2项的系数为C 218=153>81,所以f (x )中x 2项系数的最小值为81.。
2020版高中数学 第一章 计数原理章末检测试卷 新人教A版选修2-3

第一章 计数原理章末检测试卷(一)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若A 5m =2A 3m ,则m 的值为( ) A .5 B .3 C .6D .7考点 排列数公式 题点 利用排列数公式计算 答案 A解析 依题意得m !(m -5)!=2×m !(m -3)!,化简得(m -3)·(m -4)=2, 解得m =2或m =5, 又m ≥5,∴m =5,故选A.2.一次考试中,要求考生从试卷上的9个题目中选6个进行解答,其中至少包含前5个题目中的3个,则考生答题的不同选法的种数是( ) A .40 B .74 C .84D .200考点 组合的应用题点 有限制条件的组合问题 答案 B解析 分三类:第一类,从前5个题目中选3个,后4个题目中选3个;第二类,从前5个题目中选4个,后4个题目中选2个;第三类,从前5个题目中选5个,后4个题目中选1个,由分类加法计数原理得C 35C 34+C 45C 24+C 55C 14=74.3.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210等于( ) A .32 B .-32 C .1 024 D .512考点 二项式定理题点 逆用二项式定理求和、化简 答案 A解析 由二项式定理,得a 10-2C 110a 9+22C 210a 8-…+210=C 010(-2)0a 10+C 110(-2)1a 9+C 210(-2)2a 8+…+C 1010(-2)10=(a -2)10=(-2)10=25=32.4.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A .A 34种 B .A 33A 13种 C .C 24A 33种D .C 14C 13A 33种考点 排列组合综合问题 题点 分组分配问题 答案 C解析 先将4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 24A 33种. 5.(x +2)2(1-x )5中x 7的系数与常数项之差的绝对值为( ) A .5 B .3 C .2D .0考点 二项展开式中的特定项问题 题点 求多项展开式中特定项的系数 答案 A解析 常数项为C 22·22·C 05=4,x 7系数为C 02·C 55·(-1)5=-1,因此x 7系数与常数项之差的绝对值为5. 6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数为( ) A .A 44A 55 B .A 23A 44A 35 C .C 13A 44A 55 D .A 22A 44A 55考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 D解析 先把每个品种的画看成一个整体,而水彩画只能放在中间,则油画与国画放在两端有A 22种放法,再考虑4幅油画本身排放有A 44种方法,5幅国画本身排放有A 55种方法,故不同的陈列法有A 22A 44A 55种. 7.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,那么a 0+a 2+a 4a 1+a 3的值为( )A .-122121B .-6160C .-244241D .-1考点 展开式中系数的和问题 题点 二项展开式中系数的和问题 答案 B解析 令x =1,可得a 0+a 1+a 2+a 3+a 4+a 5=1,再令x =-1可得a 0-a 1+a 2-a 3+a 4-a 5=35.两式相加除以2求得a 0+a 2+a 4=122,两式相减除以2可得a 1+a 3+a 5=-121.又由条件可知a 5=-1,故a 0+a 2+a 4a 1+a 3=-6160.8.圆周上有8个等分圆周的点,以这些等分点为顶点的锐角三角形或钝角三角形的个数是( )A .16B .24C .32D .48考点 组合的应用题点 与几何有关的组合问题 答案 C解析 圆周上8个等分点共可构成4条直径,而直径所对的圆周角是直角,又每条直径对应着6个直角三角形,共有C 14C 16=24(个)直角三角形,斜三角形的个数为C 38-C 14C 16=32(个).9.将18个参加青少年科技创新大赛的名额分配给3所学校,要求每所学校至少有1个名额且各校分配的名额互不相等,则不同的分配方法种数为( ) A .96 B .114 C .128D .136考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意可得每所学校至少有1个名额的分配方法种数为C 217=136,分配名额相等有22种(可以逐个数),则满足题意的方法有136-22=114(种).10.已知二项式⎝⎛⎭⎪⎪⎫x +13x n 的展开式中第4项为常数项,则1+(1-x )2+(1-x )3+…+(1-x )n 中x 2项的系数为( ) A .-19 B .19 C .-20D .20考点 二项式定理的应用 题点 二项式定理的简单应用 答案 D解析 ⎝ ⎛⎭⎪⎪⎫x +13x n 的展开式T k +1=C k n (x )n -k ⎝ ⎛⎭⎪⎪⎫13x k =C k n 526n k x -,由题意知n 2-5×36=0,得n =5,则所求式子中x 2项的系数为C 22+C 23+C 24+C 25=1+3+6+10=20.故选D.11.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( ) A .C 28C 23 B .C 28A 66 C .C 28A 26D .C 28A 25考点 排列组合综合问题 题点 排列与组合的综合应用 答案 C解析 先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即为A 26,共有C 28A 26种调整方法.12.已知等差数列{a n }的通项公式为a n =3n -5,则(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是该数列的( ) A .第9项 B .第10项 C .第19项D .第20项考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案 D解析 ∵(1+x )5+(1+x )6+(1+x )7的展开式中含x 4项的系数是C 45+C 46+C 47=5+15+35=55,∴由3n -5=55得n =20.故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有________人.考点 组合数公式 题点 组合数公式的应用 答案 2或3解析 设女生有x 人,则C 28-x C 1x =30, 即(8-x )(7-x )2·x =30,解得x =2或3.14.学校公园计划在小路的一侧种植丹桂、金桂、银桂、四季桂4棵桂花树,垂乳银杏、金带银杏2棵银杏树,要求2棵银杏树必须相邻,则不同的种植方法共有________种. 考点 排列的应用题点 元素“相邻”与“不相邻”问题 答案 240解析 分两步完成:第一步,将2棵银杏树看成一个元素,考虑其顺序,有A 22种种植方法; 第二步,将银杏树与4棵桂花树全排列,有A 55种种植方法. 由分步乘法计数原理得,不同的种植方法共有A 22·A 55=240(种).15.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为____.考点 二项式定理的应用题点 二项式定理与其他知识点的综合应用 答案π6或5π6解析 由题意,得T 4=C 36sin 3x =20sin 3x =52,∴sin x =12.∵x ∈[0,2π],∴x =π6或x =5π6.16.将A ,B ,C ,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A ,B 不能放入同一个盒子中,则不同的放法有________种. 考点 两个计数原理的应用 题点 两个原理的综合应用 答案 30解析 先把A ,B 放入不同盒中,有3×2=6(种)放法,再放C ,D , 若C ,D 在同一盒中,只能是第3个盒,1种放法;若C ,D 在不同盒中,则必有一球在第3个盒中,另一球在A 或B 的盒中,有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法. 三、解答题(本大题共6小题,共70分)17.(10分)已知A ={x |1<log 2x <3,x ∈N *},B ={x ||x -6|<3,x ∈N *}.试问:(1)从集合A 和B 中各取一个元素作直角坐标系中点的坐标,共可得到多少个不同的点?(2)从A ∪B 中取出三个不同的元素组成三位数,从左到右的数字要逐渐增大,这样的三位数有多少个? 考点 两个计数原理的应用 题点 两个原理的综合应用解 A ={3,4,5,6,7},B ={4,5,6,7,8}.(1)从A 中取一个数作为横坐标,从B 中取一个数作为纵坐标,有5×5=25(个),而8作为横坐标的情况有5种,3作为纵坐标的情况有4种,故共有5×5+5+4=34(个)不同的点. (2)A ∪B ={3,4,5,6,7,8},则这样的三位数共有C 36=20(个).18.(12分)已知(1+2x )n的展开式中,某一项的系数恰好是它的前一项系数的2倍,而且是它的后一项系数的56倍,试求展开式中二项式系数最大的项. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 二项式的通项为T k +1=C kn(2k)2k x ,由题意知展开式中第k +1项系数是第k 项系数的2倍,是第k +2项系数的56倍,∴⎩⎪⎨⎪⎧C k n 2k=2C k -1n ·2k -1,C k n 2k =56C k +1n ·2k +1,解得n =7.∴展开式中二项式系数最大两项是T 4=C 37(2x )3=28032x 与T 5=C 47(2x )4=560x 2. 19.(12分)10件不同厂生产的同类产品:(1)在商品评选会上,有2件商品不能参加评选,要选出4件商品,并排定选出的4件商品的名次,有多少种不同的选法?(2)若要选6件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法? 考点 排列组合综合问题 题点 排列与组合的综合应用解 (1)10件商品,除去不能参加评选的2件商品,剩下8件,从中选出4件进行排列,有A 48=1 680(或C 48·A 44)(种). (2)分步完成,先将获金质奖章的两件商品布置在6个位置中的两个位置上,有A 26种方法,再从剩下的8件商品中选出4件,布置在剩下的4个位置上,有A 48种方法,共有A 26·A 48=50 400(或C 48·A 66)(种).20.(12分)设⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列.(1)求⎝ ⎛⎭⎪⎫1+12x m展开式的中间项;(2)求⎝ ⎛⎭⎪⎫1+12x m展开式中所有含x 的奇次幂的系数和.考点 二项式定理的应用 题点 二项式定理的简单应用解 (1)依题意a 0=1,a 1=m 2,a 2=C 2m ⎝ ⎛⎭⎪⎫122.由2a 1=a 0+a 2,求得m =8或m =1(应舍去),所以⎝ ⎛⎭⎪⎫1+12x m展开式的中间项是第五项,T 5=C 48⎝ ⎛⎭⎪⎫12x 4=358x 4. (2)因为⎝ ⎛⎭⎪⎫1+12x m =a 0+a 1x +a 2x 2+…+a m x m,即⎝⎛⎭⎪⎫1+12x 8=a 0+a 1x +a 2x 2+…+a 8x 8. 令x =1,则a 0+a 1+a 2+a 3+…+a 8=⎝ ⎛⎭⎪⎫328,令x =-1,则a 0-a 1+a 2-a 3+…+a 8=⎝ ⎛⎭⎪⎫128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数. 考点 排列的应用 题点 数字的排列问题解 (1)1,2,3,4的再生数的个数为A 44=24,其中最大再生数为4 321,最小再生数为1 234. (2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个); 若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求b a. 考点 二项式定理的应用 题点 二项式定理的简单应用 解 (1)根据题意得C 1m +C 1n =7, 即m +n =7,①f (x )中的x 2的系数为C 2m +C 2n =m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n =7-m 代入上式得x 2的系数为m 2-7m +21=⎝ ⎛⎭⎪⎫m -722+354, 故当m =3或m =4时,x 2的系数的最小值为9. 当m =3,n =4时,x 3的系数为C 33+C 34=5;当m =4,n =3时,x 3的系数为C 34+C 33=5. (2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 04+C 14×0.003+C 03+C 13×0.003≈2.02. (3)由题意可得a =C 48=70,再根据⎩⎪⎨⎪⎧C k8·2k≥C k +18·2k +1,C k8·2k ≥C k -18·2k -1,即⎩⎪⎨⎪⎧k ≥5,k ≤6,求得k =5或6,此时,b =7×28,∴b a =1285.。
人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
【专业资料】新版高中数学人教A版选修2-3习题:第一章计数原理 检测(A) 含解析

第一章检测(A )(时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(x 3+x 2+x+1)(y 2+y+1)(z+1)展开后的不同项数有( )A.9项B.12项C.18项D.24项:第一步,从(x 3+x 2+x+1)中任取一项,有4种方法;第二步,从(y 2+y+1)中任取一项,有3种方法;第三步,从(z+1)中任取一项有2种方法.根据分步乘法计数原理得共有4×3×2=24项.2.下列等式不正确的是( )A .C n m =C n n -mB .C m m +C m m -1=C m+1mC .C 51+C 52+C 53+C 54+C 55=25D .C n+1m =C n m -1+C n -1m +C n -1m -1:C 50+C 51+C 52+C 53+C 54+C 55=25,故C 不正确,而A,B,D 正确.3.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有( )A.8种B.10种C.12种D.32种4.将7名学生分配到甲、乙两间宿舍中,每间宿舍至少安排2名学生,那么互不相同的分配方案共有( )A.252种B.112种C.70种D.56种:甲、乙两间宿舍中一间住4人、另一间住3人或一间住5人、另一间住2人,所以不同的分配方案共有C 73A 22+C 72A 22=35×2+21×2=112种.5.满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x+b=0有实数解的有序数对(a ,b )的个数为( )A.14B.13C.12D.10a=0时,方程变为2x+b=0,则b 为-1,0,1,2都有解;当a ≠0时,若方程ax 2+2x+b=0有实数解,则Δ=22-4ab ≥0,即ab ≤1.当a=-1时,b 可取-1,0,1,2.当a=1时,b 可取-1,0,1.当a=2时,b 可取-1,0,故满足条件的有序数对(a ,b )的个数为4+4+3+2=13.6.若C n 1x+C n 2x 2+…+C n n x n 能被7整除,则x ,n 的值可能为( )A.x=4,n=3B.x=4,n=4C.x=5,n=4D.x=6,n=5C n 1x+C n 2x 2+…+C n n x n =(1+x )n -1,分别将选项A,B,C,D 中的值代入检验知,仅有选项C 适合.7.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243B.252C.261D.279C 91C 101C 101=900,而无重复数字的三位数的个数为C 91C 91C 81=648,故所求个数为900-648=252,应选B .8.在x (1+x )6的展开式中,含x 3项的系数为( )A.30B.20C.15D.10x 3的项是由(1+x )6展开式中含x 2的项与x 相乘得到,又(1+x )6展开式中含x 2的项的系数为C 62=15,故含x 3项的系数是15.9.设(1+x+x 2)n =a 0+a 1x+…+a 2n x 2n ,则a 2+a 4+…+a 2n 的值为( )A.3nB.3n -2 C .3n -1 D .3n +1x=0,得a 0=1;① 令x=-1,得a 0-a 1+a 2-a 3+…+a 2n =1;② 令x=1,得a 0+a 1+a 2+a 3+…+a 2n =3n , ③ ②+③得2(a 0+a 2+…+a 2n )=3n +1,故a 0+a 2+a 4+…+a 2n =3n +1,再由①得a 2+a 4+…+a 2n =3n -1.10.从正方体ABCD-A 1B 1C 1D 1的8个顶点中选取4个作为四面体的顶点,可得到的不同四面体的个数为( )A .C 84-12B .C 84-8 C .C 84-6D .C 84-46个面和6个对角面中,每个面上的四个点不能构成四面体.二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.如图所示为一电路图,若只闭合一条线路,从A 处到B 处共有 条不同的线路可通电.,上线路中有3条,中线路中有一条,下线路中有2×2=4条.根据分类加法计数原理,共有3+1+4=8条不同的线路.12.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答):第一类,7级台阶上每一级只站一人,则有A 73种;第二类,若有一级台阶有2人,另一级有1人,则共有C 31A 72种.因此共有不同的站法种数是A 73+C 31A 72=336.13.若(x √x3)8的展开式中x 4的系数为7,则实数a= .(x √x3)8的通项为C 8r x 8-r a r (x -13)r =C 8r a r x 8-r x -r 3=C 8r a r x 8-r -r 3, ∴令8-r-r =4, 解得r=3.∴C 83a 3=7,得a=12.14.C 170-2C 171+4C 172-8C 173+…+(-217C 1717)= .=(1-2)17=(-1)17=-1.115.若4名学生和3名教师站在一排照相,则其中恰好有2名教师相邻的站法有 .(用数字作答)3名教师中任取2名作为一个整体排列,共有A 32种方法,然后排4名学生共有A 44种方法,把2名教师组成的整体和另外一名教师安排在4名学生隔成的五个空中,有A 52种排法,故共有不同的站法种数为A 32·A 44·A 52=2 880.种三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16.(8分)设集合M={-2,-1,0,1,2,3},P (a ,b )是坐标平面上的点,a ,b ∈M.(1)P 可以表示多少个第四象限内的点?(2)P 可以表示多少个不在直线y=x 上的点?分两步,第一步确定横坐标有3种,第二步确定纵坐标有2种,根据分步乘法计数原理得点的个数为N=3×2=6.(2)分两步,第一步确定横坐标有6种,第二步确定纵坐标有5种,根据分步乘法计数原理得点的个数为N=6×5=30.17.(8分)球台上有4个黄球、6个红球,击黄球入袋记2分,红球入袋记1分.求将此10球中的4球击入袋中,但总分不低于5分的击球方法有多少种?x 个,红球y 个符合要求.则有{x +y =4,2x +y ≥5,x ,y ∈N .解得{x =1,y =3或{x =2,y =2或{x =3,y =1或{x =4,y =0.对应每组解(x ,y ),击球方法数分别为C 41C 63,C 42C 62,C 43C 61,C 44C 60,所以不同的击球方法种数为C 41C 63+C 42C 62+C 43C 61+C 44C 60=195.18.(9分)有大小、形状、质地相同的6个球,其中3个一样的黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?1个、2个、3个黑球进行分类求解.:(1)若取1个黑球,和另三个球排4个位置,不同的排法种数为A 44=24;(2)若取2个黑球,从另三个球中选2个排4个位置,2个黑球是相同的,自动进入,不需要排列,即不同的排法种数为C 32A 42=36;(3)若取3个黑球,从另三个球中选 1个排4个位置,3个黑球是相同的,自动进入,不需要排列,即不同的排法种数为C 31A 41=12.综上,不同的排法种数为24+36+12=72.19.(10分)求证:(1)4×6n +5n+1-9是20的倍数(n ∈N *);(2)3n -2n ≥n ·2n-1(n ∈N *).×6n +5n+1-9=4×(5+1)n +5×(4+1)n -9=4(C n 05n +C n 15n-1+…+C n n -15+1)+5(C n 04n +C n 14n-1+…+C n n -14+1)-9=20[(C n 05n-1+C n 15n-2+…+C n n -1)+(C n 04n-1+C n 14n-2+…+C nn -1)],故结论成立. (2)∵3n -2n ≥n ·2n-1⇔3n ≥n ·2n-1+2n =2n-1(n+2),①当n=1时,①式左边=31=3,右边=21-1×(1+2)=3,∴3n =2n-1(n+2).当n ≥2时,3n =(2+1)n =2n +C n 12n-1+C n 22n-2+…+C n n >2n +n ·2n-1=2n-1(2+n ). 综上,对一切n ∈N *,不等式3n ≥2n-1(2+n )成立,即3n -2n ≥n ·2n-1(n ∈N *)恒成立.20.(10分)已知(x 2√x )n的展开式中前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.,利用等差中项的性质即可求出n的值;所谓系数最大的项,即只要某一项的系数不小于与它相邻的两项的系数即可,这是由二项式系数的增减性决定的.由题意,得C n0+14×C n2=2×12×C n1,即n2-9n+8=0,解得n=8,n=1(舍去). (2)设第r+1项的系数最大,则{12r C8r≥12r+1C8r+1,1 2r C8r≥12r-1C8r-1,即{18-r ≥12(r+1),1 2r ≥19-r,解得r=2或r=3.所以系数最大的项为T3=7x5,T4=7x 7 2.。
高中数学 第1章 计数原理阶段性测试题一 新人教A版高二选修2-3数学试题

第一章 计数原理(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210=( ) A .32 B .-32 C .1 024 D .512解析:由题意得a 10-2C 110a 9+22C 210a 8-…+210=(a -2)10,又a =2-2,所以原式=(2-2-2)10=32.答案:A2.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45解析:依题意知,a 8=C 81022(-1)8=180,故选A. 答案:A3.(2019·某某省八校高三联考)某工厂安排6人负责周一至周六的中午午休值班工作,每天1人,每人值班1天,若甲、乙两人需安排在相邻两天值班,且都不排在周三,则不同的安排方式有( )A .192种B .144种C .96种D .72种解析:因为甲、乙两人都不排在周三,且安排在相邻两天,所以分两类:①甲、乙两人安排在周一,周二,则有A 22·A 44=48种;②甲、乙两人安排在周四,周五,周六中的相邻两天,则有2A 22·A 44=96种,则共有48+96=144(种).答案:B4.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )A .150种B .180种C .200种D .280种解析:不同的分派方法⎝ ⎛⎭⎪⎫C 25C 23A 22+C 15C 14A 22A 33=150种,故选A.答案:A5.(2019·某某市、某某市部分学校联合模拟)二项式⎝ ⎛⎭⎪⎫ax 2+228的展开式中x 6的系数为562,则⎠⎛1a (x -cos πx )d x =( )A .2B .1C.32D.12 解析:二项式⎝⎛⎭⎪⎫22+ax 28的展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫228-r (ax 2)r ,∵2r =6,∴r =3.令r =3,则C 38×⎝⎛⎭⎪⎫225×a 3=562,解得a =2,所以⎠⎛1a (x -cos πx )dx =⎠⎛12(x -cos πx )dx答案:C6.已知6C x -7x -3=10A 2x -4,则x 的值为( ) A .11 B .12 C .13D .14解析:由6C x -7x -3=10A 2x -4,得6·(x -3)(x -4)(x -5)(x -6)4×3×2×1=10·(x -4)(x -5).∴x 2-9x -22=0,∴x =11或x =-2(舍). 答案:A7.(2019·某某一中高二月考)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数为( )A .12B .24C .30D .36解析:因为一种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,所以分两类,第一类,涂前三个圆用三种颜色,有A 33=6种涂法,则涂后三个圆有C 12C 12=4种涂法,共有6×4=24种涂法;第二类,涂前三个圆用两种颜色,则涂后三个圆也用两种颜色,共有C 13C 12=6种涂法.综上,可得不同的涂色方案的种数为24+6=30.答案:C8.设⎝ ⎛⎭⎪⎫3x +1x n 展开式的各项系数之和为M ,其二项式系数之和为N ,若M +N =272,则n 的值为( )A .1B .4C .3 D.12解析:由题意得M =4n ,N =2n. ∵M +N =272,∴4n +2n=272,得n =4. 答案:B9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( )A .C 28A 23 B .C 28A 66 C .C 28A 26D .C 28A 25解析:先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即抽出的2人插入前排为A 26.共有C 28A 26种调整方法.故选C.答案:C10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:首先,甲、乙两人同选1门,有4种方法;其次,甲从剩下的3门课中选1门,有3种方法;最后,乙从剩下的2门课中选1门,有2种方法.所以共有4×3×2=24种.答案:C11.若C 3n +123=C n +623(n ∈N *),且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)na n =( )A .250B .-250C .256D .-150解析:由C 3n +123=C n +623,得3n +1=n +6或3n +1+n +6=23,∴n =52(舍去)或n =4.令x=-1,则(3-x )n=(3+1)4=a 0-a 1+a 2-a 3+a 4=256.∴a 0-a 1+a 2-…+(-1)na n =256.故选C.答案:C12.由1,2,3,0组成没有重复数字的三位数,其中0不在个位上,则这些三位数的和为( )A .1 320B .1 332C .2 532D .2 544解析:共组成A 33+A 23=12个这样的三位数,个位数有4个3,4个2 ,4个1,和为24;十位数有2个3,2个2,2个1,6个0,和为12;百位数有4个1,4个2,4个3,和为24,∴这些位数的和为2 544,故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2019·某某市高三质量预测)已知⎝⎛⎭⎪⎫1x+x 2n的展开式的各项系数和为64,则展开式中x 3的系数为_______________________________________.解析:令x =1,得2n =64,解得n =6,则⎝ ⎛⎭⎪⎫1x+x 26的展开式的通项T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r x 2r =C r6x 3r -6,令3r -6=3,得r =3,故x 3的系数为C 36=20.答案:2014.设a ≠0,n 是大于1的自然数,⎝⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n·1a 2=a 2=4,故⎩⎪⎨⎪⎧n a =3,n (n -1)a 2=8,可得⎩⎪⎨⎪⎧n =9,a =3.答案:315.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有________种不同的取法(用数字作答).解析:依题意,取盒子中6个小球,可以看作6个小球排成一排,在中间插入挡板,由于每次至少取出一个球,所以最多可以插入5个挡板,即C 05+C 15+C 25+C 35+C 45+C 55=25=32.答案:3216.(2019·某某一中高二月考)将6名报名参加运动会的同学分别安排到跳绳、接力、投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人,则共有y 种不同的方案,其中x +y 的值为________.解析:6名同学报名参加跳绳、接力、投篮三项比赛,每人只参加一项,每人有3种报名方法,根据分步乘法计数原理可得x =36=729.而每项比赛至少要安排一人时,先分组有C 16C 15C 44A 22+C 16C 25C 33+C 26C 24C 22A 33=90(种),再排列有A 33=6(种),所以y =90×6=540.所以x +y =1 269. 答案:1 269三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)为支援西部开发,需要从8名男干部和2名女干部中任选4人组成支援小组到西部某地支边,要求男干部不少于3人,问有多少种选派方案.解:解法一:男干部有四人时有C 48种选法;男干部有3人时有C 38C 12种选法,故适合条件的选派方案有C 48+C 38C 12=182种.解法二:从10名干部中选4名减去2名女干部全被选中的方案数,共有C 410-C 28C 22=182种.18.(12分)已知(3x 2+3x )n展开式中各项系数的和比它的二项式系数的和大4 032. (1)求展开式中含x 4的项;(2)求展开式中二项式系数最大的项.解:(1)令x =1得展开式各项系数和为4n ,而二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意得4n -2n =4 032,即(2n -64)(2n +63)=0,得2n =64或2n=-63, 又∵n ∈N *,∴2n=64,故n =6,二项展开式的第r +1项为,令12+r 3=4,得r =0,∴展开式中含x 4的项为T 1=30·C 06·x 4=x 4. (2)∵n =6,∴展开式中第4项的二项式系数最大,19.(12分)2名女生和4名男生外出参加比赛活动.(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法? (2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法? 解:(1)有2A 55=240种. (2)有A 44A 25=480种. (3)有C 36-C 34=16种.20.(12分)求证:1+4C1n+7C2n+10C3n+…+(3n+1)C n n=(3n+2)·2n-1.证明:设S=1+4C1n+7C2n+10C3n+…+(3n+1)C n n,①则S=(3n+1)C n n+(3n-2)C n-1n+…+4C1n+1.②①+②得2S=(3n+2)(C0n+C1n+C2n+…+C n n)=(3n+2)·2n,∴S=(3n+2)·2n-1.21.(12分)带有编号1,2,3,4,5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?解:(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14=20种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.(12分)设x10-3=Q(x)(x-1)2+ax+b,其中Q(x)是关于x的多项式,a,b∈R.(1)求a,b的值;(2)若ax+b=28,求x10-3除以81的余数.解:(1)由已知等式,得[(x-1)+1]10-3=Q(x)(x-1)2+ax+b,∴C010(x-1)10+C110(x-1)9+…+C810(x-1)2+C910(x-1)+C1010-3=Q(x)(x-1)2+ax+b,∴[C010(x-1)8+C110(x-1)7+…+C810](x-1)2+10x-12=Q(x)(x-1)2+ax+b,∴10x-12=ax+b.∴a=10,b=-12.(2)∵ax+b=28,即10x-12=28,∴x=4,∴x10-3=410-3=(3+1)10-3=C010×310+C110×39+…+C910×3+C1010-3=34×(C010×36+C110×35+…+C610)+40×34+5×34+28=81(C010×36+C110×35+…+C610+45)+28,∴所求的余数为28.。
(压轴题)高中数学高中数学选修2-3第一章《计数原理》检测题(有答案解析)(1)

一、选择题1.在10个形状大小均相同的球中有5个红球和5个白球,不放回地依次摸出2个球,设事件A 表示“第1次摸到的是红球”,事件B 表示“第2次摸到的是红球”,则()P B A ( ) A .49B .12C .110D .152.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7104.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .75.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .46.已知随机变量X 服从正态分布()100,4N ,若()1040.1359P m X <<=,则m 等于 ( )[附:()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=] A .100B .101C .102D .D .1037.抛掷一枚均匀的硬币4次,则出现正面的次数多于反面的概率( )A .38B .12C .516D .7168.已知随机变量X 的分布列为P(X =i)=2ia(i =1,2,3,4),则P(2<X≤4)等于( ) A .910B .710 C .35D .129.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .7810.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.1911.已知随机变量X 服从正态分布2(2,)N σ,(4)0.84P X ≤=,则(02)P X ≤≤=( ) A .0.64 B .0.16 C .0.32 D .0.34 12.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( )A .9mB .3mC .mD .32m +二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.15.某人乘车从A 地到B 地,所需时间(分钟)服从正态分布N (30,100),求此人在40分钟至50分钟到达目的地的概率为__________.参考数据:若2~(,)Z N μσ,则()0.6826P Z μσμσ-<<+=,(22)0.9544P Z μσμσ-<<+=,(33)0.9974P Z μσμσ-<<+=.16.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为___________ 17.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.18.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.19.设随机变量ξ的分布列为P (ξ=k )=300-30012C?33kkk ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭(k=0,1,2,…,300),则E (ξ)=____.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以利用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用,设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为13,若甲、乙两人分别向该出版社投稿1篇,两人的稿件是否被录用相互独立,则两人中恰有1人的稿件被录用的概率为__________.三、解答题21.《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,即“行让行人”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让行人”行为的统计数据:x 之间的回归直线方程ˆˆˆy bx a =+;(2)若该十字路口某月不“礼让行人”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让行人”情况达到“理想状态”.试判断6月份该十字路口“礼让行人”情况是否达到“理想状态”?(3)自罚单日起15天内需完成罚款缴纳,记录5月不“礼让行人”驾驶员缴纳罚款的情况,缴纳日距罚单日天数记为X ,若X 服从正态分布()~8,9X N ,求该月没能在 14天内缴纳人数. 参考公式:()()()112211ˆˆˆ,nniii ii i nniii i x x yyx y nxybay bx x x xnx====---===---∑∑∑∑()()()0.6826,220.9544,330.9974P ZP Z P Z μσμσμσμσμσμσ-<<+=-<<+=-<<+=22.网上订外卖已经成为人们日常生活中不可或缺的一部分. M 外卖平台(以下简称M 外卖)为了解其在全国各城市的业务发展情况,随机抽取了100个城市,调查了M 外卖在今年2月份的订单情况,并制成如下频率分布表.(1)由频率分布表可以认为,今年2月份M 外卖在全国各城市的订单数Z (单位:万件)近似地服从正态分布2(,)N μσ,其中μ为样本平均数(同一组数据用该区间的中点值作代表),σ为样本标准差,它的值已求出,约为3.64,现把频率视为概率,解决下列问题:①从全国各城市中随机抽取6个城市,记今年2月份M 外卖订单数Z 在区间(4.88,15.8]内的城市数为X ,求X 的数学期望(取整数);②M 外卖决定在该月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国2月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市开展营销活动,若每接一件外卖订单平均可获纯利润5元,但每件外卖订单平均需送出红包2元,则M 外卖在这100个城市中开展营销活动将比不开展营销活动每月多盈利多少万元?(2)现从全国开展M 外卖业务的所有城市中随机抽取100个城市,若抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的可能性最大,试求整数k 的值.参考数据:若随机变量X 服从正态分布2(,)N μσ,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,3309().973P X μσμσ-<≤+=.23.某射手每次射击击中目标的概率均为23,且各次射击的结果互不影响. (1)假设这名射手射击3次,求至少2次击中目标的概率;(2)假设这名射手射击3次,每次击中目标得10分,未击中目标得0分.在3次射击中,若有2次连续击中目标,而另外1次未击中目标,则额外加5分;若3次全部击中,则额外加10分.用随机变量ζ表示射手射击3次后的总得分,求ζ的分布列和数学期望. 24.某种工业机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金700元,在延保的两年内可免费维修2次,超过2次每次收取维修费200元;方案二:交纳延保金1000元,在延保的两年内可免费维修4次,超过4次每次收取维修费100元.某工厂准备一次性购买2台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:以这50台机器维修次数的频率代替1台机器维修次数发生的概率.记X 表示这2台机器超过质保期后延保的两年内共需维修的次数. (1)求X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,工厂选择哪种延保方案更合算? 25.某工厂计划建设至少3个,至多5个相同的生产线车间,以解决本地区公民对特供商品A 的未来需求.经过对先期样本的科学性调查显示,本地区每个月对商品A 的月需求量均在50万件及以上,其中需求量在50~ 100万件的频率为0.5,需求量在100~200万件的频率为0.3,不低于200万件的频率为0.2.用调查样本来估计总体,频率作为相应段的概率,并假设本地区在各个月对本特供商品A 的需求相互独立.(1)求在未来某连续4个月中,本地区至少有2个月对商品A 的月需求量低于100万件的概率.(2)该工厂希望尽可能在生产线车间建成后,车间能正常生产运行,但每月最多可正常生产的车间数受商品A 的需求量x 的限制,并有如下关系: 商品A 的月需求量x (万件) 50100x ≤< 100200x ≤<200x ≥车间最多正常运行个数345若一个车间正常运行,则该车间月净利润为1500万元,而一个车间未正常生产,则该车间生产线的月维护费(单位:万元)与月需求量有如下关系: 商品A 的月需求量x (万件)50100x ≤<100200x ≤<未正常生产的一个车间的月维护费(万元)500600试分析并回答该工厂应建设生产线车间多少个?使得商品A 的月利润为最大.26.十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民收入也逐年增加.为了更好的制定2019年关于加快提升农民年收入力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入并制成如下频率分布直方图:附:参考数据与公式2.63≈,若 ()2~,X N μσ,则①()0.6827P X μσμσ-<+=;② (22)0.9545P X μσμσ-<+=;③(33)0.9973P X μσμσ-<+=.(1)根据频率分布直方图估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示);(2)由频率分布直方图可以认为该贫困地区农民年收入 X 服从正态分布 ()2,N μσ,其中μ近似为年平均收入2,x σ 近似为样本方差2s ,经计算得:2 6.92s =,利用该正态分布,求:(i )在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii )为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每个农民的年收入相互独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先设第一次摸出红球为事件A ,第二次摸出红球为事件B ,分别求出()P A ,()P AB ,利用条件概率公式求出答案.【详解】设第一次摸出红球为事件A ,第二次摸出红球为事件B , 则“第一次摸到红球”的概率为:()51102P A == “在第一次摸出红球,第二次也摸到红球”的概率是()5421099P AB ⨯==⨯ 由条件概率公式有()()()249192P AB P B A P A ===故选:A 【点睛】本题考查了概率的计算方法,主要是考查了条件概率,弄清楚事件之间的联系,正确运用公式,是解决本题的关键.属于中档题.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.B解析:B【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.4.C解析:C 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值.【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q +221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.6.C解析:C 【分析】 由()()0.1322259P X P X μσμσμσμσ-<<+--<<+=,再根据正态分布的对称性,即可求解. 【详解】由题意,知()()0.6826,220.9544P X P X μσμσμσμσ-<<+=-<<+=, 则()()220.95440.682620.13592P X P X μσμσμσμσ-<<+--<<+-==,所以要使得()1040.1359P m X <<=,则102m =,故选C. 【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布的对称性,以及概率的计算方法是解答的关键,着重考查了运算与求解能力,属于基础题.7.C解析:C 【分析】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,由此能求出出现正面的次数多于反面的次数的概率. 【详解】掷一枚均匀的硬币4次,则出现正面的次数多于反面的次数包含出现4次正面和出现3次正面一次反面,∴出现正面的次数多于反面的次数的概率:4433441115()()22216p C C =+⋅=. 故选C . 【点睛】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.8.B解析:B 【分析】 由题意可得()1123412a+++=,即可求出a 的值,再利用互斥事件概率的加法公式可得 ()()()2434P X P P <≤=+,据此计算即可得到答案【详解】()()12342iP X i i a===,,,, ()1123412a∴+++= 解得5a =则()()()3472434101010P X P P <≤=+=+= 故选B 【点睛】本题是一道关于求概率的题目,解答本题的关键是熟练掌握离散型随机变量的分布列,属于基础题.9.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.10.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D 【解析】∵随机变量ξ服从正态分布2(2,)N σ,2μ=,得对称轴是2x =,(4)0.84P ξ=≤, ∴(4)(0)0.16P P ξξ≥=<=,∴(02)0.50.160.34P ξ≤≤=-=,故选D .12.A解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=.故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.【分析】设事件表示该选手能正确回答第轮的问题选手被淘汰考虑对立事件代入的值可得结果;【详解】记该选手能正确回答第轮的问题为事件则该选手被淘汰的概率:故答案为:【点睛】求复杂互斥事件概率的两种方法:( 解析:101125【分析】设事件(1,2,3)i A i =表示“该选手能正确回答第i 轮的问题”,选手被淘汰,考虑对立事件,代入123(),(),()P A P A P A 的值,可得结果; 【详解】记“该选手能正确回答第i 轮的问题”为事件(1,2,3)i A i =,则()()()123432,,555P A P A P A ===. 该选手被淘汰的概率:112123112123()()()()()()()P P A A A A A A P A P A A P A A A =++=++142433101555555125=+⨯+⨯⨯= 故答案为:101125【点睛】求复杂互斥事件概率的两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;(2)间接法:先求该事件的对立事件的概率,再由()1()P A P A =-求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.15.1359【分析】根据正态曲线的对称性求出概率即可;【详解】解:∵∴∴又∴∴∴∵∴因此此人在40分钟至50分钟到达目的地的概率是故答案为:【点睛】本题考查正态曲线的性质属于中档题解析:1359 【分析】根据正态曲线的对称性求出概率即可; 【详解】解:∵()0.6826P X μσμσ-<<+=,∴10.6826()2P X μσ->+=,∴()1P X μσ<+=-10.682610.6826222-=+.又(22)0.9544P X μσμσ-<<+=,∴10.9544(2)2P X μσ->+=,∴10.954410.9544(2)1222P X μσ-<+=-=+,∴(2)(2)P X P X μσμσμσ+<<+=<+-()P X μσ<+10.954410.6826()2222=+-+1(0.95440.6826)2=⨯-0.1359=. ∵30μ=,10σ=,∴(4050)0.1359P X <<=.因此,此人在40分钟至50分钟到达目的地的概率是0.1359. 故答案为:0.1359 【点睛】本题考查正态曲线的性质,属于中档题.16.3500【分析】设检测机器所需检测费为则的可能取值为200030004000分别求出相应的概率由此能求出所需检测费的均值【详解】设检测的机器的台数为则的所有可能取值为234所以所需的检测费用的均值为解析:3500 【分析】设检测机器所需检测费为X ,则X 的可能取值为2000,3000,4000,分别求出相应的概率,由此能求出所需检测费的均值. 【详解】设检测的机器的台数为X ,则X 的所有可能取值为2,3,4.1123223233522513133(2000),(3000),(4000)1101010105A C A A A P X P X P X A A +========--=所以所需的检测费用的均值为()133200030004000350010105E X =⨯+⨯+⨯=. 故答案为: 3500. 【点睛】本题考查离散型随机变量的分布列和均值,考查学生分析问题的能力,难度一般.17.【解析】试题分析:的可能取值是012345 0 1 2 3 4 5 考点:期望方差的计算解析:510,39【解析】试题分析:ξ的可能取值是0,1,2,3,4,5,12345.考点:期望、方差的计算.18.【解析】分析:先确定随机变量取法再分别求对应概率最后根据数学期望公式求期望详解:获得奖金数为随机变量ξ则ξ=691215所以ξ的分布列为:ξ 6 9 12 15 P E(ξ)=6×+9× 解析:212【解析】分析:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望. 详解:获得奖金数为随机变量ξ,则ξ=6,9,12,15,所以ξ的分布列为: ξ 691215P112 512 512 112E(ξ)=6×12+9×12+12×12+15×12=2. 点睛:本题考查数学期望公式,考查基本求解能力.19.【解析】分析:由二项分布的期望公式计算详解:由题意得ξ~B 所以E(ξ)=300=100点睛:本题考查二项分布的期望计算公式若则解析:【解析】分析:由二项分布的期望公式计算. 详解:由题意,得ξ~B 1300,3⎛⎫ ⎪⎝⎭,所以E (ξ)=30013⨯=100. 点睛:本题考查二项分布的期望计算公式.若(,)B n p ξ,则E np ξ=,(1)D np p ξ=-.20.【分析】计算出每人的稿件能被录用的概率然后利用独立重复试验的概率公式可求得结果【详解】记事件甲的稿件被录用则因此甲乙两人分别向该出版社投稿篇则两人中恰有人的稿件被录用的概率为故答案为:【点睛】思路点解析:3572【分析】计算出每人的稿件能被录用的概率,然后利用独立重复试验的概率公式可求得结果. 【详解】记事件:A 甲的稿件被录用,则()2212111522312P A C ⎛⎫⎛⎫=+⋅⋅= ⎪ ⎪⎝⎭⎝⎭,因此,甲、乙两人分别向该出版社投稿1篇,则两人中恰有1人的稿件被录用的概率为125735121272P C =⋅⋅=. 故答案为:3572. 【点睛】思路点睛:独立重复试验概率求法的三个步骤:(1)判断:依据n 次独立重复试验的特征,判断所给试验是否为独立重复试验; (2)分拆:判断所求事件是否需要分拆;(3)计算:就每个事件依据n 次独立重复试验的概率公式求解,最后利用互斥事件概率加法公式计算.三、解答题21.(1)ˆ8124yx =-+;(2)达到“理想状态”;(3)2. 【分析】(1)请根据表中数据计算x 、y ,求出回归系数,写出回归直线方程;(2)利用回归方程计算6x =时ˆy的值,比较即可得出结论; (3)根据正态分布的性质,结合()2140.9544P X <<=即可得答案. 【详解】(1)请根据表中所给前5个月的数据,计算1(12345)35x =⨯++++=, 1(1201051008590)1005y =⨯++++=;12222221()()(2)20(1)5001(15)2(10)ˆ8(2)(1)012()nii i nii xx y y bxx ==---⨯+-⨯+⨯+⨯-+⨯-===--+-+++-∑∑,ˆˆ100(8)3124ay bx =-=--⨯=; y ∴与x 之间的回归直线方程ˆ8124y x =-+;(2)由(1)知ˆ8124yx =-+,当6x =时,ˆ8612476y =-⨯+=; 且807645-=<,6∴月份该十字路口“礼让斑马线”情况达到“理想状态”;(3)因为X 服从正态分布()~8,9X N , 所以()2140.9544P X <<=, 该月没能在14天内缴纳人数为10.95449022-⨯=, 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nnii ii i x y x x y ==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+. 22.(1)①5;②100万元;(2)48. 【分析】(1)①先由频率分布表求出样本平均数,得到()212.16,3.64ZN ,求出()4.8815.8P Z <≤,再由题意,得到()6,0.8186XB ,根据二项分布的期望公式,即可得出结果;②根据分层抽样,分别得出订单数在区间[)3,5和[)5,7的城市数,计算出不开展营销活动所得利润,以及开展营销活动所得利润,即可得出结果;(2)根据题意,由正态分布,先求出随机抽取1个城市的外卖订单数在区间(]12.16,19.44内的概率为0.47725P =,得到抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的概率为()()1001k kk P X k C P P ==-,为使其最大,列出不等式组求解,即可得出结果. 【详解】(1)①由频率分布表可得,样本平均数为40.0460.0680.1100.1μ=⨯+⨯+⨯+⨯120.3140.2160.1180.08200.0212.16+⨯+⨯+⨯+⨯+⨯=,所以()212.16,3.64ZN ,因此()()4.8815.82P Z P Z μσμσ<≤=-<≤+()()()111220.95450.68270.8186222P Z P Z μσμσμσμσ=-<≤++-<≤+=+=, 由题意,可得()6,0.8186XB ,所以X 的数学期望为()60.8186 4.91165E X =⨯=≈;②由分层抽样知,这100个城市中每月订单数在区间[)3,5内的有0.04100400.040.06⨯=+个,则每月订单数在区间[)5,7内的有0.06100600.040.06⨯=+个,若不开展营销活动,则一个月的利润为404560652600⨯⨯+⨯⨯=(万元), 若开展营销活动,则一个月的利润为()1009522700⨯⨯-=(万元),因此M 外卖在这100个城市中开展营销活动将比不开展营销活动每月多盈利100万元; (2)因为()()()112.1619.442222P Z P Z P Z μμσμσμσ<≤=<≤+=-<≤+ 0.47725=,即随机抽取1个城市的外卖订单数在区间(]12.16,19.44内的概率为0.47725P =, 则从全国开展M 外卖业务的所有城市中随机抽取100个城市,抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的概率为()()1001kk kP X k C P P ==-,为使若抽到K 个城市的M 外卖订单数在区间(]12.16,19.44内的可能性最大,只需()()()()1009911100100100101111001001111k k k k k k k k k k k k C P P C P P C P P C P P --++----⎧⋅⋅-≥⋅⋅-⎪⎨⋅⋅-≥⋅⋅-⎪⎩, 即()()11001001111001001111k k k k k k k k k k kk A A P P A A A A P P A A +++---⎧⋅-≥⋅⎪⎪⎨⎪⋅≥⋅-⎪⎩,即100111011k P P k k P P k -⎧-≥⋅⎪⎪+⎨-⎪⋅≥-⎪⎩,解得1011101P k P -≤≤, 则47.2022548.20225k ≤≤, 又k 为整数,所以48k =. 【点睛】关键点点睛:本题主要考查正态分布求指定区间的概率,考查由二项分布的概率计算公式求概率的最值,解题关键在于熟记正态分布的对称性,二项分布的概念以及二项分布的概率计算公式,考查学生的计算能力,属于中档题. 23.(1)2027;(2)分布列见解析,2209E ζ=. 【分析】(1)利用独立重复试验的概率公式可求得所求事件的概率;(2)由题意可知,随机变量ζ的可能取值有0、10、20、25、40,计算出随机变量ζ在不同取值下的概率,可得出随机变量ζ的分布列,由此可求得随机变量ζ的数学期望值. 【详解】(1)设X 为射手3次射击击中目标的总次数,则23,3XB ⎛⎫⎪⎝⎭. 故()()()23233322220223133327P X P X P X C C ⎛⎫⎛⎫⎛⎫≥==+==⋅⋅-+⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,所求概率为2027; (2)由题意可知,ζ的所有可能取值为0、10、20、25、40, 用()1,2,3i A i =表示事件“第i 次击中目标”,则()()31100327P P X ζ⎛⎫===== ⎪⎝⎭,()()2132221011339P P X C ζ⎛⎫====⋅⋅-= ⎪⎝⎭,()()12321242033327P P A A A ζ===⨯⨯=,()()()82522027P P X P ζζ===-==, ()()328403=327P P X ζ⎛⎫==== ⎪⎝⎭.故ζ的分布列如下表所示:因此,随机变量的数学期望为1648822001020254027272727279E ζ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查利用独立重复试验的概率公式计算事件的概率,同时也考查了随机变量分布列与数学期望的求解,考查计算能力,属于中等题. 24.(1)详见解析;(2)选择延保方案一较合算. 【分析】(1)X 所有可能的取值为0,1,2,3,4,5,6,计算概率得到分布列. (2)分别计算所需费用的分布列,计算数学期望,比较大小得到答案. 【详解】 (1)0515010p ==;1202505p ==;2101505p ==;31535010p ==. X 所有可能的取值为0,1,2,3,4,5,6.111(0)1010100P X ==⨯=,122(1)210525P X ==⨯⨯=,22111(2)2555105P X ==⨯+⨯⨯=,131211(3)2210105550P X ==⨯⨯+⨯⨯=,11327(4)25510525P X ==⨯+⨯⨯=,133(5)251025P X ==⨯⨯=,339(6)1010100P X ==⨯=, ∴X 的分布列为:(2)选择延保方案一,所需费用1元的分布列为:17009001100130015001000100502525100EY =⨯+⨯+⨯+⨯+⨯=(元). 选择延保方案二,所需费用2Y 元的分布列为:2100011001200103010025100EY =⨯+⨯+⨯=(元). ∵12EY EY <,∴该工厂选择延保方案一较合算. 【点睛】本题考查了分布列,数学期望,意在考查学生的计算能力和应用能力. 25.(1)1116(2)4个 【分析】(1)由独立重复实验的概率公式结合题意计算即可得解;(2)按照建设3个车间、4个车间、5个车间讨论,分别求出对应的分布列和期望,比较期望大小即可得解. 【详解】(1)由题意每月需求量在50~ 100万件的概率为0.5,则由独立重复实验概率公式可得所求概率223142344441111111112222216P C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+= ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; (2)(i )当建设3个车间时,由于需求量在50万件以上,此时的净利润Y 的分布列为:则(万元);(ii )当建设4个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有1个车间闲置,此时的净利润150035004000Y =⨯-=;需求量100x ≥时,则4个车间正常运行,此时的净利润150046000Y =⨯=; 则Y 的分布列为:则(万元)(iii )当建设5个车间时,需求量50100x ≤<时,则有3个车间正常运行时,会有2个车间闲置,此时的净利润1500350023500Y =⨯-⨯=; 需求量100200x ≤<时,则4个车间正常运行,会有1个车间闲置, 此时1500460015400Y =⨯-⨯=;需求量200x ≥时,则5个车间正常运行,此时的净利润150057500Y =⨯=; 则Y 的分布列为:则4870=(万元) 综上所述,要使该工厂商品A 的月利润为最大,应建设4个生产线车间. 【点睛】本题考查了独立重复实验概率公式的应用,考查了离散型随机变量期望的求解与应用,属于中档题.26.(1)17.4;(2)(i )14.77千元(ii )978位 【分析】(1)用每个小矩形的面积乘以该组中点值,再求和即可得到平均数; (2)(i )根据正态分布可得:0.6827()0.50.84142P X μσ>-=+≈即可得解;(ii )根据正态分布求出每个农民年收入不少于12.14千元的事件概率为0.9773,利用独立重复试验概率计算法则求得概率最大值的k 的取值即可得解. 【详解】(1)由频率分布直方图可得:120.04140.12160.28180.36200.1220.06240.0417.4x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;(2)(i )由题()~17.4,6.92X N ,0.6827()0.50.84142P X μσ>-=+≈,所以17.4 2.6314.77μσ-=-=满足题意,即最低年收入大约14.77千元;(ii )0.9545(12.14)(2)0.50.97732P X P X μσ≥=≥-=+≈, 每个农民年收入不少于12.14千元的事件概率为0.9773,记这1000位农民中的年收入不少于12.14千元的人数为X ,()1000,0.9773X B 恰有k 位农民中的年收入不少于12.14千元的概率()()100010000.997310.9973k k k P X k C -==-()()()()10010.97731110.9773P X k k P X k k =-⨯=>=-⨯-得10010.9773978.2773k <⨯=, 所以当0978k ≤≤时,()()1P X k P X k =-<=,当9791000k ≤≤时,()()1P X k P X k =->=,所以这1000位农民中的年收入不少于12.14千元的人数最有可能是978位.【点睛】此题考查频率分布直方图求平均数,利用正态分布估计概率,结合独立重复试验计算概率公式求解具体问题,综合性强.。
高中数学第一章《计数原理》单元测试题新人教A版选修2-3

▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚 =^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌第一章计数原理单元测试题一、选择题(本大题共12小题,每小题 4分,共 48分)1.5位同 学报名参加两个课外活动小组,每位同 学限报其中 的一个小组,则不同 的报名方法共有( A .10种 B .20种 C .25种 D .32种 )2.甲、乙、丙 3位同 学选修课程,从 4门课程中,甲选修 2门,乙、丙各选修 3门,则不同 的选修方案共有A .36种B .48种C.96种D.192种3.记者要为 5名志愿者和他们帮助 的2位老人拍照,要求排成一排, 2位老人相邻但不排在两端,不同 的排法共有( A. 1440种 C. 720种 )B. 960种 D. 480种4.某城市 的汽车牌照号码由 2个英文字母后接 4个数字组成,其中 4个数字互不相同 的牌照号码共有()2A. C 1410 2 26 410 A个个B. D.A A 个 个262C. C 1 1042 4 A 1026265.从 5位同 学中选派 4位同 学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有 参加,星期六、星期日各有 1人参加,则不同 的选派方法共有 2人(A)40种 (B) 60种(C) 100种 (D) 120种6.由数字 0,1, 2,3,4,5可以组成无重复数字且奇偶数字相间 的六位数 的个数有 ( )A.72B.60C.48D.527.用 0,1, 2,3,4组成没有重复数字 的全部五位数中,若按从小到大 的顺序排列,则数字 ( )个数 . 12340应是第A.6B.9C.10D.88.AB 和 CD 为平面内两条相交直线, AB 上有 m 个点, CD 上有 n 个点,且两直线上各有一个与交点重合,则 以这 m+n-1个点为顶点 的三角形 的个数是( )1 m2 1 n 2 m1 m2 1 n 1 2 m1 m 12 1 n 2 m1 m 1 21 n 1 m 12A. C CnC CC CnC CC C nC CD. C C n C CB.C.10a a x a x 2 a x 10 10,则9.设 2 x0 1 222a a 2a 10 a a 21a 9的值为 ( )A.0B.-1C.1D.10. 2006年世界杯参赛球队共 32支,现分成 8个小组进行单循环赛 ,决出 16强(各组的前 2名小组出线 ),这 16个队按照确定的程序进行淘汰赛赛进行的总场数为 ( ),决出 8强,再决出 4强,直到决出冠、亚军和第三名、第四名,则比A.64B.72C.60D.56511.用二项式定理计算 9.98,精确到 1 的近似值为 ( )A.99000B.99002C.99004D.9900512.从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为()A.120B.240C.360D.72二、填空题(本大题共 4小题,每小题 4分,共 16分)13.今有 2个红球、 3个黄球、 4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答).14.用数字 0,1,2,3, 4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).3 15.若(2 x + 1 n) 的展开式中含有常数项,则最小的正整数n等于. x16.从班委会 5名成员中选出 3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 _____种。
高中数学人教A版选修2-3《第1章_计数原理》同步试卷(有答案)

人教A 版选修2-3《第1章 计数原理》同步试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 若A m 5=2A m 3,则m 的值为( )A.3B.5C.7D.62. 一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.74B.40C.84D.2003. 从甲、乙、丙、丁4名同学中选出3名同学,分别参加3个不同科目的竞赛,其中甲同学必须参赛,不同的参赛方案共有( )A.18种B.24种C.21种D.9种4. (x +2)2(1−x)5中x 7的系数与常数项之差的绝对值为( )A.3B.5C.0D.25. 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A.C 1412A 124A 84B.C 1412C 124C 84C.C 1412C 124C 84A 33D.C 1412C124C84A 336. 在二项式(2√x +√x 4)n 的展开式中,前三项的系数成等差数列,则该二项式展开式中x −2项的系数为( )A.4B.1C.8D.167. 为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为( )A.36B.12C.24D.488. 4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( )A.36种B.24种C.60种D.48种9. 已知直线ax+by−1=0(a,b不全为0)与圆x2+y2=50有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有()A.72条B.66条C.78条D.74条10. 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.C82A66B.C82A32C.C82A52D.C82A62二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个,其中1,3,5三个数字互不相邻的六位数有________个.)6的展开式中x2的系数为A,常数项为B,若B=4A,则a=________.设二项式(x−ax某运动队有5对老搭档运动员,现抽派4名运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门,若同学甲必选物理,则甲的不同选法种数为________,乙丙两名同学都选物理的概率是________.在二项式(√2+x)9的展开式中,常数项是________;系数为有理数的项的个数是________.高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,3个音乐节目恰有2个节目连排,则不同排法的种数是________.在(4−3x)n的展开式中,各项系数的和为________;若展开式中第3项与第7项的二项式系数相等,则展开式中所有偶数项的二项式系数之和为________.三、解答题(本大题共5小题,共74分)已知f(x)=(1+x)m+(1+x)n(m, n∈N)的展开式中的x系数为19.(1)求f(x)展开式中的x2项系数的最小值;(2)当x2项系数最小时,求f(x)展开式中x7项的系数.设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?)n的展开式中的第二项和第三项的系数相等.已知(x+2√x(1)求n的值;(2)求展开式中所有二项式系数的和;(3)求展开式中所有的有理项.用0,1,2,3,4这五个数字组成无重复数字的自然数.(Ⅰ)在组成的三位数中,求所有偶数的个数;(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?参考答案与试题解析人教A版选修2-3《第1章计数原理》同步试卷一、选择题(本大题共10小题,每小题4分,共40分)1.【答案】此题暂无答案【考点】排列及于列数缺式【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】计数正知的应用【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】排列及于列数缺式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】计数正知的应用【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】计数正知的应用直线与都连位置关系【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】排列水使合及原判计数问题分步乘正且数原理【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】古典因顿二其比率计算公式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共5小题,共74分)【答案】此题暂无答案【考点】二项式射理的应题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项正开形的来定恰与特定系数二项式射理的应题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答。
人教A版选修2-3第一章计数原理综合测试题

解:根据题意,5本相同的书和3本相同的笔记本发给8名学生,每人1本,需要在8人中任选3人,领取笔记本,剩下5人领取书即可,
则有 种不同的分法,
故选:B
【点睛】
此题考查排列组合的应用,考查组合数公式的应用,属于基础题.
3.D
【分析】
在所给的式子中,令 可得选项.
【详解】
在 中,令 得 ,
故选:D.
A.1B.32C.81D.243
4.用数字1,2,3,4组成无重复数字的四位数,其中奇数的个数为()
A.8B.12C.16D.24
5.把3封信投入4个邮桶,共有不同的投法数为()
A. B. C. D.
6.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()再将丙、丁捆绑在一起当一个元素排,再排乙、戊.
【详解】
当甲排在第一位时,共有 种发言顺序,
当甲排在第二位时,共有 种发言顺序,
所以一共有 种不同的发言顺序.
故选:C.
【点睛】
方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:
(1)相邻问题采取“捆绑法”;
22.已知 .
(1)求 ;
(2)求 .
参考答案
1.A
【分析】
先写出二项展开式通项公式,再根据 次数为零解得对应常数项.
【详解】
的展开式的通项公式为: .
令 ,解得 ,所以 的展开式的常数项为 ,
故选:A
【点睛】
本题考查二项展开式,考查基本求解能力,属基础题.
2.B
【分析】
根据题意,分析可得只需在8人中任选3人,领取笔记本,剩下5人领取书即可,由组合数公式计算可得答案
(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .163.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.已知,a b 为实数,随机变量X ,Y 的分布列如下:若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7106.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .257.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.28.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==10.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2511.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.一只青蛙从数轴的原点出发,当投下的硬币正面向上时,它沿数轴的正方向跳动两个单位;当投下的硬币反面向上时,它沿数轴的负方向跳动一个单位,若青蛙跳动4次停止,设停止时青蛙在数轴上对应的坐标为随机变量X ,则()E X =______. 15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.17.设平面上的动点P(1,y)的纵坐标y 等可能地取-用ξ表示点P 到坐标原点的距离,则随机变量ξ的数学期望Eξ=_________18.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记X 为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量X 的分布列和数学期望EX .23.2019年以来,全国发生多起较大煤矿生产安全事故,事故给人民群众的财产和生命造成重大损失.尽管国务院安委办要求对事故责任人从严查处.但是有的煤矿企业领导人仍然不能够对安全生产引起足够重视.不久前,某煤矿发生瓦斯爆炸事故,作业区有若干矿工人员被困.若救援队从入口进入之后有1L ,2L 两条巷道通往作业区如下图所示,其中1L 巷道有1A ,2A ,3A 三个易堵塞点,且各易堵塞点被堵塞的概率都是12;2L 巷道有1B ,2B 两个易堵塞点,且1B ,2B 易堵塞点被堵塞的概率分别为14,35,不同易堵塞点被堵塞或不被堵塞互不影响.(1)求1L 巷道中的三个易堵塞点至少有两个被堵塞的概率;(2)若2L 巷道中两个易堵塞点被堵塞个数为X ,求X 的分布列及数学期望; (3)若1L 巷道中三个易堵塞点被堵塞的个数为Y ,求Y 的数学期望.24.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求:(1)任选一道灯谜,恰有一个人猜对的概率;(2)任选一道灯谜,甲、乙都没有猜对的概率.25.甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是23和35,每次投篮相互独立互不影响.(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.26.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值()E X.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用对立事件和独立事件的概率求解.【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p=⨯-⨯-+⨯-⨯-,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.6.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.7.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A 【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.10.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.2【分析】列举出所有的可能出现的情况硬币4次都反面向上则青蛙停止时坐标为硬币3次反面向上而1次正面向上硬币2次反面向上而2次正面向上硬币1次反面向上而3次正面向上硬币4次都正面向上做出对应的坐标和概解析:2 【分析】列举出所有的可能出现的情况,硬币4次都反面向上,则青蛙停止时坐标为14x =-,硬币3次反面向上而1次正面向上,硬币2次反面向上而2次正面向上,硬币1次反面向上而3次正面向上,硬币4次都正面向上,做出对应的坐标和概率,算出期望. 【详解】所有可能出现的情况分别为硬币4次都反面向上,则青蛙停止时坐标为14x =-,此时概率1116p =; 硬币3次反面向上而1次正面向上,则青蛙停止时坐标为21x =-,此时概率33241141=22164p C ⎛⎫=⨯⨯= ⎪⎝⎭;硬币2次反面向上而2次正面向上,则青蛙停止时坐标为32x =,此时概率222341163=22168p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭硬币1次反面向上而3次正面向上,则青蛙停止时坐标为45x =,此时概率341141141=22164p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;硬币4次都正面向上,则青蛙停止时坐标为58x =,此时标率405411216p C ⎛⎫=⨯= ⎪⎝⎭.1122334455()2E X x p x p x p x p x p ∴=++++=故答案为:2 【点睛】本题考查离散型随机变量的分布列和期望,考查学生分析问题的能力和计算求解能力,难度一般.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的 解析:27-【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C CP X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C CP X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.17.【解析】由题意随机变量ξ的的值分别为321则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=点睛:数学期望是离散型随机变量中重要的数学概念反映随机变量取值的平均水平求解离散型随机变量的分布列数学 解析:115【解析】由题意,随机变量ξ的的值分别为3,2,1,则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=122111235555⨯+⨯+⨯=. 点睛:数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.18.【解析】试题分析:因为随机变量服从正态分布所以因为所以考点:正态分布解析:0.1587【解析】试题分析:因为随机变量X 服从正态分布()2,1N ,所以()()31P X >=P X <,因为()()()11331P X <+P ≤X ≤+P X >=,所以()()1310.68260.15872P X >=-=. 考点:正态分布.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为 X 2345P115 215 15 35∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 22.(1)25;(2)分布列见解析,65(1)由频率分布直方图可求出抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人,再根据古典概型概率公式可得结果; (2)由已知得随机变量X 的可能取值为0,1,2,3,X ~B (3,25),由此能求出随机变量X 的分布列和数学期望EX . 【详解】 (1)根据题意,参加社区服务在时间段[)90,95的学生人数为2000.06560⨯⨯=人; 参加社区服务在时间段[)95,100的学生人数为2000.02520⨯⨯=人;∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. ∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率为8022005P ==. (2)由(1)可知,从全市高中学生中任意选取1人,其参加社区服务时间不少于90小时的概率为25,X ~B (3,25),由已知得,随机变量X 的可能取值为0,1,2,3, 则()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 随机变量X 的分布列为:∴()2754368601231251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概型概率的求法,考查离散型随机变量二项分布的分布列和数学期望,属于中档题. 23.(1)12;(2)分布列见解析;期望为1720;(3)32. 【分析】(1)根据独立事件的概率公式计算,至少有两个被堵塞含两个被堵塞和三个被堵塞两种情形,分别计算相加可得;(2)X 的所有可能取值为0,1,2.,分别计算其概率得分布列,由期望公式得期望; (3)Y 的所有可能取值为0,1,2,3,计算出各概率,然后由期望公式计算期望.解:(1)据题设知,所求概率213233311112222p C C ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12=. (2)X 的所有可能取值为0,1,2.133(0)114510P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,131311(1)11454520P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,133(2)4520P X ==⨯=, 所以随机变量X 的分布列为所以()01210202020E X =⨯+⨯+⨯=. (3)Y 的所有可能取值为0,1,2,3.303111(0)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,213113(1)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,223113(2)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,333111(3)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以13313()012388882E Y =⨯+⨯+⨯+⨯=. 【点睛】本题考查相互独立事件的概率公式,考查随机变量的概率分布列数学期望,考查了学生的数据处理能力,运算求解能力,属于中档题. 24.(1)1325.(2)625【分析】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”,求出()p A ,()p B ,任选一道灯谜,恰有一个人猜对的概率为:()()()()()P AB AB P A P B P A P B +=+,由此能求出结果.(2)任选一道灯谜,甲、乙都没有猜对的概率为()()()P AB P A P B =,由此能求出结果. 【详解】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”, 则P (A )123205==,P (B )82205==, ∴任选一道灯谜,恰有一个人猜对的概率为: P (A B AB +)=P (A )P (B )+P (A )P (B )32155⎛⎫=⨯-+ ⎪⎝⎭(135)213525⨯=.(2)任选一道灯谜,甲、乙都没有猜对的概率为: P (AB )=P (A )P (B )=(135)(125-)625=【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题. 25.(Ⅰ)1315;(Ⅱ)分布列见解析,1915;(Ⅲ)40243,103. 【分析】(Ⅰ)先求出甲乙两人都未投中的概率,再根据对立事件的概率进行计算即可; (Ⅱ)随机变量X 的可能取值为0,1,2,然后根据相互独立事件的概率逐一求出每个X 的取值,求得相应的概率,得出分布列,进而求出数学期望; (Ⅲ)随机变量2(5,)3B ξ,根据二项分布的性质求概率和数学期望即可.【详解】(Ⅰ)设甲投中为事件B ,乙投中为事件C ,则()()1235P B P C ==,, 所以()()()1213113515P A P B P C =-=-⨯=. (Ⅱ)随机变量X 的可能取值为0,1,2, 则122(0)3515P X ==⨯=, 22137(1)353515P X ==⨯+⨯=,232(2)355P X ==⨯=, 所以随机变量X 的分布列为所以数学期望()0121515515E X =⨯+⨯+⨯=. (Ⅲ)甲投篮5次,投中次数为ξ,可得随机变量2(5,)3B ξ,所以22352140()()33(243)2C P ξ==⋅⋅=, 所以随机变量ξ数学期望()210533E ξ=⨯=. 【点睛】本题考查独立事件的概率、相互独立事件的概率、离散型随机变量的分布列与数学期望,以及二项分布的数学期望计算,考查学生灵活运用知识的能力和运算能力. 26.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==; 22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力.。
人教A版高中数学选修23单元检测试题及答案共五份

人教A版高中数学选修2-3单元检测试题第一章计数原理一、选择题1.由1、2、3三个数字构成的四位数有().A.81个B.64个C.12个D.14个2.集合{1,2,3,4,5,6}的真子集共有().A.5个B.6个C.63个D.64个3.5个人排成一排,其中甲在中间的排法种数有().A.5 B.120 C.24 D.44.从5个人中选1名组长和1名副组长,但甲不能当副组长,不同的选法总数是().A.20 B.16 C.10 D.65.已知n=3!+24!,则n的个位数为().A.7 B.6 C.8 D.36.假设200件产品中有3件次品,现在从中任取5件,至少有2件次品的抽法数有().A.C23C3198B.C23C3197+C33C2197C.C5200-C4197D.C5200-C13C41977.从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有().A.168 B.45 C.60 D.1118.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则与原排列顺序不同的改变方法共有().A.70种B.126种C.175种D.210种9.nxx⎪⎭⎫⎝⎛22+展开式中只有第六项二项式系数最大,则展开式中第2项系数是( ).A.18 B.20 C.22 D.2410.在8312⎪⎭⎫⎝⎛x-x的展开式中的常数项是( ).A.7 B.-7 C.28 D.-28二、填空题11.有四位学生报名参加三项不同的竞赛,(1)每位学生都只报了一项竞赛,则有种不同的报名方法;(2)每项竞赛只许有一位学生参加,则有种不同的参赛方法;(3)每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则有种不同的参赛方法.12.4名男生,4名女生排成一排,女生不排两端,则有种不同排法.13.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲不能从事翻译工作,则选派方案共有________种.14.已知92⎪⎪⎭⎫⎝⎛x-xa的展开式中,x3的系数为49,则常数的a值为.15.在二项式(1-2x)n的展开式中,偶数项的二项式系数之和为32,则展开式的第3项为.16.将4个颜色互不相同的球放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有种.三、解答题17.7人排成一排,在下列情况下,各有多少种不同排法:(1)甲不排头,也不排尾;(2)甲、乙、丙三人必须在一起;(3)甲、乙之间有且只有两人;(4)甲、乙、丙三人两两不相邻;(5)甲在乙的左边(不一定相邻).18.某厂有150名员工,工作日的中餐由厂食堂提供,每位员工可以在食堂提供的菜肴中任选2荤2素共4种不同的品种,现在食堂准备了5种不同的荤菜,若要能保证每位员工有不同选择,则食堂至少还需准备不同的素菜品种多少种?19.求(1+x)2(1-x)5的展开式中x3的系数.20.7个人到7个地方去旅游,一人一个地方,甲不去A地,乙不去B地,丙不去C地,丁不去D地,共有多少种旅游方案?参考答案一、选择题1.A解析:每位数都有3种可能取法,34.故选A.2.C解析:26-1=63.故选C.解析:1×44A =24.故选C . 4.B解析:甲当副组长选法有14A 种,故符合题意的选法有25A -14A =16.故选B .5.B解析:由于24! 为从1开始至24的24个数连乘,在这24个数中有10,所以24!的个位数为0,又3!的个位数为6,所以3!+24! 的个位数为6.故选B .6.B解析:200件产品中有3件次品,197件正品.取5件,至少有2件次品,即3件正品2件次品或2件正品3件次品,抽法数有23C 3197C +33C 2197C .故选B .7.D解析:女生选1,2,3人,男生相应选3,2,1人,选法有13C 36C +23C 26C +1633C C =111.故选D .8.A解析:氨基酸有37C 种选法,选到的3种氨基酸与原排列顺序不同的排法有33A -1种,所以与原排列顺序不同的改变方法数共有37C (33A -1)=175.故选C .9.B解析:n =10,所求系数为110C ×2=20.故选B . 10.A解析:T r +1=34-88-838821-C =12C rr r r rr -r x x -x )(⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛,常数项时348r -=0,r =6,所以T 7=68C (-1)626-8=7.故选A .二、填空题 11.(1)81.解析:4位学生每人都有3项竞赛可以选择,3×3×3×3=81. (2)64.解析:3项竞赛每项都有4位学生可以选择,4×4×4=64. (3)24.解析:4位学生选3人参加3项竞赛,34A =24. 12.8 640.解析:8个位置,先排女生不排两端有46A 种排法,再排男生有44A 种排法,所以最后排法有46A ·44A =8 640.13.300.解析:选到甲时3×35A ,不选甲时45A ,所以选派方案种数为:3×35A +45A =300.解析:T r +1=9-239-999C 1=2-C rr r r rr-r x a -x x a )(⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛,923-r =3, 则r =8,(-1)8a 9-82-819C =94,a =64. 15.60x 2.解析:∵偶数项的二项式系数之和为32,∴二项式系数之和为2n =64,∴n =6,T 3=26C (-2x )2=60x 2.16.10.解析:分两种情况:①1号盒放1个球,2号盒放3个球,有14A 种;②1号盒放2个球,2号盒放2个球,有24C 种. 14C +24C =10.三、解答题17.解:(1)甲有中间5个位置供选择,有15A 种排法,其余6人的排法有66A =720, ∴符合题意的排法共有6615A A =3 600种;(2)先排甲、乙、丙三人,有33A 种排法,再把该三人当成一个整体与另四人排,有55A 种排法, ∴符合题意的共有5533A A =720种排法;(3)排在甲、乙之间的2个人的选法有25A ,甲、乙可以交换有22A 种情况,把该四人当成一个整体与另三人排,有44A 种排法,∴符合题意的共有442225A A A =720种排法;(4)先排甲、乙、丙之外的四人,有44A 种排法,四人形成五个空位,甲、乙、丙三人插入这四人中间或两头,有35A 种排法,∴符合题意的共有4435A A =1 440种排法;(5)其余人先排,有57A =2 520种排法,剩余二位置甲、乙排法唯一,故共2 520种排法.18.解:设要准备素菜x 种,则225C C x ≥150,解得x ≥6,即至少要准备素菜6种. 19.解:(1+x )2的通项公式T r +1=r 2C ·x r,r ∈{0,1,2}.(1-x )5的通项公式T k +1=k 5C ·(-x )k =(-1)k k 5C x k , k ∈{0,1,2,3,4,5}.令k +r =3,则⎪⎩⎪⎨⎧2==1r k 或⎪⎩⎪⎨⎧12==r k 或⎪⎩⎪⎨⎧03==r k .从而x 3的系数为5 =C C +C -C 35251215-. 20.解:用间接法,先求不满足要求的方案数.(1)若甲、乙、丙、丁4人分别去A ,B ,C ,D ,而其余的人不限,选法有33A =6种.(2)若甲、乙、丙、丁中有3人去各自不能去的地方旅游,有34C 种,而4人中剩下1人去的地方是13C 种,其余的人有33A 种,所以共有331334A C C =72种.(3)若甲、乙、丙、丁4人中有2人去各自不能去的地方旅游,有24C 种,余下的5个人分赴5个不同的地方的方案有55A 种,但是其中又包括了有限制条件的四人中的两人(不妨设甲、乙两人)同时去各自不能去的地方共33A 种,和这两人中有一人去了自己不能去的地方有23313A A 种,所以共有24C (55A -33A -23313A A )=468种.(4)若甲、乙、丙、丁4人中只有1人去了自己不能去的地方旅游,有14C 种方案,而余下的六个人的旅游方案仍与(3)想法一致,共有14C [66A -23C (44A -33A )-13C (55A -33A -23313A A )]=1 728种.所以满足以上情况的不同旅游方案共有77A -(6+72+468+1 728)=2 766种.第二章 随机变量及其分布一、选择题1.从集合{1,2,3,4,5}中任取2个元素,取到偶数的个数为随机变量,则此随机变量的取值为( ). A .2,4 B .0,2 C .1,2 D .0,1,22.已知随机变量X 的分布列如下,则X 取负数的概率为( ).A .0.1B .0.4C .0.5D .0.043.设随机变量X 等可能的取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ). A .n =3 B .n =4 C .n =9D .n =104.已知随机变量X 服从两点分布,EX =0.7,则其成功概率为( ). A .0 B .1C .0.3D .0.75.在15件产品中,有7件为次品,现从中任意选10件,用X 表示这10件产品中的次品数,下列概率等于10156847C C C 的是( ).A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)6.某地区干旱的概率为0.1,干旱且同时发生蝗灾的概率为0.01. 若此地区现处于干旱中,则发生蝗灾的概率为( ).A .0.11B .0.1C .0.001D .0.097.若X ~N (μ,σ2),P (μ-σ<X ≤μ+σ)=0.7,则P (X ≤μ-σ)=( ). A .0.15 B .0.3 C .0.35D .0. 658.A ,B ,C 三人射击一次击中目标概率分别为0.2、0.6、0.7,现让三人同时射击,恰有1人击中目标的概率为( ).A .0.392B .0.608C .0.084D .0.0969.设随机变量X 服从分布B (n ,p ),且EX =1.6,DX =1.28,则( ).A .n =8,p =0.2B .n =4,p =0.4C .n =5,p =0.32D .n =7,p =0.4510.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ).A .0.153 6B .0.180 8C .0.563 2D .0.972 8二、填空题11.100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是 .12.设随机变量X 的概率分布是P (X =k )=k5a ,a 为常数,k =1,2,3,则a =_________.13.若随机变量X 服从正态分布,正态曲线上最高点的坐标是⎪⎭⎫⎝⎛π212 ,,则X 的平均值是_____,标准差是________.14.在10个球中有6个红球,4个白球,不放回的依次摸出2个球,在第一次摸出红球的条件下,第2次也摸出红球的概率是__________.15.甲,乙两个工人在同样的条件下生产同一产品,日产量相等,每天出废品的情况如下表所列:则______生产的产品质量好一些.16.某机床加工1个零件得到正品的概率是0.9 . 现连续加工4个,且各次加工的结果相互之间没有影响.有下列结论:①第3次加工得正品的概率是0.9; ②恰好加工出3个正品的概率是0.93×0.1; ③至少加工出1个正品的概率是1-0.14.其中正确结论的序号是 (写出所有正确结论的序号). 三、解答题17.从4名男生和2名女生中任选3人参加演讲比赛.设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的数学期望;(3)求“所选3人中女生人数X ≤1”的概率.18.甲、乙两同学参加100 m 跑步测试.已知他们跑步成绩相互间不受影响,能得到优秀的概率分别为0.8和0.9,求:(1)2人都得到优秀成绩的概率; (2)有且仅有1人优秀的概率; (3)至多有1人优秀的概率.19.抛掷一颗骰子两次,(1)设随机变量X =⎪⎩⎪⎨⎧ 求X 的分布列、均值和方差;(2)在第一次掷得的点数是偶数的条件下,求第二次掷得的点数也是偶数的概率.0, 两次得到的点数不同,1, 两次得到的点数相同,20.甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32, (1)记甲击中目标的次数为X ,求X 的概率分布及EX ; (2)求乙恰好击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率.参考答案一、选择题 1.D解析:可以不取偶数,在1,3,5中任取两个;也可以在偶数2,4中任取一个,再在1,3,5中任取一个;还可以取偶数2,4.所以取到偶数的个数是0个、1个或2个.故选D .2.C解析:0.1+0.4=0.5. 故选C . 3.D解析:由“等可能”知X 取每一个值的概率都为0.1.故选D . 4.D解析:EX =0×(1-p )+1×p =0.7,所以p =0.7.故选D . 5.C解析:概率算式表示的事件为:选中4件次品,6件正品.故选C . 6.B解析:记干旱、蝗灾的事件为A ,B ,P (B |A )=)()(A P AB P =10010..=0.1.故选B . 7.A解析:P (X ≤μ-σ或X >μ+σ)=1-0.7,由正态曲线对称性,P (X ≤μ-σ)=0.15.故选A . 8.A解析:P =P (C B A )+P (C B A )+P (C B A )=0.2·0.4·0.3+0.8·0.6·0.3+0.8·0.4·0.7=0.392.故选A .9.A解析:⎪⎩⎪⎨⎧ 1.28=-11.6)(p np np =⇒⎪⎩⎪⎨⎧0.2=8p n =. 故选A .10.D解析:P =04C 0.200.84+14C 0.210.83+24C 0.220.82=0.972 8.故选D . 二、填空题 11.9995. 解析:剩下99中有95件正品,故第2次抽出正品的概率是9995.12.12531.解析:由a 51+a 52+a 53=1得 a =12531.13.2;1.解析:正态曲线上最高点的坐标是⎪⎭⎫⎝⎛π21σμ ,,故μ=2,σ=1.14.59.解析:设第1次摸出红球为事件A , 第2次摸出红球为事件B ,P (B |A )=)()(A n AB n =3054=59. 15.乙.解析:E (甲)=1>E (乙)=0.9,故乙生产的产品质量好一些. 16.①③.解析:由于各次加工的结果相互之间没有影响,所以①正确;恰好加工出3个正品的概率=34C 0.93×0.1,所以②错误;至少加工出1个正品的对立事件是加工出4个零件全是次品,所以③正确.故正确结论的序号是①③.三、解答题 17.(1)P (X =0)=3634C C =0.2,P (X =1)=361224C C C =0.6,P (X =2)=362214C C C =0.2,∴ X 分布列为:(2)EX =0×0.2+1×0.6+2×0.2=1.(3)“所选3人中女生人数X ≤1”的概率为P (X ≤1)=0.2+0.6=0.8. 18.(1)解:记“甲测试优秀”为事件A ,“乙测试优秀”为事件B , 2人都优秀的概率为:P (A ·B )=P (A )·P (B )=0.8×0.9=0.72. (2)有且仅有1人优秀的概率为:P (A B )+P (A B )=P (A )P (B )+P (A )P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)解法一:“至多有1人优秀”包括“有1人优秀”和“2人都不优秀”,故所求概率为 P =P (A ·B )+P (A ·B )+P (A ·B )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B )=0.02+0.08+0.18=0.28.解法二:“至多有1人优秀”的对立事件是“2人都优秀”,所求概率为 P =1-P (A ·B )=1-P (A )·P (B )=1-0.72=0.28.19.解:(1)两次得到的点数相同时,有6种情况,故P (X =1)=61=366, 由互斥事件概率公式得,P (X =0)=1-P (X =1)=65, 所以所求分布列是 EX =1×61+0×65=61, DX =61261-1⎪⎭⎫ ⎝⎛+65261-0⎪⎭⎫ ⎝⎛=365.(2)设第一次掷得点数是偶数的事件为A ,第二次掷得点数是偶数的事件为B ,所求概率为P (B |A )=)()(A P AB P =)()(A n AB n =189=21或P (B |A )=)()(A P AB P =3618369=21.20.解:(1)X ~B ⎪⎫ ⎛13 ,,X 的分布列为E (X )=0×81+1×83+2×83+3×81=1.5或E (X )=3×21=1.5.(2)乙恰好击中目标2次的概率为94=3132C 223⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛.(3)设甲恰好比乙多击中目标2次为事件A ,甲恰击中目标2次且乙恰击中目标0次为事件B ,甲恰击中目标3次且乙恰击中目标1次为事件C ,则:P (A )=P (B )+P (C )=92 81+271 83··=241.第三章 统计案例独立检验临界值表一、选择题1.下列4个针对回归分析的说法: ①解释变量与预报变量之间是函数关系; ②回归方程可以是非线性回归方程; ③估计回归方程时用的是二分法;④相关指数R 2越大,则回归模型的拟合效果越好. 其中正确的说法有( ). A .0个B .1个C .2个D .3个2.通过ê1,ê2,…,ên 来判断模型拟合的效果,这种分析称为( ). A .回归分析B .独立性检验分析C .残差分析D .散点图分析3.在研究施肥量和庄稼产量的关系时,若结果可以叙述为“施肥量解释了64%的产品变化,而随机误差贡献了剩余的36%”,则说明求得的相关指数R 2为( ).A .0.64B .0.36C .0.28D .0.144.在回归分析中,残差图中纵坐标为( ). A .残差B .样本编号C .解释变量D .预报变量5.以下哪个K 2的观测值k ,可以犯错误的概率不超过0.05的前提下,认为两个分类变量有关系.( ).A .k =1B .k =2C .k =3D .k =46.如果女大学生身高x (cm )与体重y (kg )的关系满足线性回归模型y =0.85x -88+e ,其中|e |≤4,如果已知某女大学生身高160 cm ,则体重预计不会低于( ).A .44 kgB .46 kgC .50 kgD .54 kg 7.某种产品的广告费支出与销售额(百万元)之间有如表的对应数据,则两者间的相关系数为( ).A .0.819B .0.919C .0.923D .0.958.为考察中学生的性别与是否喜欢看新闻节目之间的关系,在中学随机抽取了300名学生,得到如下列联表.你认为性别与是否喜欢看新闻节目之间有关系的把握,可以犯错误的概率不超过( ).A .1B .0.05C .0.01D .09.为研究变量x 和y 的线性相关性,甲、乙二人分别作了研究,两人计算知x 相同,y 也相同,则得到的两条回归直线( ).A .一定重合B .一定平行C .一定有公共点(x ,y )D .以上都不正确10.为观测某产品的回收率y 和原料有效成份含量x 之间的相关关系,计算8对观测值得:∑81= = i i x 52,∑81= 28= i i y 2,∑81= 278= i i x 4,∑81= 849= i i i y x 1,则y 与x 的回归直线方程是( ).A .y ˆ=11.47+2.62xB .y ˆ=-11.47+2.62xC .y ˆ=11.47x +2.62D .y ˆ=11.47x -2.62二、填空题11.三维柱形图中,主副对角线上两个柱形的高度 相差越大,两个分类变量有关系的可能性越大.12.有下列5个概念:①残差;②列联表;③相关系数;④散点图;⑤三维柱形图. 其中,在身高与体重的相关关系回归分析中可以用到的有 .13.在研究身高和体重的关系时,求得相关指数R 2≈______,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多.14.工人生产次品率(%)依连续劳动时间(分钟)变化的回归直线方程为 y ˆ=0.005 x +0.1,则连续劳动时间增加100分钟时,次品率预计增加_____%.15.回归方程yˆ=2.5ˆx +0.31在样本(4,1.2)处的残差为__________. 16.以模型y =c e k x 去拟合一组数据时,为了求出回归方程,设z =ln y ,将其变换后得到线性回归方程z =0.3 x +4,则c ,k 的值分别是_____和______.三、解答题17.调查在2~3级风的海上航行中70名乘客的晕船情况,在男人中有12人晕船,19人不晕船,在女人中有15人晕船,24人不晕船.(1)作出性别与晕船关系的列联表;(2)根据此资料,你是否认为在2~3级风的海上航行中女人比男人更容易晕船?18.测得两个相关变量的一组数据如下:(1)求x与y的线性相关系数r;(2)估计x=2时的y值.(保留4个有效数字)19.19.在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.(1)根据以上数据建立一个2×2的列联表;(2)根据所给的独立检验临界值表,你最多能有多少把握认为性别与休闲方式有关系?20.某无线通讯输入信号x与输出信号y的实验数据如下:(1)根据数据作散点图,并判断x与y之间是否呈线性相关关系;(2)若用二次曲线y=c1x2+c2拟合y和x之间的关系,试求出这个非线性回归方程.(保留到两位小数)参考答案一、选择题1.C解析:②④正确.故选C.2.C解析:根据残差分析的定义得.故选C.3.A解析:R2表示解释变量对于预报变量变化的贡献率.故选A.4.A解析:残差图是以残差为纵坐标,以任何其他指定的量为横坐标的散点图.故选A.5.D解析:查临界值表得.故选D . 6.A解析:身高x =160代入计算得:y ∈[44,52].故选A . 7.B解析:x =5,y =50,r =∑∑∑ni =i ni =i ni =i i y y x x y y x x 12121----)()())((=0.919.故选B .8.B解析:k =300(37×143-85×35)2122×178×72×228=4.514,查临界表可知.故选B .9.C解析:回归直线过样本点的中心.故选C . 10.A解析:x =6.5,y =28.5,∑∑∑∑∑∑∑81281281818181281+-+--=---=i =i i =i i =i i =i i =i i i =i i =i i xx xx yx x y y x y x x x y y x x bˆ828)())((=1 849-6.5×228-28.5×52+8×6.5×28.5478-2×6.5×52+8×6.52=2.62,x b ˆy =aˆ-=28.5-2.62×6.5=11.47. 所以y 与x 之间的回归直线方程为y ˆ=2.62 x +11.47.故选A . 二、填空题 11.乘积.解析:主副对角线上两个柱形的高度乘积相差越大, 即|ad -bc |越大. 12.①③④.解析:②⑤用于分类变量的独立性检验,①③④回归分析中可以用到. 13.0.64.解析:R 2表示解释变量对于预报变量的贡献率.身高解释了64%的体重变化, 故R 2≈0.64.14.0.5.解析:[0.005(x +100)+0.1]-(0.005 x +0.1)=0.5. 15.-9.11.解析:1.2-(2.5×4+0.31)=-9.11. 16.e 4;0.3.解析:z =ln y =k x +ln c =0.3x +4, ∴c =e 4,k =0.3. 三、解答题17.解:(1)列联表如下:(2)三维柱形图中,主副对角线上两个柱形的高度乘积之差为12×24-15×19=4,相差的数相对很小,所以我们没有理由说晕船与男女性别有关.18.解:(1)(建议利用Excel 软件计算)x -=0.22 45,y -=3.14,= 10=1∑1i i y -y x -x ))((8.155 3,∑10=12i i x -x )(=0.908 8,∑10=12i i y -y )(=73.207,∑∑10=10=1212i i i i y -y x -x )()(=8.156 725,r =∑∑∑ni =i i =i i =i i y y x x y y x x 121012101----)()())((=8.155 38.156 725=0.999 8. (2)由公式得∑∑1012101---=i =i i =i i x x y y x x b ˆ)())((=8.155 30.908 8=8.973, x b ˆy =aˆ-=3.14-8.975×0.224 5=1.125, 所以y 与x 之间的回归直线方程为y ˆ=1.125+8.973x . ∴ x =2时,可估计y 值为19.071≈19.07. 19.解:(1)列联表如下:(2)假设“休闲方式与性别无关”,由公式算得k =124(43×33-27×21)270×54×64×60≈6.201,比较P (K 2≥5.024)=0.025,所以有理由认为假设“休闲方式与性别无关”是不合理的,即在犯错误的概率不超过0.025的前提下认为“休闲方式与性别有关”.20.解:(1)散点图:在散点图中,样本点并没有分布在某个带状区域内,因此x 与y 之间不呈线性相关关系. (2)令t =x 2,则y 与t 的数据如下:t -=920.83,y -=9.4,= =1∑1i i y -y x -x ))((=472 77.5,∑=12i i x -x )(=4 703 021,=---=61261∑∑i =i i =i i x x y y x x bˆ)())((47 277.54 703 021=0.01,t b ˆy =aˆ-=9.4-0.01×920.83=0.20, 所以y 与t 之间的回归直线方程为y ˆ=0.01 t +0.20. 故y 和x 之间的非线性回归方程为y ˆ=0.01 x 2+0.20.期末测试题(一)考试时间:90分钟试卷满分:100分一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.抛掷两枚骰子,所得点数之和为X ,那么X =4表示的随机试验结果是( ). A .一枚是3点,一枚是1点.B .两枚都是2点.C .两枚都是4点.D .一枚是3点,一枚是1点或两枚都是2点. 2.(x -1)4+4(x -1)3+6(x -1)2+4x -3=( ). A .x 4B .x 4+1C .(x -2)4D .x 4+43.已知随机变量X 服从正态分布N (1,σ2),且P (0<X ≤1)=0.4,则且P (X >2)=( ). A .0. 4B .0.1C .0.6D .0.24.A ,B 两台机床同时加工零件,每生产一批数量较大的产品时,机床A 出0件、1件、2件、3件次品的概率分别是0.7、0.2、0.06、0.04,机床B 出0件、1件、2件、3件次品的概率分别是0.8、0.06、0.04、0.10,则下列说法正确的是( ).A .A 的平均次品数比B 多 B .B 的平均次品数比A 多C .平均次品数一样多,A 状态较稳定D .平均次品数一样多,B 状态较稳定5.为研究某两个分类变量是否有关系,根据调查数据计算得到k ≈15.968,因为P (K 2≥10.828)=0.001,则断定这两个分类变量有关系,那么这种判断犯错误的概率不超过( ).A .0.1B .0.05C .0.01D .0.0016.由0,1,2,3这四个数字可以组成没有重复数字且不能被5整除的四位数的个数是( ). A .24个B .12个C .6个D .4个7.有两排座位,前、后排各有10个位置,有2名同学随机在这两排座位上就坐,则在第一个人坐在前排的情况下,第二个人坐在后排的概率为( ).A .1019B .519C .12D .19208.两位运动员投篮,投中的概率分别为0.6和0.7,每人各投2次,投中次数相等的概率为( ). A .0.248 4 B .0.25C .0.9D .0.392 49.在六棱锥各棱所在的12条直线中,异面直线的对数共有( ). A .12 B .24 C .36 D .4810.有5个身高不等的学生站成一排合影,从中间到两边一个比一个矮的排法有( ). A .6种 B .8种C .10种D .12种11.甲、乙、丙三位学生各自独立完成一份自我检测题,他们做及格的概率分别为0.8、0.6、0.7,三人各答一次,则三人中只有一人答及格的概率为( ).A .0.15B .0.336C .0.188D .以上都不对12.用5种不同颜色给图中标号的4部分涂色,每部分只涂一种颜色,且相邻两部分涂不同颜色.则不同的涂色方法共有( ).A .160种B .240种C .260种D .360种13.形如45 132这样的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为( ).A .20B .18C .16D .1114.随机抽查M 名成人,其中有男士m 人,发现有a 名男士和b 名女士中吸烟,那么以下哪个值越小,则表明性别与吸烟之间的关系越弱?( ).A .|Ma -mb |B .|Mm -ab |C .|aM -am -mb |D .|ab –(M -a )(M -m -b )|二、填空题:本大题共4小题,每小题4分,共16分. 将答案填在题中横线上.15.随机变量X 只取三个值-1,0,1,P (X =-1)=0.5,且9P (X =1)=4[1-P (X =0)]2,则EX = . 16.在某回归分析计算中,若回归直线的方程是yˆ=x +1.1,解释变量数据的平均值为2.1,则预报变量的平均值是______.17.(5-3x +2y )6展开式中不含y 的项的系数和为 .18.有人手抓一把的骰子,共16颗,颗颗相同,掷到桌面上,则6点朝上的颗数是 的可能性最大.三、解答题:本大题共3小题,共28分..解答应写出文字说明、证明过程或演算步骤.19.甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?1 2 3 420.A,B,C三人进行乒乓球赛,在一局比赛中,A胜B的概率为0.6,A胜C的概率为0.8,B胜C 的概率为0.6. 先由A和B进行第一局的比赛,以后每局的获胜者与该局未参加比赛的人进行下一局的比赛,比赛中有人获胜两局就算取得比赛胜利,比赛结束.(1)求只进行了两局比赛,A就取得胜利的概率;(2)求只进行了两局比赛,比赛就结束的概率;(3)求A取得胜利的概率.21.NBA总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2 000万美元.(1)求所需比赛场数的分布列;(2)组织者收益的数学期望.参考答案一、选择题1.D解析:X为所得点数之和,有两种情形.故选D.2.A解析:[(x-1)+1]4展开式.故选A.3.B解析:∵P(0<X≤1)=0.4,∴P(1<X≤2)=0.4,∴P(X<0或X>2)=1-0.8=0.2,由正态曲线对称性,P(X>2)=0.1.故选B.4.C解析:EA=EB=0.44,DA≈0.6,DB≈0.9.故选C. 5.D解析:两个分类变量的独立性检验规则.故选D . 6.B解析:先把0排在十位或百位,有2种排法;再把1,2,3排列在剩下的3个位置,有33A =6种排法.∴符合要求的排法有2×6=12种.故选B .7.A解析:A ={第一人坐前排},B ={第二人坐后排},P (A )=12,P (AB )=10×1020×19=1038,P (B |A )=P (AB )P (A )=1019.故选A .8.D解析:分各投中0次、1次、2次:0.42×0.32+12C ×0.6×0.4×12C ×0.7×0.3+0.62×0.72=0.392 4.故选D . 9.B解析:每条侧棱可与其他棱构成4对异面直线,6×4=24.故选B . 10.A解析:最高在中间,他的左边从4人中选2人排,剩下2人在他右边,排法都唯一. 故选A . 11.C解析:0.8×0.4×0.3+0.2×0.6×0.3+0.2×0.4×0.7=0.188.故选C . 12.C解析:1和4不同色时,5×4×3×3=180,1和4同色时,5×4×4=80,不同的涂色方法共有180+80=260.故选C .13.C解析:十位,千位安排5和4时,自身有2种排法,1,2,3排在其它数位,有33A 种排法;十位,千位安排5和3时,自身有2种排法,4不能排在百位,1,2,4有22A 种排法.所以总的排法种数有233A +222A =16.故选C .14.C解析:列联表如下:|a (M -m -b )-(m -a )b |=|aM -am -mb |.故选C . 二、填空题15.-0.25.解析:设x =P (X =1),y =P (X =0),则9x =4 (1-y )2,0.5+x +y =1,解得x =y =0.25. 故EX =-1×0.5+0×0.25+1×0.25=-0.25. 16.3.2.解析:回归直线过样本点的中心. 17.64.解析:令x =1,y =0得(5-3x +2y )6=26=64. 18.2.解析:出现k 颗6点的概率为P k =kk k -C 16166561⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛,kkk k 517=1--P P , 于是当k <265时,P k -1<P k ,当k >265时,P k -1>P k ,所以P 2最大.三、解答题19.解:每人随意值两天,共有222426C C C 个;甲必值周一,有222415C C C 个;乙必值周六,有222415C C C 个;甲必值周一且乙必值周六,有221314C C C 个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N =222426C C C -2222415C C C +221314C C C =90-2×5×6+12=42个.20.解:(1)只进行了两局比赛,A 就取得胜利,则A 胜B 且A 胜C , 概率为0.6×0.8=0.48.(2)只进行了两局比赛,比赛就结束的情形有A 连胜B 、C ;B 胜A 且B 胜C ,概率为0.6×0.8+0.4×0.6=0.72.(3)A 取胜共有三种情况:①A 胜B ;A 胜C :0.6×0.8=0.48;②A 胜B ;A 负C ;C 负B ;B 负A :0.6×0.2×0.6×0.6=0.043 2; ③A 负B ;B 负C ;C 负A ;A 胜B :0.4×0.4×0.8×0.6=0.076 8, 所以A 取胜的概率为0.48+0.432+0.768=0.6.21.解:(1)所需比赛场数为X , X =k 表示比赛最终获胜队在第k 场获胜后结束比赛,显然在前面k -1场中获胜3场,从而P (X =k )=13121C --k k ⎪⎭⎫ ⎝⎛,k =4,5,6,7,分布列为:(2)数学期望为9316×2 000=11 625万美元.期末测试题(二)考试时间:90分钟试卷满分:100分独立检验临界值表一、选择题:本大题共14小题,每小题4分,共56分.在每小题的4个选项中,只有一项是符合题目要求的.1.一个口袋中装有4个白球和4个红球,从中任取3个,其中所含白球个数的取值范围为( ). A .{1,2,3}B .{0,1,2}C .{1,2,3}D .{0,1,2,3}2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在y 轴上的点的个数是( ).A .100B .90C .81D .723.5个人排成一排,其中甲与乙不相邻,而丙与丁必须相邻,则不同的排法种数为( ). A .72B .48C .24D .604.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( ).A .2人或3人B .3人或4人C .3人D .4人5.设离散型随机变量 ξ 的概率分布列为则下列各式成立的是( ). A .P (ξ<1.5)=25B .P (ξ>-1)=45C .P (0<ξ<3)=25D .P (ξ<0)=06.011+⎪⎭⎫ ⎝⎛x x 展开式中的常数项为( ). A .第5项 B .第6项 C .第5项或第6项 D .不存在7.工人工资(元)依劳动生产率(千元)变化的回归方程为y ˆ=50+80x ,下列判断中正确的是( ). A .劳动生产率为1 000元时,工资为130元B .劳动生产率平均提高1 000元时,工资平均提高80元C .劳动生产率平均提高1 000元时,工资平均提高130元D .当工资为210元时,劳动生产率为2 000元8.一个工人看管三台机床,在一小时内,这三台机床需要工人照管的概率分别0.9、0.8、0.7,则在一小时内没有一台机床需要工人照管的概率为( ).A .0.018B .0.016C .0.014D .0.0069.袋中有5个红球,3个白球,不放回地抽取2次,每次抽1个.已知第一次抽出的是红球,则第二次抽出的是白球的概率为( ).A .37B .38C .47D .1210.某学校一天正常用电(指不超过变压器的用电负荷)的概率为 45,则在一周的7天中有5天用电正常的概率为( ).A .554⎪⎭⎫ ⎝⎛·251⎪⎭⎫ ⎝⎛B .C 57554⎪⎭⎫ ⎝⎛·251⎪⎭⎫ ⎝⎛ C .254⎪⎭⎫ ⎝⎛·551⎪⎭⎫ ⎝⎛D .C 57254⎪⎭⎫ ⎝⎛·551⎪⎭⎫ ⎝⎛ 11. 若X ~B (n ,p )且EX =6,DX =3,则P (X =1)的值为( ). A .3·2-2B .2-4C .3·2-10D .2-812.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,不考虑应聘人员的水平因素,你们俩同时被招聘进来的概率是170”.根据这位负责人的话可以推断出参加面试的人数为( ).A .21B .35C .42D .7013.(1-x 3)(1+x )10的展开式中,x 5的系数是( ). A .-297B .-252C .297D .20714.某班主任对全班50名学生进行了作业量多少的调查,数据如下:若由调查推断“喜欢玩电脑游戏与作业多少有关系”,则推断错误的概率不超过( ). A .0.01B .0.025C .0.05D .无充分依据二、填空题:本大题共4小题,每小题4分,共16分. 将答案填在题中横线上.15.连续抛掷两枚质地均匀的骰子,所得点数之差是一个随机变量X ,则P (-4≤X ≤4)= .16.有4台设备,每台正常工作的概率均为0.9,则4台中至少有3台能正常工作的概率为 .(用小数作答)17.若p 为非负实数,随机变量ξ的分布为则Eξ的最大值为 ,Dξ的最大值为.18.袋中装有一些大小相同的球,其中标号为1号的球1个,标号为2号的球2个,标号为3号的球3个,…,标号为n 号的球n 个.现从袋中任取一球,所得号数为随机变量X ,若P (X =n )=0.2,则n = .三、解答题:本大题共3小题,共28分.解答应写出文字说明、证明过程或演算步骤.19.在二项式nx -x ⎪⎪⎭⎫⎝⎛213的展开式中,前三项的系数的绝对值成等差数列.求:(1) 展开式的第4项;(2) 展开式中各项的二项式系数之和与各项的系数之和.20.假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料:若由资料知,y 对x 呈线性相关关系,试求: (1)回归直线方程;(2)估计使用年限为10年时,维修费用约是多少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学选修2-3第一章《计数原理》测试题A卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是().A.6 B.8 C10 D.122.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有( )A.6种B.5种C.4种D.3种3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3 B.4 C.6 D.84.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有( )A.72种B.48种C.24种D.12种5.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种B .63种C .65种D .66种6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .367.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为( )A .C 27A 55B .C 27A 22C .C 27A 25D .C 27A 358.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!9.设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a 的值为 ( ) A .0B .1C .11D .1210.在二项式(x +3x)n的展开式中,各项系数之和为A ,各项二项式系数之和为B ,且A +B=72,则展开式中常数项的值为( )A .6B .9C .12D .18二、填空题(每小题6分,共24分)11.某次活动中,有30人排成6行5列,现要从中选出3人进行礼仪表演,要求这3人中的任意2人不同行也不同列,则不同的选法种数为________(用数字作答).12.用数字1,2,3,4,5,6组成没有重复数字的6位数,要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是________.13.若⎝ ⎛⎭⎪⎫x +1x n的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为______.14.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是________. 三、解答题(共计76分).15.(本题满分12分)高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人. (1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法? (2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?16.(本题满分12分)已知集合M ={-3,-2,-1,0,1,2},若a ,b ,c ∈M ,则: (1)y =ax 2+bx +c 可以表示多少个不同的二次函数; (2)y =ax 2+bx +c 可以表示多少个图象开口向上的二次函数.17.(本题满分12分)4个不同的球,4个不同的盒子,把球全部放入盒内. (1)恰有1个盒不放球,共有几种放法? (2)恰有1个盒内有2个球,共有几种放法? (3)恰有2个盒不放球,共有几种放法?18.(本题满分12分)某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法? (2)甲、乙均不能参加,有多少种选法? (3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?19.(本题满分14分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n的展开式的二项式系数和大992.求在⎝ ⎛⎭⎪⎫2x -1x 2n 的展开式中,(1)二项式系数最大的项; (2)系数的绝对值最大的项.20.(本题满分14分)已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.高中数学选修2-3第一章《计数原理》测试题A 卷答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1.【答案】 A【解析】分两类:第一类,第一象限内的点,有2×2=4(个);第二类,第二象限内的点,有1×2=2(个).2.【答案】 C【解析】若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A 车床,共有2种选派方法;若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法.故共2+1+1=4(种)不同的选派方法.故应选C.3.【答案】 D【解析】以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9,共4个.把这四个数列顺序颠倒,又得到4个数列,故所求数列有8个.4.【答案】 A【解析】按要求涂色至少需要3种颜色,故分两类.一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法.故不同的涂法共有24+24×2=72(种).5.【答案】 D【解析】满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).6.【答案】C【解析】排除法.先不考虑甲、乙同班的情况,将4人分成三组有C24=6种方法,再将三组同学分配到三个班级有A33=6种分配方法,再考虑甲、乙同班的分配方法有A33=6种,所以共有C24A33-A33=30种分法.7.【答案】 C【解析】从后排抽2人的方法种数是C 27;前排的排列方法种数是A 25.由分步乘法计数原理知不同调整方法种数是C 27A 25. 8.【答案】 C【解析】把一家三口看作一个排列,然后再排列这3家, 所以有(3!)4种. 9.【答案】 D【解析】化51为52-1,用二项式定理展开.512012+a =(52-1)2012+a=C 02 012522012-C 12 012522011+…+C 2 0112 012×52×(-1)2011+C 2 0122 012×(-1)2012+a .因为52能被13整除,所以只需C 2 0122 012×(-1)2012+a 能被13整除,即a +1能被13整除,因为0≤a <13,所以a =12. 10.【答案】B【解析】A =(1+3)n=4n,B =2n.A +B =4n +2n =72,∴n =3.∴(x +3x )n =(x +3x)3.T r +1=C r 3(x )3-r (3x )r =3r C r 3x 3-r 2·x -r =3r C r 3x 3-3r 2∴当r =1时T r +1为常数项. ∴常数项为3C 13=9.二、填空题(每小题6分,共24分) 11.【答案】 7200【解析】其中最先选出的一个人有30种方法,此时不能再从这个人所在的行和列上选人,还剩一个5行4列的队形,故选第二个人有20种方法,此时不能再从该人所在的行和列上选人,还剩一个4行3列的队形,此时第三个人的选法有12种,根据分步乘法计数原 12.【答案】40【解析】第一步将3,4,5,6按奇偶相间排成一列,共有2×A 22×A 22=8(种)排法;第二步再将1,2捆绑插入4个数字产生的5个空位中,共有A 15=5(种)插法,插入时需满足条件相邻数字的奇偶性不同,1,2的排法由已排4个数的奇偶性确定. ∴不同的排法有8×5=40(种),即这样的六位数有40个. 13.【答案】56【解析】利用二项展开式的通项公式求解. 由题意知,C 2n =C 6n ,∴n =8. ∴T r +1=C r8·x8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r,当8-2r=-2时,r=5,∴1x2的系数为C58=C38=56.14.【答案】1【解析】原式=(1-90)10=(88+1)10=8810+C110889+…+C91088+1,因为前10项均能被88整除,故余数为1.三、解答题(共计76分).15.【解析】(1)完成这件事有三类方法第一类,从高三一班任选一名学生共有50种选法;第二类,从高三二班任选一名学生共有60种选法;第三类,从高三三班任选一名学生共有55种选法,根据分类加法计数原理,任选一名学生任校学生会主席共有50+60+55=165种选法.L L L6分(2)完成这件事有三类方法第一类,从高三一班男生中任选一名共有30种选法;第二类,从高三二班男生中任选一名共有30种选法;第三类,从高三三班女生中任选一名共有20种选法.综上知,共有30+30+20=80种选法.L L L12分16.【解析】(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180(个)不同的二次函数.L L L6分(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b、c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的二次函数.L L L12分17.【解析】(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144(种).L L L4分(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.L L L8分(3)确定2个空盒有C 24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C 34C 11A 22种方法;第二类有序均匀分组有C 24C 22A 22·A 22种方法.故共有C 24(C 34C 11A 22+C 24C 22A 22·A 22)=84(种).L L L 12分18.【解析】(1)只需从其他18人中选3人即可,共有C 318=816(种);L L L 3分 (2)只需从其他18人中选5人即可,共有C 518=8568(种);L L L 6分 (3)分两类:甲、乙中有一人参加,甲、乙都参加, 共有C 12C 418+C 318=6936(种);L L L 9分 (4)方法一 (直接法):至少有一名内科医生和一名外科医生的选法可分四类: 一内四外;二内三外;三内二外;四内一外,所以共有C 112C 48+C 212C 38+C 312C 28+C 412C 18=14656(种).L L L 12分方法二 (间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数, 得C 520-(C 512+C 58)=14656(种).L L L 12分19.【解析】由题意知,22n-2n=992,即(2n-32)(2n+31)=0,∴2n =32,解得n =5.L L L 2分 (1)由二项式系数的性质知,⎝ ⎛⎭⎪⎫2x -1x 10的展开式中第6项的二项式系数最大, 即C 510=252.∴二项式系数最大的项为T 6=C 510(2x )5⎝ ⎛⎭⎪⎫-1x 5=-8064.L L L 7分(2)设第r +1项的系数的绝对值最大, ∴1010102110101(2)()(1)2r r r r r r rr T C x C xx---+=-=-, ∴101101101010110110102222r r r r r r r r C C C C ---+-+--⎧≥⎪⎨≥⎪⎩, 得1101011010222r r r r C C C C -+⎧≥⎪⎨≥⎪⎩,即1122(1)10r r r r -≥⎧⎨+≥-⎩, 解得83≤r ≤113,L L L 12分∵r Z ,∴r =3.故系数的绝对值最大的项是第4项,T 4=-C 310·27·x 4=-15360x 4.L L L 14分20.【解析】令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.② (1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2.L L L 3分 (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1094.L L L 7分(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1093.L L L 10分(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零,∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1093-(-1094)=2187.方法二 |a 0|+|a 1|+|a 2|+…+|a 7|, 即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2187.L L L 14分。