人教版高二数学选修2-3第一章计数原理测试题

合集下载

人教A版数学高二选修2-3第一章《计数原理》综合检测

人教A版数学高二选修2-3第一章《计数原理》综合检测

每班2个,有C 26种分法;(3)4个名额分给两个班级,其中一个班级1个,一个班级3个.由于分给一班1个,二班3个和一班3个、二班1个是不同的分法,因此是排列问题,共有A 26种分法;(4)分给三个班级,其中一个班级2个,其余两个班级每班1个,共有C 16·C 25种分法;(5)分给四个班,每班1个,共有C 46种分法.故共有N =C 16+C 26+A 26+C 16·C 25+C 46=126种分配方法. 解法二:该问题也可以从另外一个角度去考虑:因为是名额分配问题,名额之间无区别,所以可以把它们视作排成一排的10个相同的球,要把这10个球分开成6段(每段至少有一个球).这样,每一种分隔办法,对应着一种名额的分配方法.这10个球之间(不含两端)共有9个空位,现在要在这9个位子中放进5块隔板,共有N =C 59=126种放法.故共有126种分配方法. 22.(本题满分12分)已知⎝⎛⎭⎪⎫3a -3a n (n ∈N *)的展开式的各项系数之和等于⎝⎛⎭⎪⎫43b -15b 5的展开式中的常数项,求⎝ ⎛⎭⎪⎫3a -3a n的展开式中a -1项的二项式系数. 对于⎝⎛⎭⎪⎫43b -15b 5:T r +1=C r 5(43b )5-r ⎝⎛⎭⎫-15b r =C r 5·(-1)r ·45-r ·.若T r +1为常数项,则10-5r=0,所以r =2,此时得常数项为T 3=C 25·(-1)2·43·5-1=27.令a =1,得⎝⎛⎭⎪⎫3a -3a n展开式的各项系数之和为2n .由题意知2n =27,所以n =7.对于⎝⎛⎭⎪⎫3a -3a 7:T r +1=C r 7⎝⎛⎭⎫3a 7-r ·(-3a )r =C r 7·(-1)r ·.若T r +1为a -1项,则5r -216=-1,所以r =3.所以⎝ ⎛⎭⎪⎫3a -3a n 的展开式中a -1项的二项式系数为C 37=35.。

高中数学(人教,选修2-3)第一章《计数原理》测试题B卷.docx

高中数学(人教,选修2-3)第一章《计数原理》测试题B卷.docx

高中数学学习材料鼎尚图文*整理制作高中数学选修2-3第一章《计数原理》测试题B卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是() A.9 B.14 C.15 D.212.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为()3 4A.4 B.6 C.5 D.33.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种4.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有() A.36种B.42种C.48种D.54种5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A .24B .18C .12D .66. 如图,用四种不同颜色给图中的A ,B ,C ,D ,E ,F 六个点涂色,要求 每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的 涂色方法共有( )A .288种B .264种C .240种D .168种7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A .10种B .15种C .20种D .30种8.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一.每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ( )A .152B .126C .90D .54 9.在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为( )A .10B .-10C .40D .-4010.(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40二、填空题(每小题6分, 共24分)11.将数字1,2,3,4,5按第一行2个数,第二行3个数的形式随机排列,设a i (i =1,2)表示第i 行中最小的数,则满足a 1>a 2的所有排列的个数是________.(用数字作答)12. 形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为________.13. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________.14.若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 三、解答题(共计76分).15.(本题满分12分)方程x 2m +y 2n =1表示焦点在y 轴上的椭圆,其中m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},那么这样的椭圆有多少个?16.(本题满分12分)有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加) (1)每人恰好参加一项,每项人数不限; (2)每项限报一人,且每人至多参加一项; (3)每项限报一人,但每人参加的项目不限.17.(本题满分12分)某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的宣传广告、一个公益广告,要求最后播放的不能是商业广告,且宣传广告与公益广告不能连续播放,两个宣传广告也不能连续播放,则有多少种不同的播放方式?18.(本题满分12分)已知(a 2+1)n 展开式中各项系数之和等于⎝⎛⎭⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n 展开式的二项式系数最大的项的系数等于54,求a 的值.19.(本题满分14分)从7名男生5名女生中选取5人,分别求符合下列条件的选法总数有多少种?(1)A ,B 必须当选; (2)A ,B 必不当选; (3)A ,B 不全当选; (4)至少有2名女生当选;(5)选取3名男生和2名女生分别担任班长、体育委员等5种不同的工作,但体育委员必须由男生担任,班长必须由女生担任.20.(本题满分14分)已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11. (1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.高中数学选修2-3第一章《计数原理》测试题B卷答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分)1. 【答案】B【解析】当x=2时,x≠y,点的个数为1×7=7(个);当x≠2时,x=y,点的个数为7×1=7(个),则共有14个点,故选B.2. 【答案】B【解析】如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6),合计6种.12a34bc d 93. 【答案】A【解析】先排第一列,因为每列的字母互不相同,因此共有A33种不同的排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.4. 【答案】 B【解析】分两类,第一类:甲排在第一位时,丙排在最后一位,中间4个节目无限制条件,有A44种排法;第二类:甲排在第二位时,从甲、乙、丙之外的3个节目中选1个节目排在第一位有C13种排法,其他3个节目有A33种排法,故有C13A33种排法.依分类加法计数原理,知共有A44+C13A33=42(种)编排方案.5. 【答案】B【解析】根据所选偶数为0和2分类讨论求解.当选0时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,剩余1个数字排在首位,共有C23C12=6(种)方法;当选2时,先从1,3,5中选2个数字有C23种方法,然后从选中的2个数字中选1个排在末位有C12种方法,其余2个数字全排列,共有C23C12A22=12(种)方法.依分类加法计数原理知共有6+12=18(个)奇数.6. 【答案】 B【解析】分两类:第一类,涂三种颜色,先涂点A,D,E有A34种方法,再涂点B,C,F有2种方法,故有A 34×2=48(种)方法; 第二类,涂四种颜色,先涂点A ,D ,E 有A 34种方法,再涂点B ,C ,F 有3C 13种方法,故共有A 34·3C 13=216(种)方法.由分类加法计数原理,共有48+216=264(种)不同的涂法. 7. 【答案】C【解析】由题意知比赛场数至少为3场,至多为5场. 当为3场时,情况为甲或乙连赢3场,共2种.当为4场时,若甲赢,则前3场中甲赢2场,最后一场甲赢,共有C 23=3(种)情况;同理,若乙赢也有3种情况.共有6种情况.当为5场时,前4场,甲、乙各赢2场,最后1场胜出的人赢,共有2C 24=12(种)情况. 由上综合知,共有20种情况. 8. 【答案】B【解析】考虑特殊元素(位置)优先安排法.第一类:在丙、丁、戊中任选一位担任司机工作时有C 13C 24A 33=108. 第二类:在丙、丁、戊中任选两位担任司机工作时,有C 23A 33=18,∴不同安排方案的种数是108+18=126. 9. 【答案】 D【解析】因为T r +1=C r 5(2x 2)5-r ⎝⎛⎭⎫-1x r=C r 525-r x 10-2r(-1)r x -r =C r 525-r(-1)r x 10-3r,所以10-3r =1,所以r =3,所以x 的系数为C 3525-3(-1)3=-40. 10. 【答案】 D【解析】令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x 的系数与x 的系数的和.(2x -1x)5展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r ·x -r =C r 525-r x 5-2r·(-1)r . 令5-2r =1,得2r =4,即r =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80.令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以(x +1x )(2x -1x )5展开式中的常数项为80-40=40.二、填空题(每小题6分, 共24分) 11. 【答案】72【解析】依题意数字1必在第二行,其余数字的位置不限,共有A24A33=72个.12. 【答案】16【解析】由题意可得,十位和千位只能是4、5或者3、5.若十位和千位排4、5,则其他位置任意排1、2、3,则这样的数有A22A33=12(个);若十位和千位排5、3,这时4只能排在5的一边且不能和其他数字相邻,1、2在其余位置上任意排列,则这样的数有A22A22=4(个),综上,共有16个.13. 【答案】288【解析】记三名男生为甲、乙、丙,三名女生为a、b、c,先排男生,若甲在两端有4种排法,然后3位女生去插空,排法如ab甲丙c乙共有4A23A12A13种,若男生甲排在中间,有两种排法,然后女生去插空,排法如ab乙甲c丙共有2A23A24种排法.根据分类加法计数原理共有4A23A12A13+2A23A24=288(种)不同排法.14. 【答案】10【解析】将f(x)=x5进行转化,利用二项式定理求解.f(x)=x5=(1+x-1)5,它的通项为T r+1=C r5(1+x)5-r·(-1)r,T3=C25(1+x)3(-1)2=10(1+x)3,∴a3=10.三、解答题(共计76分).15. 【解析】以m的值为标准分类,分为五类.第一类:m=1时,使n>m,n有6种选择;2分第二类:m=2时,使n>m,n有5种选择;4分第三类:m=3时,使n>m,n有4种选择;6分第四类:m=4时,使n>m,n有3种选择;8分第五类:m=5时,使n>m,n有2种选择.10分∴共有6+5+4+3+2=20种方法,即有20个符合题意的椭圆.12分16. 【解析】(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有选法36=729(种).4分(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).8分(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).12分17. 【解析】用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有三类方法. 第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.4分第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.6分第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.8分由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.12分18. 【解析】由⎝⎛⎭⎫165x 2+1x 5,得T r +1=C r 5⎝⎛⎭⎫165x 25-r ⎝⎛⎭⎫1x r =⎝⎛⎭⎫1655-r ·C r 5·x 20-5r 2.令T r +1为常数项,则20-5r =0, ∴r =4,∴常数项T 5=C 45×165=16. 6分又(a 2+1)n 展开式的各项系数之和等于2n . 由题意得2n =16,∴n =4.由二项式系数的性质知,(a 2+1)4展开式中二项式系数最大的项是中间项T 3,∴C 24a 4=54,∴a =±3.12分19.【解析】(1)由于A ,B 必须当选,那么从剩下的10人中选取3人即可, ∴有C 310=120(种).2分(2)从除去的A ,B 两人的10人中选5人即可,∴有C 510=252(种).4分(3)全部选法有C 512种,A ,B 全当选有C 310种, 故A ,B 不全当选有C 512-C 310=672种.6分(4)注意到“至少有2名女生”的反面是只有一名女生或没有女生,故可用间接法进行,∴有C 512-C 15·C 47-C 57=596(种).9分(5)分三步进行:第一步:选1男1女分别担任两个职务为C 17·C 15; 第二步:选2男1女补足5人有C 26·C 14种; 第三步:为这3人安排工作有A 33.由分步乘法计数原理共有:C 17·C 15·C 26·C 14·A 33=12 600(种).14分20. 【解析】(1)由已知C 1m +2C 1n =11,∴m +2n =11, x 2的系数为C 2m +22C 2n =(1)2m m -+2n (n -1) =m 2-m 2+(11-m )⎝⎛⎭⎫11-m 2-1=⎝⎛⎭⎫m -2142+35116. ∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. 7分(2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30.14分。

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试卷(有答案解析)

一、选择题1.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .252.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.随机变量X 的分布列如表所示,若1()3E X =,则(32)D X -=( )A .59B .53C .5D .74.已知随机变量ξ的分布列如表,则ξ的标准差为( )A .3.56B C .3.2D 5.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .46.某班有18名学生数学成绩优秀,若从该班随机找出6名学生,其中数学成绩优秀的学生数1~6,3X B ⎛⎫ ⎪⎝⎭,则()21E X +=( )A .13B .12C .5D .47.下列命题中真命题是( )(1)在1831x x ⎛⎫+ ⎪⎝⎭的二项式展开式中,共有4项有理项;(2)若事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =,则事件A 、B 是相互独立事件;(3)根据最近10天某医院新增疑似病例数据,“总体均值为2,总体方差为3”,可以推测“最近10天,该医院每天新增疑似病例不超过7人”. A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)8.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .259.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ). A .80243B .100243C .80729D .10072910.某校高一(1)班共有54人,如图是该班期中考试数学成绩的频率分布直方图,则成绩在[]100,120内的学生人数为A .36B .27C .22D .1111.已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,(02)P ξ<<=( ). A .0.6B .0.4C .0.3D .0.212.某班有14名学生数学成绩优秀,如果从该班随机找出5名学生,其中数学成绩优秀的学生数1~(5)4X B ,,则(21)E X += A .54B .72C .3D .52二、填空题13.设随机变量ξ服从二项分布16,2B ξ⎛⎫⎪⎝⎭~ ,则()3P ξ≤等于__________ 14.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,若1()3E X =,则(31)D X +的值是______15.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响,则该选手被淘汰的概率为_________.16.设在15个相同类型的产品中有2个是次品,每次任取1个,共取3次,并且每次取出后不放回,若以ξ表示取出次品的个数,则()E ξ=________.17.如图所示,旋转一次的圆盘,指针落在圆盘中3分处的概率为a ,落在圆盘中2分处的概率为b ,落在圆盘中0分处的概率为c ,(,,(0,1)a b c ∈),已知旋转一次圆盘得分的数学期望为1分,则213a b+的最小值为________.18.随机变量X 服从正态分布()2~10,X N σ,()12P X m >=,1(8)0P X n ≤≤=,则21m n+的最小值为_____. 19.邮局工作人员整理邮件,从一个信箱中任取一封信,记一封信的质量为X (单位:克),如果()100.3P X <=,()10300.4P X ≤≤=,那么()30P X >等于_________. 20.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,此时()~10,.X B p 若() 2.1,D X =()()37,P X P X =<=则p =_______. 三、解答题21.在一场青年歌手比赛中,由20名观众代表平均分成A ,B 两个评分小组,给参赛选手评分,下面是两个评分小组对同一名选手的评分情况:A 组8.3 9.3 9.6 9.4 8.5 9.6 8.8 8.4 9.4 9.7 B 组8.69.19.28.89.29.19.29.38.88.7(1)分别计算这两个小组评分的平均数和方差,并根据结果判断哪个小组评分较集中; (2)在评分较集中的小组中,去掉一个最高分和一个最低分,从剩余的评分中任取2名观众的评分,记X 为这2个人评分之差的绝对值,求X 的分布列和数学期望.22.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤+=,()220.9545P T μσμσ-<≤+=,()330.9973P T μσμσ-<≤+=.23.抛掷一枚质地均匀的硬币2次,记正面朝上的次数为X . (1)求随机变量X 的分布列;(2)若随机变量21Y X =+,求随机变量Y 均值、方差.24.某班同学在假期进行社会实践活动,对[]25,55岁的人群随机抽取n 人进行了一次当前投资生活方式——“房地产投资”的调查,得到如下统计和各年龄段人数频率.......分布直方图:(Ⅰ)求n ,a ,p 的值;(Ⅱ)从年龄在[)4050,岁的“房地产投资”人群中采取分层抽样法抽取9人参加投资管理学习活动,其中选取3人作为代表发言,记选取的3名代表中年龄在[)4050,岁的人数为X ,求X 的分布列和期望EX .25.数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.(1)为调查大学生喜欢数学命题是否与性别有关,随机选取50名大学生进行问卷调查,当被调查者问卷评分不低于80分则认为其喜欢数学命题,当评分低于80分则认为其不喜欢数学命题,问卷评分的茎叶图如下:依据上述数据制成如下列联表:请问是否有90%的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++. 20()P K k ≥0.100 0.050 0.010 0.001 0k2.7063.8416.63510.828(01)p p <<,各轮命题相互独立,若该同学在3轮命题中恰有2次成功的概率为49,记该同学在3轮命题中的成功次数为X ,求()E X .26.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求X 0=,1X =,2X =,3X =时的概率()0P X =,()1P X =,()2P X =,()3P X =;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.2.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件. 故选:C【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.3.C解析:C 【分析】 由1()3E X =,利用随机变量X 的分布列列出方程组,求出13a =,12b =,由此能求出()D X ,再由(32)9()D X D X -=,能求出结果.【详解】 1()3E X =∴由随机变量X 的分布列得:1161163a b b ⎧++=⎪⎪⎨⎪-+=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩, 2221111115()(1)(0)(1)3633329D X ∴=--⨯+-⨯+-⨯=,5(32)9()959D X D X ∴-==⨯=故选:C . 【点睛】本题考查方差的求法,考查离散型随机变量的分布列、数学期望、方差等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.D解析:D 【分析】由分布列的性质求得x ,利用方差的计算公式可求得()D ξ,进而得到标准差. 【详解】由分布列的性质得:0.40.11x ++=,解得:0.5x =,()10.430.150.5 3.2E ξ∴=⨯+⨯+⨯=,()()()()2221 3.20.43 3.20.15 3.20.5 3.56D ξ∴=-⨯+-⨯+-⨯=,ξ∴=故选:D . 【点睛】本题考查根据离散型随机变量的分布列求解标准差的问题,考查了分布列的性质、数学期望和方差的求解,考查基础公式的应用.5.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q+ 221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.6.C解析:C 【分析】根据1~6,3X B ⎛⎫⎪⎝⎭得到()2E X =,再根据()()2121E X E X +=+,计算得到答案. 【详解】1~6,3X B ⎛⎫⎪⎝⎭,则()1623E X =⨯=,故()()21215E X E X +=+=.故选:C . 【点睛】本题考查了二项分布的均值,同时也考查了期望性质的应用,意在考查学生的计算能力.7.D解析:D 【分析】对三个命题分别判断真假,即可得出结论. 【详解】对于(1),18的二项展开式的通项为1815163621818rrrr rC x x C x ---⎛⎫⎛⎫⋅⋅=⋅ ⎪ ⎪⎝⎭⎝⎭, 当0r =、6、12、18时,为有理项,共有4个有理项,故(1)正确; 对于(2),事件A 、B 满足()0.15P A =,()0.60P B =,()0.09P AB =, 所以()()()0.150.600.09P AB P A P B =⨯==,满足A 、B 为相互独立事件,故(2)正确;对于(3),当总体平均数是2,若有一个数据超过7,则方差就接近于3, 所以,总体均值为2,总体方差为3时,没有数据超过7,故(3)正确. 故选:D.【点睛】本题考查命题真假的判断,考查分析法与基本运算能力,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.9.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.10.B解析:B根据频率分布直方图,得成绩在[90120],内的频率为:10.0150.0.0100.005100.70-++⨯=(),∴120.0300.7010a +=⨯,解得0.020a =;∴成绩在[100120],内的频率为0.0300.020100.50+⨯=(),所求的学生人数为540.5027⨯=,故选B.11.C解析:C 【解析】∵P (ξ<4)=0.8,∴P (ξ>4)=0.2, 由题意知图象的对称轴为直线x =2,P (ξ<0)=P (ξ>4)=0.2,∴P (0<ξ<4)=1-P (ξ<0)-P (ξ>4)=0.6. ∴P (0<ξ<2)=12P (0<ξ<4)=0.3 12.B解析:B 【解析】因为115(5,)()5444X B E X ~⇒=⨯=,所以57(21)2()12142E X E X +=+=⨯+=,应选答案B 。

人教版数学高二新课标选修2-3测试题组 第一章 计数原理C组

人教版数学高二新课标选修2-3测试题组 第一章 计数原理C组

(数学选修2--3) 第一章 计数原理一、选择题1.若346n n A C =,则n 的值为( )A .6B .7C .8D .92.某班有30名男生,30名女生,现要从中选出5人组成一个宣传小组,其中男、女学生均不少于2人的选法为( )A .230C 220C 146CB . 555503020C C C --C .514415*********C C C C C --D . 322330203020C C C C +3.6本不同的书分给甲、乙、丙三人,每人两本,不同的分法种数是( )A .2264C C B .22264233C C C A C .336AD .36C 4.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S的值为( ) A.20128 B .15128 C .16128 D .211285.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为( )A.1 B .1- C .0 D .26.在()nx y +的展开式中,若第七项系数最大,则n 的值可能等于( )A.13,14 B .14,15 C .12,13 D .11,12,137.不共面的四个定点到平面α的距离都相等,这样的平面α共有( ) A .3个 B .4个 C .6个 D .7个8.由0,1,2,3,...,9十个数码和一个虚数单位i 可以组成虚数的个数为( ) A.100 B .10 C .9 D .90 二、填空题1.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有 种?2.在△AOB 的边OA 上有5个点,边OB 上有6个点,加上O 点共个点,以这12个点为顶点的三角形有 个.3.从0,1,2,3,4,5,6这七个数字中任取三个不同数字作为二次函数2y ax bx c =++的系数,,a b c 则可组成不同的函数_______个,其中以y 轴作为该函数的图像的对称轴的函数有______个.4.若9a x ⎛ ⎝的展开式中3x 的系数为94,则常数a 的值为 . 5.若2222345363,n C C C C ++++=则自然数n =_____.6.若56711710m m m C C C -=,则8__________mC =. 7.50.991的近似值(精确到0.001)是多少?8.已知772127(12)o x a a a x a x -=++++,那么127a a a +++等于多少?三、解答题 1.6个人坐在一排10个座位上,问(1)空位不相邻的坐法有多少种?(2) 4个空位只有3个相邻的坐法有多少种?(3) 4个空位至多有2个相邻的坐法有多少种?2.有6个球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?3.求54(12)(13)x x -+展开式中按x 的降幂排列的前两项.4.用二次项定理证明2289n C n +--能被64整除()n N ∈.5.求证:0212(1)22nn n n n n C C n C n -++++=+⋅.6.(1)若(1)nx +的展开式中,3x 的系数是x 的系数的7倍,求n ;(2)已知7(1)(0)ax a +≠的展开式中, 3x 的系数是2x 的系数与4x 的系数的等差中项,求a ;(3)已知lg 8(2)x x x+的展开式中,二项式系数最大的项的值等于1120,求x .数学选修2-3 第一章 计数原理一、选择题 1.B!!6,34,7(3)!(4)!4!n n n n n n =⨯-==--⨯2.D 男生2人,女生3人,有233020C C ;男生3人,女生2人,有323020C C共计233230203020C C C C +3.A 甲得2本有26C ,乙从余下的4本中取2本有24C ,余下的22C ,共计2264C C 4.B 含有10个元素的集合的全部子集数为102S =,由3个元素组成的子集数为310T C=,31010152128C T S == 5.A 22024130123401234()()()()a a a a a a a a a a a a a a a ++-+=++++-+-+44(2(21=+⋅=6.D 分三种情况:(1)若仅7T 系数最大,则共有13项,12n =;(2)若7T 与6T 系数相等且最大,则共有12项,11n =;(3)若7T 与8T 系数相等且最大,则共有14项,13n =,所以n 的值可能等于11,12,137.D 四个点分两类:(1)三个与一个,有14C;(2)平均分二个与二个,有242C 共计有214472C C += 8.D 复数,(,)a bi a b R +∈为虚数,则a 有10种可能,b 有9种可能,共计90种可能 二、填空题1.9 分三类:第一格填2,则第二格有13A ,第三、四格自动对号入座,不能自由排列;第一格填3,则第三格有13A ,第一、四格自动对号入座,不能自由排列; 第一格填4,则第撕格有13A ,第二、三格自动对号入座,不能自由排列;共计有1339A =2.165 3331267165C C C --=3.180,30 0a ≠,111665180C C C =;260,30b A ==4.4 39992199()((1)r r r r rr r r r a T C a C x x ---+==-,令393,82r r -==888999(1),42164aC a a -=== 5.13 32222322233454453631,364,n n C C C C C C C C C +++++=+++++=3223551...364,13n n C C C C n ++++====6.2825!6!77!,23420!(5)!!(6)!10!(7)!m m m m m m m m -=⨯-+=---而05m ≤≤,得2882,28m m C C ===7.0.9565520.991(10.009)150.00910(0.009)...10.0450.000810.956=-=-⨯+⨯+≈-+≈8.2- 设()(12)nf x x =-,令1x =,得70127(12)1a a a a ++++=-=-令0x =,得01a =,127012a a a a +++=--=-三、解答题1.解:6个人排有66A 种, 6人排好后包括两端共有7个“间隔”可以插入空位.(1)空位不相邻相当于将4个空位安插在上述7个“间隔”中,有4735C =种插法, 故空位不相邻的坐法有646725200A C =种。

人教版数学高二A版选修2-3单元测试第一章计数原理

人教版数学高二A版选修2-3单元测试第一章计数原理

第一章过关检测(时间90分钟,满分100分)一、选择题(每小题4分,共40分) 1.若A 3m =6C 4m ,则m 等于( )A.9B.8C.7D.62.男、女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人B.3人或4人C.3人D.4人3.若100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是( )A.C 16C 294B.C 16C 299C.C 3100-C 394D.C 3100-C 2944.从5位男教师和4名女教师中选出3位教师,派到3个班担任班主任(每班一位班主任),要求这三位班主任中男女教师都有,则不同的选派方案共有( ) A.210种 B.420种 C.630种 D.840种5.现有6个人分乘两辆不同的出租车,每辆车最多乘4人(不含司机),则不同的乘车方案的种数是( )A.50B.60C.70D.806.在10)3( x 的展开式中,x 6的系数为( )A.-27C 610B.27C 410C.-9C 610D.9C 4107.把1,2,3,4,5,6,7,8,9这9个数字填入图中的表格,从上到下,从左到右,依次增大.当3、4固定在图中位置,余下的数的填法有( )A.6种B.12种C.18种D.24种8.把4个不同的小球全部放入3个不同的盒子里,使得每个盒子都不空的放法总数是( )A.C 13A 33B.C 34A 22C.C 24A 33D.C 14C 34C 229.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A.10种 B.20种 C.36种 D.52种10.已知(1-3x)9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 0|+|a 1|+|a 2|+…+|a 9|等于( ) A.29 B.49 C.39 D.1 二、填空题(每小题4分,共16分)11. 8次投篮中,投中3次,其中恰有2次连续命中的情形有______种.12.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_______.13.某药品研究所研制了5种消炎药a 1,a 2,a 3,a 4,a 54种退烧药b 1,b 2,b 3,b 4,现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知a 1,a 2两种药必须同时使用,且a 3,b 4两种药不能同时使用,则不同的方案有_______种.14.若nx x )(13-+展开式中,第5项是常数,问中间项是第_______项.三、解答题(共44分)15.(10分)如右图,若灯不亮,则元件R 1,R 2,R 3断路的情况共有多少种?16.(10分)解关于n 的不等式:C 4n >C 6n .17.(12分)求84)21(xx +展开式中系数最大的项.18.(12分)“十一”国庆期间,公司从网络部抽4名人员、人事部抽3名人员(两个部门的主任都在内),从10月1号至7号,安排每人值班一天,分别回答下列问题: (1)两个部门的主任不能安排在1号和7号;(2)若各部门的人员安排不能连续(即同部门的人员相间安排); (3)若人事部因工作需要,他们的值班必须安排在连续三天; (4)网络部主任比人事部主任先值班.参考答案1解析:由m(m -1)(m -2)=1234)3)(2)(1(6⨯⨯⨯---•m m m m ,解得m =7. 答案:C2解析:设女生有x 人,则30128=•-C C x x ,即302)7)(8(=•--x x x .解得x =2或3. 答案:A3 解析:不考虑限制条件,从100件产品中任取3件,有C 3100种取法,然后减去3件全是正品的取法C 394,故有C 3100-C 394种取法. 答案:C4解析:分两类:第一类2男1女,则不同的选派方案有C 25C 14A 33=240种. 第二类1男2女,则不同的选派方案有C 15C 24A 33=180种. 由分类加法计数原理得:共有240+180=420种不同的选派方案. 答案:B5解析:分三类:第一辆车乘2人,第二辆车乘4人,有C 26种乘法;第一、二辆车各乘3人,有C 36种乘法;第一辆车乘4人,第二辆车乘2人,有C 46种乘法,由分类加法计数原理,共有C 26+C 36+C 46=50种. 答案:A6 解析:T5=C410x10-4·(-3)4=9·C410 x6.答案:D7解析:左上角格必须填1,右下角格必须填9,第二行最左端格必须填2,如图.A、B从余下的5,6,7,8四个数中任选两个,从左到右依次增大填入,有C24种.剩余的两个数由上到下,依次增大填入C、D即可.故共有C24=6种不同的填法.答案:A8解析:选2个小球捆在一起看成1个元素,有C24种选法.把3个元素放入3个不同的盒中,有A33种放法.故共有C24·A33种不同的放法.答案:C9 解析:分两类:第一类2号盒内放2个球,有C24种放法(剩余的球放入1号盒内即可);第二类,2号盒内放3个小球,有C34种放法(剩余的球放入1号盒内即可).由分类加法计数原理,共有C24+C34=10种不同的放法.答案:A10解析:由展开式可知a1,a3,a5,a7,a9都小于0,a0,a2,a4,a6,a8都大于0,故|a0|+|a1|+|a2|+…+|a9|=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9,只需令x=-1即可得:(1+3)9=a0-a1+a2-a3+a4-a5+a6-a7+a8-a9=49.答案:B11解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空档里进行排列有A26种.答案:3012 解析:将其中两名学生视为一个元素,其余二名同学分别视为一个元素,然后将三个元素分配到三所学校,所以不同的保送方案的总数为C 24A 33=36. 答案:3613解析:分3类:当取a 1,a 2时,再取退烧药有C 14种方案;取a 3时,取另一种消炎药的方法有C 12种,再取退烧药有C 13种,共有C 12C 13种方案;取a 4,a 5时,再取退烧药有C 14种方案.故共有C 14+C 12C 13+C 14=14种不同的实验方案. 答案:1414解析:由通项公式可得第5项3164434414---+==n n n nxx xT C C,即n =16,所以中间项是第9项. 答案:915解:每个元件都有通或断两种可能,以m,n,p 表示元件的通断,m,n,p 可取值均为0(表示断),1(表示通),故所有可能情况为(m,n,p)的可能情况共有2×2×2=8种.因为是串联电路,所以一断则断,只要排除全通的情况(m =1,n =1,p =1)即可,所以若灯不亮,则元件R 1,R 2,R 3断路的情况共有8-1=7种. 16解:因为C 4n >C 6n ,所以⎪⎩⎪⎨⎧≥->-,6,)!6(!6!)!4(!4!n n n n n即⎩⎨⎧≥<--.6,01092n n n 所以6≤n <10. 又因为n ∈N *,所以满足不等式的n 的取值为{6,7,8,9}. 17 解:记第r 项系数为T r ,设第k 项系数最大,则有⎩⎨⎧≥≥+-.,11k k k k T T T T 又1182+--•=r r r C T ,那么有⎪⎩⎪⎨⎧•≥••≥•-+--+--+--,22,228118228118kk k k k k k k C C C C 即⎪⎪⎩⎪⎪⎨⎧-•≥⨯-•-⨯-•-≥-•-,)!8(!!82)!9()!1(!8,2)!10()!2(!8)!9()!1(!8k k k k k k k k所以⎪⎩⎪⎨⎧≥--≥-.192,10211kk k k 解得3≤k≤4.所以系数最大的项为第3项257x 和第4项477x .18解:(1)第一步,在2号至6号五天中安排两名主任,有A 25种排法;第二步,剩下五人安排在剩下的五天有A 55种排法,故共有A 25·A 55=2 400种排法.(2)两个部门的人员相间安排,先排4名网络部人员,有A 44种;然后在他们的三个空档中插入三名人事部人员,有A 33种,故共有A 44·A 33=144种排法.(3)把人事部三个人看成一个人,再与网络部4人,有A 55种排法;人事部三个人的内部排列,有A 33种,故共有A 55·A 33=720种排法.(4)不考虑任何限制的排法有A 77,两人中排谁先值班的可能性相同,故有52022177=A种排法.。

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x

【高考调研】高中数学(人教a版)选修2-3:第一章-计数原理+单元测试题x第一章综合测试题一、选择题1.设东、西、南、北四面通往山顶的路各有?2、3、3、4?条路,只从一面上山,而从任意一面下山的走法最多,应( )A.从东边上山C.从南边上山B.从西边上山D.从北边上山2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为?y=x2,值域为{1,4}的“同族函数”共有( )A.7?个B.8?个?C.9?个D.10?个3.5?名学生相约第二天去春游,本着自愿的原则,规定任何人可以“去”或“不去”,则第二天可能出现的不同情况的种数为( )2A.C5 B.25C.52 D.A2524.6?个人分乘两辆不同的汽车,每辆车最多坐?4?人,则不同的乘车方法数为( )A.40 B.50 C.60 D.705.在航天员进行的一项太空实验中,先后要实施?6?个程序,其中程序 A?只能出现在第一步或最后一步,程序?B?和?C?实施时必须相邻,请问实验顺序的编排方法共有( )A.24?种B.48?种C.96?种D.144?种6.有甲、乙、丙三项任务,甲需?2?人承担,乙、丙各需?1?人承担,从?10?人中选派?4?人承担这三项任务,不同的选法有( )A.2?520 B.2?025 C.1?260 D.5?0408?10.已知?x-x展开式中常数项为?1120,其中实数8?10.已知?x-x展开式中常数项为?1120,其中实数?a?是常数,则展在第?3?道上,货车?B?不能停在第?1?道上,则?5?列火车的停车方法共有 ( )A.78?种B.72?种C.120?种D.96?种8.已知(1+x)n=a0+a1x+a2x2+…+anxn,若?a0+a1+a2+…+an =16,则自然数?n?等于( )A.6 B.5 C.4 D.39.6?个人排队,其中甲、乙、丙?3?人两两不相邻的排法有( )A.30?种B.144?种?C.5?种D.4?种? a?? ?开式中各项系数的和是( )A.28?B.38?C.1?或?38 D.1?或?2811.有?A、B、C、D、E、F?共?6?个集装箱,准备用甲、乙、丙三辆卡车运送,每台卡车一次运两个,若卡车甲不能运?A?箱,卡车乙不能运B?箱,此外无其他任何限制;要把这?6?个集装箱分配给这?3?台卡车运送,则不同的分配方案的种数为( )A.168 B.84 C.56 D.4212.从?2?名女教师和?5?名男教师中选出三位教师参加?20xx?年高考某考场的监考工作.要求一女教师在室内流动监考,另外两位教师固定在室内监考,问不同的安排方案种数为( )A.30 B.180?C.630 D.1?08013.已知(x+2)n?的展开式中共有?5?项,则?n=________,展开式中的常数项为________.(用数字作答)14.5?个人排成一排,要求甲、乙两人之间至少有一人,则不同的排法有____种.15.已知(x+1)6(ax-1)2?的展开式中含?x3?项的系数是?20,则?a?的值等于________.16.用数字?2,3?组成四位数,且数字?2,3?至少都出现一次,这样的四位数共有________个.(用数字作答)17.某书店有?11?种杂志,2?元?1?本的?8?种,1?元?1?本的?3?种,小张用10?元钱买杂志(每种至多买一本,10?元钱刚好用完),求不同的买法有多少种(用数字作答).18.4?个相同的红球和?6?个相同的白球放入袋中,现从袋中取出?4?个球;若取出的红球个数不少于白球个数,则有多少种不同的取法?9(12?分)从?1?到?6?的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数.试问:(1)能组成多少个不同的四位数?(2)四位数中,两个偶数排在一起的有几个?(3)两个偶数不相邻的四位数有几个?(所有结果均用数值表示)20?已知(1+2?x)n?的展开式中,某一项的系数恰好是它的前一项系数5的?2?倍,而且是它的后一项系数的6,试求展开式中二项式系数最大的项.21?某单位有三个科室,为实现减负增效,每科室抽调2?人,去参加再就业培训,培训后这?6?人中有?2?人返回原单位,但不回到原科室工作,且每科室至多安排?1?人,问共有多少种不同的安排方法.22.10?件不同厂生产的同类产品:(1)在商品评选会上,有?2?件商品不能参加评选,要选出?4?件商品,并排定选出的?4?件商品的名次,有多少种不同的选法?(2)若要选?6?件商品放在不同的位置上陈列,且必须将获金质奖章的两件商品放上,有多少种不同的布置方法?1,D2,由题意,问题的关键在于确定函数定义域的个数:第一步,先确定函数值?1?的原象:因为?y=x2,当?y=1?时,x=1?或?x=-1,为此有三种情况:即{1},{-1},{1,-1};第二步,确定函数值?4?的原象,因为?y=4?时,x=2?或?x=-2,为此也有三种情况:{2},{-2},{2,-2}.由分步计数原理,得到:3×3=9?个.选?C.3,B,4B44 22 85C?当?A?出现在第一步时,再排?A,B,C?以外的三个程序,有?A33种,A?与?A,B44 22 8成?4?个可以排列程序?B、C?的空档,此时共有?A33A1A2种排法;当?A?出现在最后一步时的排法与此相同,故共有?2A33A1A2=96?种编排方法.6A?先从?10?人中选出?2?人承担甲任务有?C10种选法,再从剩下的?8?人中选出2?人分别承担乙、丙任务,有?A28种选法,由分步乘法计数原理共有?C10A2=2?520?种不同的选法.故选?A.7不考虑不能停靠的车道,5?辆车共有?5!=120?种停法.A?停在?3?道上的停法:4!=24(种);B?种停在?1?道上的停法:4!=24(种);A、B?分别停在?3?道、1?道上的停法:3!=6(种).故符合题意的停法:120-24-24+6=78(种).故选?A.令?x=1,得?2n=16,则?n=4.故选?C.4分两步完成:第一步,其余?3?人排列有?A33种排法;第二步,从?4?个可插空档中任选?3?个给甲、乙、丙?3?人4站有?A34种插法.由分步乘法计数原理可知,一共有?A3A3=144?种.B r 810,CTr+1=(-a)rC8x8-2r,令?8-2r=0 r=4.∴T5=C4(-a)4=1?120,∴a=±2.当?a=2?时,和为?1;当?ar 8时,和为?38.4 4 4 311,D 分两类:①甲运?B?箱,有?C1·?C2·?C2种;②甲不运?B?箱,有?C2·?C4 4 4 34 4 4 3∴不同的分配方案共有?C1·?C2·?C2+C2·?C2·?C24 4 4 3,A?分两类进行:第一类,在两名女教师中选出一名,从?5?名男教师中选出两名,且该女教师只能在室2 5 5内流动监考,有?C1·?C2种选法;第二类,选两名女教师和一名男教师有?C2·2 5 55 2 2 5 5 2教师中选一名作为室内流动监考人员,即有?C2·?C1·?C1共?10?种选法,∴共有?C1·?C2+C2·?5 2 2 5 5 2A13.4 16 ∵展开式共有?5?项,∴n=4,常数项为?C4424=16.414. 甲、乙两人之间至少有一人,就是甲、乙两人不相邻,则有?A3·?A2=72(种).15. 0?或?5 16,14?因4为四位数的每个数位上都有两种可能性,其中四个数字全是?2?或?3?的情况不合题意,所以适合题意的四位数有?24-2=14?个.17.解析分两类:第一类,买?5?本?2?元的有?C58?种;第二类,买?4?本?2?元的和?2?本?1?元的有?C48×C23种.故共有?C58+C48×C23=266?种不同的买法种数.18.解析依题意知,取出有?4?个球中至少有?2?个红球,可分三类:①取出的全是红球有?C44种方法;②20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 6取出的?4?个球中有20.解析? 由题意知展开式中第?k+1?项系数是第?k?项系数的?2?倍,是第?k+2?项系数的,6 4 64 6 4 6理,共有?C4+C3·?C1+C2·?C4 6 4 6319.解析(1)四位数共有?C23C2A4=216?个.333 3(2)上述四位数中,偶数排在一起的有?C23C2A3A2=10833 3(3)两个偶数不相邻的四位数有?C23C2A2A2=108?个.56∴Ckn2k=6Ckn+1·?2k+ ∴?Ckn2k=6Ckn+1·?2k+1, ? k k5解得?n=7.∴展开式中二项式系数最大两项是:37T4=C37(2?x)3=280x2与?T5=C4(2?x)4=560x2.721. 6?人中有?2?人返回原单位,可分两类:2(1)2?人来自同科室:C13C1=6?种;23 2 2 3 2 2(2)2?人来自不同科室:C2C1C1,然后?2?人分别回到科室,但不回原科室有?3?种方法,故有?3 2 2 3 2 236?种.由分类计数原理共有?6+36=42?种方法22.解析(1)10?件商品,除去不能参加评选的?2?件商品,剩下?8?件,从中选出?4?件进行排列,有?A48=1?680(或8C4·?A4)(种).8(2)分步完成.先将获金质奖章的两件商品布置在?6?个位置中的两个位置上,有?A26种方法,再从剩下的8 6 8 88?件商品中选出?4?件,布置在剩下的?4?个位置上,有?A4种方法,共有?A2·?A4=50?400(或?C4·?8 6 8 8。

(典型题)高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

(典型题)高中数学高中数学选修2-3第一章《计数原理》测试(包含答案解析)

一、选择题1.2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则恰好有1名学生选择“芯片领域”的概率为( ) A .49B .427C .1927D .481252.甲乙两人投篮,投中的概率分别为0.6,0.7.若两人各投2次,则两人投中次数相等的概率为( ) A .0.2484B .0.25C .0.90D .0.39243.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .44.已知某批零件的长度误差(单位:毫米)服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布()2,N μσ ,则()68.26%P μσξμσ-<<+= ,()2295.44%P μσξμσ-<<+=.)A .4.56%B .13.59%C .27.18%D .31.74%5.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .0.196.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=7.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( )A .35B .2713C .919D .9138.口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为( ).A .80243B .100243C .80729D .1007299.已知随机变量X 的方差()D X m =,设32Y X =+,则()D Y =( ) A .9mB .3mC .mD .32m +10.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2311.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56 C .13D .2312.已知随机变量X 的分布列为则E(6X +8)=( ) A .13.2B .21.2C .20.2D .22.2二、填空题13.设随机变量ξ服从二项分布16,2B ξ⎛⎫⎪⎝⎭~ ,则()3P ξ≤等于__________ 14.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.15.若随机变量2~5,3X B ⎛⎫ ⎪⎝⎭,则()3D X =_______.16.某同学解答两道试题,他能够解出第一道题的概率为0.8,能够解出第二道题的概率为0.6,两道试题能够解答与否相互独立,记该同学解出题目的个数为随机变量X ,则X 的数学期望()E X =______.17.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.18.小李练习射击,每次击中目标的概率均为13,若用ξ表示小李射击5次击中目标的次数,则ξ的均值E(ξ)与方差D(ξ)的值分别是____.19.已知随机变量2~(1,)N ξσ,且(1)0.1P ξ≤-=,(23)0.15P ξ≤≤=,则(02)P ξ≤≤=_______.20.已知随机变量X 服从正态分布()2,1N ,若()()223P X a P X a ≤-=≥+,则a =__________.三、解答题21.复旦大学附属华山医院感染科主任医师张文宏在接受媒体采访时谈到:通过救治研究发现,目前对于新冠肺炎最有用的“特效药”还是免疫力.而人的免疫力与体质息息相关,一般来讲,体质好,免疫力就强.复学已有一段时间,某医院到学校调查高二学生的体质健康情况,随机抽取12名高二学生进行体质健康测试,测试成绩(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根据此年龄段学生体质健康标准,成绩不低于80的为优良.(1)将频率视为概率,根据样本估计总体的思想,在该学校全体高二学生中任选3人进行体质健康测试,求至少有1人成绩是“优良”的概率;(2)从抽取的12人中随机选取3人,记X 表示成绩“优良”的人数,求X 的分布列和期望.22.某社团现有5名女生,5名男生,其中3名学生来自同一个班,另外7名学生分别来自不同的班级.现要随机选3名学生参加活动.(1)求“选出的3名学生中,至多..有2名来自同一班级”的概率; (2)设选出的3名学生中女生的人数为随机变量X ,求X 的分布列.23.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率. 24.为有效预防新冠肺炎对老年人的侵害,某医院到社区检查老年人的体质健康情况.从该社区全体老年人中,随机抽取12名进行体质健康测试,根据测试成绩(百分制)绘制茎叶图如下.根据老年人体质健康标准,可知成绩不低于80分为优良,且体质优良的老年人感染新冠肺炎的可能性较低.(Ⅰ)从抽取的12人中随机选取3人,记ξ表示成绩优良的人数,求ξ的分布列及数学期望;(Ⅱ)将频率视为概率,根据用样本估计总体的思想,在该社区全体老年人中依次抽取10人,若抽到k 人的成绩是优良的可能性最大,求k 的值. 25.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)设甲同学上学期间的三天中7:30之前到校的天数为X ,求X 0=,1X =,2X =,3X =时的概率()0P X =,()1P X =,()2P X =,()3P X =;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.26.已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A ,B ,C 三名学生报名参加该高校的综合评价,假设A ,B ,C 三位学生材料初审合格的概率分别是13,12,14;面试合格的概率分别是12,13,23.(1)求A ,B 两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X 为A ,B ,C 三位学生获得该高校综合评价录取资格的人数,求X 的概率分布与数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题设分析知:芯片领域被选、不被选的概率分别为13、23,而3名学生选择互不影响,则选择芯片领域的学生数{0,1,2,3}X =,即X 服从二项分布,则有3321()()()33n n n P X n C -==即可求恰好有1名学生选择“芯片领域”的概率.【详解】由题意知,有3名学生且每位学生选择互不影响,从这15项“世界互联网领先科技成果”中分别任选1项,5项成果均属于芯片领域,则: 芯片领域被选的概率为:51153=;不被选的概率为:12133-=;而选择芯片领域的人数{0,1,2,3}X =,∴X 服从二项分布1~3(,3)X B ,3321()()()33nnn P X n C -==,那么恰好有1名学生选择“芯片领域”的概率为123214(1)()()339P X C ===. 故选:A. 【点睛】本题考查了二项分布,需要理解题设条件独立重复试验的含义,并明确哪个随机变量服从二项分布,结合二项分布公式求概率.2.D解析:D 【分析】根据题意,两人投中次数相等:两人两次都未投中,两人各投中一次,和两人两次都投中,进而根据相互独立事件概率乘法公式和互斥事件概率加法公式,得到答案. 【详解】由题意,甲、乙两人投篮,投中的概率分别为0.6,0.7,则甲、乙两人各投2次: 两人两次都未投中的概率:()()22010.610.70.0144P =-⨯-=;两人各投中一次的概率:()()111220.610.60.710.70.2016P C C =⨯⨯-⨯⨯⨯-=;两人两次都投中的概率:2220.60.70.1764P =⨯=.所以,两人投中次数相等的概率为:0120.3924P P P P =++=. 故选:D. 【点睛】本题主要考查相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于基础题.3.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q +221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.4.B解析:B 【解析】 试题分析:由题意13368.26%6695.44%3695.44%68.26%13.59%2P P P (<<),(<<),(<<)().ξξξ-=-=∴=-=故选B . 考点:正态分布5.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.8.A解析:A 【解析】每次摸球中奖的概率为114529C C 2059C 36==,由于是有放回地摸球,故3次摸球相当于3次独立重复实验,所以3次摸球恰有1次中奖的概率2135580C 199243P ⎛⎫=⨯⨯-= ⎪⎝⎭. 故选A .点睛:判断一个随机变量是否服从二项分布,要看两点:①是否为n 次独立重复试验,在每次试验中事件A 发生的概率是否均为p ;②随机变量是否为在这n 次独立重复试验中某事件发生的次数,且()()1n kk kn p X k C p p -==-表示在独立重复试验中,事件A 恰好发生k 次的概率.解析:A 【解析】∵()D X m =,∴2()(32)3()D Y D X D X =+=9()D X =9m =,故选A .10.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 11.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 12.B解析:B 【解析】由题意知,E(X)=1×0.2+2×0.4+3×0.4=2.2,∴E(6X +8)=6E(X)+8=6×2.2+8=21.2.选B.二、填空题13.【分析】利用独立重复试验的概率计算出再将这些相加可得出【详解】由于所以因此故答案为【点睛】本题考查二项分布独立重复试验的概率解这类问题要注意将基本事件列举出来关键在于灵活利用独立重复试验的概率公式进 解析:2132【分析】利用独立重复试验的概率计算出()0P ξ=、()1P ξ=、()2P ξ=、()3P ξ=,再将这些相加可得出()3P ξ≤. 【详解】由于1~6,2B ξ⎛⎫ ⎪⎝⎭,所以,()6110264P ξ⎛⎫=== ⎪⎝⎭,()616131232P C ξ⎛⎫==⋅= ⎪⎝⎭,()6261152264P C ξ⎛⎫==⋅= ⎪⎝⎭,()636153216P C ξ⎛⎫==⋅= ⎪⎝⎭,因此,()()()()()213012332P P P P P ξξξξξ≤==+=+=+==,故答案为2132.【点睛】本题考查二项分布独立重复试验的概率,解这类问题要注意将基本事件列举出来,关键在于灵活利用独立重复试验的概率公式进行计算,考查计算能力,属于中等题.14.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994 【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.15.10【分析】根据题意可知随机变量满足二项分布根据公式即可求出随机变量的方差再利用公式即可求出【详解】故答案为【点睛】本题主要考查满足二项分布的随机变量方差的求解解题时利用公式将求的问题转化为求的问题解析:10 【分析】根据题意可知,随机变量2~5,3X B ⎛⎫ ⎪⎝⎭满足二项分布,根据公式()(1)D X np p =-,即可求出随机变量的方差,再利用公式2()()D aX b a D X +=即可求出()3D X 。

数学选修2-3第一章计数原理习题集(附答案解析)

数学选修2-3第一章计数原理习题集(附答案解析)

第 1 页 共15 页 选修2-3 第一章章节习题集1.1 分类加法计数原理与分步乘法计数原理 一、课时过关·能力提升1.某校举办了一次教师演讲比赛,参赛的语文老师有20人,数学老师有8人,英语老师有4人,从中评选出一个冠军,则可能的结果种数为( ) A.12B.28C.32D.640解析:由分类加法计数原理得,冠军可能的结果种数为4+8+20=32. 答案:C2.如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是( ) A .60B .48C .36D .24解析:长方体的6个表面构成的“平行线面组”有6×6=36个,另含4个顶点的6个面(非表面)构成的“平行线面组”有6×2=12个,共36+12=48个,故选B . 答案:B3.某人有3个不同的电子邮箱,他要发5封电子邮件,不同发送方法的种数为( )A.8B.15C.35D.53 解析:每封电子邮件都有3种不同的发送方法,共有35种不同的发送方法. 答案:C4.已知直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A ,B 的值,则可表示出的不同直线的条数为( ) A.19B.20C.21D.22解析:当A 或B 中有一个为零时,则可表示出2条不同的直线;当AB ≠0时,A 有5种选法,B 有4种选法,则可表示出5×4=20条不同的直线.由分类加法计数原理知,共可表示出20+2=22条不同的直线. 答案:D5.五名护士上班前将外衣放在护士站,下班后回护士站取外衣,由于灯光暗淡,只有两人拿到了自己的外衣,另外三人拿到别人外衣的情况有( ) A.60种B.40种C.20种D.10种解析:设五名护士分别为A,B,C,D,E.其中两人拿到自己的外衣,可能是AB,AC,AD,AE,BC,BD,BE,CD,CE,DE 共10 种情况,假设A,B 两人拿到自己的外衣,则C,D,E 三人不能拿到自己的外衣,则只有C 取D,D 取E,E 取C,或C 取E,D 取C,E 取D 两种情况.故根据分步乘法计数原理,应有10×10×2=202=20种情况. 答案:C6.将4位老师分配到3个学校去任教,共有分配方案( ) A .81种B .12种C .7种D .256种解析:每位老师都有3种分配方案,分四步完成,故共有3×3×3×3=81种. 答案:A7.从6名志愿者中选4人分别从事翻译、人分别从事翻译、导游、导游、导游、导购、导购、导购、保洁四项不同的工作保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有( ) A .280种 B .240种 C .180种D .96种解析:由于甲、乙不能从事翻译工作,因此翻译工作从余下的4名志愿者中选1人,有4种选法.后面三项工作的选法有5×4×3种,因此共有4×5×4×3=240种,故选B 答案:B8.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3 542大的四位数的个数是( ) A .360B .240C .120D .60解析:因为3 542是能排出的四位数中千位为3的最大的数,所以比3 542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3 542大的四位数. 答案:C9.圆周上有2n 个等分点(n 大于2),任取3点可得一个三角形,恰为直角三角形的个数为 .解析:先在圆周上找一点,因为有2n 个等分点,所以应有n 条直径,不经过该点的直径应有(n-1)条,这(n-1)条直径都可以与该点形成直角三角形,一个点可以形成(n-1)个直角三角形,而这样的点有2n 个,所以一共有2n (n-1)个符合题意的直角三角形. 答案:2n (n-1)10.如图所示,小圆圈表示网络的结点,结点之间的连线表示它们有网络联系,连线上标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A 向结点B 传递信息,信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 .解析:由题图可知,从A 到B 有4种不同的传递路线,各路线上单位时间内通过的最大信息量自上而下分别为3,4,6,6,由分类加法计数原理得,单位时间内传递的最大信息量为3+4+6+6=19. 答案:1911.三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被传给甲,则共有种不同的传递方法.解析:分两类:第一类,若甲先传给乙,则有:甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,第二类,甲先传给丙,也有3种不同的传法.共有6种不同的传递方法. 答案:612.如图,一只蚂蚁沿着长方体的棱,从顶点A 爬到相对顶点C 1,求其中经过3条棱的路线共有多少条?解:从总体上看有三类方法:分别经过AB,AD,AA1从局部上看每一类又需分两步完成,故第一类:经过AB,有m1=1×2=2条;第二类:经过AD,有m2=1×2=2条;第三类:经过AA1,有m3=1×2=2条.根据分类加法计数原理,从顶点A到顶点C1经过3条棱的路线共有N=2+2+2=6条.13.用n种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.当n=6时,该板报有多少种书写方案?解:第一步选英语角用的彩色粉笔,有6种不同的选法;第二步选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法.共有6×5×4×5=600种不同的书写方案.14.用0,1,0,1,……,9这十个数字,可以组成多少个满足下列条件的数?(1)三位整数;(2)无重复数字的三位整数;(3)小于500的无重复数字的三位整数;(4)小于100的无重复数字的自然数.解:由于0不能放到首位,可以单独考虑.(1)百位上有9种选择,十位和个位各有10种选法由分步乘法计数原理知,适合题意的三位数的个数是9×10×10=900.(2)由于数字不可重复,可知百位数字有9种选择,十位数字也有9种选择,但个位数字仅有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是9×9×8=648.(3)百位数字只有4种选择,十位数字有9种选择,个位数字有8种选择,由分步乘法计数原理知,适合题意的三位数的个数是4×9×8=288.(4)小于100的自然数可以分为一位和两位自然数两类.一位自然数:10个.两位自然数:十位数字有9种选择,个位数字也有9种选择,由分步乘法计数原理知,适合题意的两位数的个数是9×9=81.由分类加法计数原理知,适合题意的自然数的个数是10+81=91.1.2 排列与组合1.2.1 排列一、课时过关·能力提升1.从集合{3,5,7,9,11}中任取两个元素,①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆=1中的a,b,可以得到多少个焦点在x轴上的椭圆方程?④作为双曲线=1中的a,b,可以得到多少个焦点在x轴上的双曲线方程?上面四个问题属于排列问题的是( )A.①②③④B.②④C.②③D.①④解析:∵加法满足交换律,∴①不是排列问题;∵除法不满足交换律,如,∴②是排列问题;若方程=1表示焦点在x轴上的椭圆,则必有a>b,a,b的大小一定;在双曲线=1中不管a>b还是a<b,方程均表示焦点在x轴上的双曲线,且是不同的双曲线.故③不是排列问题,④是排列问题.答案:B2.某年级一天有6节课,需要安排6门课程,则该年级一天的课程表的排法有( )A.66种B.36种C.种D.12种解析:本题相当于对6个元素进行全排列,故有种排法.答案:C3.设m∈N*,则乘积m(m+1)(m+2)2)……(m+20)可表示为 ( )A. B. C. D.解析:由排列数公式,=(m+20)(m+19)(m+18)…(m+1)m.答案:D4.某会议室共有8个座位,现有3人就座,若要求每人左右均有空位,则不同的坐法有( )A.12种B.16种C.24种D.32种解析:将三个人插入五个空位中间的四个空当中,有=24种坐法.答案:C5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A.8B.24C.48D.120解析:个位数字有种排法,十位、百位、千位有种排法,从而共=48个不同的四位偶数答案:C6.要排一个有5个独唱节目和3个舞蹈节目的节目单,如果舞蹈节目不排在开头,并且任意两个舞蹈节目不排在一起,则不同的排法种数是( )A. B. C. D.解析:第一步先排5个独唱节目共种;第二步排舞蹈,不相邻则用插空法,且保证不放到开头,从剩下5个空中选3个插空共有种,故一共有种.答案:C7.5名男生与2名女生排成一排照相,若男生甲必须站在中间,2名女生必须相邻,则符合条件的排法共有( )A.48种B.192种C.240种D.288种解析:(用排除法)将2名女生看作1人,与4名男生一起排队,有种排法,而女生可互换位置,所以共有种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有种,这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为=192.答案:B8.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从2,3,4,5,6,9这六个数字中任取3个数,组成无重复数字的三位数,其中“伞数”有 ( )A.120个B.80个C.40个D.20个解析:由题意知可按十位数字的取值进行分类:第一类,十位数字取9,有个;第二类,十位数字取6,有个;第三类,十位数字取5,有个;第四类,十位数字取4,有个.所以一共有=40个.答案:C9.张先生和王先生两对夫妇各带1名小孩一起到动物园游玩,购票后排队依次入园为安全起见,首尾一定要排两位爸爸,另外,两名小孩一定要排在一起,则这6人的入园排法共有 .解析:分三步完成:第1步,将两位爸爸排在两端,有种排法;第2步,将两名小孩看作一人与两位妈妈任意排在中间的三个位置,有种排法;第3步,两个小孩之间还有种排法.因此,这6人的入园排法共有=24种.答案:24种10.某校在高二年级开设选修课,其中数学选修班开了4个,选课结束后,有四名选修英语的同学甲、乙、丙、丁要求改修数学,为照顾各班平衡,数学选修班每班只接收1名改修数学的同学.那么甲不在(1)班,乙不在(2)班的分配方法有 .解析:先分甲,第一类,当甲在(2)班时,分配乙、丙、丁有种方法.第二类,当甲不在(2)班时,则甲有种分法,再分乙有种分法,分配丙、丁有种分法.因此,总共有=14种分法.答案:14种11.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有=1 440个.(2)先把偶数排在奇数位上有种排法,再排奇数有种排法共有=576个.(3)1和2排列有种方法,在1和2之间放一个奇数有种方法,把1,2和相应奇数看成整体再和其余4个数进行排列有种排法,故共有=720个.12.一条铁路线上原有n个车站,为适应客运需要,新增加了m个车站(m>1),客运车票增加了62种,则原有多少个车站?现在有多少个车站?解:∵原有n个车站,∴原有客运车票种.又现有(n+m)个车站,∴现有客运车票种.由题设知:=62,∴(n+m)(n+m-1)-n(n-1)=62,∴2mn+m2-m=62,∴n=(m-1)>0,∴(m-1),∴62>m(m-1),即m2-m-62<0.又∵m>1,∴1<m<,∴1<m≤8.当m=2时,n=15.当m=3,4,5,6,7,8时,n均不为整数.∴n=15,m=2.∴原有车站15个,现有车站17个.1.2.2 组合一、课时过关·能力提升1.某高校外语系有8名志愿者,其中有5名男生,3名女生,现从中选3人参加某项测试赛的翻译工作,若要求这3人中既有男生,又有女生,则不同的选法共有( )A.45种B.56种C.90种D.120种解析:用排除法,不同的选法种数为=45.答案:A2.氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由7种不同的氨基酸构成,若只改变其中3种氨基酸的位置,其他4种不变,则不同的改变方法的种数为 ( )A.210B.126C.70D.35解析:从7种中取出3种有=35种取法,比如选出a,b,c种,再都改变位置有b,c,a和c,a,b两种,故不同的改变方法有2×35=70种.答案:C3.有15盏灯,要求关掉6盏,且相邻的灯不能全关掉,两端的灯不能关掉,则不同的关灯方法有( )A.28种B.84种C.180种D.360种解析:将9盏灯排成一排,关掉的6盏灯插入9盏亮灯的中间8个空隙中的6个空隙中,有=28种方法.答案:A4.某科技小组有6名学生,现从中选出3人去参加展览,至少有1名女生入选的不同选法有16种,则该小组中的女生人数为( )A.2B.3C.4D.5解析:设男生有x人,则女生有(6-x)人.依题意得=16,即x(x-1)(x-2)+16×6=6×5×4.解得x=4,故女生有2人.答案:A5.中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案种数为( )A. B.C. D.解析:首先每个学校配送一台,这个没有顺序和情况之分,剩下40台;将剩下的40台像排队一样排列好,则这40台校车之间有39个空,对这39个空进行插空,比如说用9面小旗隔开,就可以隔成10部分.所以是在39个空中选9个空进行插空.故不同的方案种数为.答案:D6.已知一组曲线y=ax3+bx+1,其中a为2,4,6,8中的任意一个,b为1,3,5,7中的任意一个.现从这些曲线中任取两条,它们在x=1处的切线相互平行的组数为 ( )A.9B.10C.12D.14解析:y'=ax2+b,曲线在x=1处切线的斜率k=a+b.切线相互平行,则需它们的斜率相等,因此按照在x=1处切线的斜率的可能取值可分为五类完成.第一类:a+b=5,则a=2,b=3;a=4,b=1.故可构成2条曲线,有组.第二类:a+b=7,则a=2,b=5;a=4,b=3;a=6,b=1.可构成三条曲线,有组.第三类:a+b=9,则a=2,b=7;a=4,b=5;a=6,b=3;a=8,b=1.可构成四条曲线,有组.第四类:a+b=11,则a=4,b=7;a=6,b=5;a=8,b=3.可构成3条曲线,有组.第五类:a+b=13,则a=6,b=7;a=8,b=5.可构成2条曲线,有组.故共有=14组相互平行的切线.答案:D7.5个不同的球放入4个不同的盒子中,每个盒子中至少有一个球,若甲球必须放入A盒,则不同的放法种数是 ( )A.120B.72C.60D.36解析:将甲球放入A盒后分两类,一类是除甲球外,A盒还放其他球,共=24种放法,另一类是A盒中只有甲球,则其他4个球放入另外三个盒中,有=36种放法.故总的放法有24+36=60种.答案:C8.从7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有 .(用数字作答)解析:第一步安排周六有种方法,第二步安排周日有种方法,故不同的安排方案共有=140种.答案:140种9.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 .(用数字作答)解析:分两种情况:第一类:个位、十位和百位上各有一个偶数,有=90个.第二类:个位、十位和百位上共有两个奇数一个偶数,有=234个,共有90+234=324个.答案:324个10.某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同品种的菜.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜(结果用数值表示)解析:在5种不同的荤菜中选出2种的选择方式的种数是=10.若选择方式至少为200种,设素菜为x种, 则有≥200,即≥20,化简得x(x-1)≥40,解得x≥7.所以,至少应准备7种素菜.答案:711.在如图所示的四棱锥中,顶点为P,从其他的顶点和各棱中点中取3个,使它们和点P在同一平面内,不同的取法种数为 .解析:满足要求的点的取法可分为三类:第一类,在四棱锥的每个侧面上除点P外任取3点,有4种取法;第二类,在两个对角面上除点P外任取3点,有2种取法;第三类,过点P的侧棱中,每一条上的三点和与这条棱异面的两条棱的中点也共面,有4种取法.因此,满足题意的不同取法共有4+2+4=56种.答案:5612.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,求与信息0110至多有两个对应位置上的数字相同的信息个数.解:与信息0110至多有两个对应位置上的数字相同的信息包括三类:第一类,与信息0110恰有两个对应位置上的数字相同,即从4个位置中选2个位置相同,其他2个不同有=6个信息.第二类,与信息0110恰有一个对应位置上的数字相同,即从4个位置中选1个位置相同,其他3个不同有=4个信息.第三类,与信息0110没有一个对应位置上的数字相同,即4个位置中对应数字都不同,有=1个信息 由分类加法计数原理知,与信息0110至多有两个对应位置上的数字相同的信息个数为6+4+1=11.13.在6名内科医生和4名外科医生中,内科主任和外科主任各1名,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生;(3)至少有1名主任参加;(4)既有主任,又有外科医生.解:(1)先选内科医生有种选法,再选外科医生有种选法,故选派方法的种数为=120.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,易得出选派方法的种数为=246.若从反面考虑,则选派方法的种数为=246.(3)分两类:一是选1名主任有种方法;二是选2名主任有种方法,故至少有1名主任参加的选派方法的种数为=196.若从反面考虑:至少有1名主任参加的选派方法的种数为=196.(4)若选外科主任,则其余可任选,有种选法.若不选外科主任,则必选内科主任,且剩余的四人不能全选内科医生,有种选法.故有选派方法的种数为=1911.3 二项式定理1.3.1 二项式定理一、课时过关·能力提升1.的展开式中倒数第3项的系数是( )A.·2B.·26C.·25D.·22解析:的展开式中倒数第3项为二项展开式中的第6项,而T6=·(2x)2··22·x-8.该项的系数为·22.答案:D2.的展开式中的常数项为-220,则a的值为 ( )A.1B.-1C.2D.-2解析:T k+1=·a k.∵T k+1为常数项,∴-k=0,∴k=3.∴·a3=-220,∴a=-1.答案:B3.对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值是( )A.3B.6C.9D.21解析:由已知x3=[2+(x-2)]3=·23+·22·(x-2)+·2·2·((x-2)2+(x-2)3.所以a2=·2=6.答案:B4.的展开式中含x3项的二项式系数为( )A.-10B.10C.-5D.5解析:T k+1=·x 5-k=(-1)k·x5-2k,令5-2k=3,则k=1故x3项的二项式系数为=5答案:D5.若(1+)5=a+b(a,b为有理数),则a+b等于 ( )A.45B.55C.70D.80解析:由二项式定理,得(1+)5=1+·()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,故a+b=70.答案:C6.(1-)6(1+)4的展开式中x的系数是( )A.-4B.-3C.3D.4解析:方法一:(1-)6的展开式的通项为(-)m,(1+)4的展开式的通项为)n,其中m=0,1,2,…,6;n=0,1,2,3,4.令=1,得m+n=2,于是(1-)6(1+)4的展开式中x的系数等于·(-1)0··(-1)1··(-1)2·=-3.方法二:(1-)6(1+)4=[(1-)(1+)]4(1-)2=(1-x)4(1-2+x).于是(1-)6(1+)4的展开式中x的系数为·1+·(-1)1·1=-3.答案:B7.若x>0,设的展开式中的第3项为M,第4项为N,则M+N的最小值为 .解析:由T3=x,T4=,则M+N=≥2.当且仅当,即x=时,等号成立答案:8.二项式的展开式中,常数项的值为 .答案:0,1,2,……,n)的部分图象如图,则a= .9.已知(ax+1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0(x∈N*),点A i(i,a i)(i=0,1,2,解析:由展开式得T k+1=(ax)n-k=a n-k·x n-k,由题图可知a1=3,a2=4,即a=3,且a2=4,化简得na=3,且=4,解得a=.答案:10.求证:32n+3-24n+37能被64整除.证明:32n+3-24n+37=3×9n+1-24n+37=3(8+1)n+1-24n+37=3(·8n+1+·8n+…+·8+1)-24n+37=3×64(·8n-1 +·8n-2+…+)+24-24n+40=64×3(·8n-1+·8n-2+…+)+64.显然上式是64的倍数,故原式可被64整除11.(1)求(1+x)2(1-x)5的展开式中x3的系数;(2)已知展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如果有,请求出来.解:(1)(1+x)2的通项为T r+1=·x r,(1-x)5的通项为T k+1=(-1)k·x k,其中r∈{0,1,2},k∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.故x3的系数为-=5.(2)展开式的通项为T k+1=(x)n-k·=·2k·(k=0,1,2,…,n),由题意,得20+2+22=129所以1+2n+2n(n-1)=129,则n2=64,即n=8.故T k+1=·2k·(k=0,1,2,…,8),若展开式存在常数项,则=0,解之,得k=∉Z,所以展开式中没有常数项若展开式中存在一次项,则=1,即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T7=26x=1 792x.1.3.2 “杨辉三角”与二项式系数的性质一、课时过关·能力提升1.如果的展开式中各项系数之和为128,则展开式中含的项是( )A. B.C. D.解析:由的展开式中各项系数之和为128可得2n =128,n=7.其通项T k+1=(3x )7-k =(-1)k ·37-k,令7-=-3,解得k=6,此时T 7=.答案:C 2.的展开式中第8项是常数项,则展开式中系数最大的项是( )A.第8项B.第9项C.第8项、第9项D.第11项、第12项 解析:展开式中的第8项为)n-7为常数,即=0,解得n=21.故展开式中系数最大的项为第11项、第12项.答案:D 3.若(x+3y )n展开式的系数和等于(7a+b )10展开式中的二项式系数之和,则n 的值为( ) A.5B.8C.10D.15解析:(7a+b )10展开式的二项式系数之和为210,令x=1,y=1,则由题意知,4n =210,解得n=5.答案:A4.已知+2+22+…+2n =729,则的值等于( )A.64B.32C.63D.31解析:由已知(1+2)n =3n=729,解得n=6.则=32.答案:B5.(1+x )n(3-x )的展开式中各项系数的和为1 024,则n 的值为( ) A .8B .9C .10D .11解析:由题意知(1+1)n (3-1)=1 024,即2n+1=1 024,故n=9. 答案:B6.若(1-2x )2 015=a 0+a 1x+…+a 2 015x2 015(x ∈R ),则+…+的值为( ) A.2 B.0C.-1D.-2 解析:令x=0,则a 0=1,令x=,则a 0++…+=0,故+…+=-1.答案:C7.(x+1)9按x 的升幂排列二项式系数最大的项是( ) A .第4项和第5项 B .第5项 C .第5项和第6项 D .第6项解析:展开式中共有10项,由二项式系数的性质可知,展开式的中间两项的二项式系数最大,即第5项和第6项的二项式系数最大. 答案:C8.在(a-b )10的二项展开式中,系数最小的项是 .解析:在(a-b )10的二项展开式中,奇数项的系数为正,偶数项的系数为负,且偶数项系数的绝对值为对应的二项式系数,因为展开式中第6项的二项式系数最大,所以系数最小的项为T 6=a 5(-b )5=-252a 5b 5.答案:-252a 5b 59.设(x-1)21=a 0+a 1x+a 2x 2+…+a 21x 21,则a 10+a 11= . 解析:∵(x-1)21的展开式的通项为T k+1=x 21-k (-1)k ,∴a 10+a 11=(-1)11+(-1)10=-=-=0.答案:0 10.若(2x+)4=a 0+a 1x+…+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为 .解析:令x=1,得a 0+a 1+a 2+a 3+a 4=(2+)4,令x=-1,得a 0-a 1+a 2-a 3+a 4=(-2+)4,(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 1+a 2+a 3+a 4)·)·((a 0-a 1+a 2-a 3+a 4)=(2+)4(-2+)4=1. 答案:111.若(2x-3y )10=a 0x 10+a 1x 9y+a 2x 8y 2+…+a 10y 10,求:(1)各项系数之和;(2)奇数项系数的和与偶数项系数的和.解:(1)各项系数之和即为a 0+a 1+a 2+…+a 10,可用“赋值法”求解.令x=y=1,得a 0+a 1+a 2+…+a 10=(2-3)10=(-1)10=1.(2)奇数项系数的和为a 0+a 2+a 4+…+a 10,偶数项系数的和为a 1+a 3+a 5+…+a 9. 由(1)知a 0+a 1+a 2+…+a 10=1,①令x=1,y=-1,得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得,2(a 0+a 2+…+a 10)=1+510,则奇数项系数的和为;①-②得,2(a 1+a 3+…+a 9))=11-5510,则偶数项系数的和为12.已知(+3x 2)n 展开式中各项系数和比它的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.解:令x=1得展开式各项系数和为(1+3)n =4n展开式二项式系数和为+…+=2n ,由题意有4n -2n=992.即(2n )2-2n -992=0,(2n -32)(2n+31)=0,解得n=5.(1)因为n=5,所以展开式共6项,其中二项式系数最大的项为第3项、第4项,它们是T 3=)3·(3x 2)2=90x 6, T 4=)2(3x 2)3=270.(2)设展开式中第k+1项的系数最大.由T k+1=)5-k ·(3x 2)k =3k,得⇒⇒≤k≤.因为k∈Z,所以k=4,所以展开式中第5项系数最大.T5=34=405.13.杨辉是中国南宋末年的一位杰出的数学家、教育家.杨辉三角是杨辉的一项重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:(1)求第20行中从左到右的第4个数;(2)在第2斜列中,前5个数依次为1,3,6,10,15;第3斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般的有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m,k(m,k∈N*)的数字公式表示上述结论,并给予证明.解:(1)=1 140(2)+…+,证明如下:左边=+…++…+=…==右边.。

人教A版高中数学选修2-3全册同步练习及单元检测含答案

人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。

人教版高中数学选修2-3单元检测试题及答案(第一章-计数原理)

人教版高中数学选修2-3单元检测试题及答案(第一章-计数原理)

、选择题、填空题人教版高中数学选修2-3单元检测试题.1 • 由 1、2、 3三个数字构成的四位数有 ( )• A • 81个 B • 64 个 C • 12个 D • 14个 2•集合{1, 2,3,4,5,6}的真子集共有()•A • 5个B • 6个C • 63个D • 64个 3• 5个人排成一排,其中甲在中间的排法种数有( )•A •5 B • 120 C • 24 D • 4 4•从5个人中选1名组长和1名副组长,但甲不能当副组长,不同的选法总数是( ).A • 20B • 16C • 10D • 65. 已知n = 3! + 24!,贝U n 的个位数为( ).A • 7B • 6C • 8D • 36. 假设200件产品中有3件次品,现在从中任取 5件,至少有2件次品的抽法数有 ( )• A • c 3&98 B • c 3c 397+ C 3C ?97 C • c 2oo — C 497 D • c 2oo — C 》C 497 7•从6位男学生和3位女学生中选出4名代表,代表中必须有女学生,则不同的选法有 ( )•A • 168B • 45C • 60D • 111 &氨基酸的排列顺序是决定蛋白质多样性的原因之一,某肽链由 7种不同的氨基酸构成,若只改 变其中3种氨基酸的位置,其他 4种不变,则与原排列顺序不同的改变方法共有 ( )• A • 70 种 B • 126 种 C • 175 种展开式中只有第六项二项式系数最大,则展开式中第A • 18B • 20C • 22 亠 x10 •在——2 1 8 -3' 的展开式中的常数项是( •• x)•A • 7B • — 7C • 28D • 210种 2项系数是( D • 2411 •有四位学生报名参加三项不同的竞赛,(1) 每位学生都只报了一项竞赛,则有 ________ 种不同的报名方法; (2) 每项竞赛只许有一位学生参加,则有 ___________ 种不同的参赛方法; (3) 每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加, 则有种不同的参赛方法•12 • 4名男生,4名女生排成一排,女生不排两端,则有 ___________ 种不同排法•13 •从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲不能从 事翻译工作,则选派方案共有 _________ 种•-914 •已知-的展开式中,x 3的系数为-,则常数的a 值为x 2 415 •在二项式(1 - 2x)n 的展开式中,偶数项的二项式系数之和为 32,则展开式的第3项为 ___________•16 •将4个颜色互不相同的球放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有 __________ 种•三、解答题17 • 7人排成一排,在下列情况下,各有多少种不同排法: (1) 甲不排头,也不排尾;(2) 甲、乙、丙三人必须在一起; (3) 甲、乙之间有且只有两人; (4) 甲、乙、丙三人两两不相邻; (5) 甲在乙的左边(不一定相邻)•18 •某厂有150名员工,工作日的中餐由厂食堂提供,每位员工可以在食堂提供的菜肴中任选 2荤2 素共4种不同的品种,现在食堂准备了 5种不同的荤菜,若要能保证每位员工有不同选择, 则食堂至少还需准备不同的素菜品种多少种?19 •求(1 + x) 2( 1 - x)5的展开式中x 3的系数•D • -2820 • 7个人到7个地方去旅游,一人一个地方,甲不去 A 地,乙不去B 地,丙不去C 地,丁不去D 地,共有多少种旅游方案 ?2一、选择题 1. A解析:每位数都有 3种可能取法,34 .故选A . 2. C解析:26— 1 = 63.故选C . 3. C解析:1 X A ; = 24.故选C . 4. B解析:甲当副组长选法有 A 4种,故符合题意的选法有 A 2— A [ = 16 .故选B .5. B解析:由于24!为从1开始至24的24个数连乘,在这 24个数中有10,所以24!的个位数为0, 又3!的个位数为6,所以3! + 24!的个位数为6 .故选B . 6. B 解析:200件产品中有3件次品,197件正品.取5件,至少有2件次品,即3件正品2件次品或 2 3 3 22件正品3件次品,抽法数有 C 3 C 197 + C 3 C 197 .故选B . 7. D 解析:女生选1, 2, 3人,男生相应选3, 2, 1人,选法有C 3C 3 + C f C 6 + C 3C 6= 111 .故选D .11. (1)81.解析:4位学生每人都有 3项竞赛可以选择,3X 3X 3X 3= 81. (2) 64.解析:3项竞赛每项都有 4位学生可以选择,4X 4X 4 = 64. (3) 24.解析:4位学生选3人参加3项竞赛,A 4 = 24. 12. 8 640.解析:8个位置,先排女生不排两端有 A 6种排法,再排男生有A 4种排法,所以最后排法有A=8 640.13. 300.解析:选到甲时3 X A 5,不选甲时A 4,所以选派方案种数为: 3 X A 33 + A 5 = 300.14. 64.9- r解析:T r+1 = C 9 -X3r44A4=(—1)r a9-rC9X 23,则 r = 8, ( - 1)8a 9-82-8C 9 心 a = 64. 15. 60X 2.解析:•••偶数项的二项式系数之和为 32,8. A 解析:氨基酸有 C 种选法,选到的3种氨基酸与原排列顺序不同的排法有1种,所以与原排项式系数之和为 2n = 64,二 n = 6, T 3= C |( — 2X ) 2= 60X 2. 列顺序不同的改变方法数共有 C 3(A 3— 1) = 175.故选C . 9. B 解析:n = 10,所求系数为 1 C 10 X 2= 20.故选 B . 10. A 解析:T r+1 = C 8r 8- 4L3: = Cr(-1)r2r -8x',常数项时 8-手=0,r = 6 所以 T7=1)6 26-8 = 7.故选二、填空题16. 10.解析:分两种情况:①1号盒放1个球,2号盒放3个球,有A4种;②1号盒放2个球,2号盒放2个球,有C 4种.C 4 + C : = 10. 三、解答题17.解:(1)甲有中间5个位置供选择,有 A 5种排法,其余6人的排法有A 6 = 720, •••符合题意的排法共有 A5A 6 = 3 600种;(2)先排甲、乙、丙三人,有 A 3种排法,再把该三人当成一个整体与另四人排,有 A l 种排法,•••符合题意的共有 A^A ! = 720种排法;(3) 排在甲、乙之间的2个人的选法有A 5,甲、乙可以交换有A 2种情况,把该四人当成一个整体与另三人排,有A;种排法,.••符合题意的共有AfA^Al = 720种排法;(4) 先排甲、乙、丙之外的四人,有A;种排法,四人形成五个空位,甲、乙、丙三人插入这四人中间或两头,有A負种排法,•••符合题意的共有A!A4=1 440种排法;(5) 其余人先排,有Ay =2 520种排法,剩余二位置甲、乙排法唯一,故共2 520种排法.解:设要准备素菜x种,则cfcj >150,解得x>6,即至少要准备素菜6种.19•解:(1 + x)2的通项公式T r+i = C2 - x r, r€{0, 1, 2}.(1-x)5的通项公式T k+i= C5 • (-x)k=(-1)k C5X k, k€{0, 1, 2, 3, 4, 5}.k=l k=2 k=3令k+r=3,则或或r = 2 r = 1 r = 0从而x,的系数为—C 5+ C 2 C5一C? = 5 .20•解:用间接法,先求不满足要求的方案数.⑴若甲、乙、丙、丁4人分别去A, B, C, D,而其余的人不限,选法有As = 6#.(2) 若甲、乙、丙、丁中有3人去各自不能去的地方旅游,有C:种,而4人中剩下1人去的地方是C;种,其余的人有As#,所以共有C:C>4=72种.(3) 若甲、乙、丙、丁4人中有2人去各自不能去的地方旅游,有C:种,余下的5个人分赴5个不同的地方的方案有A?种,但是其中又包括了有限制条件的四人中的两人(不妨设甲、乙两人)同时去各自不能去的地方共A訂中,和这两人中有一人去了自己不能去的地方有2A1A S种,所以共有C4( A1-3 13A3 -2 A3A3) = 468 种.(4) 若甲、乙、丙、T 4人中只有1人去了自己不能去的地方旅游,有C;种方案,而余下的六个人的旅游方案仍与(3)想法一致,共有C4 [ A 6 - C3 ( A4 一A3) - C3 ( A 5 一A3 - 2 A 3A 3)] = 1 728 种.所以满足以上情况的不同旅游方案共有Ay -(6+ 72 + 468+ 1 728) = 2 766种.2。

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

(典型题)高中数学高中数学选修2-3第一章《计数原理》检测(答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则任意选取一名学生,该生成绩不高于80的概率为( ) A .0.05B .0.1C .0.15D .0.23.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.设1~(10,)B p ξ,2~(10,)B q ξ,且14pq >,则“()()12E E ξξ>”是“()()12D D ξξ<”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知离散型随机变量X 的分布列如图:则均值E (X )与方差D (X )分别为( )A .1.4,0.2B .0.44,1.4C .1.4,0.44D .0.44,0.26.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b += A .110B .0C .110-D .157.设一随机试验的结果只有A 和A ,且A 发生的概率为m ,令随机变量11A X A 发生发生⎧=⎨-⎩,则()D X =( )A .1B .(1)m m -C .4(1)m m -D .4(1)(21)m m m --8.三个元件123,,T T T 正常工作的概率分别为123,,234,且是相互独立的.如图,将23,T T 两个元件并联后再与1T 元件串联接入电路,则电路不发生故障的概率是( )A .1124B .2324C .14D .17329.已知在5件产品中混有2件次品,现需要通过逐一检测直至查出2件次品为止,每检测一件产品的费用是10元,则所需检测费的均值为( ) A .32元B .34元C .35元D .36元10.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( )A .18B .38C .58D .7811.若随机变量ξ满足(1)4E ξ-=,(1)4D ξ-=,则下列说法正确的是A .4,4E D ξξ=-=B .3,3E D ξξ=-=C .4,4ED ξξ=-=-D .3,4E D ξξ=-=12.设随机变量ξ的概率分布列为1()()3kP k a ξ==,其中0,1,2k =,那么a 的值为( ) A .35B .2713C .919D .913二、填空题13.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.14.退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在[20,80]内的600人进行调查,并按年龄层次绘制频率分布直方图,如图所示.若规定年龄分布在[60,80]内的人为“老年人”,将上述人口分布的频率视为该城市年龄段在[20,80]的人口分布的概率.从该城市年龄段在[20,80]内的市民中随机抽取3人,记抽到“老年人”的人数为X 则随机变量X 的数学期望为______.15.《史记·卷六十五·孙子吴起列传第五》中记载了“田忌赛马”的故事.齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现规定每场比赛从双方的马匹中随机各选取一匹进行比试,若有优势的马一定获胜,且每场比赛相互独立,则采取三局两胜制齐王获胜的概率为________. 16.2017年5月某校高三年级1600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~ N ()2100,σ.(试卷满分为150分)统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中成绩不低于120分的学生人数约为__________.17.设离散型随机变量ξ可能取的值为1,2,3,()P k ak b ξ==+(1,2,3k =),若ξ的数学期望7()3E ξ=,则a b +=_____. 18.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为______. 19.若随机变量2~5,3X B ⎛⎫⎪⎝⎭,则()3D X =_______. 20.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答).三、解答题21.某款游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次,若出现一次音乐获得1分,若出现两次音乐获得2分,若出现三次音乐获得5分,若没有出现音乐则扣15分(即获得15-分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立. (1)设每盘游戏获得的分数为X ,求X 的分布列. (2)玩三盘此游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的人发现,若干盘游戏后,与最初的得分相比,得分没有增加反而减少了.请你分析得分减少的原因.22.甲、乙两人各射击一次,击中目标的概率分别是12和25,假设两人射击是否击中目标,相互之间没有影响,每次射击是否击中目标,相互之间没有影响. (1)求甲射击5次,至少1次未击中目标的概率; (2)求两人各射击3次,甲恰好比乙多击中目标2次的概率23.从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下图频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均值x 和样本方差2s (同一组的数据用该组区间的中点值作代表);(Ⅱ)由直方图可以认为,这种产品的质量指标Z 服从正态分布()2,N μσ,其中μ近似为样本平均数x ,2σ近似为样本方差2s . ①利用该正态分布,求()187.8212.2P Z <<;②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间()187.8,212.2的产品件数.已知X 服从二项分布(),B n p ,利用①的结果,求()E X .15012.2≈若()2,Z N μσ~则()0.6826P Z μσμσ-<<+=,()220.9544P Z μσμσ-<<+=.24.甲、乙两名篮球运动员,甲投篮一次命中的概率为23,乙投篮一次命中的概率为12,若甲、乙各投篮三次,设X 为甲、乙投篮命中的次数的差的绝对值,其中甲、乙两人投篮是否命中相互没有影响.(1)若甲、乙第一次投篮都命中,求甲获胜(甲投篮命中数比乙多)的概率; (2)求X 的分布列及数学期望.25.湖北省从2021年开始将全面推行新高考制度,新高考“3+1+2”中的“2”要求考生从政治、化学、生物、地理四门中选两科,按照等级赋分计入高考成绩,等级赋分规则如下:高考政治、化学、生物、地理四门等级考试科目的考生原始成绩从高到低划分为A ,B ,C ,D ,E 五个等级,确定各等级人数所占比例分别为15%,35%,35%,13%,2%,等级考试科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法......分别转换到[]86,100、[]71,85、[]56,70、[]41,55、[]30,40五个分数区间,得到考生的等级分,等级转换分满分为100分.具体转换分数区间如下表:而等比例转换法......是通过公式计算:2211Y Y T TY Y T T --=--,其中1Y 、2Y 分别表示原始分区间的最低分和最高分,1T 、2T 分别表示等级分区间的最低分和最高分,Y 表示原始分,T 表示转换分,当原始分为1Y 、2Y 时,等级分分别为1T 、2T ,假设小明同学的生物考试成绩信息如下表: 设小明转换后的等级成绩为T ,根据公式得:847585756971TT --=--,所以76.677T =≈(四舍五入取整),小明最终生物等级成绩为77分.已知某学校学生有60人选了政治,以期中考试成绩为原始成绩转换该学校选政治的学生的政治等级成绩,其中政治成绩获得A 等级的学生原始成绩统计如下表: (1)从政治成绩获得A 等级的学生中任取3名,求至少有2名同学的等级成绩不小于93分的概率;(2)从政治成绩获得A 等级的学生中任取4名,设4名学生中等级成绩不小于93分人数为ξ,求ξ的分布列和期望.26.某选修课的考试按A 级、B 级依次进行,只有当A 级成绩合格时,才可继续参加B 级的考试.已知每级考试允许有一次补考机会,两个级别的成绩均合格方可获得该选修课的合格证书.现某人参加这个选修课的考试,他A 级考试成绩合格的概率为23,B 级考试合格的概率为12.假设各级考试成绩合格与否均互不影响. (1)求他不需要补考就可获得该选修课的合格证书的概率;(2)在这个考试过程中,假设他不放弃所有的考试机会,求他一共参加3次考试的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用对立事件和独立事件的概率求解. 【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4, 所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p =⨯-⨯-+⨯-⨯- ,()()0.410.210.10.444+⨯-⨯-=.故选:A 【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B 【解析】1(80120)(80)(120)0.12P X P X P X -<<≤=≥== ,选B.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==.故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据二项分布的期望和方差公式,可知()110E p ξ=,()210E q ξ=,那么()()12E E ξξ>等价于1010p q >,即p q >,并且()()1101D p p ξ=-,()()2101D q q ξ=-,则()()12D D ξξ>等价于()()101101pp q q -<-,即()()11p p q q -<-,分情况讨论,看这两个条件是否可以互相推出即得. 【详解】由题得,()110E p ξ=,()210E q ξ=,故()()12E E ξξ>等价于1010p q >,即p q >. 又()()1101D p p ξ=-,()()2101D q q ξ=-,故()()12D D ξξ>等价于()()101101p p q q -<-,即()()11p p q q -<-.若p q >,因为14pq >,说明12p >,且()()211124p p p p pq +-⎛⎫-<=< ⎪⎝⎭,故1p q -<,故有1122p q ->-.若12q <,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,若12q ≥,则自然有11022p q ->->,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,故221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭即()()11p p q q -<-.若()()11p p q q -<-,则221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,又因为()()1114p p q q pq -<-≤<,1p q -<,即1122p q ->-.若102p -≤,则与221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭矛盾,故12p >,若12q ≤,则自然有p q >,若12q >,则由221122p q ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭知1122p q ->-,即p q >. 所以是充要条件.故选:C 【点睛】本题综合的考查了离散型随机变量期望方差和不等式,属于中档题.5.C解析:C 【解析】 【分析】根据离散型随机变量的分布列的性质,求得,再利用随机变量的均值和方差的公式,即可求解,得到答案. 【详解】由离散型随机变量的分布列的性质可得,解得,所以随机变量的均值为,方差为, 故选C . 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及均值与方程的计算,其中解答中根据离散型随机变量的分布列的性质,求得的值,再利用均值和方差的公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.6.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为X1 2 3 4P+a b 2a b + 3a b + 4a b +()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.7.C解析:C 【分析】根据随机试验的结果只有A 和A ,P (A )=m ,使得随机变量11A X A ⎧=⎨-⎩发生发生,得到随机变量符合两点分布,根据两点分布的方差公式得到结果. 【详解】∵由题意知一随机试验的结果只有A 和A , 且P (A )=m ,随机变量11A X A ⎧=⎨-⎩发生发生∴X 服从两点分布,∴EX=1(1)(1)21m m m ⨯+-⨯-=-, ∴DX=4m (1-m ). 故选C . 【点睛】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.8.A解析:A 【分析】若电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 【详解】记1T 正常工作为事件A 记2T 正常工作为事件B 记3T 正常工作为事件C 则()12P A =,()23P B =,()34P C = 电路不发生故障,则满足1T 正常工作,23T T ,至少有一个正常工作 则23T T ,至少有一个正常工作,概率为()1231111113412P P BC ⎛⎫⎛⎫=-=--⨯-=⎪ ⎪⎝⎭⎝⎭则电路不发生故障的概率1111121224P =⨯= 故选A 【点睛】本题主要考查了概率知识及实际应用能力,考查了相互独立事件同时发生的概率的计算,关键是确定不发生故障时满足的条件.9.C解析:C【解析】 【分析】随机变量X 的可能取值为20,30,40,结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得X 的数学期望. 【详解】X 的可能取值为20,30,40,()222521202010A P X A ====;()311232323562323306010A C C A P X A +⋅⋅+⨯⨯====; ()()()1334012030110105P X P X P X ==-=-==--=,数学期望2030403510105EX =⨯+⨯+⨯=, 即需检测费的均值为35,故选C. 【点睛】本题主要考查组合的应用、古典概型概率公式以及离散型随机变量的分布列与数学期望,属于中档题. 求解数学期望问题,首先正确要理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.10.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ==== 所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)k k n k n C p p --.其中p 为1次试验种A 发生得概率.11.D解析:D 【解析】分析:由题意结合随机变量的性质整理计算即可求得最终结果. 详解:随机变量ξ满足()14E ξ-=,()14D ξ-=, 则:()214,14E D ξξ-=-=, 据此可得:3,4E D ξξ=-=. 本题选择D 选项.点睛:本题主要考查期望的数学性质,方差的数学性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:根据离散型随机变量分布列的性质,变量取各个量对应的概率和等于1,建立关于a 的等量关系式,最后求得结果.详解:根据分布列的性质可得,()()()0121110121333P P P a a a ξξξ⎛⎫⎛⎫⎛⎫=+=+==++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得913a =,故选D. 点睛:解决该题的关键是明确离散型随机变量的分布列的性质,从而找到关于参数a 所满足的等量关系式,最后求得结果.二、填空题13.【解析】所以【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值(3)根据分布列和期望方差公式求解注意: 解析:1712【解析】()11103412P X ==⨯=,()211351343412P X ==⨯+⨯=,()23623412P X ==⨯=,所以()1526171212E X ⨯+⨯==. 【点睛】解答离散型随机变量的分布列及相关问题的一般思路:(1)明确随机变量可能取哪些值.(2)结合事件特点选取恰当的计算方法计算这些可能取值的概率值.(3)根据分布列和期望、方差公式求解.注意:解题中要善于透过问题的实际背景发现其中的数学规律,以便使用我们掌握的离散型随机变量及其分布列的知识来解决实际问题.14.6【分析】通过频率分布直方图求出年龄段在的频率即概率通过二项分布求出数学期望即可【详解】通过频率分布直方图得年龄段在的频率为即概率为抽到老年人的人数为服从二项分布即所以期望为故答案为:06【点睛】本解析:6 【分析】通过频率分布直方图求出年龄段在[]60,80的频率即概率,通过二项分布求出数学期望即可. 【详解】通过频率分布直方图得年龄段在[]60,80的频率为20.01100.2⨯⨯=,即概率为0.2, 抽到“老年人”的人数为X 服从二项分布,即()3,0.2X B ,所以期望为()30.20.6E X np ==⨯=, 故答案为:0.6. 【点睛】本题主要考查了频率分布直方图的应用,二项分布期望的求法,属于中档题.15.【分析】列出所有情况统计满足条件的情况得到齐王每次胜利的概率再根据独立事件计算得到答案【详解】设齐王的上中下等马为田忌的上中下等马为则共有9种情况其中齐王获胜的有6种情况故故答案为:【点睛】本题考查 解析:2027【分析】列出所有情况,统计满足条件的情况得到齐王每次胜利的概率123p =,再根据独立事件计算得到答案. 【详解】设齐王的上中下等马为ABC ,田忌的上中下等马为abc , 则共有,,,,,,,,Aa Ab Ac Ba Bb Bc Ca Cb Cc 9种情况, 其中齐王获胜的有,,,,,Aa Ab Ac Bb Bc Cc 6种情况,故16293p ==, 32232212033327p C ⎛⎫⎛⎫=+⋅⋅=⎪ ⎪⎝⎭⎝⎭.故答案为:2027. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.16.【分析】根据正态分布对称性知计算得到答案【详解】根据正态分布对称性知:故此次统考中成绩不低于120分的学生人数约为故答案为:【点睛】本题考查了正态分布意在考查学生对于正态分布性质的应用 解析:200根据正态分布对称性知()11208p X >=,计算得到答案. 【详解】根据正态分布对称性知:()()131120801248p X p X ⎛⎫>=<=⋅-= ⎪⎝⎭. 故此次统考中成绩不低于120分的学生人数约为116002008⨯=. 故答案为:200. 【点睛】本题考查了正态分布,意在考查学生对于正态分布性质的应用.17.【分析】要求的值就是要将与求出两个未知数建立出两个方程即可由概率之和为1得到一个方程由得到第二个方程建立方程组从而得到结果【详解】解:离散随机变量可能取的值为123()故的数学期望①而且②①②联立方解析:16【分析】要求+a b 的值,就是要将a 与b 求出。

人教版数学高二新课标选修2-3测试题组 第一章 计数原理B组

人教版数学高二新课标选修2-3测试题组 第一章 计数原理B组

(数学选修2--3) 第一章 计数原理一、选择题1.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有( ) A .60个 B .48个 C .36个 D . 24个2.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是( ) A .1260 B .120 C .240 D .720 3.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A -- B .1569n A - C .1555n A - D .1469n A -4.从字母,,,,,a b c d e f 中选出4个数字排成一列,其中一定要选出a 和b ,并且必须相邻(a 在b 的前面),共有排列方法( )种. A.36 B .72 C .90 D .1445.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为( ) A .120 B .240 C .280 D .606.把10)x -把二项式定理展开,展开式的第8项的系数是( )A .135B .135-C .-D .7.2122nx x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是224,则21x 的系数是( ) A.14 B .28 C .56 D .1128.在310(1)(1)x x -+的展开中,5x 的系数是( )A.297- B .252- C .297 D .207二、填空题1.n 个人参加某项资格考试,能否通过,有 种可能的结果? 2.以1239,,,这几个数中任取4个数,使它们的和为奇数,则共有 种不同取法. 3.已知集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个.4.,n k N ∈且,n k >若11::1:2:3,n n nk k k C C C -+=则n k +=______.5.511x x ⎛⎫+- ⎪⎝⎭展开式中的常数项有6.在50件产品n 中有4件是次品,从中任意抽了5件,至少有3件是次品的抽法共有______________种(用数字作答).7.2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中的3x 的系数是___________8.{}1,2,3,4,5,6,7,8,9A =,则含有五个元素,且其中至少有两个偶数的子集个数为_____. 三、解答题1.集合A 中有7个元素,集合B 中有10个元素,集合AB 中有4个元素,集合C 满足(1)C 有3个元素; (2)C A B(3)C B ≠Φ, C A ≠φ求这样的集合C 的集合个数.2.计算:(1)()2973100100101C C A +÷;(2)3333410C C C +++.(3)11m n m n n m n m n nC C C C -++--3.证明:11mm m n n n A mA A -++=.4.求31(2)x x+-展开式中的常数项。

(完整word版)人教版高二数学选修2--3)__第一章__计数原理测试题(1)

(完整word版)人教版高二数学选修2--3)__第一章__计数原理测试题(1)

(数学选修2--3)第一章计数原理一、选择题1. a,b,c,d,e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是()A. 20B . 16C . 10D . 61•将3个不同的小球放入 4个盒子中,则不同放法种数有( ) A . 81B . 64C . 12D . 142. 将3个不同的小球放入 4个盒子中,则不同放法种数有( )A . 81B . 64C . 12D . 143. 从4台甲型和5台乙型电视机中任意取出 3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有()A . 140种 B.84种 C.70种 D.35种4 . 5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()33523231 13A . A 3B . 4 A 3C . A 5 A 3 A 3D . A 2 A 3 A 2 A 3 A 3女学生共 8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛, A .男生2人,C .男生5人,1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 _________________ 种选法.(2) 甲一定不入选,共有 _______ 种选法.(3 )甲、乙二人至少有一人当选,共有 ____________ 种选法. 2 . 4名男生,4名女生排成一排,女生不排两端,则有 ___________ 种不同排法. 3. ________________________________ 由0,1,3,5,7,9这六个数字组成 个没有重复数字的六位奇数______________________________________ .4. ___________________________________________ 在(x 3)10的展开式中,x 6的系数是 .2 205. 在(1 x )展开式中,如果第 4r 项和第r 2项的二项式系数相等,则 r ________ , T 4r _____________ .6. 在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四 位数有 __________________ 个?7.用1,4,5, x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x _____ .&从1,3,5,7,9中任取三个数字,从 0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共 有 _________________ 个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手, 共握了多少次手?A. 7C . 28D . 287 . (1 52x) (2 x )的展开式中x 3的项的系数是((2)高二年级数学课外小组 10人:①从中选一名正组长和一名副组长,共有多少种不同的选法? ②从中选2名参加省数学竞赛,有多少种不同的选法?A. 120 120 C . 100 D .100_2~~2xn展开式中只有第六项二项式系数最大 ,则展开式中的常数项是(A . 18090 C . 45 D . 3602 . 7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,5.现有男、共有 90种不同方案,那么男、女生人数分别是(6人 B .男生3人, 3人 D .男生6人, 女生5人 女生2人.女生 女生 8的展开式中的常数项是(X 1 23x二、填空题(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,4.在(1+x)n的展开式中,若第3项与第6项系数相等,且n等于多少?4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻, 5. X、X 13Xn的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大项。

高中数学 第1章 计数原理阶段性测试题一 新人教A版高二选修2-3数学试题

高中数学 第1章 计数原理阶段性测试题一 新人教A版高二选修2-3数学试题

第一章 计数原理(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若实数a =2-2,则a 10-2C 110a 9+22C 210a 8-…+210=( ) A .32 B .-32 C .1 024 D .512解析:由题意得a 10-2C 110a 9+22C 210a 8-…+210=(a -2)10,又a =2-2,所以原式=(2-2-2)10=32.答案:A2.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45解析:依题意知,a 8=C 81022(-1)8=180,故选A. 答案:A3.(2019·某某省八校高三联考)某工厂安排6人负责周一至周六的中午午休值班工作,每天1人,每人值班1天,若甲、乙两人需安排在相邻两天值班,且都不排在周三,则不同的安排方式有( )A .192种B .144种C .96种D .72种解析:因为甲、乙两人都不排在周三,且安排在相邻两天,所以分两类:①甲、乙两人安排在周一,周二,则有A 22·A 44=48种;②甲、乙两人安排在周四,周五,周六中的相邻两天,则有2A 22·A 44=96种,则共有48+96=144(种).答案:B4.5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有( )A .150种B .180种C .200种D .280种解析:不同的分派方法⎝ ⎛⎭⎪⎫C 25C 23A 22+C 15C 14A 22A 33=150种,故选A.答案:A5.(2019·某某市、某某市部分学校联合模拟)二项式⎝ ⎛⎭⎪⎫ax 2+228的展开式中x 6的系数为562,则⎠⎛1a (x -cos πx )d x =( )A .2B .1C.32D.12 解析:二项式⎝⎛⎭⎪⎫22+ax 28的展开式的通项公式为T r +1=C r 8⎝ ⎛⎭⎪⎫228-r (ax 2)r ,∵2r =6,∴r =3.令r =3,则C 38×⎝⎛⎭⎪⎫225×a 3=562,解得a =2,所以⎠⎛1a (x -cos πx )dx =⎠⎛12(x -cos πx )dx答案:C6.已知6C x -7x -3=10A 2x -4,则x 的值为( ) A .11 B .12 C .13D .14解析:由6C x -7x -3=10A 2x -4,得6·(x -3)(x -4)(x -5)(x -6)4×3×2×1=10·(x -4)(x -5).∴x 2-9x -22=0,∴x =11或x =-2(舍). 答案:A7.(2019·某某一中高二月考)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数为( )A .12B .24C .30D .36解析:因为一种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,所以分两类,第一类,涂前三个圆用三种颜色,有A 33=6种涂法,则涂后三个圆有C 12C 12=4种涂法,共有6×4=24种涂法;第二类,涂前三个圆用两种颜色,则涂后三个圆也用两种颜色,共有C 13C 12=6种涂法.综上,可得不同的涂色方案的种数为24+6=30.答案:C8.设⎝ ⎛⎭⎪⎫3x +1x n 展开式的各项系数之和为M ,其二项式系数之和为N ,若M +N =272,则n 的值为( )A .1B .4C .3 D.12解析:由题意得M =4n ,N =2n. ∵M +N =272,∴4n +2n=272,得n =4. 答案:B9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是( )A .C 28A 23 B .C 28A 66 C .C 28A 26D .C 28A 25解析:先从后排中抽出2人有C 28种方法,再插空,由题意知,先从4人中的5个空中插入1人,有5种方法,余下1人则要插入前排5人的空中,有6种方法,即抽出的2人插入前排为A 26.共有C 28A 26种调整方法.故选C.答案:C10.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种解析:首先,甲、乙两人同选1门,有4种方法;其次,甲从剩下的3门课中选1门,有3种方法;最后,乙从剩下的2门课中选1门,有2种方法.所以共有4×3×2=24种.答案:C11.若C 3n +123=C n +623(n ∈N *),且(3-x )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0-a 1+a 2-…+(-1)na n =( )A .250B .-250C .256D .-150解析:由C 3n +123=C n +623,得3n +1=n +6或3n +1+n +6=23,∴n =52(舍去)或n =4.令x=-1,则(3-x )n=(3+1)4=a 0-a 1+a 2-a 3+a 4=256.∴a 0-a 1+a 2-…+(-1)na n =256.故选C.答案:C12.由1,2,3,0组成没有重复数字的三位数,其中0不在个位上,则这些三位数的和为( )A .1 320B .1 332C .2 532D .2 544解析:共组成A 33+A 23=12个这样的三位数,个位数有4个3,4个2 ,4个1,和为24;十位数有2个3,2个2,2个1,6个0,和为12;百位数有4个1,4个2,4个3,和为24,∴这些位数的和为2 544,故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(2019·某某市高三质量预测)已知⎝⎛⎭⎪⎫1x+x 2n的展开式的各项系数和为64,则展开式中x 3的系数为_______________________________________.解析:令x =1,得2n =64,解得n =6,则⎝ ⎛⎭⎪⎫1x+x 26的展开式的通项T r +1=C r 6⎝ ⎛⎭⎪⎫1x 6-r x 2r =C r6x 3r -6,令3r -6=3,得r =3,故x 3的系数为C 36=20.答案:2014.设a ≠0,n 是大于1的自然数,⎝⎛⎭⎪⎫1+x a n 的展开式为a 0+a 1x +a 2x 2+…+a n x n.若点A i (i ,a i )(i =0,1,2)的位置如图所示,则a =________.解析:由题图可知a 0=1,a 1=3,a 2=4,由题意知⎩⎪⎨⎪⎧C 1n ·1a=a 1=3,C 2n·1a 2=a 2=4,故⎩⎪⎨⎪⎧n a =3,n (n -1)a 2=8,可得⎩⎪⎨⎪⎧n =9,a =3.答案:315.盒子里有完全相同的6个球,每次至少取出1个球(取出不放回),取完为止,则共有________种不同的取法(用数字作答).解析:依题意,取盒子中6个小球,可以看作6个小球排成一排,在中间插入挡板,由于每次至少取出一个球,所以最多可以插入5个挡板,即C 05+C 15+C 25+C 35+C 45+C 55=25=32.答案:3216.(2019·某某一中高二月考)将6名报名参加运动会的同学分别安排到跳绳、接力、投篮三项比赛中(假设这些比赛都不设人数上限),每人只参加一项,则共有x 种不同的方案,若每项比赛至少要安排一人,则共有y 种不同的方案,其中x +y 的值为________.解析:6名同学报名参加跳绳、接力、投篮三项比赛,每人只参加一项,每人有3种报名方法,根据分步乘法计数原理可得x =36=729.而每项比赛至少要安排一人时,先分组有C 16C 15C 44A 22+C 16C 25C 33+C 26C 24C 22A 33=90(种),再排列有A 33=6(种),所以y =90×6=540.所以x +y =1 269. 答案:1 269三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)为支援西部开发,需要从8名男干部和2名女干部中任选4人组成支援小组到西部某地支边,要求男干部不少于3人,问有多少种选派方案.解:解法一:男干部有四人时有C 48种选法;男干部有3人时有C 38C 12种选法,故适合条件的选派方案有C 48+C 38C 12=182种.解法二:从10名干部中选4名减去2名女干部全被选中的方案数,共有C 410-C 28C 22=182种.18.(12分)已知(3x 2+3x )n展开式中各项系数的和比它的二项式系数的和大4 032. (1)求展开式中含x 4的项;(2)求展开式中二项式系数最大的项.解:(1)令x =1得展开式各项系数和为4n ,而二项式系数和为C 0n +C 1n +…+C n n =2n, 由题意得4n -2n =4 032,即(2n -64)(2n +63)=0,得2n =64或2n=-63, 又∵n ∈N *,∴2n=64,故n =6,二项展开式的第r +1项为,令12+r 3=4,得r =0,∴展开式中含x 4的项为T 1=30·C 06·x 4=x 4. (2)∵n =6,∴展开式中第4项的二项式系数最大,19.(12分)2名女生和4名男生外出参加比赛活动.(1)他们排成一列照相时,若2名女生必须在一起,有多少种排列方法? (2)他们排成一列照相时,若2名女生不相邻,有多少种排列方法?(3)从这6名学生中挑选3人担任裁判,至少要有1名女生,则有多少种选法? 解:(1)有2A 55=240种. (2)有A 44A 25=480种. (3)有C 36-C 34=16种.20.(12分)求证:1+4C1n+7C2n+10C3n+…+(3n+1)C n n=(3n+2)·2n-1.证明:设S=1+4C1n+7C2n+10C3n+…+(3n+1)C n n,①则S=(3n+1)C n n+(3n-2)C n-1n+…+4C1n+1.②①+②得2S=(3n+2)(C0n+C1n+C2n+…+C n n)=(3n+2)·2n,∴S=(3n+2)·2n-1.21.(12分)带有编号1,2,3,4,5的五个球.(1)全部投入4个不同的盒子里;(2)放进不同的4个盒子里,每盒一个;(3)将其中的4个球投入4个盒子里的一个(另一个球不投入);(4)全部投入4个不同的盒子里,没有空盒;各有多少种不同的放法?解:(1)由分步计数原理知,五个球全部投入4个不同的盒子里共有45种放法.(2)由排列数公式知,五个不同的球放进不同的4个盒子里(每盒一个)共有A45种放法.(3)将其中的4个球投入一个盒子里共有C45C14=20种放法.(4)全部投入4个不同的盒子里(没有空盒)共有C25A44种不同的放法.22.(12分)设x10-3=Q(x)(x-1)2+ax+b,其中Q(x)是关于x的多项式,a,b∈R.(1)求a,b的值;(2)若ax+b=28,求x10-3除以81的余数.解:(1)由已知等式,得[(x-1)+1]10-3=Q(x)(x-1)2+ax+b,∴C010(x-1)10+C110(x-1)9+…+C810(x-1)2+C910(x-1)+C1010-3=Q(x)(x-1)2+ax+b,∴[C010(x-1)8+C110(x-1)7+…+C810](x-1)2+10x-12=Q(x)(x-1)2+ax+b,∴10x-12=ax+b.∴a=10,b=-12.(2)∵ax+b=28,即10x-12=28,∴x=4,∴x10-3=410-3=(3+1)10-3=C010×310+C110×39+…+C910×3+C1010-3=34×(C010×36+C110×35+…+C610)+40×34+5×34+28=81(C010×36+C110×35+…+C610+45)+28,∴所求的余数为28.。

高中数学人教A版选修2-3《第1章_计数原理》同步试卷(有答案)

高中数学人教A版选修2-3《第1章_计数原理》同步试卷(有答案)

人教A 版选修2-3《第1章 计数原理》同步试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 若A m 5=2A m 3,则m 的值为( )A.3B.5C.7D.62. 一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是( )A.74B.40C.84D.2003. 从甲、乙、丙、丁4名同学中选出3名同学,分别参加3个不同科目的竞赛,其中甲同学必须参赛,不同的参赛方案共有( )A.18种B.24种C.21种D.9种4. (x +2)2(1−x)5中x 7的系数与常数项之差的绝对值为( )A.3B.5C.0D.25. 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( )A.C 1412A 124A 84B.C 1412C 124C 84C.C 1412C 124C 84A 33D.C 1412C124C84A 336. 在二项式(2√x +√x 4)n 的展开式中,前三项的系数成等差数列,则该二项式展开式中x −2项的系数为( )A.4B.1C.8D.167. 为参加校园文化节,某班推荐2名男生3名女生参加文艺技能培训,培训项目及人数分别为:乐器1人,舞蹈2人,演唱2人,每人只参加一个项目,并且舞蹈和演唱项目必须有女生参加,则不同的推荐方案的种数为( )A.36B.12C.24D.488. 4名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( )A.36种B.24种C.60种D.48种9. 已知直线ax+by−1=0(a,b不全为0)与圆x2+y2=50有公共点,且公共点的横、纵坐标均为整数,那么这样的直线有()A.72条B.66条C.78条D.74条10. 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.C82A66B.C82A32C.C82A52D.C82A62二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)用1,2,3,4,5,6这六个数字组成没有重复数字的六位数共有________个,其中1,3,5三个数字互不相邻的六位数有________个.)6的展开式中x2的系数为A,常数项为B,若B=4A,则a=________.设二项式(x−ax某运动队有5对老搭档运动员,现抽派4名运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.在政治、历史、地理、物理、化学、生物、技术7门学科中任选3门,若同学甲必选物理,则甲的不同选法种数为________,乙丙两名同学都选物理的概率是________.在二项式(√2+x)9的展开式中,常数项是________;系数为有理数的项的个数是________.高三(三)班学生要安排毕业晚会的3个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,3个音乐节目恰有2个节目连排,则不同排法的种数是________.在(4−3x)n的展开式中,各项系数的和为________;若展开式中第3项与第7项的二项式系数相等,则展开式中所有偶数项的二项式系数之和为________.三、解答题(本大题共5小题,共74分)已知f(x)=(1+x)m+(1+x)n(m, n∈N)的展开式中的x系数为19.(1)求f(x)展开式中的x2项系数的最小值;(2)当x2项系数最小时,求f(x)展开式中x7项的系数.设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?)n的展开式中的第二项和第三项的系数相等.已知(x+2√x(1)求n的值;(2)求展开式中所有二项式系数的和;(3)求展开式中所有的有理项.用0,1,2,3,4这五个数字组成无重复数字的自然数.(Ⅰ)在组成的三位数中,求所有偶数的个数;(Ⅱ)在组成的三位数中,如果十位上的数字比百位上的数字和个位上的数字都小,则称这个数为“凹数”,如301,423等都是“凹数”,试求“凹数”的个数;(Ⅲ)在组成的五位数中,求恰有一个偶数数字夹在两个奇数数字之间的自然数的个数.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?参考答案与试题解析人教A版选修2-3《第1章计数原理》同步试卷一、选择题(本大题共10小题,每小题4分,共40分)1.【答案】此题暂无答案【考点】排列及于列数缺式【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】计数正知的应用【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】排列及于列数缺式【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】计数正知的应用【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】计数正知的应用直线与都连位置关系【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】排列水使合及原判计数问题分步乘正且数原理【解析】此题暂无解析【解答】此题暂无解答二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】古典因顿二其比率计算公式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项式定因及京关概念【解析】此题暂无解析【解答】此题暂无解答三、解答题(本大题共5小题,共74分)【答案】此题暂无答案【考点】二项式射理的应题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二项正开形的来定恰与特定系数二项式射理的应题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】排列水使合及原判计数问题【解析】此题暂无解析【解答】此题暂无解答。

人教A版选修2-3第一章计数原理综合测试题

人教A版选修2-3第一章计数原理综合测试题
【详解】
解:根据题意,5本相同的书和3本相同的笔记本发给8名学生,每人1本,需要在8人中任选3人,领取笔记本,剩下5人领取书即可,
则有 种不同的分法,
故选:B
【点睛】
此题考查排列组合的应用,考查组合数公式的应用,属于基础题.
3.D
【分析】
在所给的式子中,令 可得选项.
【详解】
在 中,令 得 ,
故选:D.
A.1B.32C.81D.243
4.用数字1,2,3,4组成无重复数字的四位数,其中奇数的个数为()
A.8B.12C.16D.24
5.把3封信投入4个邮桶,共有不同的投法数为()
A. B. C. D.
6.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()再将丙、丁捆绑在一起当一个元素排,再排乙、戊.
【详解】
当甲排在第一位时,共有 种发言顺序,
当甲排在第二位时,共有 种发言顺序,
所以一共有 种不同的发言顺序.
故选:C.
【点睛】
方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为:
(1)相邻问题采取“捆绑法”;
22.已知 .
(1)求 ;
(2)求 .
参考答案
1.A
【分析】
先写出二项展开式通项公式,再根据 次数为零解得对应常数项.
【详解】
的展开式的通项公式为: .
令 ,解得 ,所以 的展开式的常数项为 ,
故选:A
【点睛】
本题考查二项展开式,考查基本求解能力,属基础题.
2.B
【分析】
根据题意,分析可得只需在8人中任选3人,领取笔记本,剩下5人领取书即可,由组合数公式计算可得答案

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)

(压轴题)高中数学高中数学选修2-3第一章《计数原理》测试题(包含答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.两个实习生每人加工一个零件.加工为一等品的概率分别为56和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A .12B .13C .512D .163.西大附中为了增强学生对传统文化的继承和发扬,组织了一场类似《诗词大会》的PK 赛,A 、B 两队各由4名选手组成,每局两队各派一名选手PK ,除第三局胜者得2分外,其余各胜者均得1分,每局的负者得0分.假设每局比赛A 队选手获胜的概率均为23,且各局比赛结果相互独立,比赛结束时A 队的得分高于B 队的得分的概率为( ) A .2027B .5281C .1627D .794.已知,a b 为实数,随机变量X ,Y 的分布列如下:若()(1)E Y P Y ==-,随机变量ξ满足XY ξ=,其中随机变量X ,Y 相互独立,则()E ξ取值范围的是( )A .3,14⎡⎤-⎢⎥⎣⎦B .1,018⎡⎤-⎢⎥⎣⎦C .1,118⎡⎤⎢⎥⎣⎦D .3,14⎡⎤⎢⎥⎣⎦5.将三枚质地均匀的骰子各掷一次,设事件A =“三个点数之和等于15”,B =“至少出现一个5点”,则概率()|P A B 等于( ) A .5108B .113C .17D .7106.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .257.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p ,若该同学本次测试合格的概率为0.784,则p =( )A . 0.4B .0.6C .0.1D .0.28.据统计,连续熬夜48小时诱发心脏病的概率为0.055 ,连续熬夜72小时诱发心脏病的概率为0.19 . 现有一人已连续熬夜48小时未诱发心脏病,则他还能继续连续熬夜24小时不诱发心脏病的概率为( ) A .67B .335C .1135D .0.199.若随机变量X 的分布列为:已知随机变量Y aX b =+(,,0)a b R a ∈>,且()10,()4E Y D Y ==,则a 与b 的值为( ) A .10,3a b ==B .3,10a b ==C .5,6a b ==D .6,5a b ==10.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为0.6和P ,且甲、乙两人各射击一次得分之和为2的概率为0.45.假设甲、乙两人射击互不影响,则P 值为( ) A .0.8B .0.75C .0.6D .0.2511.已知随机变量X 的分布列如表,其中a ,b ,c 为等差数列,若1()3E X =,则()D X 等于( )X 1- 0 1PabcA .49B .59C .13D .2312.小明的妈妈为小明煮了 5 个粽子,其中两个腊肉馅三个豆沙馅,小明随机取出两个,事件‘‘"A 取到的两个为同一种馅,事件‘‘"B =取到的两个都是豆沙馅,则()P B A =∣ ( )A .14B .34C .110D .310二、填空题13.甲、乙两人被随机分配到,,A B C 三个不同的岗位(一个人只能去一个工作岗位).记分配到A 岗位的人数为随机变量X ,则随机变量X 的数学期望()E X =_____. 14.一只青蛙从数轴的原点出发,当投下的硬币正面向上时,它沿数轴的正方向跳动两个单位;当投下的硬币反面向上时,它沿数轴的负方向跳动一个单位,若青蛙跳动4次停止,设停止时青蛙在数轴上对应的坐标为随机变量X ,则()E X =______. 15.在一个袋中放入四种不同颜色的球,每种颜色的球各两个,这些球除颜色外完全相同.现玩一种游戏:游戏参与者从袋中一次性随机抽取4个球,若抽出的4个球恰含两种颜色,获得2元奖金;若抽出的4个球恰含四种颜色,获得1元奖金;其他情况游戏参与者交费1元.设某人参加一次这种游戏所获得奖金为X ,则()E X =________. 16.测量某一目标的距离时,所产生的随机误差X 服从正态分布()220,10N ,如果独立测量3次,至少一次测量误差在()0,30内的概率是__________.附参考数据:()0.68P X μδμδ-<≤+=,()220.95P X μδμδ-<≤+=,()330.99P X μδμδ-<≤+=,20.1850.03=,30.1850.006=,20.8150.66=,30.8150.541=.17.设平面上的动点P(1,y)的纵坐标y 等可能地取-用ξ表示点P 到坐标原点的距离,则随机变量ξ的数学期望Eξ=_________18.已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X >等于______________.19.甲、乙两人投篮命中的概率分别为p,q,他们各投2次,若p=12,且甲比乙投中次数多的概率为736,则q 的值为____. 20.给出下列命题:①函数()π4cos 23f x x ⎛⎫=+ ⎪⎝⎭的一个对称中心为5π,012⎛⎫- ⎪⎝⎭;②若命题:p “2,10x R x x ∃∈-->”,则命题p 的否定为:“2,10x R x x ∀∈--<”;③设随机变量~(,)B n p ξ,且()2,()1E D ξξ==,则(1)p ξ==14;④函数sin 2y x =的图象向左平移π4个单位长度,得到πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象.其中正确命题的序号是_____________(把你认为正确的序号都填上).三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.某市教育部门规定,高中学生三年在校期间必须参加不少于80小时的社区服务.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[)75,80,[)80,85,[)85,90,[)90,95,[]95,100(单位:小时)进行统计,其频率分布直方图如图所示.(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;(2)从全市高中学生(人数很多)中任意选取3位学生,记X 为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量X 的分布列和数学期望EX .23.2019年以来,全国发生多起较大煤矿生产安全事故,事故给人民群众的财产和生命造成重大损失.尽管国务院安委办要求对事故责任人从严查处.但是有的煤矿企业领导人仍然不能够对安全生产引起足够重视.不久前,某煤矿发生瓦斯爆炸事故,作业区有若干矿工人员被困.若救援队从入口进入之后有1L ,2L 两条巷道通往作业区如下图所示,其中1L 巷道有1A ,2A ,3A 三个易堵塞点,且各易堵塞点被堵塞的概率都是12;2L 巷道有1B ,2B 两个易堵塞点,且1B ,2B 易堵塞点被堵塞的概率分别为14,35,不同易堵塞点被堵塞或不被堵塞互不影响.(1)求1L 巷道中的三个易堵塞点至少有两个被堵塞的概率;(2)若2L 巷道中两个易堵塞点被堵塞个数为X ,求X 的分布列及数学期望; (3)若1L 巷道中三个易堵塞点被堵塞的个数为Y ,求Y 的数学期望.24.在一次猜灯谜活动中,共有20道灯谜,两名同学独立竞猜,甲同学猜对了12个,乙同学猜对了8个,假设猜对每道灯谜都是等可能的,试求:(1)任选一道灯谜,恰有一个人猜对的概率;(2)任选一道灯谜,甲、乙都没有猜对的概率.25.甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是23和35,每次投篮相互独立互不影响.(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.26.超市为了防止转基因产品影响民众的身体健康,要求产品在进入超市前必须进行两轮转基因检测,只有两轮都合格才能销售,否则不能销售.已知某产品第一轮检测不合格的概率为14,第二轮检测不合格的概率为19,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利50元;如果产品不能销售,则每件产品亏损60元.已知一箱中有产品4件,记一箱产品获利X元,求X的分布列,并求出均值()E X.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用对立事件和独立事件的概率求解.【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p=⨯-⨯-+⨯-⨯-,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.B解析:B【分析】根据题意,分析可得,这两个零件中恰有一个一等品包含仅第一个实习生加工一等品与仅第二个实习生加工一等品两种互斥的事件,而两个零件是否加工为一等品相互独立,进而由互斥事件与独立事件的概率计算可得答案. 【详解】记两个零件中恰好有一个一等品的事件为A , 即仅第一个实习生加工一等品为事件1A , 仅第二个实习生加工一等品为事件2A 两种情况, 则()()()125113164643P A P A P A =+=⨯+⨯=, 故选:B . 【点睛】本题考查了相互独立事件同时发生的概率与互斥事件的概率加法公式,解题前,注意区分事件之间的相互关系,属于基础题.3.A解析:A 【分析】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.利用独立重复试验的概率公式可求得所求事件的概率. 【详解】比赛结束时A 队的得分高于B 队的得分的情况有3种:A 全胜;A 三胜一负、A 第三局胜,另外三局一胜两负.所以,比赛结束时A 队的得分高于B 队的得分的概率为43232432212122033333327P C C ⎛⎫⎛⎫⎛⎫=+⋅⋅+⋅⋅=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A. 【点睛】本题考查概率的求解,考查独立重复试验概率的求解,考查计算能力,属于中等题.4.B解析:B 【分析】由()(1)E Y P Y ==-及1a b c ++=,可知13b a =-,2c a =;又因为0,,1a b c ≤≤,可求出103a ≤≤;由题意知1()6E a ξ=-,从而可求出()E ξ取值范围.【详解】解:由()(1)E Y P Y ==-知,a c a -+= ,即2c a = ,又1a b c ++= ,所以13b a =-;因为0,,1a b c ≤≤ ,所以0131021a a ≤-≤⎧⎨≤≤⎩ ,解得103a ≤≤.又()1110366E X =-++=- ,且X ,Y 相互独立,XY ξ=,所以()()()11(),0618E E XY E X E Y a ξ⎡⎤===-∈-⎢⎥⎣⎦. 故选:B. 【点睛】本题考查了数学期望,考查了分布列的性质,考查了推理能力和计算能力.本题的关键是由条件求出a 的取值范围.5.B解析:B 【分析】根据条件概率的计算公式即可得出答案. 【详解】3311166617()216A P AB C C C +==,11155561116691()1216C C C P B C C C =-= ()()()72161|2169113P AB P A B P B ∴==⨯= 故选:B 【点睛】本题主要考查了利用条件概率计算公式计算概率,属于中档题.6.B解析:B 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X .【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.7.A解析:A 【解析】 【分析】根据合格的情况列方程:()()2110.784p p p p p +-+-=,解方程求出结果. 【详解】由题意可得:()()2110.784p p p p p +-+-= 整理可得:()()22212330.784p p p p p pp -+-+=-+=解得:0.4p = 本题正确选项:A 【点睛】本题考查概率的求法,考查对立事件概率计算公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.8.A解析:A 【解析】分析:首先设出题中的事件,然后由题意结合条件概率公式整理计算即可求得最终结果. 详解:设事件A 为48h 发病,事件B 为72h 发病, 由题意可知:()()0.055,0.19P A P B ==, 则()()0.945,0.81P A P B ==, 由条件概率公式可得:()()()()()0.816|0.9457P AB P B P B A P A P A ====. 本题选择A 选项.点睛:本题主要考查条件概率公式及其应用等知识,意在考查学生的转化能力和计算求解能力.9.C解析:C 【解析】 分析:详解:由随机变量X 的分布列可知,m 10.20.8=-=, ∴()00.210.80.8E X =⨯+⨯=,()10.20.80.16D X =⨯⨯=,∴()()()()2b 10?4E Y aE X D Y a D X =+===, ∴20.8a b 10? 0.164a +==, ∴5,6a b == 故选C点睛:本题考查了随机变量的数学期望及其方差,考查了推理能力与计算能力,属于中档题.10.B解析:B 【解析】分析:由题意知甲、乙两人射击互不影响,则本题是一个相互独立事件同时发生的概率,根据题意可设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B ,由相互独立事件的概率公式可得,可得关于p 的方程,解方程即可得答案. 详解:设“甲射击一次,击中目标”为事件A ,“乙射击一次,击中目标”为事件B , 则“甲射击一次,未击中目标”为事件A ,“乙射击一次,未击中目标”为事件B , 则P (A )=35,P (A )=1﹣35=25,P (B )=P ,P (B )=1﹣P , 依题意得:35×(1﹣p )+25×p=920, 解可得,p=34, 故选:B .点睛:求相互独立事件同时发生的概率的方法主要有 ①利用相互独立事件的概率乘法公式直接求解.②正面计算较繁或难以入手时,可从其对立事件入手计算.11.B解析:B 【详解】∵a ,b ,c 为等差数列,∴2b a c =+,∵1a b c ++=,1113E a c c a ξ=-⨯+⨯=-=,解得16a =,13b =,12c =,∴22215()()39DX E X EX a c ⎛⎫=-=+-= ⎪⎝⎭,故选B . 12.B解析:B 【详解】由题意,P (A )=222310C C +=410,P (AB )=2310C =310, ∴P (B|A )=()AB A)P P (=34,故选B .二、填空题13.【分析】由题意得出的可能取值以及相应的概率再计算数学期望即可【详解】由题意可得的可能取值有012则数学期望故答案为:【点睛】本题主要考查了求离散型随机变量的数学期望属于中档题解析:23【分析】由题意得出X 的可能取值以及相应的概率,再计算数学期望即可. 【详解】由题意可得X 的可能取值有0,1,2224(0)339P X ⨯===⨯,122411(1),(2)339339C P X P X ⨯======⨯⨯则数学期望4()09E X =⨯41212993+⨯+⨯=. 故答案为:23【点睛】本题主要考查了求离散型随机变量的数学期望,属于中档题.14.2【分析】列举出所有的可能出现的情况硬币4次都反面向上则青蛙停止时坐标为硬币3次反面向上而1次正面向上硬币2次反面向上而2次正面向上硬币1次反面向上而3次正面向上硬币4次都正面向上做出对应的坐标和概解析:2 【分析】列举出所有的可能出现的情况,硬币4次都反面向上,则青蛙停止时坐标为14x =-,硬币3次反面向上而1次正面向上,硬币2次反面向上而2次正面向上,硬币1次反面向上而3次正面向上,硬币4次都正面向上,做出对应的坐标和概率,算出期望. 【详解】所有可能出现的情况分别为硬币4次都反面向上,则青蛙停止时坐标为14x =-,此时概率1116p =; 硬币3次反面向上而1次正面向上,则青蛙停止时坐标为21x =-,此时概率33241141=22164p C ⎛⎫=⨯⨯= ⎪⎝⎭;硬币2次反面向上而2次正面向上,则青蛙停止时坐标为32x =,此时概率222341163=22168p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭硬币1次反面向上而3次正面向上,则青蛙停止时坐标为45x =,此时概率341141141=22164p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;硬币4次都正面向上,则青蛙停止时坐标为58x =,此时标率405411216p C ⎛⎫=⨯= ⎪⎝⎭.1122334455()2E X x p x p x p x p x p ∴=++++=故答案为:2 【点睛】本题考查离散型随机变量的分布列和期望,考查学生分析问题的能力和计算求解能力,难度一般.15.【分析】首先根据题意判断出的可取值有并利用概率公式求得对应的概率最后利用离散型随机变量的期望公式求得结果【详解】由已知1又所以故答案为:【点睛】该题考查的是有关离散型随机变量的期望的求解问题涉及到的 解析:27-【分析】首先根据题意,判断出X 的可取值有2,1,1-,并利用概率公式求得对应的概率,最后利用离散型随机变量的期望公式求得结果. 【详解】由已知2X =,1,1-, 又()22242486(2)70C CP X C ===,()441424816(1)70C C P X C ===,()22114224848(1)70C C CP X C =-==,所以12164827070707EX =+-=-, 故答案为:27-. 【点睛】该题考查的是有关离散型随机变量的期望的求解问题,涉及到的知识点有古典概型概率公式,离散型随机变量的期望公式,属于简单题目.16.994【分析】根据正态分布的性质求出在一次测量中误差在内的概率再求出测量3次每次测量误差均不在内的概率根据对立事件的性质可得结果【详解】由题意可知在一次测量中误差在内满足其概率为测量3次每次测量误差解析:994【分析】根据正态分布的性质求出在一次测量中误差在()0,30内的概率,再求出测量3次,每次测量误差均不在()0,30内的概率,根据对立事件的性质可得结果. 【详解】由题意可知在一次测量中误差在()0,30内满足2X μδμδ-<<+, 其概率为()()()111220.950.680.815222p p X p X μδμδμδμδ=-<≤++-<≤+=⨯+=, 测量3次,每次测量误差均不在()0,30内的概率为:()3310.8150.1850.006-==,∴独立测量3次,至少一次测量误差在()0,30内的概率是10.0060.994-=, 故答案为:0.994. 【点睛】本题主要考查正态分布概率的求法,n 次独立重复试验的模型,利用对立事件解决问题是解题的关键,属于中档题.17.【解析】由题意随机变量ξ的的值分别为321则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=点睛:数学期望是离散型随机变量中重要的数学概念反映随机变量取值的平均水平求解离散型随机变量的分布列数学 解析:115【解析】由题意,随机变量ξ的的值分别为3,2,1,则随机变量ξ的分布列为:所以随机变量ξ的数学期望Eξ=122111235555⨯+⨯+⨯=. 点睛:数学期望是离散型随机变量中重要的数学概念,反映随机变量取值的平均水平.求解离散型随机变量的分布列、数学期望时,首先要分清事件的构成与性质,确定离散型随机变量的所有取值,然后根据概率类型选择公式,计算每个变量取每个值的概率,列出对应的分布列,最后求出数学期望.18.【解析】试题分析:因为随机变量服从正态分布所以因为所以考点:正态分布解析:0.1587【解析】试题分析:因为随机变量X 服从正态分布()2,1N ,所以()()31P X >=P X <,因为()()()11331P X <+P ≤X ≤+P X >=,所以()()1310.68260.15872P X >=-=. 考点:正态分布.19.【分析】由题意根据甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投中2次乙投中1次或0次再由概率的加法公式即可列出方程求解答案【详解】甲比乙投中次数多的可能情形有:甲投中1次乙投中0次;甲投解析:23【分析】由题意,根据甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再由概率的加法公式,即可列出方程,求解答案. 【详解】甲比乙投中次数多的可能情形有:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次.由题意得p(1-p)·(1-q)2+p 2[(1-q)2+q(1-q)]=,解得q=或q=(舍). 【点睛】本题主要考查了相互独立事件的概率的计算,其中认真审题,根据甲比乙投中次数多的可能情形:甲投中1次,乙投中0次;甲投中2次,乙投中1次或0次,再根据概率的加法公式求解是解答的关键,着重考查了推理与运算能力.20.①③【分析】求出判断①利用存在量词命题否定形式判断②二项分布的期望与方差判断③;三角函数图象变换判断④【详解】解:①函数的一个对称中心为故①正确;②若命题:则命题的否定为:;所以②不正确;③设随机变解析:①③ 【分析】 求出5()012f π-=判断①,利用存在量词命题否定形式判断②,二项分布的期望与方差判断③;三角函数图象变换判断④. 【详解】 解:①5()4cos()0122f ππ-=-=, ∴函数()4cos(2)3f x x π=+的一个对称中心为5(,0)12π-,故①正确;②若命题p :“x R ∃∈,210x x -->”,则命题p 的否定为:“x R ∀∈,210x x --”;所以②不正确;③设随机变量~(,)B n p ξ,且()2E ξ=,()1D ξ=,可得2np =,(1)1np p -=,可得12p =,4n =则43111(1)12412p C ξ⎛⎫==-⋅= ⎪⎝⎭;所以③正确;④函数sin 2y x =的图象向左平移4π个单位长度,得到sin 2()4y x π=+,不是sin(2)4y x π=+的图象,所以④不正确;故答案为:①③. 【点睛】本题考查命题的真假判断与应用,考查sin()y A x ωϕ=+型函数的图象和性质,命题的否定,期望与方差的求法,属于中档题.三、解答题21.(1);(2)随机变量X 的分布列见解析,期望为133. 【分析】(1)可从正面计算取得两次、三次、四次白球的概率和,也可以用1减去取得一次、两次白球的概率,而四次取球中每次是否取得白球相互独立,只需用组合数即可得到相应概率;(2)注意取出的球不放回,因此最多取5次白球就会被取完,故X =2,3,4,5,分别计算对应的概率,写出分布列,进而可求出期望. 【详解】(1)记随机变量ξ表示连续取球四次,取得白球的次数,则ξ~B (4,13) 则P (ξ>1)=1-P (ξ=0)-P (ξ=1)=1-00411344121211()()()()333327C C -=(2)随机变量X 的取值分别为2,3,4,5∴P (X =2)=2226115C C =,P (X =3)=11242612415C C C ⨯= P (X =4)=1224361135C C C ⨯=,P (X =5)=134244446635C C C C C += ∴随机变量X 的分布列为 X 2345P115 215 15 35∴随机变量X 的期望为:1313()23451515553E X =⨯+⨯+⨯+⨯= 考点:古典概型,相互独立事件,随机变量的分布列与期望 22.(1)25;(2)分布列见解析,65(1)由频率分布直方图可求出抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人,再根据古典概型概率公式可得结果; (2)由已知得随机变量X 的可能取值为0,1,2,3,X ~B (3,25),由此能求出随机变量X 的分布列和数学期望EX . 【详解】 (1)根据题意,参加社区服务在时间段[)90,95的学生人数为2000.06560⨯⨯=人; 参加社区服务在时间段[)95,100的学生人数为2000.02520⨯⨯=人;∴抽取的200位学生中,参加社区服务时间不少于90小时的学生人数为80人. ∴从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率为8022005P ==. (2)由(1)可知,从全市高中学生中任意选取1人,其参加社区服务时间不少于90小时的概率为25,X ~B (3,25),由已知得,随机变量X 的可能取值为0,1,2,3, 则()03032327055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()12132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭, ()21232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()333238355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 随机变量X 的分布列为:∴()2754368601231251251251255E X =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概型概率的求法,考查离散型随机变量二项分布的分布列和数学期望,属于中档题. 23.(1)12;(2)分布列见解析;期望为1720;(3)32. 【分析】(1)根据独立事件的概率公式计算,至少有两个被堵塞含两个被堵塞和三个被堵塞两种情形,分别计算相加可得;(2)X 的所有可能取值为0,1,2.,分别计算其概率得分布列,由期望公式得期望; (3)Y 的所有可能取值为0,1,2,3,计算出各概率,然后由期望公式计算期望.解:(1)据题设知,所求概率213233311112222p C C ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12=. (2)X 的所有可能取值为0,1,2.133(0)114510P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,131311(1)11454520P X ⎛⎫⎛⎫==⨯-+-⨯= ⎪ ⎪⎝⎭⎝⎭,133(2)4520P X ==⨯=, 所以随机变量X 的分布列为所以()01210202020E X =⨯+⨯+⨯=. (3)Y 的所有可能取值为0,1,2,3.303111(0)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,213113(1)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,223113(2)228P Y C ⎛⎫==⨯⨯= ⎪⎝⎭,333111(3)228P Y C ⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭,所以13313()012388882E Y =⨯+⨯+⨯+⨯=. 【点睛】本题考查相互独立事件的概率公式,考查随机变量的概率分布列数学期望,考查了学生的数据处理能力,运算求解能力,属于中档题. 24.(1)1325.(2)625【分析】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”,求出()p A ,()p B ,任选一道灯谜,恰有一个人猜对的概率为:()()()()()P AB AB P A P B P A P B +=+,由此能求出结果.(2)任选一道灯谜,甲、乙都没有猜对的概率为()()()P AB P A P B =,由此能求出结果. 【详解】(1)设事件A 表示“甲猜对”,事件B 表示“乙猜对”, 则P (A )123205==,P (B )82205==, ∴任选一道灯谜,恰有一个人猜对的概率为: P (A B AB +)=P (A )P (B )+P (A )P (B )32155⎛⎫=⨯-+ ⎪⎝⎭(135)213525⨯=.(2)任选一道灯谜,甲、乙都没有猜对的概率为: P (AB )=P (A )P (B )=(135)(125-)625=【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,是基础题. 25.(Ⅰ)1315;(Ⅱ)分布列见解析,1915;(Ⅲ)40243,103. 【分析】(Ⅰ)先求出甲乙两人都未投中的概率,再根据对立事件的概率进行计算即可; (Ⅱ)随机变量X 的可能取值为0,1,2,然后根据相互独立事件的概率逐一求出每个X 的取值,求得相应的概率,得出分布列,进而求出数学期望; (Ⅲ)随机变量2(5,)3B ξ,根据二项分布的性质求概率和数学期望即可.【详解】(Ⅰ)设甲投中为事件B ,乙投中为事件C ,则()()1235P B P C ==,, 所以()()()1213113515P A P B P C =-=-⨯=. (Ⅱ)随机变量X 的可能取值为0,1,2, 则122(0)3515P X ==⨯=, 22137(1)353515P X ==⨯+⨯=,232(2)355P X ==⨯=, 所以随机变量X 的分布列为所以数学期望()0121515515E X =⨯+⨯+⨯=. (Ⅲ)甲投篮5次,投中次数为ξ,可得随机变量2(5,)3B ξ,所以22352140()()33(243)2C P ξ==⋅⋅=, 所以随机变量ξ数学期望()210533E ξ=⨯=. 【点睛】本题考查独立事件的概率、相互独立事件的概率、离散型随机变量的分布列与数学期望,以及二项分布的数学期望计算,考查学生灵活运用知识的能力和运算能力. 26.(1)13;(2)分布列见解析,1533.【分析】(1)记“该产品不能销售”为事件A ,则1()1(191)(1)4P A =--⨯-,计算得到答案. (2)X 的取值为-240,-130,-20,90,200,计算概率得到分布列,计算均值得到答案. 【详解】(1)记“该产品不能销售”为事件A ,则11()1(1)(1)4193P A =--⨯-=, 所以该产品不能销售的概率为13. (2)依据题意的,X 的取值为-240,-130,-20,90,200,411(240)()381P X =-== ; 134128(130)()3381P X C =-==; 22241224(20)()()3381P X C =-== ;31341232(90)()()3381P X C ===;4216(200)()381P X ===.所以X 的分布列为:1()24013020902005381818181813E X =-⨯-⨯-⨯+⨯+⨯=. 【点睛】本题考查了概率的计算,分布列,均值,意在考查学生的计算能力和应用能力.。

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

(必考题)高中数学高中数学选修2-3第一章《计数原理》测试(答案解析)

一、选择题1.甲、乙、丙三台机床是否需要维修相互之间没有影响.在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,则一小时内恰有一台机床需要维修的概率是( ) A .0.444B .0.008C .0.7D .0.2332.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率( ) A .112125B .80125C .113125D .1241253.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,则质点P 移动六次后位于点(2,4)的概率是( )A .612⎛⎫ ⎪⎝⎭B .44612C ⎛⎫ ⎪⎝⎭C .62612C ⎛⎫ ⎪⎝⎭D .6246612C C ⎛⎫ ⎪⎝⎭4.某学习小组有三名男生、三名女生共计六名同学,选出四人进行学业水平测试,这四人中所含女生人数记为η,则η的数学期望为( ) A .1B .32C .2D .35.孔子曰“三人行,必有我师焉.”从数学角度来看,这句话有深刻的哲理,古语说三百六十行,行行出状元,假设有甲、乙、丙三人中每一人,在每一行业中胜过孔圣人的概率为1%,那么甲、乙、丙三人中至少一人在至少一行业中胜过孔圣人的概率为( )(参考数据:3600.990.03≈,3600.010≈,30.970.912673≈) A .0.0027%B .99.9973%C .0D .91.2673%6.先后投掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“x y 、中有偶数,且x y ≠”,则概率()P B A =( ) A .13B .12C .14D .257.已知离散型随机变量X 服从二项分布(),X B n p ,且2EX =,DX q =,则21p q+的最小值为( ) A .274B .92C .3D .48.设离散型随机变量X 可能的取值为1,2,3,4,()P X k ak b ==+,又X 的数学期望为()3E X =,则a b +=A .110B .0C .110-D .159.将一枚质地均匀的硬币抛掷四次,设X 为正面向上的次数,则()03P X <<等于( ) A .18B .38C .58D .7810.甲、乙两类水果的质量(单位:kg )分别服从正态分布()()221122,,,N N μδμδ,其正态分布的密度曲线如图所示,则下列说法错误的是( )A .甲类水果的平均质量10.4kg μ=B .甲类水果的质量比乙类水果的质量更集中于平均值左右C .甲类水果的平均质量比乙类水果的平均质量小D .乙类水果的质量服从正态分布的参数2 1.99δ= 11.设随机变量X 的分布列为()()1,2,32iP X i i a===,则()2P X ≥= ( ) A .16B .56C .13D .2312.如果()20,X B p ,当12p =且()P X k =取得最大值时, k 的值是( )A .8B .9C .10D .11二、填空题13.随着电商的兴起,物流快递的工作越来越重要了,早在周代,我国便已出现快递制度,据《周礼·秋官》记载,周王朝的官职中设置了主管邮驿,物流的官员“行夫”,其职责要求是“虽道有难,而不时必达”.现某机构对国内排名前五的5家快递公司的某项指标进行了3轮测试(每轮测试的客观条件视为相同),每轮测试结束后都要根据该轮测试的成绩对这5家快递公司进行排名,那么跟测试之前的排名比较,这3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为_________.14.数轴上有一质点,从原点开始每次等可能的向左或向右移动一个单位,则移动4次后,该质点的坐标为2的概率为________.15.甲、乙两名射击运动员一次射击命中目标的概率分别是0.7,0.6,且每次射击命中与否相互之间没有影响,求:(1)甲射击三次,第三次才命中目标的概率;(2)甲、乙两人在第一次射击中至少有一人命中目标的概率; (3)甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率.16.随机变量ξ的分布列如下:若()3E ξ=,则()D ξ=__________. 17.若随机变量3~34X B ⎛⎫ ⎪⎝⎭,, 则方差()D x =____________.18.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,此时()~10,.X B p 若() 2.1,D X =()()37,P X P X =<=则p =_______.19.给出下列四个结论:①从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则()1|4P B A =; ②某班共有45名学生,其中30名男同学,15名女同学,老师随机抽查了5名同学的作业,用X 表示抽查到的女生的人数,则()2E X =;③设随机变量X 服从正态分布()0,1N ,()1P X P >=,则()1102P X p -<<=-; ④由直线12x =,2x =,曲线1y x =及x 轴所围成的图形的面积是2ln 2.其中所有正确结论的序号为__________.20.已知随机变量ξ服从二项分布,1~(6,)2B ξ,则(23)E ξ+=________,(23)D ξ+=________. 三、解答题21.已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个.现从中随机取球,每次只取一球.()1若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率; ()2若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.22.2019年春节期间,我国高速公路继续执行“节假日高速公路免费政策”某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间[)20,40,9:40~10:00记作[)40,60,10:00~10:20记作[)60,80,10:20~10:40记作[)80,100.例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X ,求X 的分布列与数学期望;(3)由大数据分析可知,车辆在每天通过该收费点的时刻T 服从正态分布()2,N μσ,其中μ可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,2σ可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).参考数据:若()2,T N μσ~,则()0.6827P T μσμσ-<≤+=,()220.9545P T μσμσ-<≤+=,()330.9973P T μσμσ-<≤+=.23.2020年1月10日,引发新冠肺炎疫情的9COVID -病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为12,假设每次接种后当天是否出现抗体与上次接种无关. (1)求一个接种周期内出现抗体次数K 的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X 元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y 元.本着节约成本的原则,选择哪种实验方案. 24.“过大年,吃水饺”是我国不少地方过春节的一大习俗,2020年春节前夕,A 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值Z 服从正态分布()2,N μσ,利用该正态分布,求Z 落在()38.45,50.4内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于()10,30内的包数为X ,求X 的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为142.7511.95σ=≈; ②若()2~,Z N μσ,则()0.6826P Z μσμσ-<≤+=,()220.9544P Z μσμσ-<≤+=.25.甲、乙两名运动员进行射击训练,已知他们击中的环数都稳定在7、8、9、10环,且每次射击成绩互不影响.根据以往的统计数据,甲、乙射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(1)甲、乙各射击一次,求甲、乙同时击中10环的概率; (2)求甲射击一次,击中9环以上(含9环)的概率;(3)甲射击3次,X 表示这3次射击中击中9环以上(含9环)的次数,求X 的分布列及数学期望()E X .26.已知某高校综合评价有两步:第一步是材料初审,若材料初审不合格,则不能进入第二步面试;若材料初审合格,则进入第二步面试.只有面试合格者,才能获得该高校综合评价的录取资格,现有A,B,C三名学生报名参加该高校的综合评价,假设A,B,C三位学生材料初审合格的概率分别是13,12,14;面试合格的概率分别是12,13,23.(1)求A,B两位考生有且只有一位考生获得录取资格的概率;(2)记随机变量X为A,B,C三位学生获得该高校综合评价录取资格的人数,求X的概率分布与数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】直接利用对立事件和独立事件的概率求解.【详解】因为在一小时内甲、乙、丙三台机床需要维修的概率分别是0.1,0.2,0.4,所以一小时内恰有一台机床需要维修的概率是:()()()()0.110.210.40.210.110.4p=⨯-⨯-+⨯-⨯-,()()0.410.210.10.444+⨯-⨯-=.故选:A【点睛】本题主要考查独立事件和对立事件的概率,属于中档题.2.A解析:A【分析】利用n次独立重复试验中事件A恰好发生k次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率.【详解】解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率:3223441112()()()555125P C =+=.故选:A . 【点睛】本题考查概率的求法,考查n 次独立重复试验中事件A 恰好发生k 次概率计算公式等基础知识,考查运算求解能力,属于中档题.3.C解析:C 【分析】根据题意,质点P 移动六次后位于点(4,2),在移动过程中向右移动4次向上移动2次,即6次独立重复试验中恰有4次发生,由其公式计算可得答案. 【详解】根据题意,易得位于坐标原点的质点P 移动六次后位于点(2,4),在移动过程中向上移动4次向右移动2次,则其概率为4262466111222C P C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭==. 故选:C . 【点睛】本题考查二项分布与n 次独立重复试验的模型,考查对基础知识的理解和掌握,考查分析和计算能力,属于常考题.4.C解析:C 【分析】根据题意可知随机变量η的可能取值有1、2、3,计算出随机变量η在不同取值下的概率,列出分布列,进而可求得η的数学期望. 【详解】由题意可知,随机变量η的可能取值有1、2、3,()1346115C P C η===,()223346325C C P C η===,()1346135C P C η===. 所以,随机变量η的分布列如下表所示:因此,随机变量η的数学期望为1232555E η=⨯+⨯+⨯=. 故选:C. 【点睛】本题考查随机变量数学期望的计算,一般要列出随机变量的分布列,考查计算能力,属于中等题.5.B解析:B 【分析】先求出一个人在所有行业中都不能胜过孔圣人的概率,再求出三个人在所有行业中都不能胜任孔圣人的概率,用1减去此概率即为所求. 【详解】一个人三百六十行全都不如孔圣人的概率为3600.990.03≈,三个人三百六十行都不如孔圣人的概率为30.030.000027=,所以至少一人在至少一行业中胜过孔圣人的概率为10.0000270.99997399.9973%-==.故选:B . 【点睛】本题考查相互独立事件的概率乘法公式,考查至多至少问题用对立事件解决的方法,属于中档题.6.A解析:A 【分析】根据题意有()))|(=(n AB P n A A B ,所以只须分析事件A 和事件AB 所包含的基本事件,即可根据公式求出结果. 【详解】解:事件A 中“x y +为偶数”,所以,x y 同奇同偶,共包含22318⨯=种基本事件;事件AB 同时发生,则,x y 都为偶数,且x y ≠,则包含236A =个基本事件;()()61=)13|=(8n AB n A P B A =. 故选:A. 【点睛】本题考查条件概率的应用,考查基本事件的求法,解题的关键是辨析条件概率,属于基础题.7.B解析:B 【分析】根据二项分布的均值与方差公式,可得,p q 的等量关系.利用“1”的代换,结合基本不等式即可求得21p q+的最小值. 【详解】离散型随机变量X 服从二项分布(),XB n p ,且2EX =,DX q =由二项分布的均值与方差公式可得()21npq np p =⎧⎨=-⎩, 化简可得22p q +=,即12qp +=由基本不等式化简可得21p q +221p q q p ⎛⎫=+ ⎪⎛⎫+ ⎪⎝⎝⎭⎭2525922q p p q ≥+=++= 即21p q +的最小值为92故选:B 【点睛】本题考查了二项分布的简单应用,均值与方差的求法,利用“1”的代换结合基本不等式求最值,属于中档题.8.A解析:A 【分析】将1,2,3,4X =代入()P X k =的表达式,利用概率之和为1列方程,利用期望值列出第二个方程,联立方程组,可求解得+a b 的值. 【详解】依题意可的X 的分布列为()()()()23412233443a b a b a b a b a b a b a b a b +++++++=⎧⎨+++++++=⎩,解得1,010a b ==,故110a b +=.所以选A. 【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为1,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.9.C解析:C 【解析】分析:先确定随机变量得取法12X =,,再根据独立重复试验求概率. 详解:因为14244411(1)(),(2)(),22P x C P x C ====所以142444411105(03)(1)(2)()(),2228P x P x P x C C <<==+==+== 选C.点睛:n 次独立重复试验事件A 恰好发生k 次得概率为(1)kkn kn C p p --.其中p 为1次试验种A 发生得概率.10.D解析:D 【解析】由图象可知,甲类水果的平均质量μ1=0.4kg ,乙类水果的平均质量μ2=0.8kg ,故A ,B ,C ,正确;乙类水果的质量服从的正态分布的参数σ2,故D 不正确.故选D .11.B解析:B 【解析】 由概率和为1,可知1231222a a a++=,解得3a =,()P X 2≥=235(2)(3)666P X P X =+==+=选B. 12.C解析:C 【解析】因为()20,X B p ~,12p =,所以()20202020111222k kk k P X k C C -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当10k = 时20kC 取得最大值,故选C.二、填空题13.【分析】根据题意求出家快递公司进行排名与测试之前的排名比较出现家公司排名不变的概率根据题意满足二项分布根据二项分布概率计算即可【详解】解:首先在一轮测试中家快递公司进行排名与测试之前的排名比较出现家 解析:572【分析】根据题意求出5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率,根据题意满足二项分布,根据二项分布概率计算即可. 【详解】解:首先,在一轮测试中5家快递公司进行排名与测试之前的排名比较出现2家公司排名不变的概率为255522011206C A ⨯==, 其次,3轮测试每次发生上述情形的概率均为16P =, 故3轮测试中恰好有2轮测试结果都出现2家公司排名不变的概率为223155()6672C ⨯⨯=. 故答案为:572. 【点睛】独立重复试验与二项分布问题的常见类型及解题策略:(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率;(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.14.【分析】由题意分析可知质点4次运动中有1次向左3次向右根据独立事件的概率公式求解【详解】由题意可知质点移动4次后位于坐标为2的位置说明4次中有1次向左3次向右并且每次向左或向右的概率都是所以移动4次解析:14【分析】由题意分析可知质点4次运动中有1次向左,3次向右,根据独立事件的概率公式求解. 【详解】由题意可知质点移动4次后位于坐标为2的位置,说明4次中有1次向左,3次向右,并且每次向左或向右的概率都是12,所以移动4次后,该质点的坐标为2的概率314111224p C ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭.故答案为:14【点睛】本题考查独立事件概率的实际应用问题,属于基础题型,本题的关键是抽象出质点运动方向,以及概率类型.15.(1);(2)088;(3)【分析】(1)甲第三次才命中目标为事件且三次射击相互独立利用独立重复试验概率计算公式即可求得答案;(2)求该事件的反面的概率用1减其即可;(3)设甲在两次射击命中目标i 次解析:(1)0.063;(2)0.88;(3)0.3024. 【分析】(1)“甲第三次才命中目标”为事件123A A A ,且三次射击相互独立,利用独立重复试验概率计算公式即可求得答案;(2)求该事件的反面的概率,用1减其即可;(3)设“甲在两次射击命中目标i 次”为事件(0,1,2)i M i =,“乙在两次射击命中目标i 次”为事件(0,1,2)i N i =,则事件“甲、乙各射击两次,甲比乙命中目标次数恰好多一次”可表示为1021M N M N +,用独立重复试验概率计算公式即可求得答案. 【详解】记“甲第i 次射击命中目标”为事件i A ,“乙第i 次射击命中目标”为事件i B ,依题意得()0.7i P A =,()0.6i P B =,且i A ,i B (1,2,3i =)相互独立.(1)“甲第三次才命中目标”为事件123A A A ,且三次射击相互独立,()()123123()()0.30.30.70.063P A A A P A P A P A ∴==⨯⨯=.答:甲第三次才命中目标的概率为0.063.(2)“甲、乙两人在第一次射击中至少有一人命中目标”为事件C .()11()1()10.30.40.88P C P A P B =-⋅=-⨯=.答:甲、乙两人在第一次射击中至少有一人命中目标的概率为0.88. (3)设“甲在两次射击命中目标i 次”为事件(0,1,2)i M i =, “乙在两次射击命中目标i 次”为事件(0,1,2)i N i =,事件“甲、乙各射击两次,甲比乙命中目标次数恰好多一次”可表示为1021M N M N +,且10M N ,21M N 为互斥事件,∴所求的概率为()()()10211021P M N M N P M N P M N +=+()()()()12211021220.70.30.40.70.60.4P M P N P M P N C C =+=⨯⨯⨯+⨯⨯⨯0.06720.23520.3024=+=答:甲、乙各射击两次,甲比乙命中目标的次数恰好多一次的概率为0.3024. 【点睛】本题考查独立重复试验中的概率计算问题,属于中档题.16.【分析】利用概率之和为以及数学期望列方程组解出和的值最后利用方差的计算公式可求出的值【详解】由题意可得解得因此故答案为【点睛】本题考查随机分布列的性质以及随机变量的数学期望和方差的计算解题时要注意概解析:59【分析】利用概率之和为1以及数学期望列方程组解出a 和c 的值,最后利用方差的计算公式可求出()D ξ的值.【详解】由题意可得()11313a c E a c ξ⎧++=⎪⎪⎨⎪=-+=⎪⎩,解得1612a c ⎧=⎪⎪⎨⎪=⎪⎩,因此,()22211111151013633329D ξ⎛⎫⎛⎫⎛⎫=--⨯+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故答案为59. 【点睛】本题考查随机分布列的性质以及随机变量的数学期望和方差的计算,解题时要注意概率之和为1这个隐含条件,其次就是熟悉随机变量数学期望和方差的公式,考查计算能力,属于中等题.17.【分析】利用方差公式即可得出答案【详解】结合方差【点睛】本题考查了方差计算公式记住即可 解析:916【分析】利用方差公式()D x npq =,即可得出答案. 【详解】结合方差()31934416D x npq ==⋅⋅=. 【点睛】本题考查了方差计算公式,记住()D x npq =,即可.18.【解析】【分析】由二项分布性质可知Dx=np(1-p)=21解得p=03或p=07再由二项分布公式代入解得p>05可求得p 【详解】由二项分布可知Dx=np(1-p)=10p(1-p)=21所以p=0解析:0.7 【解析】 【分析】由二项分布性质可知Dx=np(1-p) =2.1,解得p=0.3或p=0.7,再由二项分布公式代入()()37,P X P X =<=解得p>0.5,可求得p.【详解】由二项分布可知Dx=np(1-p)=10p(1-p)=2.1,所以p=0.3或p=0.7,又因为()()37P X P X =<=,所以3377731010(1)(1)C p p C p p -<-,解得p>0.5,所以p=0.7,填0.7. 【点睛】本题综合考查二项分布公式应用及二项分布的性质,需要学生灵活运用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学选修2--3) 第一章 计数原理一、选择题1.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长, 不同的选法总数是( )A.20 B .16 C .10 D .6 2.将3个不同的小球放入4个盒子中,则不同放法种数有( ) A .81 B .64 C .12 D .143.从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机 各1台,则不同的取法共有( )A .140种 B.84种 C.70种 D.35种 4.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有( )A .33AB .334AC .523533A A A -D .2311323233A A A A A +5.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、 物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是( ) A .男生2人,女生6人 B .男生3人,女生5人 C .男生5人,女生3人 D .男生6人,女生2人.6.在82x ⎛- ⎝的展开式中的常数项是( ) A.7 B .7- C .28 D .28-7.5(12)(2)x x -+的展开式中3x 的项的系数是( ) A.120 B .120- C .100 D .100-8.22nx ⎫⎪⎭展开式中只有第六项二项式系数最大,则展开式中的常数项是( )A .180B .90C .45D .360二、填空题1.从甲、乙,……,等6人中选出4名代表,那么(1)甲一定当选,共有 种选法.(2)甲一定不入选,共有 种选法.(3)甲、乙二人至少有一人当选,共有 种选法.2.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. 3.由0,1,3,5,7,9这六个数字组成_____个没有重复数字的六位奇数. 4.在10(x -的展开式中,6x 的系数是 .5.在220(1)x -展开式中,如果第4r 项和第2r +项的二项式系数相等,则r = ,4r T = .6.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个?7.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x . 8.从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数,共有________________个? 三、解答题1.判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?2.7个排成一排,在下列情况下,各有多少种不同排法? (1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻,(6)甲在乙的左边(不一定相邻),(7)甲、乙、丙三人按从高到矮,自左向右的顺序,(8)甲不排头,乙不排当中。

3.解方程432(1)140;x x A A =112311(2)n n n n n n n nC C C C +--+-+=++4.在n(1+x )的展开式中,若第3项与第6项系数相等,且n 等于多少?5.n⎛⎝的展开式奇数项的二项式系数之和为128, 则求展开式中二项式系数最大项。

6.已知5025001250(2),a a x a x a x =++++L 其中01250,,,a a a a L 是常数,计算220245013549()()a a a a a a a a ++++-++++L L一、选择题1.B 每个小球都有4种可能的放法,即44464⨯⨯=2.C 分两类:(1)甲型1台,乙型2台:1245C C ;(2)甲型2台,乙型1台:2145C C 1221454570C C C C += 3.C 不考虑限制条件有55A ,若甲,乙两人都站中间有2333A A ,523533A A A -为所求 4.B 不考虑限制条件有25A ,若a 偏偏要当副组长有14A ,215416A A -=为所求 5.B 设男学生有x 人,则女学生有8x -人,则2138390,xx C C A -= 即(1)(8)30235,3x x x x --==⨯⨯=6.A148888833188811()((1)()(1)()222r r r r r r r r r r r r r x T C C xC x ------+==-=- 令6866784180,6,(1)()732r r T C --===-= 7.B 555332255(12)(2)2(12)(12)...2(2)(2)...x x x x x C x xC x -+=-+-=+-+-+ 233355(416)...120...C C x x =-+=-+8.A 只有第六项二项式系数最大,则10n =,551021101022()2r rrr r r r T C C x x --+==,令2310550,2,41802r r T C -==== 二、填空题1.(1)10 3510C =;(2) 5 455C =;(3)14 446414C C -= 2.8640 先排女生有46A ,再排男生有44A ,共有44648640A A ⋅=3.480 0既不能排首位,也不能排在末尾,即有14A ,其余的有55A ,共有1545480A A ⋅= 4.189010110(r rr r T C x -+=,令466510106,4,91890r r T C x x -==== 5.1530204,C x - 4111521515302020162020,41120,4,()r r C C r r r T C x C x -+=-++===-=- 6.840 先排首末,从五个奇数中任取两个来排列有25A ,其余的27A ,共有2257840A A ⋅= 7.2 当0x ≠时,有4424A =个四位数,每个四位数的数字之和为145x +++ 24(145)288,2x x +++==;当0x =时,288不能被10整除,即无解8.11040 不考虑0的特殊情况,有32555512000,C C A =若0在首位,则314544960,C C A = 3253145555441200096011040C C A C C A -=-= 三、解答题1.解:(1)①是排列问题,共通了211110A =封信;②是组合问题,共握手21155C =次。

(2)①是排列问题,共有21090A =种选法;②是组合问题,共有21045C =种选法。

(3)①是排列问题,共有2856A =个商;②是组合问题,共有2828C =个积。

2.解:(1)甲固定不动,其余有66720A =,即共有66720A =种;(2)甲有中间5个位置供选择,有15A ,其余有66720A =,即共有16563600A A =种;(3)先排甲、乙、丙三人,有33A ,再把该三人当成一个整体,再加上另四人,相当于5人的全排列,即55A ,则共有5353720A A =种; (4)从甲、乙之外的5人中选2个人排甲、乙之间,有25A ,甲、乙可以交换有22A , 把该四人当成一个整体,再加上另三人,相当于4人的全排列,则共有224524960A A A =种;(5)先排甲、乙、丙之外的四人,有44A ,四人形成五个空位,甲、乙、丙三人排 这五个空位,有35A ,则共有34541440A A =种; (6)不考虑限制条件有77A ,甲在乙的左边(不一定相邻),占总数的一半,即77125202A =种; (7)先在7个位置上排甲、乙、丙之外的四人,有47A ,留下三个空位,甲、乙、丙三人按从高到矮,自左向右的顺序自动入列,不能乱排的,即47840A = (8)不考虑限制条件有77A ,而甲排头有66A ,乙排当中有66A ,这样重复了甲排头,乙排当中55A 一次,即76576523720A A A -+=3.解:43212143(1)140(21)2(21)(22)140(1)(2)x xx x A A x N x x x x x x x ++≥⎧⎪≥⎪=⇔⎨∈⎪⎪+--=--⎩ 23(21)(21)35(2)3435690x x Nx x x x x Nx x ≥⎧⎪⇔∈⎨⎪+-=-⎩⎧≥⎪⇔∈⎨⎪-+=⎩得3x =22122122311222122(2),(1),2,42n n n n n n n nn n C C C C C C C C n n C C n n +++++++=+++=+-=+==4.解:(1)由已知得257nn C C n =⇒= (2)由已知得1351...128,2128,8n nn n C C C n -+++===,而展开式中二项式系数最大项是444418(70T C x +== 6.解:设50()(2)f x =-,令1x =,得5001250(2a a a a ++++=L 令1x =-,得5001250(2a a a a -+-+=L220245013549()()a a a a a a a a ++++-++++=L L50500125001250()()(2(21a a a a a a a a ++++-+-+==L L。

相关文档
最新文档