圆的对称性练习1
3.2 圆的对称性(练习)(解析版)
第三章圆第二节圆的对称性精选练习一、单选题1.(2021·全国九年级课时练习)下列说法中,正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等【答案】B【分析】根据圆心角,弦,弧之间的关系判断,注意条件.【详解】A中,等弦所对应的弧可以相等也可以互补构成新圆;B中,等弧所对应的弦相等,故选BC中,圆心角相等所对应的弦可能互补;D中,弦相等,圆心角可能互补;故选B【点睛】本题考查了圆心角,弧,弦之间的观,此类试题属于难度较大的试题,其中,弦和圆心角等一些基本知识容易混淆,从而很难把握.2.(2021·全国九年级课时练习)下列说法中,不正确的是()A.圆是轴对称图形B.圆的任意一条直径所在的直线都是圆的对称轴C.圆的任意一条直径都是圆的对称轴D.经过圆心的任意直线都是圆的对称轴【答案】C【分析】根据轴对称图形的概念并结合圆的特点判断各选项,然后求解即可.【详解】A 、圆是轴对称图形,正确;B 、圆的任意一条直径所在得直线都是圆的对称轴,正确;C 、圆的任一直径所在的直线都是圆的对称轴,错误;D 、经过圆心的任意直线都是圆的对称轴,正确,故选:C .【点睛】本题主要是考查圆的特征、轴对称图形的特征,注意,语言要严密,不能说成圆的直径就是圆的对称轴,因为对称轴是一条直线,直径是线段.3.(2021·全国九年级课时练习)下列说法:①直径是弦;②长度相等的两条弧是等弧;③圆是中心对称图形;④任何一条直径都是圆的对称轴,其中说法正确的有( )个A .1个B .2个C .3个D .4个【答案】B【分析】根据圆的性质依次判断即可得到答案.【详解】①直径是圆中最长的弦,故正确;②在同圆或等圆中,能够完全重合的两条弧是等弧,故②错误;③圆是中心对称图形,故正确;④任何一条直径所在的直线都是圆的对称轴,故④错误,正确的有2个,故选:B.【点睛】此题考查圆的性质,正确掌握弦、等弧的定义,圆的对称性是解题的关键.4.(2020·杭州市建兰中学九年级月考)如图,AB 是圆O 的直径,点C 是半圆O 上不同于,A B 的一点,点D 为弧AC 的中点,连结,,OD BD AC ,设,CAB BDO b a Ð=Ð=,则( ).A .a b=B .290a b °+=C .290a b °+=D .45a b °+=【答案】C利用等腰三角形边角关系表示出∠AOD ,再根据同圆中平分弧平分弦垂直弦求出关系即可.【详解】解析 如图,设AC 与DO 交点为E ,连接BC ,OD OB = ,OBD BDO a \Ð=Ð=,2DOA OBD BDO a \Ð=Ð+Ð=,又D Q 为 AC 中点,AB 为O e 直径,,OD AC BC AC \^^,90AED ACB °\Ð=Ð=,90EAO EOA °\Ð+Ð=,即:290a b °+=.故选C .【点睛】此题考查了垂径定理中同圆中平分弧平分弦垂直弦,等边对等角等有关知识点,难度一般.5.(2020·西安益新中学九年级期末)如图,AB 是O e 的直径,弧BC 、弧CD 与弧DE 相等,36COD Ð=°,则AOE Ð的度数是( )A .30°B .36°C .54°D .72°【答案】D【分析】由弧BC 、弧CD 与弧DE 相等,得36COB COD EOD Ð=Ð=Ð=°,即可求AOE Ð.解:∵弧BC 、弧CD 与弧DE 相等,∴36COB COD EOD Ð=Ð=Ð=°,18036372AOE Ð=°-°´=°,故选:D .【点睛】本题考查了圆心角和弧的关系,解题关键是熟知在同圆和等圆中,相等的弧所对的圆心角相等.6.(2021·全国九年级课时练习)如图,已知:AB 是O e 的直径,C 、D 是 BE上的三等分点,60AOE Ð=o ,则COE Ð是( )A .40oB .60oC .80oD .120o【答案】C【分析】先求出∠BOE=120°,再运用“等弧对等角”即可解.【详解】∵∠AOE=60°,∴∠BOE=180°-∠AOE=120°,∴»BE的度数是120°,∵C 、D 是»BE上的三等分点,∴弧CD 与弧ED 的度数都是40度,∴∠COE=80°,故选C.【点睛】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.熟练掌握圆周角定理是解题关键.7.(2021·全国九年级课时练习)如图,⊙O 中,弦AB ⊥CD ,垂足为E ,F 为 CBD的中点,连接AF 、BF 、AC ,A F 交CD 于M ,过F 作FH ⊥AC ,垂足为G ,以下结论:① CFDF =;②HC =BF :③MF =FC :④ DF AH BF AF +=+,其中成立的个数是( )A.1个B.2个C.3个D.4个【答案】C【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴=,CF BF∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴+=180°,AH CF∴+=180°,CH AF∴+=+=+=+,故④正确,AH CF AH DF CH AF AF BF故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.8.(2019·武汉市梅苑学校九年级月考)如图AB 为⊙O 的定直径,过圆上一点C 作弦CD AB ^,OCD Ð的平分线交⊙O 于点P ,当点C (不包括A ,B 两点)在⊙O 上移动时,点P ( )A .到CD 的距离保持不变B .位置不变C .等分弧DBD .随C 点移动而移动【答案】B【分析】连OP ,由CP 平分∠OCD ,得到∠1=∠2,而∠1=∠3,可得2=3,ÐÐ所以有//OP CD ,则OP ⊥AB ,即可得到OP 平分半圆APB .从而可得答案.【详解】解:连OP ,如图,∵CP 平分∠OCD ,∴∠1=∠2,OC=OP ,\ ∠1=∠3,∴∠2=∠3,∴//OP CD ,又∵弦CD ⊥AB ,∴OP ⊥AB ,∴OP 平分半圆APB ,即点P 是半圆的中点.故选:B .【点睛】本题考查了角平分线的定义,平行线的判定,等腰三角形的性质,圆的对称性,掌握以上知识是解题的关键.二、填空题9.(2021·全国九年级课时练习)半径为5的⊙O是锐角三角形ABC的外接圆,AB=BC,连结OB、OC,延长CO 交弦AB于D,若△OBD是直角三角形,则弦BC的长为______________.【答案】【分析】如图1,当∠DOB=90°时,推出△BOC是等腰直角三角形,于是得到=;如图2,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=.【详解】如图1,当∠DOB =90°时,∴∠BOC=90°∴△BOC是等腰直角三角形∴=^如图2,当∠ODB=90°时,即CD AB∴ AD=BD∴ AC=BC∵ AB=BC∴△ABC是等边三角形∴∠DBO=30°∵ OB=5∴BD==∴ BC=AB=.综上所述:若△OBD是直角三角形,则弦BC的长为.故答案为:.【点睛】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.10.(2021·全国九年级课时练习)如图,AB是⊙O的直径,AD DE=,AB=5,BD=4,则cos∠ECB=__.【答案】3 5【分析】连接AD,BE,根据直径所对的圆周角是直角,构建两个直角三角形,再利用等弧所对的圆周角相等得:∠ABD=∠CBE,根据等角的余角相等得:∠ECB=∠DAB,最后利用等角的三角函数得出结论.【详解】解:连接AD, BE,AD DE=,∴EBC DBAÐ=Ð,∵AB是⊙O的直径,∴∠AEB=∠ADB=90°,∴∠ECB+∠EBC=90°,∠DBA+∠DAB=90°,∴∠ECB =∠DAB .AB =5,BD =4 ,3AD \==, ∴3cos cos 5ECB DAB Ð=Ð=.【点睛】本题考查了圆周角定理,解直角三角形,余角的性质,以及勾股定理等知识.掌握圆周角的两个定理:①在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.这两个性质在圆的证明题中经常运用,要熟练掌握.11.(2021·全国九年级课时练习)如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =32°,则∠OAC =_______度.【答案】58【分析】根据∠D 的度数,可以得到∠ABC 的度数,然后根据BC 是直径,从而可以得到∠BAC 的度数,然后可以得到∠OCA 的度数,再根据OA=OC ,从而可以得到∠OAC 的度数.【详解】解:∵∠D=32°,∠D=∠ABC∴∠ABC=32°∵BC 是直径∴∠BAC=90°∴∠BCA=90°-∠ABC=90°-32°=58°∴∠OCA=58°∵OA=OC∴∠OAC=∠OCA∴∠OAC=58°故答案为58.【点睛】本题考查了圆周角定理,圆心角、弧、弦的关系.解题的关键是明确题意,利用数形结合的思想解答.12.(2021·上海九年级专题练习)一根横截面为圆形的下水管的直径为1米,管内污水的水面宽为0.8米,那么管内污水深度为__________米.【答案】0.8或0.2.【分析】构造垂径定理,分两种情形求得弦心距,从而得到水深.【详解】如图所示,作AB 的垂直平分线,垂足为E ,根据题意,得 AO=0.5,AE=0.4,根据勾股定理,得,∴水深ED=OD-OE=0.5-03=0.2(米)或水深ED=OD+OE=0.5+03=0.8(米),∴水深为0.2米或0.8米.故答案为:0.2米或0.8.【点睛】本题考查了垂径定理,勾股定理,解答时,构造垂径定理,活用分类思想是解题的关键.三、解答题13.(2021·全国九年级课时练习)如图,⊙O的弦AB、CD的延长线相交于点P,且PA=PC.求证:AB CD=.【答案】证明见解析【分析】连接AC、OA、OB、OC、OD,根据等腰三角形的性质得到∠PAC=∠PCA,根据圆周角定理得到∠BOC=∠AOD,根据圆心角、弧、弦的关系定理证明结论.【详解】证明:连接AC、OA、OB、OC、OD,∵PA=PC,∴∠PAC=∠PCA,∵∠PAC12=∠BOC,∠PCA12=∠AOD,∴∠BOC=∠AOD,∴AD BC=n n,∴AD BD BC BD-=-,即AB CD=.【点睛】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.14.(2021·全国九年级课时练习)如图,在⊙O中,弦AD与BC交于点E,且AD=BC,连接AB、CD.求证:(1)AB=CD;(2)AE =CE .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)欲证明AB=CD ,只需证得 AB = CD ;(2)连接AC ,由 AB = CD得出∠ACB=∠CAD ,再由等角对等边即可证的AE =CE.【详解】证明:(1)∵AD =BC∴ AD = BC∴ AD -AC = BC - AC 即 AB = CD∴AB =CD(2)连接AC∵ AB = CD∴∠ACB =∠DAC∴AE =CE【点睛】本题考查了圆周角、弧、弦间的关系,注意(2)中辅助线的作法是求解(2)的关键.15.(2020·江苏苏州市·苏州草桥中学九年级期中)如图,在O e 中, AC CB=,CD OA ^于点D ,CE OB ^于点E .(1)求证:CD CE =;(2)若120AOB Ð=°,2OA =,求四边形DOEC 的面积.【答案】(1)证明见解析;(2【分析】(1)如图,连接OC ,先证明,AOC BOC Ð=Ð再证明:,CDO CEO V V ≌从而可得结论;(2)由120AOB Ð=°,2OA =,求解60AOC Ð=°,再利用三角函数求解,OD CD , 利用,CDO CEO V V ≌从而可得四边形的面积.【详解】(1)证明:如图,连接OC ,AC BC= , ,AOC BOC \Ð=Ð,,CD OA CE OB ^^90CDO CEO \Ð=Ð=°,,OC OC =(),CDO CEO AAS \V V ≌.CD CE \=(2)120,AOB Ð=60AOC BOC \Ð=Ð=°,2OA OC == ,1cos 6021,sin 6022OD OC CD OC \=°=´==°==g g ,CDO CEO V V ≌12212CDO CDOE S S \==´´=V 四边形【点睛】本题考查的是三角形全等的判定与性质,圆的基本性质,两条弧,两个圆心角,两条弦之间的关系定理,解直角三角形的应用,四边形的面积,掌握以上知识是解题的关键.。
圆的对称性
圆的对称性温故知新:1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.求证: ∠OBA=∠OCD1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,DE的度数.CA为半径的圆交AB于点D,交BC与点E.求⌒AD、⌒【例3】如图,在同圆中,若⌒AB=2⌒CD,则AB与2CD的大小关系是( ) .A. AB>2CDB. AB<2CDC. AB=2CDD. 不能确定【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?课堂练习1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )A .122°B .120°C .61°D .58°2.下列结论中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .等弧所对的圆心角相等C .相等的圆心角所对的弧相等D .长度相等的两条弧是等弧3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )A .40°B .45°C .50°D .60°4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是________.5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =________°.6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD的度数.8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.(1)求⊙O 的半径;(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )A .AD =BDB .OD =CDC .∠CAD =∠CBDD .∠OCA =∠OCB11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.课后练习1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( )A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )A .3 cmB .4 cmC .5 cmD .6 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .55.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .86.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。
3.2 圆的对称性(第一课时)
①④
①⑤ ②③ ②④ ②⑤
②③⑤
②③④ ①④⑤ ①③⑤ ①③④
③④
③⑤ ④⑤
①②⑤
①②④ ①②③
练习:在⊙O中,OC垂直于弦AB, AB = 8,OA = 5, 则AC = 4 ,OC = 3 。
O
5 3 4 ┏
A
C
8
B
例2、如图,AB是⊙O的一条弦,点C为弦AB 的中点,OC = 3,AB = 8,求OA的长。
●
想一想P88 2
圆的对称性
驶向胜利 的彼岸
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题. 圆也是中心对称图形.
●
O
它的对称中心就是圆心.
用旋转的方法即可解决这个 问题.
读一读P88 3
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作 ⌒ ,读作“弧 AB AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).
●
O
∴当圆沿着直径CD对折时,点A与点B ⌒ ⌒ 重合, ⌒ ⌒ AC和BC重合, AD和BD重合.
D
⌒ ⌒ ⌒ ∴AC =BC, AD =BD.
⌒
想一想 P90 6
垂径定理
驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A
M└
●
如图∵ CD是直径, CD⊥AB, B
O
∴AM=BM,
B
独立作业P91 16
挑战自我
驶向胜利 的彼岸
P94:习题3.2
2题祝你成功!试一试P93 15挑战自我画一画
圆的对称性练习题
OA2+OB′2= 2,即 PA+PB 的最小值为 2.
A.到 CD 的距离保持不变 B.位置不变 C.平分B︵D D,半径为 5 的⊙A 中,弦 BC,ED 所对的圆心角分别是
∠BAC,∠EAD.已知 DE=6,∠BAC+∠EAD=180°,则弦 BC 的弦心
距等于( D )
A.
41 2
B.
34 2
C.4
D.3
9.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,BG=8 cm, AG=1 cm,DE=2 cm,则EF=__6__c_m___.
1.如图,在⊙O 中,A︵B=A︵C,∠A=30°,则∠B=( B ) A.150° B.75° C.60° D.15°
2.下列判断正确的是( C ) A.平分弦的直径垂直于弦 B.平分弦的直径必平分弦所对的两条弧 C.弦的垂直平分线必平分弦所对的两条弧 D.平分一条弧的直线必平分这条弧所对的弦
3.如图,在⊙O 中,A,C,D,B 是⊙O 上四点,OC,OD 交 AB 于 点 E,F,且 AE=FB,下列结论中不正确的是( C )
(2)设他在不弯腰的情况下向 CD 左侧活动时他的头顶与A︵C的接触点 为点 E,向 CD 右侧活动时他的头顶与B︵C的接触点为点 F,连结 EF,则 EF⊥OC.设垂足为点 G,连结 OE.由题意,得 OG=3-2.3+1.7=2.4(m).在 Rt△OEG 中,EG= OE2-OG2= 32-2.42=1.8(m),∵OC⊥EF,∴EF= 2EG=3.6 m,∴该菜农在不弯腰的情况下,横向活动的范围有 3.6 m.
4.1圆的对称性(1)
D
想一想
9
A
C M └
●
B
垂径定理及逆定理
条件 ①② ①③ ①④ ①⑤ ②③ ②④ ②⑤ ③④ 结论 命题
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧. ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧. ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且 ①③④ 平分弦和所对的另一条弧. ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧. ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.
1.下列说法不正确的是( A 平分弦的直径垂直于弦 B C D
)
平分弦的直径也平分弦所对的两条弧 弦的垂直平分线必平分弦所对的两条弧 平分一条弧的直线必平分这条弧所对的弦
2.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为 24米,拱的半径为13米,则拱高为_______米
返回
4. ⊙O的直径为10,弦AB=8,P为弦AB上的一动 点,那么OP长的取值范围是______________.
D
③⑤
④⑤
垂径定理的推论(知二推三)
1.直径 2.垂直于弦 4.平分弦所对的劣弧 5.平分弦所对的优弧 3.平分弦
如果把上面的五个量中的任意两个作为条件, 那么就可以推出其余三个结论.
如图,MN所在的直线垂直平分AB, 利用这样的工具,最少两次就可以找 到圆形工件的圆心,你能说出理论依 据吗?
(垂直平分弦的直线必过圆心)
出示例题:课本109页例1
圆的对称性练习题
圆的对称性(一)练习题1.下列说法中正确的是()A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等,所对的圆心角相等2.在e O中,圆心角∠AOB=80°,圆心角∠COD=40°,那么下列说法中正确的是()A.»»2AB CD=B.»»2AB CD>C.»»2AB CD<D.AB=2CD3.如图,C,D为半圆上的三等分点,则下列说法正确的有()①AD=CD=BC②∠AOD=∠DOC=∠BOC③AD=CD=OC④△AOD沿OD翻折与△C OD重合A.1个B.2个C.3个D.4个4.若e O内一条弦把圆周分为3∶1的两段弧,且e O的半径为R,那么这条弦的长为()A.R B.2RC.2R D.3R5.如图,O是∠EPF的平分线上的一点,以点O为圆心的圆与该角的两边所在直线分别交于点A,B和C,D,则AB与CD的关系是()A.AB=CD B.AB>CDC.AB<CD D.无法确定6.如图,AB,CD是e O的直径,若弦DE∥AB,则弦AC与AE的大小关系为__________.7.如图,在e O中弦AB=AC,AD是e O的直径,试判断弦BD与CD是否相等,并说明理由.8.如图,在ABCD中,以A为圆心,以AB为半径作圆交A D于点F,交BC于点G,BA的延长线交e A于点E,求证:»»EF FC=.9.如图,AB,CD是eO的弦,OC,OD分别交AB于点E,F,且OE=OF,请你来猜想一下,»»AC BD=吗?请加以说明.圆的对称性(二)练习题1.下列说法中正确的是( )A .直径是圆的对称轴B .经过圆心的直线是圆的对称轴C .与圆相交的直线是圆的对称轴D .与半径垂直的直线是圆的对称轴2.如图,AB 是e O 的直径,CD 是弦,CD ⊥AB 于点E , 则下列结论中不一定成立的是( ) A .∠COE =∠DOE B .CE =DEC .OE =BED .»»BDBC 3.如图所示,e O 的弦AB 垂直平分半径OC , 则四边形OACB 是( )A .正方形B .长方形C .菱形D .以上答案都不对4.如图,AB 是e O 的弦,半径OC ⊥AB 于点D ,且AB =6cm , OD =4cm ,则DC 的长为( )A .5cmB .2.5cmC .2cmD .1cm 5.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,AB =10cm ,CD =6cm ,则AC 的长为( )A .0.5cmB .1cmC .1.5cmD .2cm6.右图是一个单心圆隧道的截面,若路面AB 宽为10m , 拱高CD 为7m ,则此隧道单心圆的半径OA 是( )A .5mB .377mC .375m D .7m7.如图,AB ,AC 分别是e O 的直径和弦,OD ⊥AC 于点D ,连接BC ,若BC =12,则OD =__________ 8.如图,在e O 中,直径AB ⊥弦CD 于点M , AM =18,BM =8,则CD 的长为_________. 9.如图,已知e O 的半径为5,弦AB =6,M是AB上任意一点,则线段OM 的长可能是( ) A .2.5 B .3.5 C .4.5 D .5.510.在半径为5cm 的圆内有两条平行弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为__________.11.在直径为650mm 的圆柱形油桶内装进一些油后,其截面如图所示,若油面宽为600mm ,求油的最大深度.12.有一座弧形的拱桥,桥下的水面宽度为7.2m ,拱顶高出水面2.4m ,现有一艘宽3m ,船舱顶部为长方形并高出水面2m 的货船要经过这里,此货船能顺利通过这座拱形桥吗?。
圆的对称性专项练习1
圆的对称性专项练习1. 若圆的半径为3,圆中一条弦为,则此弦中点到弦所对劣弧的中点的距离为.2. 若AB 是O 的直径,弦CD AB ⊥于E ,16AE =,4BE =,则CD = ,AC = .3. 已知CD 为O 直径,AB 是弦,AB CD ⊥于M ,15cm CD =,若:3:5OM OC =,则AB = .4. 一条弦AB 分圆的直径为3cm 和7cm 两部分,弦和直径相交成60角,则AB =.5. 如图,在半径为6cm 的O 中,弦AB CD ⊥,垂足为E ,若3cm CE =,7cm DE =,则AB = .6. 如图,O 的直径为10,弦8AB =,P 是弦AB 上的一个动点,那么OP 的取值范围是.7. 在O 中,已知5AB CD =,那么下列结论正确的是()A.5AB CD > B.5AB CD = C.5AB CD < D.不确定 8. 弓形弦长为24,弓形高为8,则弓形所在圆的直径是( )A.10 B.26 C.13 D.59. 如图,以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C ,D 两点,10cm AB =,6cm CD =,那么AC 的长为( )A.0.5cm B.1cm C.1.5cm D.2cm10. EF 是O 的直径,5cm OE =,弦8cm MN =,则E 、两点到直线MN 距离的和等于( )B.6cm C.8cmD.3cm11. 如图,O 的直径AB 与弦CD 相交于M 点,AE CD ⊥于E ,BF CD ⊥于F ,若4CM =,3MD =,:1:3BF AE =,则O 的半径是() A.4 B.5 C.6 D.812. 如图,O 的两弦AB ,CD 互相垂直于H ,4AH =,6BH =,3CH =,8DH =,求O 的半径. 13. 如图,O 的直径AB 和弦CD 相交于点E ,已知6cm AE =,2cm EB =,30CEA ∠=,求CD 的长.14. 如图,ABCD 是直角梯形,以斜腰AB 为直径作圆,交CD 于点E ,F ,交BC 于点G .求证:(1)DE CF =;(2)AE GF =.15. 如图,已知AB ,在AB 上作点C ,D ,E ,使AC CD DE EB ===.8AB =,弦16. 在O 中,弦AB 的垂直平分线交O 于C ,D 两点,5AC =,求O 的直径.17. 如图,O 中,AB BC ⊥,OM BC ⊥,ON AB ⊥,垂足分别为M ,N ,若16cm AB =,12cm BC =,则ON =cm,OM =cm ,O 的半径= cm .18. 如图,在△ABC 中,90ACB ∠=,25B ∠=,以C 为圆心,CA 为半径的圆交AB 于D ,交BC 于E ,则DE 的度数为 .19.如图,已知O 中,弦12cm AB =,O 点到AB 的距离等于AB 的一半,则AOB ∠的度数为,圆的半径为 .D20. 如图,已知O 的半径为10cm ,AB 是120,那么弦AB 的弦心距是( )A.5cmB.C.21. 如图,AB是O 的弦,从圆上任意一点作弦CD AB ⊥,作OC D ∠的平分线交O 于点P ,若5AP =,则BP 的值为( )A.4 B.5C.5.5D.622. 如图,如果AB 是O 的直径,弦CD AB ⊥,垂足为E ,那么下面结论中,错误的是( ) A.CE DE = B.BC BD = C.BAC BAD ∠=∠ D.AC AD >23 在半径为5cm 的O 内有一点P ,若4OP =,过点P 的最大弦长是 cm ,过点P 的最短弦的长是 cm .24 O 的半径为5cm ,点P 到圆的最小距离与最大距离之比为2:3,求OP 的长.25. 已知:如图,AB 是O 的直径,CD 是弦,AE CD ⊥,垂足是E ,BF CD ⊥,垂足是F ,求证:CE DF =.26.在O 中,弦AB 的长恰好等于半径,则弦AB 所对的圆心角为 度,弦AB 所对的圆周角为度.27. 圆的一条弦分圆为4:5两部分,其中优弧的度数为 .28. 同圆中的两条弦长为1m 和2m ,圆心到两条弦的距离分别为1d 和2d ,且12d d >,那么1m ,2m 的大小关系是( )A.12m m > B.12m m < C.12m m = D.12m m ≤ 29.如图,在O 中,AB AC =,70B ∠=.求C ∠度数.P30. 如图,AB 是O 的直径,BC ,CD ,DA 是O 的弦,且BC CD DA ==,求BOD ∠的度数.31. 如图,点O 是EPF ∠的平分线上的一点,以O 为圆心的圆和角的两边分别交于点A ,B 和C ,D , (1)AB 和CD 相等吗?为什么?(2)若角的顶点P 在圆上,或在圆内,本题的结论是否成立?请说明理由.32. 如图,将半径为2cm 的O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连结PM ,则图中阴影部分的面积是 cm 233. 如图,AB 是的直径,弦CD 垂直平分OB ,则BDC ∠的度数为( ) A.15 B.20 C.30 D.4534.O 中AB 是直径,AC 是弦,点B ,C 间的距离是2cm ,那么圆心到弦AC 的距离是 cm .35. 半径为5cm 的圆内有两条互相平行的弦长度分别为6cm 和8cm ,则这两弦间的距离为 cm .36. 如图,AB 是O 的直径,AC ,CD ,DE ,EF ,FB 都是O 的弦,且AC CD DE EF FB ====,求AOC ∠与COF ∠的度数.37.圆是以 为对称中心的中心对称图形,又是以 为对称轴的轴对称图形.38.O 的半径为6cm ,P 是O 内一点,2OP =cm ,那么过P 的最短的弦长等于 cm ,过P 的最长的弦长为 cm .39. 下列命题:①三点确定一个圆,②弦的平分线过圆心,③弦所对的两条弧的中点的连线是圆的直径,④平分弦的直线平分弦所对的弧,其中正确的命题有( )A.3个 B.2个 C.1个 D.0个AP40. 如图,O 的直径AB 垂直于弦CD ,AB ,CD 相交于点E ,100COD ∠=,求COE ∠,DOE ∠的度数.41. 如图,有一座石拱桥的桥拱是以O 为圆心,OA 为半径的一段圆弧.(1)请你确定弧AB 的中点;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)若120AOB ∠=,4OA =m ,请求出石拱桥的高度. 42. 在半径为1)A.30 B.45C.60D.9043.O 的半径为R ,弦AB 的长也是R ,则AOB ∠的度数是 .44. 如图,有一圆弧形拱桥,桥的跨度16m AB =,拱高4m CD =,则拱桥的半径是.45. 如图,已知O ,线段CD 与O交于A ,B 两点,且OC OD =.试比较线段AC 和BD的大小,并说明理由.46. 如图,在△AOB 中,AO AB =,以点O 为圆心,OB 为半径的圆交AB 于D ,交AO 于点E ,AD BO =.试说明BD DE =,并求A ∠的度数.47.在直径为1m 的圆柱形油槽内装入一些油后,截面如图所示,若油面宽0.6m AB =,则油的最大深度为 m .OP48. 如图,弦DC ,FE 的延长线交于圆外一点P ,PAB 经过圆心,试结合现有图形,添加一个适当的条件 ,使12∠=∠. 49. 如图,在O AB O OC AB O C 圆中,弦等于圆的半径,⊥交圆于, 则ABC ∠= 度.50. 如图,A B O 是的直径,C 、E 是圆周上关于AB 对称的两个不同点,CD AB EF BC AD M AF BE N ∥∥,与交于,与交于.(1)在A 、B 、C 、D 、E 、F 六点中,能构成矩形的四个点有哪些?请一一列出(不要求证明);(2)求证:四边形AMBN 是菱形.51. 平面直角坐标系中,点(29)A ,、(23)B ,、(32)C ,、(92)D ,在P 上. (1)在图中清晰标出点P 的位置;(2)点P 的坐标是 .52. 如图所示,要把破残的圆片复制完整.已知弧上的三点A B C 、、.(1) 用尺规作图法找出BAC 所在圆的圆心.(保留作图痕迹,不写作法)(2) 设ABC △是等腰三角形,底边8BC =cm ,腰5AB =cm .求圆片的半径R .垂径定理一.选择题★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8★★2.如图,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5AB★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位★★5.如图,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( )A. B. C. D.图 4★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________★★9.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为m★★11.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是★★12.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm★★13.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=★★14.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cmPBAO★★★15.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm ★★★16.已知AB 是圆O 的弦,半径OC 垂直AB ,交AB 于D ,若AB=8,CD=2,则圆的半径为 ★★★17.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米★★★18.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米★★★19.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米 ★★★20.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
北京课改版九年级数学上册 《圆的对称性》 同步练习(含答案)
北京课改版九年级上册圆的对称性同步练习一.选择题(共10小题,3*10=30)1.如图,直径AB 平分弦CD ,交CD 于点E ,则下列结论错误的是( ) A.AC ︵=AD ︵ B.BC ︵=BD ︵C .AB ⊥CD D .OE =BE2.如图,在⊙O 中,直径CD ⊥弦AB ,则下列结论中正确的是( )A .AC =AB B .∠C =12∠BODC .∠C =∠BD .∠A =∠BOD3.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为() A .2 B .4C .6D .84.下列命题中正确的是( )A .弦的垂线平分弦所对的弧B .平分弦的直线垂直于这条弦C .过弦的中点的直线必经过圆心D .弦所对的两条弧的中点连线垂直平分这条弦且过圆心5.如图,AB 是半圆O 的直径,半径OM 垂直于弦AC ,垂足为E ,MN ⊥AB 于N ,下列结论:①AM ︵=CM ︵;②∠OMN =∠OAE ;③BC ︵=MC ︵;④MN =12AC.其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④6. 如图,AB 是⊙O 的直径,点M 在弦CD 上,CM =DM ,下列结论不成立的是( )A .AB ⊥CD B .CB =DBC .∠ACD =∠ADC D .OM =MD7. 如图,在半径为13 cm 的圆形铁片上切下一块高为8 cm 的弓形铁片,则弓形弦AB 的长为( )A .10 cmB .16 cmC .24 cmD .26 cm8. 已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,则AB =8 cm ,则AC 的长为( )A .2 5 cmB .4 5 cmC .2 5 cm 或4 5 cmD.2 3 cm或4 3 cm9. 如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD =8 cm,AE=2 cm,则OF的长度是( )A.3 cm B. 6 cmC.2.5 cm D. 5 cm10.在半径为5 cm的⊙O中,弦AB的长为6 cm,当弦AB的两个端点A,B在⊙O上滑动时,AB的中点在滑动过程中所经过的路线为()A.圆B.直线C.正方形D.多边形二.填空题(共8小题,3*8=24)11.世界上因为有了圆的图案,万物显得更富有生机,以下图形(如图)都有圆,它们看上去是多么美丽和谐,这正是因为圆具有轴对称性.图中的三个图形是轴对称图形的有____________;(分别用三个图的序号填空)12.如图,AB,AC分别是⊙O的弦,D,E分别是AB,AC的中点,∠DOE=120°,则∠DAC的度数为_______.13.如图,已知AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,且AE=3 cm,BF=5 cm,若⊙O的半径为5 cm,求CD的长.14.如图,若⊙O 的半径为13 cm ,点P 是弦AB 上的一个动点,且到圆心的最短距离为5 cm ,则弦AB 的长为_______cm.15.如图,⊙O 的直径AB 平分CAD ︵,AB 交CD 于E ,AE 与BE 的长度之比为5∶1,CD =16 cm ,则⊙O 的半径为_______cm.16.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G ,B ,F ,E ,GB =8 cm ,AG =1 cm ,DE =2 cm ,则EF =________.17.如图所示,以O 为圆心的同心圆,大圆的弦AB 交小圆于C ,D ,如果AB =3cm ,CD =2cm ,那么AC =__ __cm.18. 如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为_______.三.解答题(共7小题,46分)19. (6分) 如图,⊙O 的直径CD =10,弦AB =8,AB ⊥CD ,垂足为M ,求DM 的长.20. (6分) 如图,AB 为⊙O 的直径,从圆上一点C 作弦CD ⊥AB ,∠OCD 的平分线交⊙O于P ,求证:AP ︵=BP ︵.21. (6分)若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm 、深约为2 cm 的小坑,求该铅球的直径.22.(6分) “圆材埋壁”是我国古代著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 题目用现在的数学语言表达是:如图所示,CD是⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,求直径CD 的长.23. (6分) 已知以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).(1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O到AB的距离为6,求AC的长.24. (8分) 已知⊙O的弦CD与直径AB垂直于点F,点E在CD上,且AE=CE.(1)求证:CA2=CE·CD;(2)已知CA=5,EA=3,求sin∠EAF25. (8分) 已知圆的半径为5 cm,两弦AB∥CD,AB=8 cm,CD=6 cm,则两弦AB,CD 的距离是多少?参考答案1-5DBDDB 6-10DCCDA11. ①②③12. 60°13. 6 cm14. 2415. 245516. 6cm17. 0.518. 419. 解:连结AO ,∵OM ⊥AB ,∴AM =12AB =4. 在Rt △AOM 中,AO =5,AM =4,∴由勾股定理得OM =3,则DM =5+3=8.20. 解:连结OP ,∵OC =OP ,∴∠OCP =∠P ,又∠DCP =∠OCP ,∴∠DCP =∠P ,∴CD ∥OP ,∵CD ⊥AB ,∴OP ⊥AB ,∴AP ︵=BP ︵21. 解:如图所示,依题意,得AB =10 cm ,CD =2 cm.连结OA ,作OC ⊥AB 于点D ,交圆O 于点C ,∴AD =12AB =12×10=5(cm). 设铅球的半径为k cm ,则OD =(k -2)cm ,在Rt △AOD 中,AD 2+OD 2=OA 2,∴52+(k -2)2=k 2,解得k =7.25,∴2k =14.5.22. 解:连结OA.∵CD ⊥AB 于E ,CD 为直径,∴AE =12AB =12×10=5(寸). 在Rt △AEO 中,设AO =x ,则OE =(x -1)寸.由勾股定理得x 2=52+(x -1)2,解得x =13,∴OA =13寸,∴CD =2OA =26寸,∴直径CD 的长为26寸.23. 解:(1)作OH ⊥CD 于点H ,在小圆中,CH =DH ;在大圆中,AH =BH ,∴AH -CH =BH -DH ,即AC =BD(2)在Rt △OCH 中,CH =OC 2-OH 2=82-62=27,在Rt △OAH 中,AH =OA 2-OH 2=102-62=8,∴AC =8-2724. 解:(1)∵CD ⊥AB ,∴AC ︵=AD ︵,∴∠D =∠C ,又∵AE =EC ,∴∠CAE =∠C ,∴∠CAE =∠D ,∠C 是公共角,∴△CEA ∽△CAD ,∴CA CD =CE CA,即CA 2=CE·CD (2)∵CA 2=CE·CD ,AC =5,EC =EA =3,∴52=CD×3,∴CD =253, 又∵CF =FD ,∴CF =12CD =12×253=256,∴EF =CF -CE =76, 在Rt △AFE 中,sin ∠EAF =EF AE =763=71825. 解:如图:分2种情况。
圆的对称性
8
试一试你的能力 B
1、如图,⊙O中,AB=CD,
1
A
1 50,则 2 _5_0_o_.
C
2O
D
2、如图,在⊙O中,AC=BD,
1 45,求∠2的度数。
9
图 23.1.5
3、如图,AB、AC、BC都是⊙O的弦, ∠AOC=∠BOC,∠ABC与∠BAC相等吗? 为什么?
A4
O
12
求AD,DE的度数。
B
D
E
A
C
14
3.如图,在同圆中,若AOB=2COD,则AB与2CD的大小关系是( C )
(A) AB >2CD (B)AB <2CD (C) AB=2CD (D) 不能确定
A
C
D O B
15
4.在同圆中,若AB=2CD,则AB与2CD的大小关系是( B )
(A)AB>2CD
1
1、圆是中心对称图形, 圆心是它的对称中心。
2、圆具有旋转不变性。
圆的中心对称性是其旋转不变性的特例。
2
尝试与交流
1.在两张透明纸片上,分别作半径相等的 O和 O’
2.在 O和 O’中,分别作相等的圆心角AOB,A’O’B’ ,连接AB,A’B’ 。
3.将两张透明纸片叠在一起,使 O与 O重合。
(B)AB <2CD
A
(C) AB=2CD
C
(D) 不能确定
D
B
O
16
课后小结: 1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。 3. 圆心角的度数与它所对的弧的度数相等。
车轮为什么做成圆形圆的对称性圆周角和圆心角的关系练习题1doc初中数学
车轮为什么做成圆形圆的对称性圆周角和圆心角的关系练习题1doc 初中数学车轮什么缘故做成圆形、圆的对称性、圆周角和圆心角的关系(A卷)(50分钟,共100分)班级:_______ 姓名:_______ 得分:_______ 进展性评语:_____________一、请准确填空(每题3分,共24分) 1.假如⊙O 的半径为r ,点P 到圆心O 的距离为d ,那么:①点P 在⊙O 外,那么______;②______那么d =r ;③______那么d <r .2.两个同心圆的直径分不为5 cm 和3 cm ,那么圆环部分的宽度为_____ cm.3.如图1,⊙O ,AB 为直径,AB ⊥CD ,垂足为E ,由图你还能明白哪些正确的结论?请把它们一一写出来. .ABCDE mnO图1 4.假如把人的头顶和脚底分不看作一个点,把地球赤道看作一个圆,那么身高2 m 的小赵沿着赤道环行一周,他的头顶比脚底多行_____m.5.如图2,AB 是⊙O 的直径,C 为圆上一点, =60°,OD ⊥BC ,D 为垂足,且OD =10,那么AB =_____,BC =_____.6.如图3,⊙O 中,=,且∶ =3∶4,那么∠AOC =_____.ABCDOABCOmACDOEOA BAC AmC图2图3 图4图57.如图4,在条件:①∠COA =∠AOD =60°;②AC =AD =OA ;③点E 分不是AO 、CD 的中点; ④OA ⊥CD 且∠ACO =60°中,能推出四边形OCAD 是菱形的条件有_____个.8.为改善市区人民生活环境,市建设污水管网工程,某圆柱型水管的直径为100 cm ,截面如图5,假设管内污水的面宽AB =60 cm ,那么污水的最大深度为_____ cm.二、相信你的选择(每题3分,共24分)9.平行四边形的四个顶点在同一圆上,那么该平行四边形一定是A.正方形B.菱形C.矩形D.等腰梯形10.假设⊙A 的半径为5,圆心A 的坐标是(3,4),点P 的坐标是(5,8),你认为点P 的位置为A.在⊙A 内B.在⊙A 上C.在⊙A 外D.不能确定 11.以下所述图形中对称轴最多的是A.圆B.正方形C.正三角形D.线段12.如图6,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,假设x 、y 差不多上整数,猜想如此的P 点一共有A.4个B.8个C.12个D.16个13.、是同圆的两段弧,且=2,那么弦AB 与CD 之间的关系为A.A B =2CDB.A B <2CDC.A B >2CDD.不能确定 14.同圆中,两条弦长分不为a 和b ,它们的弦心距分不为c 和d ,假设c >d ,那么有 A.a >b B.a <b C.a =b D.不能确定5 5-5-5Pxy OABCDOABDOC图6图7图815.如图7,AB 是⊙O 的直径,∠C =30°,那么∠ABD 等于A.30°B.40°C.50°D.60°16.如图8是小明完成的.作法是:取⊙O 的直径AB ,在⊙O 上任取一点C 引弦CD ⊥A B.当C 点在半圆上移动时(C 点不与A 、B 重合),∠OCD 的平分线与⊙O 的交点必A.平分B.三等分C.到点D 和直径AB 的距离相等D.到点B 和点C 的距离相等 三、考查你的差不多功(共16分)17.(8分)如图9,△ABC ,AC =3,BC =4,∠C =90°,以点C 为圆心作⊙C ,半径为r . (1)当r 取什么值时,点A 、B 在⊙C 外.(2)当r 在什么范畴时,点A 在⊙C 内,点B 在⊙C 外.18.(8分)如图10,两个同心圆,作一直线交大圆于A 、B ,交小圆于C 、D ,AC 与BD 有何关系?请讲明理由.ABCABCDO1.5m小狗小虎2.5mAB图9图10图11图12四、生活中的数学(共16分)19.(8分)如图11,小虎牵着小狗上街,小虎的手臂与绳长共为2.5 m(手臂与拉直的绳子在一条直线上)手臂肩部距地面1.5 m.当小虎站立不动时,小狗在平坦的地面上活动的最大区域是多少?并画出平面图.20.(8分)如图12,在直径为100 mm 的半圆铁片上切去一块高为20 mm 的弓形铁片,求弓形的弦AB 的长.五、探究拓展与应用(共20分)21.(10分)如图13,P 是⊙O 外一点,PAB 、PCD 分不与⊙O 相交于A 、B 、C 、D. (1)PO 平分∠BPD ;(2)AB =CD ;(3)OE ⊥CD ,OF ⊥AB ;(4)OE =OF .从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流.ABPO EFCD图1322.(10分),用圆形剪一个梯形ABCD ,AB ∥CD ,AB =24,CD =10,⊙O 的半径为13,剪下梯形的面积是多少?写出你的求解过程.参考答案一、1.d >r 点P 在⊙O 上 点P 在⊙O 内 2.1 3.C E =ED ,=, =4.4π5.40 2036.144°7.48.10二、9.C 10.A 11.A 12.C 13.B 14.B 15.D 16.A 三、17.解:(1)当0<r <3时,点A 、B 在⊙C 外. (2)当3<r <4时,点A 在⊙C 内,点B 在⊙C 外. 18.A C =BD , 过O 作OE ⊥CD 垂足为E.∴AE =BE ,CE =DE . ∴AE -CE =BE -DE . ∴AC =BD .四、19.解:小狗在地平面上围绕跑圆的半径为225.15.2 =2.0(m). 小狗活动的区域是以2.0 m 为半径的圆,如右图. 20.解:OA =50 mm, CD =20 mm. ∴OD =OC -CD =30 mm.CmB DmB O2.0 m在Rt △AOD 中, AD ===-=-160030502222OD OA 40(mm). ∴AB =2AD =80 mm.五、21.命题1,条件③④结论①②, 命题2,条件②③结论①④. 证明:命题1∵OE ⊥CD , OF ⊥AB , OE =OF . ∴AB =CD , PO 平分∠BPD . 22.解:(1)圆心在梯形的内部,过点O 作AB 的垂线,垂足为E ,延长EO 交CD 于F . ∵AB ∥CD , OE ⊥AB , ∴OF ⊥CD , 连OB ,OC. 在Rt △OBE 中,.12513,5121322222222=-=-==-=-=CE OC OF BE OB OE∴EF =OE +OF =17. ∴S 梯形ABCD =.28917)1024(21)(21=⨯+⨯=⨯+⨯EF CD AB (2)圆心在梯形的外部EF =12-5=7.S 梯ABCD =21(24+10)×7=17×7=119.ABC D O。
九年级数学上册 圆的对称性练习 试题
轧东卡州北占业市传业学校圆的对称性知识点:点在圆外,即这个点到圆心的距离 ________________半径; 点在圆上,即这个点到圆心的距离 ________________半径; 点在圆内,即这个点到圆心的距离 ________________半径; 反过来,也成立〔即判定位置关系的方法〕圆是 图形,其对称轴是 ,因此有 条对称轴。
定理一: 〔垂径定理〕定理二: 〔垂径定理逆定理〕 定理三: 定理四: 例一:⊙0的面积为25π。
(1)假设PO=,那么点P 在________;〔2〕假设PO=4,那么点P 在________; 〔3〕假设PO=________,那么点P 在⊙0上。
例二:设AB=3cm ,作图说明:到点A 的距离小于2cm ,且到点B 的距离大于2cm③、:如图,矩形ABCD 的对角线AC 和BD 相交于点0,它的四个顶点A、B 、C 、D 是否在以点0④、如图,在△ABC 中,BD 、CE 是高。
求证:A 、B 、C 、D 、E 在同一个圆上。
⑤、设AB=3cm ,作图说明满足以下要求的图形:〔1〕到点A 和点B 的距离都等于2cm 的所有点组成的图形。
〔2〕到点A 和点B 的距离都小于2cm 的所有点组成的图形。
【例1】判断正误: 〔1〕直径是圆的对称轴.〔2〕平分弦的直径垂直于弦.B【例2】假设⊙O的半径为5,弦AB长为8,求拱高.【例3】如图,⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【例4】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例5】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,假设直线EF平移到与直径AB相交于点P〔P不与A、B重合〕,在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、课内练习:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.〔〕⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.〔〕⑶经过弦的中点的直径一定垂直于弦.〔〕⑷圆的两条弦所夹的弧相等,那么这两条弦平行. 〔〕⑸弦的垂直平分线一定平分这条弦所对的弧. 〔〕2、:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.5.储油罐的截面如图3-2-12所示,装入一些油后,假设油面宽AB=600mm,求油的最大深度.6.“五段彩虹展翅飞〞,我利用国债资金修建的,横跨南渡江的琼州大桥〔如图3-2-16〕已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图〔1〕.最高的圆拱的跨度为110米,拱高为22米,如图〔2〕那么这个圆拱所在圆的直径为米.三、课后练习:1、,如图在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,求证:AC=BD2、AB、CD为⊙O的弦,且AB⊥CD,AB将CD分成3cm和7cm两局部,求:圆心O到弦AB的距离3、:⊙O弦AB∥CD 求证:⋂=⋂BD AC4、:⊙O半径为6cm,弦AB与直径CD垂直,且将CD分成1∶3两局部,求:弦AB的长.5、:AB为⊙O的直径,CD为弦,CE⊥CD交AB于E DF⊥CD交AB于F求证:AE=BF6、:△ABC内接于⊙O,边AB过圆心O,OE是BC的垂直平分线,交⊙O于E、D两点,求证,⋂=⋂BC21 AE7、:AB为⊙O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连结OE,OF求证:⑴OE=OF ⑵ CE=DF8、在⊙O中,弦AB∥EF,连结OE、OF交AB于C、D求证:AC=DB9、如图等腰三角形ABC中,AB=AC,半径OB=5cm,圆心O到BC的距离为3cm,求ABC的长10、:⊙O与⊙O'相交于P、Q,过P点作直线交⊙O于A,交⊙O'于B使OO'与AB平行求证:AB=2OO'11、:AB为⊙O的直径,CD为弦,AE⊥CD于E,BF⊥CD于F求证:EC=DF【例1】A,B是⊙O上的两点,∠AOB=1200,C是的中点,试确定四边形OACB的形状,并说明理由.【例2】如图,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?【例3】如图,弦DC、FE的延长线交于⊙O外一点P,直线PAB经过圆心O,请你根据现有圆形,添加一个适当的条件:,使∠1=∠2.二、课内练习:1、判断题〔1〕相等的圆心角所对弦相等〔〕〔2〕相等的弦所对的弧相等〔〕2、填空题⊙O中,弦AB的长恰等于半径,那么弦AB所对圆心角是________度.3、选择题如图,O为两个同圆的圆心,大圆的弦AB交小圆于C、D两点,OE⊥AB,垂足为E,假设AC=2.5 cm,ED=1.5 cm ,OA =5 cm ,那么AB 长度是___________. A 、6 cm B 、8 cm C 、7 cm D 、7.5 cm 三、课后练习:1 〕A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.以下说法中,正确的选项是〔 〕 A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3 〕A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对 4.半径为R 的圆中,垂直平分半径的弦长等于〔 〕A .43R B .23R C .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,那么弦CD 的长为〔 〕 A .23B .3C .5D .256.:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,那么⊙O 的半径为〔 〕 A .4cmB .5cmC .42cmD .23cm7.如图3,同心圆中,大圆的弦AB 交小圆于C 、D ,AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为〔 〕 A .3:2B .5:2C .5:2D .5:48.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,假设两弦的弦心距分别为OE 、OF ,那么OE :OF=〔 〕 A .2:1B .3:2C .2:3D .09.在⊙O 中,圆心角∠AOB=90°,点O 到弦AB 的距离为4,那么⊙O 的直径的长为〔 〕 A .42B .82C .24D .1610.如果两条弦相等,那么〔 〕 A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中假设直径为25cm,弦AB的弦心距为10cm,那么弦AB的长为.12.假设圆的半径为2cm,圆中的一条弦长23cm,那么此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,那么AB= .14.半径为5的⊙O内有一点P,且OP=4,那么过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,那么弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两局部,那么弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,那么∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.〔1〕求证:AC=DB;〔2〕如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?24.一弓形的弦长为46,弓形所在的圆的半径为7,求弓形的高.25.如图,⊙O1和⊙O2是等圆,直线CF顺次交这两个圆于C、D、E、F,且CF交O1O2于点M,⌒⌒EFCD ,O1M和O2M相等吗?为什么?。
27.1《圆的对称性》同步练习
《圆的对称性》同步练习一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.点A、O、D与点B、O、C分别在同一直线上,图中弦的条数为()A.2 B.3 C.4 D.53.下列说法中,正确的是()A.两个半圆是等弧B.同圆中优弧与半圆的差必是劣弧C.长度相等的弧是等弧D.同圆中优弧与劣弧的差必是优弧4.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.45.下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧6.如图,在半圆的直径上作4个正三角形,如这半圆周长为C1,这4个正三角形的周长和为C2,则C1和C2的大小关系是()A.C1>C2B.C1<C2C.C1=C2D.不能确定7.过圆内一点A可以作出圆的最长弦有()A.1条B.2条C.3条D.1条或无数条8.下列结论错误的是()A.圆是轴对称图形B.圆是中心对称图形C.半圆不是弧D.同圆中,等弧所对的圆心角相等9.一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cm B.2.5cm C.5.5cm D.2.5cm或5.5cm10.在直角坐标平面中,M(2,0),圆M的半径为4,那么点P(﹣2,3)与圆M的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定二.填空题(共8小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.12.已知⊙P在直角坐标平面内,它的半径是5,圆心P(﹣3,4),则坐标原点O与⊙P的位置关系是.13.已知⊙O的半径为5,点A在⊙O外,那么线段OA的取值范围是.14.若⊙O的半径为6cm,则⊙O中最长的弦为厘米.15.圆上各点到圆心的距离都等于,到圆心距离等于半径的点都在.16.下列说法正确的是()填序号.①半径不等的圆叫做同心圆;②优弧一定大于劣弧;③不同的圆中不可能有相等的弦;④直径是同一个圆中最长的弦.17.与已知点A的距离为3cm的点所组成的平面图形是.18.如图,在⊙O中,点A、O、D和点B、O、C分别在一条直线上,图中共有条弦,它们分别是.三.解答题(共2小题)19.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.。
《圆的对称性》练习题
14.如图,已知⊙O 的半径等于 1 cm,AB 是直径,C,D 是⊙O 上的 ︵ ︵ ︵ 两点,且AD=DC=CB,则四边形 ABCD 的周长等于( B ) A.4 cm B.5 cm C.6 cm D.7 cm
15.(导学号:37554049)如图,在扇形 OAB 中,∠AOB=110°, ︵ 将扇形 OAB 沿过点 B 的直线折叠,点 O 恰好落在AB上的点 D 处, ︵ 折痕交 OA 于点 C,则AD所对的圆心角的度数为( B A.40° B.50° C.60° D.70° )
20.如图,A,B,C 是半径为 2 的圆 O 上的三个点,其中点 A 是弧 BC 的中点,连接 AB,AC,点 D,E 分别在弦 AB,AC 上,且满足 AD=CE. (1)求证:OD=OE; (2)连接 BC,当 BC=2 2时,求∠DOE 的度数.
(1) 证明:连接 OA , 图略.∵点 A 是弧 BC 的中点 , ∴∠ AOB = ∠AOC.∵OA=OB=OC,∴∠ABO=∠BAO=∠ACO,∵AD=CE, ∴△AOD≌△COE,∴OD=OE (2)连接 BC 交 OA 于点 F,图略.由 三线合一知 OA⊥BC,BF= 2.在 Rt△BFO 中,由勾股定理可求 OF= 2 , ∴ BF = OF , ∴∠ AOB = 45 ° . ∵△ AOD ≌△ COE , ∴∠ AOD = ∠COE,∴∠BOD=∠AOE,∴∠DOE=∠AOB=45°
︵ 的三 连接 AC,BD,图略.∵在⊙O 中,半径 OA⊥OB,C,D 为AB 1 1 等分点,∴∠AOC=∠COD=∠BOD= ∠AOB = ×90°=30°, 3 3 AC=CD=BD.∵OA=OB ,∴∠OAB =∠OBA=45°,∵∠AOC= ∠BOD=30°,∴∠OEF=∠OAB+∠AOC=45°+30°=75°,同 理∠OFE=75°,∵OA=OC,OB=OD,∠AOC=∠BOD=30°, 180°-30° ∴∠ACO=∠BDO= =75°.∵∠AEC=∠OEF=75°, 2 ∠ BDO =∠OFE = 75 ° , ∴∠ ACO =∠AEC , ∠ BDO =∠BFD , ∴ AE=AC,BD=BF,又∵AC=CD=BD,∴AE=BF=CD
5.2圆的对称性1
{AB=A′B′
A B =A′B′
2.
A B =A′B′
{
AB=A′B′
∠AOB=∠A′O′B′
3.
AB=A′B′
{
A B =A′B′ ∠AOB=∠A′O′B′
1的 圆 心 角
C D
1的 弧
O
n 的 圆 心 角
B A
n 的 弧
的 弧 ,n 的 弧 对 着 n 的 圆 心 角 。
B )
(D) 不 能 确 定
A C
B
O
D
总 结
1.圆是中心对称图形,圆心是它的对称中心。
2.在同圆或等圆中, 如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组都分别相等。
3. 圆 心 角 的 度 数 与 它 所 对 的 弧 的 度 数 相 等 。
回顾总结
通过本课的学习,你又有 什么收获?
n 的 圆 心 角 对 着 n
圆 心 角 的 度 数 与 它 所 对 的 弧 的 度 数 相 等 。
典型例题
例 1: 如 图 在 ABC 中 , C=90, B=28, 以 C为 圆 心 , 以 CA为 半 径 的 圆 交 AB于 点 D, 交 BC于 点 E, 求 AD, DE的 度 数 。
B
解:连接CD
∵∠C=90°,∠B=28° ∴∠A=62°
又∵CA=CD ∴∠ACD=56° ∴∠BCD=34° ∴ A D、 D E
D
E
的度数
A
C
分别为56°,34°
例 2: 如 图 ,AB,AC,BC 都 是 O的 弦 , AOC= BOC, ABC与 BAC相 等 吗 ? 为 什 么 ?
圆的对称性-知识点及典型例题
圆的对称性【典型例题】例1.如图,在Rt△ ABC中,/ C= 90°, AC = 3, BC = 4,以点C为圆心,CA为半径的圆与AB、BC分别交于点D、E。
求AB、AD的长。
分析:求AB较简单,求弦长AD可先求AF。
解: / \例2.如图,O O中,弦AB = 10cm , P是弦AB上一点,且4cm,OP = 5cm,求O O 的半径。
分析:O O中已知弦长求半径,通常作弦心距构造直角三角形,利用勾股定理求解。
解:例3.如图“五段彩虹展翅飞” 该桥的两边均有五个红色的圆拱, 所在圆的直径。
分析:略解: 是某省利用国债资金修建的横跨渡江的琼洲大桥已正式通车,最高的圆拱的跨度为110米,拱高为22米,求这个圆拱【模拟试题】一.选择题。
1. O O中,弦AB所对的弧为A. 2B. 1 120°,圆的半径为C.空22,则圆心到弦AB的距离OC为(2.如图,AB是O O的直径,弦长为()CD丄AB,垂足为E,如果ABiO,CD 二8 ,则AEA. 2B. 3C. 4D. 58. 如图 A3 = AC ,/ A = 30°9. 过O O 内一点M 的最长的弦为6cm ,最短的弦长为 10. O O 的半径为 10cm ,弦 AB // CD , AB = 12cm , CD = 16cm ,则AB 和CD 的距离为 _____________ 。
11. O O 的直径AB 和弦CD 相交于点 E ,已知AE = 1cm , EB =5cm , / DEB = 60°,贝U CD = 三.解答题。
4cm ,贝U OM 的长为 12.如图,O O 的直径为4cm ,弦AB 的长为厶疗cm ,你能求 出/ OAB 的度数吗?写出你的计算过程。
C.垂直于弦的直径平分这条弦D.相等的圆心角所对的弧相等5. 如图,已知 AD = BC ,贝U AB 与CD 的关系为()A. AB > CDB. AB = CDC. AB < CD二.填空题。
圆的对称性压轴题六种模型全攻略(解析版)
圆的对称性压轴题六种模型全攻略【考点导航】目录【典型例题】1【考点一利用弧、弦、圆心角的关系求解】【考点二利用弧、弦、圆心角的关系求证】【考点三利用垂径定理求值】【考点四利用垂径定理求平行弦问题】【考点五垂径定理的推论】【考点六垂径定理的实际应用】【过关检测】15【典型例题】【考点一利用弧、弦、圆心角的关系求解】1(2023·陕西西安·西安市庆安初级中学校联考模拟预测)如图,AB是⊙O的直径,点C,D在⊙O上,AC=AD,∠AOD=70°,则∠BCO的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】首先由AC=AD,∠AOD=70°可得∠AOC=∠AOD=70°,再由OB=OC可得出∠OBC=∠AOC=35°.∠OCB=12【详解】解:∵在⊙O中,AC=AD,∠AOD=70°∴∠AOC=∠AOD=70°,∵OB=OC,∠AOC=35°,∴∠OBC=∠OCB=12故选:B.【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.【变式训练】1(2023·全国·九年级专题练习)如图,点A,B,C在⊙O上,∠BAC=40°,则∠BOC的度数为()A.20°B.80°C.50°D.100°【答案】B【分析】根据同弧所对的圆周角等于圆心角的一半即可得出答案.【详解】解:∵∠BAC =40°,∴∠BOC =2∠BAC =2×40°=80°,故选:B .【点睛】本题考查了同弧所对的圆周角与圆心角的关系,熟知同弧所对的圆周角等于圆心角的一半是解本题的关键.2(2023春·安徽合肥·九年级校考阶段练习)下列说法:①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③过直线上两点和直线外一点,可以确定一个圆;④圆是轴对称图形,直径是它的对称轴.其中正确的个数是()A.0 B.1 C.2 D.3【答案】B【分析】根据圆心角、弧、弦的关系定理判断①,根据垂径定理的推论判断②;根据不共线的三点共圆可判断③;根据轴对称图形的定义判断④.【详解】解:①同圆或等圆中,相等的圆心角所对的弧相等,故错误;②平分弦不是直径的直径垂直于弦,故错误;③过直线上两点和直线外一点,可以确定一个圆,正确;④圆是轴对称图形,直径所在的直线是它的对称轴,故错误,正确的只有1个,故选:B .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理的推论,轴对称图形的对称轴,圆的性质,熟练掌握定义与性质是解题的关键.【考点二利用弧、弦、圆心角的关系求证】1(2023·全国·九年级专题练习)如图,已知⊙O 的半径OA ,OB ,C 在AB �上,CD ⊥OA 于点D ,CE ⊥OB 于点E ,且CD =CE ,求证:AC=BC.【答案】见解析【分析】根据角平分线的判定定理可得∠AOC =∠BOC ,然后根据弧、弦和圆心角的关系证明即可.【详解】证明:∵CD =CE ,CD ⊥OA ,CE ⊥OB ,∴∠AOC =∠BOC ,∴AC=BC.【点睛】本题主要考查了角平分线的判定定理以及弧、弦和圆心角的关系等知识,准确证明∠AOC =∠BOC 是解题关键.【变式训练】1(2023春·广东惠州·九年级校考开学考试)已知:如图,在⊙O 中,∠ABD =∠CDB .求证:AB =CD .【答案】见解析【分析】根据∠ABD =∠CDB ,可知AD =BC ,则有AD +AC =BC +AC ,由此可得AB =CD,进而可证AB =CD .【详解】证明:∵∠ABD =∠CDB ,∴AD=BC,∴AD +AC=BC +AC,∴AB=CD,∴AB =CD .【点睛】本题考查圆心角、弧、弦之间的关系,即在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,能够熟练掌握圆心角、弧、弦之间的关系是解决本题的关键.2(2023秋·河北秦皇岛·九年级统考期末)如图,A 、B 是⊙O 上的两点,C 是弧AB 中点.求证:∠A =∠B .【答案】见解析【分析】连接OC ,通过证明△AOC ≌△BOC (SAS )即可得结论.【详解】证明:如图,连接OC ,∵C 是AB的中点,∴AC=BC ,∴∠AOC =∠BOC ,在△AOC 和△BOC 中,OA =OB∠AOC =∠BOC OC =OC,∴△AOC ≌△BOC (SAS ),∴∠A =∠B .【点睛】本题考查弧、弦、圆心角的关系,全等三角形的判定和性质等知识,解题的关键是利用全等三角形的判定和性质解决问题,属于中考常考题型.【考点三利用垂径定理求值】1(2023秋·辽宁葫芦岛·九年级统考期末)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AD ,若AB =10,CD =6,则弦AD 的长为.【答案】310【分析】由题意易得DE =12CD =3,OD =5,根据勾股定理可求OE 的长,然后问题可求解.【详解】解:连接OD ,∵AB 是⊙O 的直径,AB =10,∴OD =OB =12AB =5,∵CD ⊥AB ,CD =6,∴DE =12CD =3,∠DEO =90°,∴OE=OD2-DE2=4,∴AE=OA+OE=5+4=9,∴AD=DE2+AE2=92+32=310,故答案为310.【点睛】本题主要考查垂径定理,熟练掌握垂径定理是解题的关键.【变式训练】1(2023秋·广东惠州·九年级校考阶段练习)已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O 到AB的距离为cm.【答案】12【分析】过点O作OH⊥AB于点H,由垂径定理得到BH=12AB=5cm,在Rt△BOH中,利用勾股定理即可得到圆心O到AB的距离.【详解】解:如图,⊙O的半径为13cm,弦AB的长为10cm,过点O作OH⊥AB于点H,则BH=12AB=5cm,∠BHO=90°,∴OH=OB2-BH2=132-52=12cm,即圆心O到AB的距离为12cm,故答案为:12【点睛】此题考查了垂径定理、勾股定理等知识,熟练掌握垂径定理的内容是解题的关键.2(2023·浙江·九年级假期作业)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问:径几何?”转化为现在的数学语言就是:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,AE=1寸,CD=10寸.则直径AB的长为寸.【答案】26【分析】连接OC构成直角三角形,先根据垂径定理,由CD⊥AB得到点E为CD的中点,由CD=10可求出CE的长,再设出圆的半径OC为x,表示出OE,根据勾股定理建立关于x的方程,求解方程可得2x的值,即为圆的直径.【详解】解:连接OC,∵AB⊥CD,且CD=10寸,∴CE=DE=5寸,设圆O的半径OC的长为x,则OC=OA=x,∵AE=1,∴OE=x-1,在Rt△COE中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴AB=26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.【考点四利用垂径定理求平行弦问题】1(2023秋·天津和平·九年级校考期末)⊙O半径为5,弦AB∥CD,AB=6,CD=8,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【答案】C【分析】过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,由AB∥CD,得到OF⊥CD,根据垂径定理得AE=3,CF=4,再在Rt△OAE中和在Rt△OCF中分别利用勾股定理求出OE,OF,然后讨论:当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF;当圆O点不在AB、CD之间,AB与CD 之间的距离=OE-OF.【详解】解:过O点作OE⊥AB,E为垂足,交CD与F,连OA,OC,如图,∵AB∥CD,∴OF⊥CD,∴AE=BE,CF=DF,而AB=6,CD=8,∴AE=3,CF=4,在Rt△OAE中,OA=5,OE=OA2-AE2=52-32=4;在Rt△OCF中,OC=5,OF=OC2-CF2=52-42=3;当圆O点在AB、CD之间,AB与CD之间的距离=OE+OF=7;当圆O点不在AB、CD之间,AB与CD之间的距离=OE-OF=1;所以AB与CD之间的距离为7或1.故选:C.【点睛】本题考查了垂径定理,即垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了勾股定理以及分类讨论的思想的运用.【变式训练】1(2023·全国·九年级专题练习)在半径为10的⊙O中,弦AB=12,弦CD=16,且AB∥CD,则AB 与CD之间的距离是.【答案】2或14【分析】由于弦AB与CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB与CD在圆心同侧;②弦AB与CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB与CD在圆心同侧时,如图①,过点O作OF⊥AB,垂足为F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∵AB=12,CD=16,∴CE=8,AF=6,∵OA=OC=10,∴由勾股定理得:EO=102-82=6,OF=102-62=8,∴EF=OF-OE=2;②当弦AB与CD在圆心异侧时,如图,过点O作OE⊥CD于点E,反向延长OE交AB于点F,连接OA,OC,同理EO=102-82=6,OF=102-62=8,EF=OF+OE=14,所以AB与CD之间的距离是2或14.故答案为:2或14.【点睛】本题考查了勾股定理和垂径定理,解答此题时要注意进行分类讨论,不要漏解.2(2023春·甘肃武威·九年级校联考阶段练习)⊙O的半径为13cm,AB、CD是⊙O的两条弦,AB⎳CD,AB=24cm,CD=10cm,求AB和CD之间的距离.【答案】7cm或17cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图1∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12-5=7cm;②当弦AB和CD在圆心异侧时,如图2,∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.【点睛】本题考查了勾股定理和垂径定理的应用,正确作出辅助线、灵活运用定理是解题的关键,注意掌握数形结合思想与分类讨论思想的应用.【考点五垂径定理的推论】1(2023·新疆喀什·统考二模)某公路隧道的截面为圆弧形,设圆弧所在圆的圆心为O,测得其同一水平线上A、B两点之间的距离为12米,拱高CD为4米,则⊙O的半径为米.【答案】6.5【分析】连接OA,设⊙O的半径为R,利用垂径定理以及勾股定理求解即可.【详解】解:连接OA,设⊙O的半径为R,则OC=R-4,由题意得,OD⊥AB,AB=6,∴AC=BC=12在Rt△AOC中,由勾股定理得R2=62+R-42,解得R=6.5,则⊙O的半径为6.5米.故答案为:6.5.【点睛】本题考查了垂径定理的应用,根据题意作出辅助线,由勾股定理得出方程是解题的关键.【变式训练】1(2023·浙江·九年级假期作业)如图是一位同学从照片上前切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.则“图上”太阳从目前所处位置到完全跳出海平面,升起厘米.【答案】16【分析】连接OB,作OD⊥AB于点D,交优弧于点C,利用垂径定理求得AD=BD=8厘米.在Rt△OBD中,利用勾股定理求得OD的长,据此求解即可.【详解】解:连接OB,作OD⊥AB于点D,交优弧于点C,则AD=BD=8厘米.由题意得OB=OC=10厘米,在Rt△OBD中,OD=OB2-BD2=6厘米,∴CD=OD+OC=16厘米,则“图上”太阳从目前所处位置到完全跳出海平面,升起16厘米.故答案为:16.【点睛】本题考查了垂径定理的应用,利用垂径定理构造直角三角形是解题的关键.2(2023春·江苏无锡·九年级校联考期末)《九章算术》中卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?转化为数学语言:如图,OD为⊙O的半径,弦AB⊥OD,垂足为C,CD=1寸,AB=1尺(1尺=10寸),则此圆材的直径长是寸.【答案】26【分析】连接AO,依题意,得出AC=5,设半径为r,则AO=r,在Rt△AOC中,AO2=AC2+CO2,解方程即可求解.【详解】解:如图所示,连接AO,∵CD=1,AB=10,AB⊥OD,OD为⊙O的半径,∴AC=5,设半径为r ,则AO =r ,在Rt △AOC 中,AO 2=AC 2+CO 2,∴r 2=52+r -1 2,解得:r =13,∴直径为26,故答案为:26.【点睛】本题考查了垂径定理的应用,勾股定理,掌握垂径定理是解题的关键.【考点六垂径定理的实际应用】1(2023春·安徽亳州·九年级专题练习)如图,⊙O 的直径AB 与弦CD 交于点E ,CE =DE ,则下列说法错误的是()A.CB =BDB.OE =BEC.CA =DAD.AB ⊥CD【答案】B【分析】根据垂径定理及其推论判断即可.【详解】解:∵AB 是⊙O 的直径与弦CD 交于点E ,CE =DE ,∴根据垂径定理及其推论可得,点B 为劣弧CD的中点,点A 为优弧CD的中点,AB ⊥CD ∴CB=BD,AC=AD,∴CA =DA但不能证明OE =BE ,故B 选项说法错误,符合题意;故选:B .【点睛】本题考查的是垂径定理及其推论,解决本题的关键是熟练掌握垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧,平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.【变式训练】1(2023春·九年级单元测试)下列说法正确的是()①平分弧的直径垂直平分弧所对的弦②平分弦的直径平分弦所对的弧③垂直于弦的直线必过圆心④垂直于弦的直径平分弦所对的弧A.②③ B.①③C.②④D.①④【答案】D【详解】根据垂径定理及其推论进行判断.【解答】解:根据垂径定理,①正确;②错误.平分弦(不是直径)的直径平分弦所对的弧;③错误.垂直于弦且平分弦的直线必过圆心;④正确.故选:D.【点评】注意概念性质的语言叙述,有时是专门来混淆是非的,只是一字之差,所以学生一定要养成认真仔细的习惯.2(2023·四川攀枝花·校联考二模)下列说法中正确的说法有( )个①对角线相等的四边形是矩形②在同圆或等圆中,同一条弦所对的圆周角相等③相等的圆心角所对的弧相等④平分弦的直径垂直于弦,并且平分弦所对的弧⑤到三角形三边距离相等的点是三角形三个内角平分线的交点A.1B.2C.3D.4【答案】A【分析】根据矩形的判定方法、圆的性质、垂径定理、三角形的有关性质求解即可.【详解】解:①对角线相等的平行四边形是矩形,故错误;②在同圆或等圆中,同一条弦所对的圆周角不一定相等,∵同一条弦所对的圆周角有两种情况,故不正确;③在同圆或等圆中,相等的圆心角所对的弧相等,故错误;④平分非直径的弦的直径垂直于弦,并且平分弦所对的弧,故错误;⑤到三角形三边距离相等的点是三角形的内心,而内心是角平分线的交点,故正确;故选:A.【点睛】本题是对基础概念的考查,熟记概念是解题关键.【过关检测】一、单选题1(2023·上海普陀·统考二模)下列关于圆的说法中,正确的是()A.过三点可以作一个圆B.相等的圆心角所对的弧相等C.平分弦的直径垂直于弦D.圆的直径所在的直线是它的对称轴【答案】D【分析】利用圆的有关定义及性质分别判断后即可确定正确的选项.【详解】解:A、过不在同一直线上的三个点一定能作一个圆,故错误,不符合题意;B、同圆或等圆中,相等的圆心角所对的弧相等,故错误,不符合题意;C、平分弦(不是直径)的直径垂直于弦,故错误,不符合题意;D、圆的直径所在的直线是它的对称轴,正确,符合题意.故选:D.【点睛】本题考查了确定圆的条件及圆的有关性质,解题的关键是了解有关性质及定义,难度不大.2(2023·浙江·模拟预测)已知弦AB把圆周分成1:3两部分,则弦AB所对圆心角的度数为()A.90°B.270°C.90°或270°D.45°或135°【答案】C【分析】分优弧,劣弧两种情况,求解即可.【详解】解:∵弦AB 把圆周分成1:3两部分,∴劣弧AB 的度数为:360°×14=90°,即:劣弧所对的圆心角的度数为90°,优弧AB 的度数为:360°×34=270°,即:优弧所对的圆心角的度数为270°,∴弦AB 所对圆心角的度数为90°或270°;故选C .【点睛】本题考查弦,弧,角之间的关系.注意弦分弧为优弧和劣弧两种情况.3(2023·全国·九年级专题练习)如图,线段CD 是⊙O 的直径,CD ⊥AB 于点E ,若AB 长为16,OE 长为6,则⊙O 半径是()A.5B.6C.8D.10【答案】D【分析】连接OB ,由垂径定理可得BE =AE =8,由勾股定理计算即可获得答案.【详解】解:如图,连接OB ,∵线段CD 是⊙O 的直径,CD ⊥AB 于点E ,AB =16,∴BE =AE =12AB =12×16=8,∴在Rt △OBE 中,可有OB =OE 2+BE 2=62+82=10,∴⊙O 半径是10.故选:D .【点睛】本题主要考查了垂径定理及勾股定理等知识,理解并掌握垂径定理是解题关键.4(2023秋·浙江台州·九年级统考期末)如图,CD 是⊙O 的直径,弦AB 垂直CD 于点E ,连接AC ,BC ,AD ,BD ,则下列结论不一定成立的是()A.AE =BEB.CE =OEC.AC =BCD.AD =BD【答案】B【分析】根据垂径定理对各选项进行逐一分析即可.【详解】解:∵CD 是⊙O 的直径,弦AB 垂直CD 于点E ,∴AE =BE ,AC=BC,AD=BD,∴AC =BC ,AD =BD ,而CE =OE 不一定成立,故选:B .【点睛】本题考查的是垂径定理,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.5(2023·浙江衢州·统考二模)一次综合实践的主题为:只用一张矩形纸条和刻度尺,如何测量一次性纸杯杯口的直径?小聪同学所在的学习小组想到了如下方法:如图,将纸条拉直紧贴杯口上,纸条的上下边沿分别与杯口相交于A ,B ,C ,D 四点,利用刻度尺量得该纸条宽为3.5cm ,AB =3cm ,CD =4cm .请你帮忙计算纸杯的直径为()A.4cmB.5cmC.6cmD.7cm【答案】B【分析】设圆心为O ,根据垂径定理可以得到CE =2,AF =1.5,再根据勾股定理构建方程解题即可.【详解】设圆心为O ,EF 为纸条宽,连接OC ,OA ,则EF ⊥CD ,EF ⊥AB ,∴CE =12CD =12×4=2,AF =12AB =12×3=1.5,设OE =x ,则OF =3.5-x ,又∵OC =OA ,∴CE 2+OE 2=AF 2+OF 2,即22+x 2=1.52+3.5-x 2,解得:x =1.5,∴半径OC =22+x 2=2.5,即直径为5cm ,故选B .【点睛】本题考查垂径定理,勾股定理,构建直角三角形利用勾股定理计算是解题的关键.二、填空题6(2023春·九年级单元测试)AB 为⊙O 的直径,弦CD ⊥AB 于E ,且CD =6cm ,OE =4cm ,则AB =.【答案】10cm【分析】由垂径定理可知CE =12CD =3cm ,在Rt △CEO 中由勾股定理可求得OC 即AB 的值.【详解】解:如图:依题意可知OA =OC =12AB ,∵AB 为⊙O 的直径,弦CD ⊥AB 于E ,∴CE =12CD =3cm ,在Rt △CEO 中,OC =OE 2+CE 2=42+32=5cm ,∴AB =2OC =10cm ,故答案为:10cm .【点睛】本题考查了垂径定理,勾股定理解直角三角形;解题的关键是熟练掌握相关知识.7(2023春·北京海淀·九年级101中学校考阶段练习)如图,AB 是⊙O 的直径,BC=CD=DE,∠AOE =78°,则∠COB 的度数是.-【答案】34°/34度【分析】先由平角的定义求出∠BOE 的度数,由BC=CD=DE,根据相等的弧所对的圆心角相等可得∠BOC =∠EOD =∠COD =13∠BOE ,即可求解.【详解】∵∠AOE =78°,∴∠BOE =180°-∠AOE =180°-78°=102°,∵BC=CD=DE,∴∠BOC =∠EOD =∠COD =13∠BOE =34°,故答案为:34°.【点睛】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.8(2023春·九年级单元测试)半径为5的⊙O 内有一点P ,且OP =4,则过点P 的最短的弦长是,最长的弦长是.【答案】 610【分析】过点P 的最短的弦是垂直于OP 的弦,过点P 的最长的弦是直径,利用勾股定理和垂径定理进行求解即可得到答案.【详解】解:如图,OP 在直径AB 上,AB ⊥CD 于点P ,过点P 的最短的弦是垂直于OP 的弦,即CD 的长∵OC =5,OP =4,由勾股定理得:PC =OC 2-OP 2=3,∴CD =2PC =6,∴过点P 的最短的弦长是6;过点P 的最长的弦是直径,即AB 的长,∵AB =5×2=10,.∴过点P 的最长的弦长是10,故答案为:6;10.【点睛】本题考查了垂径定理,勾股定理,解题关键是熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9(2023·河南南阳·校联考二模)已知半径为5的圆O 中有一条长度为8的弦AB ,分别以A ,B 为圆心,长度大于4为半径作圆弧交于点M ,N ,连接MN ,点C 为直线MN 与圆O 的交点,点D 为直线MN 与弦AB 的交点,则CD 的长度为.【答案】2或8【分析】根据作图可知,MN 为AB 的中垂线,则MN 必过圆心O ,连接OA ,利用垂径定理求出OD 的长,分点C 在劣弧AB 上和点C 在优弧AB 上两种情况进行求解即可.【详解】解:由题意,得:MN 是弦AB 的中垂线,D 为AB 的中点,如图,连接OA ,OD ,OB ,则:OA =OB =5,AD =12AB =4,∴OD ⊥AB ,∵CD ⊥AB ,∴O ,C ,D 三点共线,∴OC =5,∴OD =OA 2-AD 2=3;①当点C 在劣弧AB 上时:CD =OC -OD =2;②当点C 在优弧AB 上时:CD =OC +OD =8;故答案为:2或8【点睛】本题考查中垂线的作图,垂径定理.根据作图方法得到MN 是AB 的中垂线,是解题的关键.注意分类讨论.10(2023·浙江·九年级专题练习)图1是小文家的木马玩具,图2是木马玩具底座水平放置的示意图,点O 是AB所在圆的圆心,OA =OB ,点A ,点B 离地高度均为15cm ,水平距离AB =90cm .则OA =cm .当半径OA 转到竖直位置时,木马就有翻倒的风险,为安全起见,点B 离地高度应小于cm .【答案】 7554【分析】根据垂径定理构造直角三角形即可得到OA 的长度;根据题意做出示意图再利用勾股定理列出方程即可.【详解】解:连接AB ,过点O 作OC ⊥AB ,垂足为C ,如图,∵OA =OB ,AB =90cm ,∴AC =BC =12AB =45cm ,∵点A ,点B 离地高度均为15cm ,∴OC =OA -15,∴在Rt △AOC 中,OC 2+AC 2=OA 2,∴OA -15 2+452=OA 2,∴OA =75cm ,故答案为75;过点B 作BE ⊥OA ,BF 垂直于地面,垂足分别是E 、F ,如图,∵BE =AF ,设BF =AE =x ,OA =OB =75cm ,∴OE =OA -AE =75-x ,∴在Rt △BOE 中,BE 2=OB 2-OE 2,在Rt △BEA 中,BE 2=AB 2-AE 2,∴752-75-x 2=902-x 2,∴x =54cm .∴则点B 离地面的高度应小于54cm .故答案为:54.【点睛】本题考查了垂径定理,勾股定理,解一元一次方程等相关知识点,熟记垂径定理是解题的关键.三、解答题11(2023秋·河北邢台·九年级校联考期末)如图,AB 是⊙O 的直径,BC=CD,∠COD =50°,求∠AOD 的度数.【答案】80°【分析】根据圆的性质进行计算即可得.【详解】解:在⊙O 中,AB 是⊙O 的直径,∴∠AOB =180°,又∵BC=CD,∴∠BOC =∠COD =50°,∴∠AOD =180°-50°-50°=80°.【点睛】本题考查了圆的性质,解题的关键是掌握同弧所对的圆心角相等.12(2023·江苏·九年级假期作业)如图,OA =OB ,AB 交⊙O 于点C ,D ,OE 是半径,且OE ⊥AB 于点F .(1)求证:AC =BD .(2)若CD =8,EF =2,求⊙O 的半径.【答案】(1)见解析(2)5【分析】(1)由垂径定理得到CF =DF ,由等腰三角形的性质得到AF =BF ,从而证明AC =BD ;(2)设⊙O 的半径是r ,由勾股定理,垂径定理列出关于r 的方程,即可求出⊙O 的半径.【详解】(1)证明:∵OE ⊥AB ,∴CF =DF ,∵OA =OB ,∴AF =BF ,∴AF -CF =BF -DF ,∴AC =BD ;(2)解:连接OC ,设⊙O 的半径是r ,∵CO 2=CF 2+OF 2,CF =12CD =4∴r 2=42+(r -2)2,∴r =5,∴⊙O 的半径是5.【点睛】本题考查垂径定理,勾股定理,等腰三角形的性质,关键是由勾股定理,垂径定理列出关于半径的方程.13(2023春·全国·九年级专题练习)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,AE =2,CD =8.(1)求⊙O的半径长;(2)连接BC,作OF⊥BC于点F,求OF的长.【答案】(1)⊙O的半径长为5(2)OF的长为5【分析】(1)连接OD,设⊙O的半径长为r,OE=OA-AE=r-2,得到r-22+42=r2,求解即可.(2)勾股定理求得BC,垂径定理求得BF,勾股定理求出OF即可.【详解】(1)连接OD,如图,设⊙O的半径长为r,∵AB⊥CD,AE=2,CD=8,∴∠OED=90°,CE=DE=12CD=4,OE=OA-AE=r-2,在Rt△ODE中,∴r-22+42=r2,解得r=5,故⊙O的半径长为5.(2)在Rt△BCE中,∵CE=4,BE=AB-AE=10-2=8,∴BC=42+82=45,∵OF⊥BC,∴∠OFB=90°,CF=FB=12CB=25在Rt△BOF中,OF=52-252=5,故OF的长为5.【点睛】本题考查了勾股定理,垂径定理,熟练掌握两个定理是解题的关键.14(2023·河北衡水·校考模拟预测)图1是某种型号圆形车载手机支架,由圆形钢轨、滑动杆、支撑杆组成.图2是它的正面示意图,滑动杆AB的两端都在圆O上,A、B两端可沿圆形钢轨滑动,支撑杆CD的底端C固定在圆O上,另一端D是滑动杆AB的中点,(即当支架水平放置时直线AB平行于水平线,支撑杆CD垂直于水平线),通过滑动A、B可以调节CD的高度.当AB经过圆心O时,它的宽度达到最大值10cm,在支架水平放置的状态下:(1)当滑动杆AB的宽度从10厘米向上升高调整到6厘米时,求此时支撑杆CD的高度.(2)如图3,当某手机被支架锁住时,锁住高度与手机宽度恰好相等(AE=AB),求该手机的宽度.【答案】(1)支撑杆CD的高度为9cm.(2)手机的宽度为8cm.【分析】(1)如图,连结OA,由题意可得:⊙O的直径为10,AB=6, 由OD⊥AB, 先求解OD, 从而可得答案;(2)如图,记圆心为O ,连结OA ,证明AE =CD =BF =AB , 设AD =BD =x ,则AE =CD =BF =AB =2x ,则OD =2x -5, 再利用勾股定理建立方程求解即可.【详解】(1)解:如图,连结OA ,由题意可得:⊙O 的直径为10,AB =6,∴OA =5,∵CD ⊥AB , 即OD ⊥AB , ∴AD =BD =3, ∴OD =52-32=4, ∴CD =OC +OD =9.所以此时支撑杆CD 的高度为9cm .(2)解:如图,记圆心为O ,连结OA ,由题意可得:AB =AE ,∠E =∠EAB =∠ABF =90°, ∴四边形AEFB 为正方形,∵CD ⊥EF ,∴AE =CD =BF =AB ,∵CD ⊥AB , ∴设AD =BD =x ,则AE =CD =BF =AB =2x ,∵OA =OC =5, ∴OD =2x -5,由勾股定理可得:52=x 2+2x -5 2, 解得x 1=0,x 2=4,经检验x =0不符合题意,舍去,取x =4, AB =8(cm ),即手机的宽度为8cm .【点睛】本题考查的是正方形的判定与性质,垂径定理的应用,勾股定理的应用,一元二次方程的解法,理解题意,建立方程解题是关键.15(2023春·黑龙江哈尔滨·九年级哈尔滨市第十七中学校校考阶段练习)如图1,AB 是⊙O 的弦,点C 在⊙O 外,连接AC 、BC 分别交⊙O 于D 、E ,AC =BC(1)求证:CD =CE .(2)如图2,过圆心O 作PQ ∥AB ,交⊙O 于P 、Q 两点,交AC 、BC 于M 、N 两点,求证:PM =QN .(3)如图3,在(2)的条件下,连接EO 、AO ,∠EON +∠CAO =120°,若CD =112,NQ =32,求弦BE 的长.【答案】(1)见解析(2)见解析(3)13【分析】(1)连接DE ,利用圆内接四边形的性质,等腰三角形的两个底角相等的性质证明即可.(2)连接OA =OB ,证△OAM ≌△OBN ,得OM =ON ,得OP -OM =OQ -ON ,可证明PM =NQ .(3)连接OB ,证∠OAM =∠OBN ,OB =OE ,结合已知,得∠CNO =60°,等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,设GN =m ,可得ON =2m ,OG =3m ,GC =3m ,OE =OQ =2m+32,EG =3m -112,Rt △OGE 中勾股得2m +32 2=3m -112 2+3m 2,计算即可.【详解】(1)如图,连接DE ,∵四边形ADEB 是⊙O 的内接四边形,∴∠CDE =∠B ,∠CED =∠A ;∵AC =BC ,∴∠B =∠A ;∴∠CDE =∠CED ;∴CD =CE .(2)连接OA ,OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵PQ ∥AB ,∴∠CAB =∠CMN ,∠CBA =∠CNM ,∴∠CMN =∠CNM ,∴CM =CN ,∴CA -CM =CB -CN ,∴MA =NB ,∵OA =OB ,∴∠OAB =∠OBA ,∴∠OAM =∠OBN ,∴MA =NB∠OAM=∠OBN OA =OB,∴△OAM ≌△OBN ,∴OM =ON ,∵OP =OQ ,∴OP -OM =OQ -ON ,∴PM =NQ .(3)连接OB ,∵AC =BC ,∴∠CAB =∠CBA ;∵OA =OB ,∴∠OAB =∠OBA ,∴∠CAO =∠CBO ,∵∠EON +∠CAO =120°,21∴∠EON +∠CBO =120°,∵OB =OE ,∴∠OEB =∠CBO ,∴∠EON +∠OEN =120°,∴∠CNO =60°,∵CM =CN ,∴等边△CMN ,∠OCN =30°,∠CNM =60°,作OG ⊥BE 于点G ,则BE =2EG ,∵CE =CD =112,NQ =32,设GN =m ,则ON =2m ,OG =3m ,∴CN =4m ,∴GC =CN -GN =3m ,OE =OQ =2m +32,EG =3m -112,Rt △OGE 中,根据勾股定理,得2m +32 2=3m -1122+3m 2,解得m 1=4,m 2=78, ∵3m -112>0,∴m =4,∴BE =2EG =23m -112=13.【点睛】本题考查了圆的性质,垂径定理,等边三角形的判定和性质,等腰三角形的性质,圆的内接四边形的性质,勾股定理,一元二次方程的解法,熟练掌握圆的性质,勾股定理,一元二次方程的解法是解题的关键.。
九年级数学圆的对称性
在a,d,r,h中,已知其中任意两个 量,可以求出其它两个量.
做一做
8
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截面 如图所示.若油面宽AB = 600mm,求油的最大深度.
A
O ┌ E
D
600
B
想一想
垂径定理的逆应用
9
驶向胜利 的彼岸
• 在直径为650mm的圆柱形油槽内装入一些油后,截 面如图所示.若油面宽AB = 600mm,求油的最大深 度.
想一想
7
已知:如图,直径CD⊥AB,垂足为E . ⑴若半径R = 2 ,AB = 2 3 , 求OE、DE 的长. ⑵若半径R = 2 ,OE = 1 ,求AB、DE 的长. ⑶由⑴ 、⑵两题的启发,你还能编出什么其他问题?
C
a 2 ⑴d + h = r ⑵ r d ( ) 2
2 2
O E A D B
2 2 2
R 300 R 90 . 解这个方程, 得R 545. 这段弯路的半径约为545 m.
随堂练习 3
赵州石拱桥
驶向胜利 的彼岸
• 1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥 拱是圆弧形,它的跨度(弧所对是弦的长)为 37.4 m,拱高 (弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半 径(精确到0.1m).
O
做一做
5
船能过拱桥吗
驶向胜利 的彼岸
• 2 . 如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶 高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并 高出水面2米的货船要经过这里,此货船能顺利通过这 座拱桥吗?
• 相信自己能独立 完成解答.
3.3(1) 圆的轴对称性练习课
5. 如图,AB为⊙O的直径,弦CD⊥AB,垂足 为P,若AP:PB=1:4, CD=8, 则 AB=_. 6. 已知⊙O的半径为10cm,弦MN//EF,且MN =12cm, EP=16cm,则弦MN和EF之间的距离 为 . 7. 已知⊙O的半径为5cm,过⊙O内一点P的最 短的弦长为8cm,则OP= .
8. 如图,⊙O的直径为10cm,弦AB为8cm , P是弦AB上一点,若OP的长是整数, 则满足条件的点P有( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个
.O
A C
E
D
B
3. 在⊙O中,AB.CD为互相垂直且相等的两条弦,OD ⊥AB于D,OE⊥AC于E. 求证:四边形ADOE是正方形.
C E A O D B
小测验--
1. 下列说法正确的是( ) A.直径是圆的对称轴 B.经过圆心的直线是圆的对称轴 C.与圆相交的直线是圆的对称轴 D.与半径垂直的直 线是圆的对称轴 2. 在直径为10cm的⊙O中,有长为5cm 的弦AB, 则 O到AB的距离等于( ) A. 5cm B. 5cm C.cm D. cm 3. 在半径为 4cm 的图中,垂直平分一条半径的弦长 等于( ) A.3cm B.2cm C. 4cm D. 8cm 4. 已知:如图,有一圆弧形拱桥, 拱的跨AB=16cm,拱高CD=4cm, 那么拱形的半径是 cm.
A
B A
E D
B D
直径垂直弦
才能平分弦,平分弦所对的弧.
1:AB是⊙O的直径,弦CD⊥AB,E为垂足
,若AE=9,BE=1,求CD的长.
C A
O
B E 1 9 D
应用2:垂径定理有关的证明题.
2. 已知如图,在以O为圆心的两个同心圆中,大圆的 弦AB交小圆于C,D两点。 试说明:AC=BD。
圆的对称性(个人整理,经典题型)
第八讲圆的对称性(一)【你必须知道的数学小知识】1、圆的定义:平面上到定点..的距离等于_____________的所有点组成的图形叫做圆.;其中,定点称为__________,______________称为半径,以点O为圆心的圆可记作___________。
注意:①圆是一条___________的曲线,不能认为是圆面;②圆上各点到定点的距离都等于_________,到定点的距离等于定长的点都在__________;③圆的两要素:________________________________。
2、圆具有对称性:_______________________________________________________________________________。
3、圆的相关概念(1)弦与直径:连结圆上任意两点的__________叫做弦;经过___________的弦叫做直径;(2)弧:圆上任意两点间的部分叫做__________,简称________。
用符号"⌒"表示,以A、B为端点的弧记作___________;(注意”半圆“、”优弧“、”劣弧“之间的区别)4、点与圆的位置关系:(1)点在圆外——点到圆心的距离_________半径;(2)点在圆上——点到圆心的距离_________半径;(3)点在园内——点到圆心的距离_________半径;5、垂径定理:垂直于弦的____________平方这条__________,并且平分弦所对的________________.用符号语言表示为:6、垂径定理推论:平分弦(不是直径....)的___________垂直于___________,并且平分弦所对的___________. 用符号语言表示为:7、知二推三【经典例题】例1、(1)若⊙O的半径为5cm,圆心O到直线α的距离OM是4cm,直线α上有一点A,AM为6cm,则A在⊙O_____________________(填内、外、上)(2)已知一点与⊙O上的点最近距离是4cm,最远距离是9cm,则这个圆的半径是______________cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
!
初中数学总复习(20)圆的有关知识
〖考试内容〗
圆.弧、弦、圆心角的关系.点与圆的位置关系.垂径定理.圆周角与圆心角的关系. 〖考试要求〗
①理解圆及其有关概念,了解弧、弦、圆心角的关系,了解点与圆的位置关系. ②了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征. ③了解垂径定理,并会运用垂径定理进行有关计算. 〖考点复习〗 1.圆周角与圆心角的关系
[例1]已知O 为△ABC 的外心,∠A =60°,则∠BOC 的度数是( ) A .30º B .60º C .90º D .120º
2.弧、弦、圆心角的关系
[例2]如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF=BE 。
求证:∠D=∠B
3.直径所对圆周角是直角
[例3]如图,AB 是⊙O 的直径,若AB =4cm ,∠D =30º,则∠B =____º,AC =____cm 。
4.垂径定理
[例4]如图,⊙O 的半径为5cm ,圆心到弦AB 的距离为3cm ,则弦AB 的长为____________cm [例5] (本小题满分7分)
如图6,已知AB 为⊙O 的直径,弦CD ⊥AB ,垂足为H . (1) 求证:AH AB =AC 2;
(2) 若过A 的直线与弦CD (不含端点)相交于点E ,与⊙O 相交于点F ,求证:AE AF =AC 2;
(3) 若过A 的直线与直线CD 相交于点P ,与⊙O 相交于点Q ,判断AP AQ =AC 2是否成立(不必证明). 〖考题训练〗
1、已知:如图, ⊙O 的两条弦AE 、BC 相交于点D,连结AC 、BE.若∠ACB =60°,则下列结论中正确的是
A 、∠AO
B =60° B 、∠ADB =60°
C 、∠AEB =60°
D 、∠AEB =30°
2.如图,在⊙O 中,若∠BAC =48°,则∠BOC =_________。
A B
C
O
A
B
C
O
O
A
B
E D
C
B
A
O A
B
C
D
O E
F
!
3.如图,把一个量角器放置在∠BAC 的上面,请你根据量角器的读数判断∠BAC 的度数是( )。
A 、300
B 、600
C 、150
D 、200 4.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为
A 、
2
a b
+ B 、
2
a b
- C 、
2a b +或2
a b
- D 、a +b 或a -b 5.下列三个命题:
①园既是轴对称图形,又是中心对称图形; ②垂直于弦的直径平分这条弦; ③相等圆心角所对的弧相等;
其中是真命题的是
A 、①②
B 、②③
C 、①③
D 、①②③
6.我们知道2003年10月我国成功地发射了第一艘载人飞船.下面是关于“神舟五号载人飞船”在太空中飞行的一段报道:
15日15时57分,据航天员杨利伟报告和地面监测表明“神舟五号载人飞船”变轨..成功.据北京航天指挥控制中心现场工作人员介绍,飞船发射升空后,进入的是绕地球飞行的椭圆轨道.实施变轨后...,飞船进入的是距地球表面约343千米的圆形轨道.
看完上面的这段报道,请你说出“神舟五号载人飞船”变轨后...的轨迹是: .(地球的半径约为6371千米) 7.如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于______cm. 8.如图, ⊙O 的半径OA=6, 以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点, 则BC= ( )
A 、36
B 、26
C 、33
D 、23
10.如图,P 是⊙O 外一点,OP 垂直于弦AB 于点C ,交⌒
AB 于点D ,连结OA 、OB 、AP 、BP 。
根据以上条件,写出三个正确结论(OA=OB 除外):
① ;② ;③ 。
11。
已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,则⊙O 的半径是( )
A 、3厘米
B 、4厘米
C 、5厘米
D 、8厘米
12.AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。
(1)(5分)求证:△AHD ∽△CBD
(2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。
〖课后作业〗
1.如图,C 是⊙O 上一点,O 是圆心,若∠C =35°,则∠AOB 的度数为( )
A 、35°
B 、70°
C 、105°
D 、150°
A B C O
A
O D B
H
E C _ C
_ _ B
_ O
!
2.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠B =50°,则A 等…( ) A 、80° B 、60° C 、50° D 、40°
3.如图,AB 是⊙O 的直径,若AB=4㎝,∠D=30°,则∠B= °,AC= ㎝. 4.如图,在⊙O 中,已知∠ACB=∠CDB=60°,AC=3,则△ABC 的周长是 . 5.如图,Rt △ABC 中,∠ACB=90°,AC=4,BC=3,以AC 为直径的圆交AB 于D ,则AD 的长为( ) (A) 59 (B) 512(C) 5
16
(D) 4
6.已知:如图,OA 、OB 为⊙O 的半径,C 、D 分别为OA 、OB 的中点, 若AD =3厘米,则BC = 厘米.
7.如图2,D 、E 分别是⊙O 的半径 OA 、OB 上的点,CD ⊥OA 、CE ⊥OB 、CD=CE ,则 AC 与CB 两弧长的大小关 系是: .
8.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A 、4 B 、6 C 、7 D 、8
9.如图,梯形ABCD 内接于◎○,AB//CD ,AB 为直径,DO 平分∠ADC ,则∠DAO 的度数是( ) A 、900
B 、800
C 、700
D 、600;
10.在直径为10m 的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB =8m ,那么油的最大深度是______m.
D
C O
B
A
D C B
A
O A B
C
D
O O
A
B
M
A
B
10 m 8m。