线性代数期末考试试卷
线性代数试卷
学习中心/函授站_姓 名学 号西安电子科技大学网络与继续教育学院2022学年上学期《线性代数》期末考试试题(综合大作业) 题号一 二 三 总分 题分25 30 45 得分考试说明:1、大作业试题公布时间:2022年4月22日;2、考试必须独立完成,如发现抄袭、雷同均按零分计;3、答案须用《西安电子科技大学网络与继续教育学院2022春期末考试答题纸》(个人专属答题纸)手写完成,要求字迹工整、卷面干净、整齐;4、拍照要求完整、清晰,一张图片对应一张个人专属答题纸(A4纸),正确上传。
一、简算题。
(共5小题,每题5分,共25分)1. 利用对角线法则计算下列行列式(1) (2) (3) 381141102---b a c a c b c b a 222111c b a c b a 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数;(1) 1 2 3 4; (2)4 1 3 2;二、计算题(共3题,每题10分,共30分)1. 已知线性变换:, ⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.2. 设, 求A k . ⎪⎪⎭⎫ ⎝⎛=λλλ001001A3. 求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系: ;⎪⎩⎪⎨⎧=+++=+++=+3223512254321432121x x x x x x x x x x 三、证明题(共3题,每题15分,共45分)(1) 证明=(a -b )3 1112222b b a a b ab a + (2) 由a 1=(1, 1, 0, 0)T , a 2=(1, 0, 1, 1)T 所生成的向量空间记作V 1,由b 1=(2, -1, 3, 3)T , b 2=(0, 1, -1, -1)T 所生成的向量空间记作V 2, 试证V 1=V 2.(3) 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.。
线性代数期末试卷及详细答案
线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
完整版)线性代数试卷及答案
完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
(完整版)湖南大学线性代数期末试卷及答案,推荐文档
第一部分 选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式=m ,=n ,则行列式等于()a a a a 11122122aa a a 13112321aa a a a a 111213212223++ A. m+n B. -(m+n) C. n -mD. m -n2.设矩阵A =,则A -1等于()100020003⎛⎝ ⎫⎭⎪⎪⎪ A. B. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪10001200013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ C. D. 13000100012⎛⎝⎫⎭⎪⎪⎪12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3.设矩阵A =,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是()312101214---⎛⎝ ⎫⎭⎪⎪⎪ A. –6 B. 6 C. 2 D. –24.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B C 时A =0≠ C. A 0时B =C D. |A |0时B =C ≠≠5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =07.设矩阵A 的秩为r ,则A 中( )A.所有r -1阶子式都不为0B.所有r -1阶子式全为0C.至少有一个r 阶子式不等于0D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( )A.η1+η2是Ax=0的一个解B.η1+η2是Ax=b 的一个解1212C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )A.秩(A )<n B.秩(A )=n -1 C.A=0 D.方程组Ax=0只有零解10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>312.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A. B.2334⎛⎝ ⎫⎭⎪3426⎛⎝ ⎫⎭⎪ C. D.100023035--⎛⎝ ⎫⎭⎪⎪⎪111120102⎛⎝ ⎫⎭⎪⎪⎪第二部分 非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
线性代数期末试卷及答案
一. 填.(每小题3分,共30分)1.若行列式D 各行元素之和等于0,则该行列式等于 .2.设A 为2005阶矩阵,且满足T A A =-,则A = .3.非齐次线性方程组AX b =有解的充要条件是 .4.设A 为4阶方阵,且A 的行列式12A =,则2A *= .5.设()()1,1,5,3,9,2,3,5,TTαβ=--=---则α与β的距离为 .6.设A 为正交矩阵,则1A -= A = .7.三阶可逆矩阵A 的特征值分别为2,4,6,则1A -的特征值分别 为 .8.如果()222123123121323,,2246f x x x x x tx x x x x x x =+++++是正定的,则t 的 取值范围是 .9.设A 为n 阶方阵,且2A A =,则()12A E --= . 10.在MATLAB 软件中rank(A)表示求 .二、单选题(每题3分,共15分)1.n 元齐次线性方程组0,AX =秩()(),R A r r n =<则有基础解系且基础解系 含( )个解向量.(A )n (B )r (C )r n - (D )n r - 2. 设四阶方阵A 的秩为2,则其伴随矩阵A *的秩为( )(A )1 (B )2 (C )3 (D )0. 3. 设A 是n 阶方阵,满足2A E =,则( )(A )A 的行列式为1 (B ),A E A E -+不同时可逆. (C )A 的伴随矩阵*A A = (D )A 的特征值全是14. 设n 阶方阵,,A B C 满足ABC E =,其中E 是n 阶单位阵,则必有( ) (A )ACB E = (B) CBA E = (C) BCA E = (D) BAC E =5. 在MATLAB 中求A 的逆矩阵是( )(A )det(A) (B)rank(A) (C)inv(A) (D)rref(A) 三、计算题(每题6分,共12分)1.1111111111111111x x x x ---+---+--2.给定向量组()()121,1,1,1,1,1,1,1,TTαα==--()32,1,2,1Tα=, ()41,1,1,1,Tα=--求1234,,,αααα的一个最大无关组和向量组的秩.四、设1122123122,,3,βααβααβαα=-=+=-+验证:123,,βββ线性相关.(8分)五、已知122212221A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求1A -及()1*A - (10分)六、设线性方程组1232123123424x x x x x x x x x λλλ++=⎧⎪-++=⎨⎪-+=-⎩当λ等于何值时,(1)无解;(2)方程组有惟一解;(3)有无穷多解,并求出此时方程组的通解.(12分)七、求一个正交变换X PY =,把下列二次型化为标准形()22212312323,,4233f x x x x x x x x =+++ (13分)答案一.1.0 2.0 3.()()R A R A = 4.2 5.9 6.T A ,1±7.111,,246. 8.5t > 9.()2A E +- 10. 矩阵A 的秩二、1.D 2.D 3.B 4.C 5.C 三、123421314132111111111112111 1.1111111111111111111111111100 3511110011110111100000x x x x xx x c c c c x x x xx x r r x x xx r r x x x x r rxx x x r r x x x -----+--+---+++--+----------+-------------↔---分分(分)46x x=(分)()2131414342123411211121111102122. ,,,112100021111021011211121021202120002000200020000r r r r r r r r r r A αααα---+-⎛⎫⎛⎫⎪ ⎪----- ⎪ ⎪==−−−→ ⎪ ⎪-- ⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪------ ⎪ ⎪−−−→−−−→ ⎪ ⎪-- ⎪ ⎪⎝⎭⎝⎭可见()1234,,,3R αααα=,124,,ααα是一个最大无关组。
线性代数期末考试考核试卷
4.以下哪个向量组构成一个基?
A. (1, 0, 0), (0, 1, 0), (0, 0, 0)
B. (1, 2, 3), (4, 5, 6), (7, 8, 9)
C. (1, 2, 3), (2, 4, 6), (1, 1, 1)
D. (1, 1, 0), (0, 1, 1), (1, 0, 1)
...
20.(根据实际题目内容填写答案)
二、多选题
1. BCD
2. ABCD
3. ABC
4. AB
5. ABC
...
20.(根据实际题目内容填写答案)
三、填题
1. 1
2.线性无关
3.主
...
10.(根据实际题目内容填写答案)
四、判断题
1. √
2. √
3. √
...
10. ×
五、主观题(参考)
1.向量组线性无关,可以通过计算行列式不为零来证明。一个可以由给定向量组线性表示的向量可以是它们的线性组合,例如\(a\vec{v}_1 + b\vec{v}_2 + c\vec{v}_3\),其中\(a, b, c\)是适当的系数。
D. (1, 1), (1, -1)
(答题括号:________)
5.在求解线性方程组时,以下哪些情况下可以使用高斯消元法?
A.系数矩阵是方阵
B.系数矩阵是非奇异的
C.方程组中方程的个数等于未知数的个数
D.方程组可能有无穷多解
(答题括号:________)
(以下题目类似,省略以节约空间)
6. ...
A.若A为m×n矩阵,则A的转置为n×m矩阵
B.若A为m×n矩阵,则A的转置为m×n矩阵
(完整版)线性代数试题套卷及答案
(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设为实矩阵,则线性方程组只有零解是矩阵为正定矩阵的n m A ⨯0=Ax )(A A T(A) 充分条件; (B) 必要条件; (C) 充要条件;(D) 无关条件。
2.已知为四维列向量组,且行列式 ,32121,,,,αααββ4,,,1321-==βαααA ,则行列式1,,,2321-==βαααB =+B A (A) ;(B) ;(C) ;(D) 。
4016-3-40-3.设向量组线性无关,且可由向量组线s ααα,,, 21)2(≥s s βββ,,, 21性表示,则以下结论中不能成立的是(A) 向量组线性无关;s βββ,,, 21(B) 对任一个,向量组线性相关;j αs j ββα,,, 2(C) 存在一个,向量组线性无关;j αs j ββα,,, 2(D) 向量组与向量组等价。
s ααα,,, 21s βββ,,, 214.对于元齐次线性方程组,以下命题中,正确的是n 0=Ax (A) 若的列向量组线性无关,则有非零解;A 0=Ax (B) 若的行向量组线性无关,则有非零解;A 0=Ax (C) 若的列向量组线性相关,则有非零解;A 0=Ax (D) 若的行向量组线性相关,则有非零解。
A 0=Ax 5.设为阶非奇异矩阵,为的伴随矩阵,则A n )2(>n *A A 题 号一二三总 分总分人复分人得 分得分评卷人√√(A) ;(B) ;A A A 11||)(-*-=A A A ||)(1=*-(C) ;(D) 。
111||)(--*-=A A A 11||)(-*-=A A A 二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
西南石油大学线性代数期末考试1
a11 x1 + a12 x2 + " + a1n xn = b1 a x + a x +"+ a x = b 21 1 22 2 2n n 2 七. (10 分)已知方程组 a31 x1 + a32 x2 + " + a3n xn = b3 有解, "" an+1 1 x1 + an+1 2 x2 + " + a n+1n xn = bn+1 a11 a12 " a1n b1 a 21 a 22 a32 " " " % a2 n a3 n " b2 b3 = 0 。 " bn+1
线性代数考试试卷
一. (25 分)填空 1. α 1 ,α 2 ,α 3 线性无关,则 α 1 − α 2 ,α 2 − α 3 ,α 3 − α 1
2... α 1
。
α2
α 3 = 3, α 4
α2
α 1 = 2, 则 α1 + α 3 + α 4 α1 α 2 =
。 。
3. A 为 3 阶实正交阵, a11 = 1, b = (1,0,0) ' , 则 Ax = b 的解为
证明 D = a31 "
a n+1 1
a n+1 2 " a n+1 n
2 2 + tx3 − 2 x1 x2 + 2 x1 x3 − 4 x2 x3 为正定二次型条件为 4.二次型 f = x12 + 2 x2
5. 非齐次线性方程组 Ax = b 有解的充要条件是
(完整版)线性代数试题套卷及答案
(线性代数) ( A 卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。
2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A) 40; (B) 16-; (C) 3-; (D) 40-。
3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解; (B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。
5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则√√(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C) 111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。
二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量. 则λ= ,a = ,b = 。
线性代数期末考试试题及答案
线性代数期末考试试题及答案线性代数期末考试试题及答案线性代数是一门重要的数学课程,广泛应用于各个领域,如物理学、工程学、计算机科学等。
期末考试是对学生对于线性代数知识的综合考察,下面将给出一些线性代数期末考试试题及答案,供大家参考。
一、选择题(每题2分,共20分)1. 设A是一个3×3矩阵,若A的行列式值为0,则A的秩为:A. 0B. 1C. 2D. 3答案:C2. 设A是一个3×3矩阵,若A的特征值为1,2,3,则A的特征向量个数为:A. 0B. 1C. 2D. 3答案:D3. 设A是一个3×3矩阵,若A的秩为2,则A的零空间的维数为:A. 0B. 1C. 2D. 3答案:B4. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的列向量组是否线性无关?A. 是B. 否答案:A5. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的列向量组是否线性相关?A. 是B. 否答案:A6. 设A是一个3×3矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2D. 3答案:C7. 设A是一个2×2矩阵,若A的特征值为1,2,则A的特征向量个数为:A. 0B. 1C. 2答案:C8. 设A是一个2×2矩阵,若A的特征值为1,1,则A的特征向量个数为:A. 0B. 1C. 2答案:B9. 设A是一个2×2矩阵,若A的秩为1,则A的零空间的维数为:A. 0B. 1C. 2答案:B10. 设A是一个2×2矩阵,若A的秩为2,则A的行空间的维数为:A. 0B. 1C. 2答案:C二、填空题(每题3分,共30分)1. 设A是一个3×3矩阵,若A的行向量组线性无关,则A的秩为____。
答案:32. 设A是一个3×3矩阵,若A的列向量组线性无关,则A的秩为____。
答案:33. 设A是一个3×3矩阵,若A的行向量组线性相关,则A的秩为____。
江南大学《线性代数》2021-2022学年第一学期期末考试试卷
江南大学《线性代数》2021-2022学年第一学期期末考试试卷学号: 姓名: 年级专业: 成绩:一、单项选择题(本大题共10小题,每小题2分,共20分)。
1. 设A 为n 阶方阵,若30A =,则必有( )A . 0A = B. 20A = C. 0T A = D. ||0A =2. 设矩阵1243A ⎛⎫= ⎪⎝⎭,则矩阵A 的伴随矩阵*A =( )A.3241⎛⎫ ⎪⎝⎭B. 3241-⎛⎫ ⎪-⎝⎭C. 3421⎛⎫ ⎪⎝⎭D. 3421-⎛⎫ ⎪-⎝⎭ 3. 设A 为56⨯矩阵,若秩(A )=3,则齐次线性方程组0Ax =的基础解系中包含的解向量的个数是( )A. 2B. 3C. 4D. 54. 已知矩阵1101A ⎛⎫= ⎪-⎝⎭,1011B ⎛⎫= ⎪⎝⎭,则AB BA -=( ) A. 1021⎛⎫ ⎪--⎝⎭ B. 1101⎛⎫ ⎪-⎝⎭ C. 1001⎛⎫ ⎪⎝⎭ D. 0000⎛⎫ ⎪⎝⎭5. 已设3阶方阵123(,,)A ααα=,其中(1,2,3)i i α=为A 的列向量,且||2A =,1232(3,,)B αααα=+,则||B =( )A. 2-B. 0C. 2D. 66. 设A 为2阶可逆矩阵,且已知112(2)34A -⎛⎫=⎪⎝⎭,则A =( ) A .2⎪⎪⎭⎫ ⎝⎛4321 B .214321-⎪⎪⎭⎫ ⎝⎛ C .⎪⎪⎭⎫ ⎝⎛432121 D .1432121-⎪⎪⎭⎫ ⎝⎛ 7. 设3阶矩阵A 与B 相似,且已知A 的特征值为2,2,3. 则1||B-=( ) A .121 B .71 C .7 D .128. 设A 为n 阶方阵,且3A E =,则以下结论一定正确的是( )A .A E =B .A 不可逆C .A 可逆,且1A A -= D.A 可逆,且12A A -=9. 设3阶方阵A 的特征值为1,-1,2,则下列矩阵中为可逆矩阵的是( )A. E A -B. E A --C. 2E A -D.2E A --10. 设1112A -⎛⎫= ⎪-⎝⎭,则二次型12(,)T f x x x Ax =是( ) A.正定 B 负定 C.半正定 D.不定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数试题套卷及答案
(线性代数) (A卷)专业年级: 学号: 姓名:一、单项选择题(本大题共5小题,每小题5分,共25分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设n m A ⨯为实矩阵,则线性方程组0=Ax 只有零解是矩阵)(A A T为正定矩阵的(A) 充分条件; (B) 必要条件; (C) 充要条件; (D) 无关条件。
2.已知32121,,,,αααββ为四维列向量组,且行列式 4,,,1321-==βαααA ,1,,,2321-==βαααB ,则行列式 =+B A(A)40; (B) 16-; (C) 3-; (D) 40-。
3.设向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线 性表示,则以下结论中不能成立的是(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α,向量组s j ββα,,,2线性相关; (C) 存在一个j α,向量组s j ββα,,,2线性无关; (D) 向量组s ααα,,,21与向量组s βββ,,, 21等价。
4.对于n 元齐次线性方程组0=Ax ,以下命题中,正确的是(A) 若A 的列向量组线性无关,则0=Ax 有非零解;(B) 若A 的行向量组线性无关,则0=Ax 有非零解; (C) 若A 的列向量组线性相关,则0=Ax 有非零解; (D) 若A 的行向量组线性相关,则0=Ax 有非零解。
√√5.设A 为n 阶非奇异矩阵)2(>n ,*A 为A 的伴随矩阵,则(A) A A A 11||)(-*-=; (B) A A A ||)(1=*-;(C)111||)(--*-=A A A ; (D) 11||)(-*-=A A A 。
二、填空题(本大题共5小题,每小题5分,共25分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 列向量⎪⎪⎪⎭⎫ ⎝⎛-=111α 是矩阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量.则λ= ,a = ,b = 。
线性代数期末考试试卷+答案
×××大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1. 若022150131=---x ,则=χ__________。
2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足 。
3.已知矩阵n s ij c C B A ⨯=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。
4.矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 。
5.n 阶方阵A 满足032=--E A A ,则=-1A 。
二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。
每小题2分,共10分)1. 若行列式D 中每个元素都大于零,则0〉D 。
( )2. 零向量一定可以表示成任意一组向量的线性组合。
( )3. 向量组m a a a ,,,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。
( )4. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=010*********0010A ,则A A =-1。
( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。
( )三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。
每小题2分,共10分)1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。
① n 2② 12-n ③ 12+n④ 42. n 维向量组 s ααα,,,Λ21(3 ? s ? n )线性无关的充要条件是( )。
① s ααα,,,Λ21中任意两个向量都线性无关 ② s ααα,,,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,,,Λ21中任一个向量都不能用其余向量线性表示 ④ s ααα,,,Λ21中不含零向量 3. 下列命题中正确的是( )。
线性代数期末考试试卷合集(共十一套)
线性代数期末考试试卷合集(共十一套)目录线性代数期末试卷及参考答案(第一套) .............................................................................. 1 线性代数期末试卷及参考答案(第二套) .............................................................................. 9 南京工程学院期末试卷(第一套) ........................................................................................ 17 南京工程学院期末试卷(第二套) ........................................................................................ 24 南京工程学院期末试卷(第三套) ........................................................................................ 30 线性代数 期末试卷(A 卷) .................................................................................................. 36 线性代数 期末试卷(B 卷) .................................................................................................. 41 线性代数 期末试卷(C 卷) .................................................................................................. 46 线性代数 期末试卷(D 卷) .................................................................................................. 51 线性代数 期末试卷(E 卷) .................................................................................................. 57 线性代数 期末试卷(F 卷) (62)线性代数期末试卷及参考答案(第一套)一、单项选择题(本大题共5小题,每小题3分,共15分)1、设矩阵⎪⎪⎭⎫ ⎝⎛=3223A 满足B AB =,则矩阵=B ( )(A ) ⎪⎪⎭⎫⎝⎛21k k ; (B )⎪⎪⎭⎫ ⎝⎛11; (C ) ⎪⎪⎭⎫ ⎝⎛--2121k k k k ; (D ) ⎪⎪⎭⎫ ⎝⎛-2111k k .(21k k ,为任意常数) 2、设n 阶方阵A ,B 满足E AB =,则下列一定成立的是 ( ) (A )E B A == ; (B )E B A =+ ; (C )1=A 或1=B ; (D )1=⋅B A .3、设矩阵,⎪⎪⎪⎭⎫ ⎝⎛=001010100A 则 =-++)()(E A R E A R ( )(A ) 2; (B ) 3; (C ) 4; (D ) 5 .4、设向量组A :r a a a,,,21可由向量组B :s b b b ,,,21线性表示,则正确的是 ( )(A )当s r >时,向量组A 必线性相关; (B ) 当s r <时,向量组A 必线性相关; (C )当s r >时,向量组B 必线性相关; (D ) 当s r <时,向量组B 必线性相关.5、设A 为n m ⨯的矩阵,0=x A 是非齐次线性方程组b x A =所对应的齐次线性方程组,则下列结论正确的是( )(A ) 若0=x A 仅有零解,则b x A =有唯一解;(B ) 若b x A =有无穷多解,则0=x A 有非零解;(C ) 若n m =,则b x A=有唯一解;(D ) 若A 的秩m A R <)(,则b x A=有无穷多解.二、填空题(本大题共5小题,每小题3分,共15分)1、设方阵⎪⎪⎪⎭⎫⎝⎛=010002cb a A ,当c b a ,,满足 时,A 为可逆方阵.2、若可逆方阵A 的有一个特征值3,则13-)(A 必有一个特征值为 .3、设A 为54⨯的矩阵,且秩2=)(A R ,则齐次方程组0=x A 的基础解系所含向量个数是 .4、若三阶行列式222023z y x =1,则行列式1117110111------z y x = . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛13232121,,x 线性相关,则常数x= .三、计算题(本题共6小题,共50分)1、(6分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛-=b a a A 140132121的秩2=)(A R , 求常数b a ,及一个最高阶非零子式.2、(8分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值和特征向量. 3、(8分)设3阶方阵A 与B 满足BA A BA A 22+=*, 其中,⎪⎪⎪⎭⎫⎝⎛=400030001A 求B .4、(10分)设向量组A :.,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 1301 3192 01414321αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式aa a a D ++++=4321432143214321,其中0≠a .6、(10分)设线性方程组⎪⎩⎪⎨⎧=+-=--=--532403321321321x x x b ax x x x x x , 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、判断题(本大题共5小题,每小题2分,共10分) 1、设矩阵B A ,为3阶方阵,且42==B A ,,则121=-AB.( )2、由3维向量构成的向量组4321a a a a,,,中必有一个可由其余向量线性表示. ( ) 3、对任意n 阶方阵C B A ,,,若AC AB =,且O A ≠,则一定有C B =.( )4、设向量21ηη ,是线性方程组b x A =的解,则212ηη -也是此方程组的一个解.( ) 5、正交向量组321a a a ,,线性无关.( )五、证明题(本题共2小题,每小题5分,共10分) 1、设n 阶对称矩阵A 满足关系式O E A A =++862,证明:(1)E A 3+是可逆矩阵,并写出逆矩阵; (2) E A 3+是正交矩阵.2、若3210a a a a,,,是n 元非齐次线性方程组b x A =的线性无关解,且,)(3-=n A R证明:030201a a a a a a---,,是其对应的齐次线性方程组0 =x A 的基础解系.参考答案一、选择题(本题5小题, 每小题3分, 共15分)1. C ;2. D ;3. B ;4. A ;5. B .二、填空题(本题5小题, 每小题3分, 共15分)1. c ab 2≠;2.91; 3. 3; 4. 23- ; 5. 5. 三、计算题(本题6小题, 共50分)1. 解: A →⎪⎪⎪⎭⎫ ⎝⎛------210022170121b a a a (2分), 由R (A ) = 2知,⎩⎨⎧=-=--0201b a , ⎩⎨⎧=-=∴21b a ,一个最高阶非零子式3221-. 2.解: 由λλλλ-----=-314020112E A (),)(0212=-+-=λλ 得A 的特征值为.,21321==-=λλλ当11-=λ时, 解 ().0=+x E A,⎪⎪⎪⎭⎫ ⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛--=+000010101414030111r E A得基础解系:,⎪⎪⎪⎭⎫⎝⎛=1011p 对应11-=λ的全部特征向量为)(0111≠k p k当232==λλ时, 解().02=-x E A,⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−⎪⎪⎪⎭⎫⎝⎛--=-000000414111140001142r E A 得基础解系:,⎪⎪⎪⎭⎫ ⎝⎛=401 2p ,⎪⎪⎪⎭⎫ ⎝⎛=041 3p对应232==λλ的特征向量为)0,(323322不全为k k p k p k+ 3. 解: B= 2(|A |E -2A ) -1 A |A |=12(|A |E -2A ) -1 =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4100061000101, B=2⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛410061000101⎪⎪⎪⎭⎫⎝⎛400030001 =⎪⎪⎪⎪⎪⎭⎫⎝⎛20001000514. 解: ),,,(4321αααα=A=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------71307311100943121→⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000110024103121 → ⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110020102001 所以,秩3=A R , (1分)一个最大线性无关组为,,,321ααα(2分)且321422αααα++-=5. 解:aa a a D ++++=43214321432143214321c c c c +++aa a a a a a +++++++432104321043210432101r r i -aa a a 00000000043210+=)(103+a a 6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛-----==5312410131b ab A B ),( →⎪⎪⎪⎭⎫⎝⎛+---120011100131b a(1) 当12-≠=b a ,时, 32=<=)()(B R A R ,此时方程组无解. (2) 当b a ,2≠取任意数时, 3==)()(B R A R ,此时方程组有唯一解. (3) 当12-==b a ,时, 32<==)()(B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛--000011100131 →⎪⎪⎪⎭⎫ ⎝⎛000011103201即⎩⎨⎧+-=+-=1323231x x x x 原方程组的通解为)(R c c ∈⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛--013112.四、判断题(本题5小题, 每小题2分, 共10分)1. ×;2. √;3. ×;4. √;5. √.五、证明题(本题2小题, 每小题5分, 共10分)1.证明: (1)由O E A A =++862得E E A A =++962,即E E A E A =++))((33 所以E A 3+可逆,且E A E A 331+=+-)(.(2)由A 为n 阶对称矩阵知,E A E A E A TT T 333+=+=+)()(,故()()()E E A E A E A E A T=++=++333)3(,所以E A 3+是正交矩阵.2. 证明: 3210a a a a,,,是n 元非齐次线性方程组b x A =的解,030201a a a a a a---∴,,是对应齐次方程组0 =x A 的解;又,)(3-=n A R 所以0 =x A 的基础解系中含向量个数为3)(=-A R n 个; 下证 030201a a a a a a---,,线性无关即可.设0033022011 =-+-+-)()()(a a k a a k a a k 即00321332211=++-++a k k k a k a k a k )(又 3210a a a a ,,,线性无关, 故⎪⎪⎩⎪⎪⎨⎧=++-===0000321321)(k k k k k k 有唯一解0321===k k k所以030201a a a a a a---,, 线性无关,从而030201a a a a a a---,,是其对应的齐次方程组0 =x A 的基础解系线性代数期末试卷及参考答案(第二套)一、填空题(本大题共7小题,每小题3分,共21分)1、设向量⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=123,321βα ,则当k = 时,.正交与βαα +k2、设方阵A 满足关系式O A A =+322,则1)(-+E A = .3、若三阶行列式930021-=x xxx ,则 =x . 4、设矩阵⎪⎪⎭⎫⎝⎛-=0211A ,多项式x x x f 2)(2+=,则=)(A f . 5、设向量组⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-13,032,101λ线性相关,则常数λ= .6、n 元非齐次线性方程组b x A=有无穷多解的充要条件是 .7、设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的对应特征值λ的一个特征向量为⎪⎪⎪⎭⎫ ⎝⎛-111,则 ._______________,______,===b a λ二、单项选择题(本大题共5小题,每小题3分,共15分)1、设A ,B 是任意n 阶方阵(2≥n ),则下列各式正确的是 ( )(A ) B A B A +=+; (B ) 22B A B A B A -=-⋅+; (C ) B A B A ⋅=; (D ) A B AB T⋅= .2、下列4个条件中,①A 可逆 ; ②A 为列满秩(即A 的秩等于A 的列数); ③A 的列向量组线性无关; ④ O A ≠ ;可使推理“ 若O AB =, 则O B = ”成立的条件个数是 ( )(A ) 1个 ; (B ) 2个; (C ) 3个; (D ) 4个.3、向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ ,,,21线性表示, 则下列结论中不成立的是( )(A ) 向量组s βββ,,,21线性无关;(B ) 对任一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性相关;(C ) 存在一个j α )1(s j ≤≤,向量组s j βββα,,,,21线性无关;(D ) 向量组s ααα,,,21与向量组s βββ ,,,21等价. 4、设A ,B 均为3阶方阵, 3)(=A R ,2)(=B R , 则=)(AB R( )(A ) 1; (B ) 2; (C ) 3; (D ) 6 .5、设A 为n m ⨯的矩阵,r A R =)(,则非齐次线性方程组b x A=( )(A ) 当n r = 时有唯一解; (B ) 当n m r == 时有唯一解;(C ) 当n m = 时有唯一解; (D ) 当n r < 时有无穷多解. 三、计算题(本题共6小题,共54分)1、(7分)设矩阵⎪⎪⎪⎭⎫ ⎝⎛---=61011152121λλA 的秩2)(=A R , 求常数λ及一个最高阶非零子式.2、(9分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=320230001A 的全部特征值和特征向量.3、(8分)设3阶方阵C B A ,,满足方程 A B A C =-)2(,试求矩阵A ,其中 ⎪⎪⎪⎭⎫ ⎝⎛=100010301B , ⎪⎪⎪⎭⎫ ⎝⎛=300020001C .4、(10分)设向量组A :.6721 ,11313 ,5652 ,21214321⎪⎪⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=αααα 求: (1) 向量组A 的秩; (2) 向量组A 的一个最大线性无关组; (3) 将此最大无关组之外的其它向量用最大无关组线性表示.5、(8分)计算行列式cc b b a a x x x x D ---=000000, 其中x c b a ,,,全不为0.6、(12分)设线性方程组⎪⎩⎪⎨⎧=++=++=++bx x x x a x x x x x 3213213214231202, 问:当参数b a ,取何值时,(1)此方程组有唯一解? (2)此方程组无解? (3)此方程组有无穷多解? 并求出通解.四、证明题(本题共2小题,每小题5分,共10分)1、若向量321,,ααα线性无关, 求证 2132αα +,324αα +,135αα + 也线性无关.2、设矩阵T E A ηη -=, 其中E 是3阶单位矩阵,⎪⎪⎪⎭⎫⎝⎛=321x x x η 是单位向量,证明:(1) A A =2; (2) A 不可逆.参考答案一、填空题(本题7小题, 每小题3分, 共21分)1. 75-; 2. E A +2; 3. 3±; 4. ⎪⎪⎭⎫ ⎝⎛--2631 ; 5. 6 ; 6. n b A R A R <=),()(; 7. -1 ,-3 ,0 .二、选择题(本题5小题, 每小题3分, 共15分)1. D ;2. C ;3. C ;4. B ;5. B .三、计算题(本题6小题, 共54分)1. 解: A →⎪⎪⎪⎭⎫⎝⎛--+---3390022110121λλλλλ(3分), 由R (A ) = 2知,⎩⎨⎧=-=-03039λλ,3=∴λ (2分), 一个最高阶非零子式5221 .2.解: 由λλλλ---=-32230001E A (),01)5(2=--=λλ得A 的特征值为.1,5321===λλλ当51=λ时, 解 ().05=-x E A,0001100012202200045⎪⎪⎪⎭⎫⎝⎛-−→−⎪⎪⎪⎭⎫ ⎝⎛---=-r E A得基础解系:,1101⎪⎪⎪⎭⎫⎝⎛=p 对应51=λ的全部特征向量为)(0111≠k p k当132==λλ时, 解().0=-x E A,000000110220220000⎪⎪⎪⎭⎫ ⎝⎛−→−⎪⎪⎪⎭⎫ ⎝⎛=-r E A 得基础解系:,001 2⎪⎪⎪⎭⎫ ⎝⎛=p ,110 3⎪⎪⎪⎭⎫ ⎝⎛-=p对应132==λλ的特征向量为)0,(323322不全为k k p k p k+.3. 解: CB A E C =-)2( ;⎪⎪⎪⎭⎫ ⎝⎛=-5000300012E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=--51000310001)2(1E C ; ⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛=⋅-=-5300032030110001030130002000151000310001)2(1CB E C A . 4. 解: ),,,(4321αααα =A →⎪⎪⎪⎪⎪⎭⎫⎝⎛---00210045101321 → ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000021********001 (初等变换步骤不一,请酌情给分)所以,秩3=A R , (1分) 一个最大线性无关组为,,,321ααα(2分)且32142617αααα--=5. 解:)1,2,3(1=++i c c i i Dcb a xx x x---0000000234=xabc 4- .6. 解: 增广矩阵⎪⎪⎪⎭⎫⎝⎛==b a b A B 4231120211),( →⎪⎪⎪⎭⎫⎝⎛----120014100211b a a , (1) 当b a ,2≠取任意数时, 3)()(==B R A R , 此时方程组有唯一解; (2). 当1,2≠=b a 时, 3)(2)(=<=B R A R ,此时方程组无解;(3) 当1,2==b a 时, 32)()(<==B R A R ,此时方程组有无穷多解.B →⎪⎪⎪⎭⎫ ⎝⎛-000012100211 →⎪⎪⎪⎭⎫⎝⎛-000012101001 即⎩⎨⎧--==121321x x x原方程组的通解为)(011120R c c ∈⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-.四、证明题(本题2小题, 每小题5分, 共10分)1.证明: 由题意 ⎪⎪⎪⎭⎫⎝⎛=+++540013102),,()5,4,32(321133221ααααααααα , 记 AK B = .K K ∴≠=,022 可逆, 又321,,ααα线性无关,所以)5,4,32(133221αααααα +++R 3),,(321==αααR , 即 2132αα +,324αα +,135αα+ 也线性无关.2. 证明: (1) η为单位向量,1=∴ηηT ,A E E E E A T T T T T T T =-=+--=--=∴ηηηηηηηηηηηηηη)())((2.(2) 由(1)知,A A =2, 即 O E A A =-)(,3)()(≤-+∴E A R A R ,η为单位向量,O E A T ≠-=-∴ηη , 1)(≥-E A R ,从而32)(<≤A R , 所以0=A , 故A 不可逆.另一证法: 0)(=-=-=-=ηηηηηηηηηηT T E A ,的非零解,为线性方程组0=∴ηηA所以0=A , 故A 不可逆.南京工程学院期末试卷(第一套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院试卷共 6 页第 4 页南京工程学院期末试卷(第二套)共6 页第1页课程所属部门:基础部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科南京工程学院期末试卷(第三套)共6 页第1页课程所属部门:数理部课程名称:线性代数A 考试方式:闭卷(A卷)使用班级:工科本科线性代数 期末试卷(A 卷)一、(本大题共8小题,每题3分,共24分)1. 设B A ,均为n 阶方阵,则下面各式正确的是----------------------------------( C ) (A)TTTB A AB =)( (B) 222)(B A AB = (C) || ||AB BA = (D)AB BA = 2. 下列命题正确的是--------------------------------------------------------------------( C ) (A) 若02=A ,则0=A (B) 若A A =2,则0=A 或E A = (C) 若E A =,则E A n = (D) 若E A =2,则E A ±=3. 若行列式的所有元素都变号,则--------------------------------------------------( D ) (A) 行列式一定变号 (B) 行列式一定不变号 (C) 偶阶行列式变号 (D) 奇阶行列式变号4. 设k c c c b b b a a a =321321321,则112311231123232323a a a a b b b b c c c c ++=+-------------------------------( B ) (A) k 6 (B) k 3 (C) k 2 (D) k5. 若某线性方程组的系数行列式为零,则该方程组------------------------------( D ) (A) 有唯一解 (B) 有非零解 (C) 无解 (D) 有非零解或无解6.已知TT T t ),3,1(,)3,2,1(,)1,1,1(321===ααα线性相关的,则t =-----( B )(A) 4 (B) 5 (C) 6 (D) 77. 设方阵A 相似于(1,1,1)diag -,则10A =---------------------------------------- ( A )(A) E (B) 10E (C) E - (D) 10E - 8. 设A 为n 阶方阵,则下列说法中正确的是--------------------------------------( B ) (A) 若A 可对角化,则A 为实对称阵 (B) 若A 为实对称阵,则A 可对角化 (C) 若A 可对角化,则A 必可逆 (D) 若A 可逆,则A 可对角化二、填空题(本大题共4小题,每题4分,共16分)1.设2110A ⎛⎫=⎪-⎝⎭,则*A =0112-⎛⎫ ⎪⎝⎭,1A-=0112-⎛⎫ ⎪⎝⎭。
线性代数期末考试试卷及答案
一、 填空题(每空3分,共15分)1、设A 为n 阶方阵,且3A =,则|3A |= 。
2、设矩阵5678A ⎡⎤=⎢⎥⎣⎦,则A *= 。
(其中A *是A 的伴随矩阵) 3、已知n 阶矩阵A 满足2A A =,则A 的特征值为 。
4、n 阶方阵A 与对角矩阵相似的充要条件是 。
5、二次型22212312133428f x x x x x x x =-+-+的实对称矩阵为 。
二、选择题(每小题3分,共15分)1、12021k k +≠+的充要条件是( )(A )1k ≠ (B )3k ≠-(C )1k ≠且3k ≠- (D )1k ≠或3k ≠-2、若111221226a a a a =,则121122212020021a a a a --的值为( ) ()A 12 ()B -12 ()C 18 ()D 03、设,A B 都是n 阶方阵,且0AB =,则下列一定成立的是( )()A 0A =或0B = (),B A B 都不可逆 (),C A B 中至少有一个不可逆 ()0D A B += 4、向量组()12,,,2s s ααα≥ 线性相关的充分必要条件是( )()A 12,,,s ααα 中含有零向量。
()B 12,,,s ααα 中有两个向量的对应分量成比例。
()C 12,,,s ααα 中每一个向量都可由其余1s -个向量线性表示。
()D 12,,,s ααα 中至少有一个向量可由其余1s -个向量线性表示。
5、当ad ≠bc 时,1a b c d -⎡⎤⎢⎥⎣⎦=( ) (A )d c b a -⎡⎤⎢⎥-⎣⎦(B )1d b c a ad bc -⎡⎤⎢⎥--⎣⎦(C )1d b c a bc ad ⎡⎤⎢⎥--⎣⎦(D )1d c b a ad bc -⎡⎤⎢⎥--⎣⎦三、(8分)计算行列式411102*********23D -=-四、(11分)求向量组()()()()12342,1,1,1,1,1,7,10,3,1,1,2,8,5,9,11αααα==-=--=的一个最大无关组,并将其余向量用此最大无关组线性表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专业:年级:学号:姓名:成绩:
得分
一、选择题(本题共28分,每小题4分)
1.设 阶方阵 为实对称矩阵,则下列哪种说法是错误的(B)
(A) 的特征值为实数;
(B) 相似于一个对角阵;
(C) 合同于一个对角阵;
(D) 的所有特征向量两两正交。
6.设 为 的不同特征值,对应特征向量为 ,则 线性无关的充要条件为( )
(A) ;(B) ;
(C) ;(D) .
7.设 ,则( )
(A) 与 合同,但不相似;(B) 与 相似,但不合同;
(C) 与 既合同又相似;(D) 与 既不合同也不相似.
得分二、填空题(本题共24来自,每小题4分)1.二次型 是正定的,则 的取值范围是.
第3页,共6页
2.(9分)计算对称矩阵 的行列式的值.草稿区
3.(10分)已知矩阵 ,且方程组 存在两个不同的解;
(i)求 的值;
(ii)求 之通解。
第4页,共6页
草稿区
4.(10分)设 为三阶方阵, 为 的分别属于特征值 的特征向量,向量 满足
(I)证明: 线性无关;(II)令 ,求 .
第5页,共6页
2.设 ,则 的秩 为.
3.设三阶矩阵 的特征值为 ,若 ,则 =.
4.设向量 ,若 构成的向量组的秩为2,
则 .
5.设 阶矩阵 , ,且已知 ,则 =.
第2页,共6页
6.已知 与 相似, ,则 为矩阵.
(填“正定”、“半正定”、“负定”、“不定”之一)
得分
三、计算题(本题共38分)
1.(9分)设 , ,求 .
2.设 维列向量组 线性无关,则 维列向量组 线性无关的充要条件是(D)
(A)向量组 可由向量组 线性表示;
(B)向量组 可由向量组 线性表示;
(C)矩阵 与矩阵 等价;
(D)向量组 与向量组 等价。
3.设 阶方阵 的伴随矩阵为 ,则(C)
(A) 为可逆矩阵;(B)若 ,则 ;
(C)若 ,则 ;(D)若 ,则 。
得分
四、证明题(本题共10分)草稿区
1.(5分)证明:实数二次型 在 时的最大值为矩阵 的最大特征值。
.
2.(5分)设 是 阶实对称矩阵,证明: 的属于不同特征值的特征向量相互正交。
第6页,共6页
4.设 为 阶非零方阵, 为 阶单位矩阵, 则( )
(A) 不可逆, 不可逆;(B) 不可逆, 可逆;
(C) 可逆, 可逆;(D) 可逆, 不可逆.
第1页,共6页
5.实数二次型 为正定二次型的充分必要条件是( )
(A)负惯性指数全为零;(B) ;
(C)对于任意的 ,都有 ;(D)存在 阶矩阵 ,使得 .