电路电磁感应交流电
电磁感应、交流电及电磁波部分期中复习
电磁感应、交流电及电磁波部分期中复习(一)知识要点1. 感应电流(感应电动势)的方向——楞次定律楞次定律反映了在电磁感应现象中,感应电流的方向所应普遍遵守的客观规律,在对楞次定律的理解和使用上应注意以下几点:(1)在理解楞次定律时,首先应抓住“两个磁场”,即“引起感应电流的磁场”(通常称作原磁场)和“感应电流的磁场”,同时要明确,穿过导体回路的原磁通的变化是产生感应电流(或感应电动势)的原因,而感应电流所产生的磁场则要阻碍原磁通的变化。
其中阻碍原磁通的变化是指,原磁通增加时,感应电流的磁场阻碍原磁通的增加,此时,感应电流的磁场方向与原磁场方向相反;当原磁通要减弱时,感应电流的磁场阻碍原磁通的少,此时感应电流的磁场方向与原磁场方向相同,即“阻碍”应从感应电流的磁场的作用上来理解,同时还要注意“阻碍”并不是阻止,即在电磁感应现象中,虽然有感应电流的磁场对原磁通变化的阻碍作用,但导体回路中的磁通还是要变化的。
(2)在运用楞次定律判断感应电流的方向时,首先应查明原磁场的方向,这里所指原磁场的方向应是合磁场的方向,导体回路内的磁通应指的是净磁通。
例:如图1所示,两条平行的长直导线M 、N 中,通以同方向、同强度的稳恒电流,闭合导线框abcd 和两直导线在同一平面内,线框沿着与两导线垂直的方向由图中的位置I 移动到位置II 的过程中,导线框内的感应电流方向为( )A. 先是abcda 方向,后是adcba 方B. 先是adcba 方向,后是abcda 方向C. 始终是abcda 方向D. 始终是adcba 方向2. 自感现象 自感现象是由于导体自身的电流变化而产生的电磁感应现象,所以自感现象就是电磁感应现象的一个特例。
法拉第电磁感应定律和楞次定律在自感现象中都是适用的,在自感现象中所产生的自感电动势其作用总是阻碍导体中的电流变化的。
自感电动势的大小与电流变化率(tI ∆∆)成正比,自感系数是表示一个线圈电学特性的一个物理量,常用L 来表示,一个线圈自感系数(简称电感)大小由线圈自身的条件来决定。
电磁感应 交流电 (8)
例5 如图11-18所示,A,B是两个完全相同的灯泡,L是自感系数较大的线圈,其直流电阻忽略不计。
当电键K闭合时,下列说法正确的是 [ ]A.A比B先亮,然后A熄灭B.B比A先亮,然后B逐渐变暗,A逐渐变亮C.AB一齐亮,然后A熄灭D.A、人一齐亮.然后八逐渐变亮.D的亮度不变【错解】当电键闭合时.A灯与线圈L串联,B灯与R串联后分别并联于电源两端。
虽然K闭合瞬间线圈会产生自感,即阻碍通过线圈支路电流的的增加。
但A灯与L串联后并联接在电源上。
电源两端有电压,就会有电流,所以AB都应该同时亮起来。
只是闭合K的瞬间A灯不能达到应有的电流而亮度发暗。
K闭合一段时间后两灯达到同样的亮度。
所以A灯逐渐变亮,B灯亮度不发生变化,选D。
【错解原因】选择D选项时对自感现象理解不够。
在K闭合的瞬间,通过每盏灯的电流到底怎样变化不清楚。
【分析解答】电键闭合的瞬间,线圈由于自感产生自感电动势,其作用相当于一个电源。
这样对整个回路而言相当于两个电源共同作用在同一个回路中。
两个电源各自独立产生电流,实际上等于两个电流的叠加。
根据上述原理可在电路中标出两个电源各自独立产生的电流的方向。
图11-19a、b是两电源独立产生电流的流向图,C图是合并在一起的电流流向图。
由图可知、在A灯处原电流与感应电流反向,故A灯不能立刻亮起来。
在B灯处原电流与感应电流同向,实际电流为两者之和,大于原电流。
故B灯比正常发光亮(因正常发光时电流就是原电流)。
随着自感的减弱,感应电流减弱,A灯的实际电流增大,B灯实际电流减少,A变亮,B灯变暗,直到自感现象消失,两灯以原电流正常发光。
应选B。
高考物理知识点释义 电磁感应与电路结合问题
电磁感应与电路结合问题一、等效法处理电磁感应与电路结合问题解决电磁感应电路问题的关键就是借鉴或利用相似原型来启发理解和变换物理模型,即把电磁感应的问题等效转换成稳恒直流电路,把产生感应电动势的那部分导体等效为内电路.感应电动势的大小相当于电源电动势.其余部分相当于外电路,并画出等效电路图.此时,处理问题的方法与闭合电路求解基本一致,惟一要注意的是电磁感应现象中,有时导体两端有电压,但没有电流流过,这类似电源两端有电势差但没有接入电路时,电流为零. 二、电磁感应中的动力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:三、电磁感应中的能量、动量问题无论是使闭合回路的磁通量发生变化,还是使闭合回路的部分导体切割磁感线,都要消耗其它形式的能量,转化为回路中的电能。
这个过程不仅体现了能量的转化,而且保持守恒,使我们进一步认识包含电和磁在内的能量的转化和守恒定律的普遍性。
分析问题时,应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功,就可知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功,就可能有机械能参与转化;安培力做负功就将其它形式能转化为电能,做正功将电能转化为其它形式的能;然后利用能量守恒列出方程求解。
(一)电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
1、“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
F=BIL临界状态v 与a 方向关系运动状态的分析a 变化情况 F=ma 合外力 运动导体所受的安培力感应电流确定电源(E ,r ) rR E I +=3. “双杆”中两杆都做同方向上的加速运动。
电磁感应与交流电 有解析
本周练习编稿:陈伟审稿:厉璀琳责编:代洪电感感应部分:1.如图所示,两平行直导线通有相同大小的电流,一个矩形线圈与两直导线处在同一平面内且处在两导线的中央,则:A .两电流同向时,穿过线圈的磁通量为零;B .两电流反向时,穿过线圈的磁通量为零;C .两电流同向或反向,穿过线圈的滋通量都相等;D .因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零.2.如图,在同一铁芯上绕着两个线圈,单刀双掷开关原来接在点1 ,现把它从1扳向2,试判断在此过程中,在电阻R上的电流方向是:A .先由P→Q ,再由Q→PB .先由Q→P ,再由P→QC .始终由Q→PD .始终由P→Q3.如图所示,条形磁铁水平放置,一线框在条形磁铁正上方且线框平面与磁铁平行,线框由N端匀速移到S 端的过程中,下列说法正确的是:A .线圈中无感应电流;B .线圈感应电流的方向是abcd ;C.线圈中感应电流方向是先abcd 再dcba ;D .线圈中感应电流方向是先dcba 再abcd ;4.如图所示,导线框abcd 与导线在同一平面内,直导线通有恒定电流I,当线框由左向右匀速通过直导线时,线框中感应电流的方向是__________5.如图所示,MN 是一根固定的通电长直导线,电流方向向上.今将一金属线框abcd 放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘.当导线中的电流突然增大时,线框整体受力情况为:A .受力向右;B .受力向左;C ,受力向上;D .受力为零.6.如图(a)所示的螺线管,匝数n=1500 匝,横截面积S=20cm2,电阻r=1.5Ω,与螺线管串联的外电阻R1=3.5Ω,R2=25Ω,方向向右穿过螺线管的匀强磁的电功率和a、b两点的电势(设c点电势为零)。
场的磁感应强度按图(b)所示规律变化,试计算电阻R27.如图所示,圆形线圈和线框都置于竖直平面内,圆形线圈中的磁感强度B1及穿过此圆形线圈的磁通量都是均匀变化的.线框中的磁场是磁感强度B2=0.2T 的恒定匀强磁场,导线框是裸导线,导体ab可以在导线框上无摩擦地滑动.已知,ab的长度为10cm,质量为4g , 电阻为0.5Ω,回路其余部分的电阻忽略不计.试求当ab恰处于静止状态时穿过圆形线圈的磁通量的变化率,并确定B l是减弱还是增强·(磁场方向均为水平的)8.如图所示,面积为0.2m2的100匝线圈A 处在磁场中,磁场方向垂直于线圈平面.磁感强度随时间变化的规律是B=(6-0.2t)T ,已知R1=4Ω,R2=6Ω,电容C=30μF。
专题八 电磁感应 交流电和能量变化
专题八电磁感应交流电和能量变化高考要求:1、电磁感应现象,磁通量,法拉第电磁感应定律,楞次定律Ⅱ2、导体切割磁感线时的感应电动势,右手定则Ⅱ3、自感现象Ⅰ4、日光灯Ⅰ5、交流发电机及其产生正弦式电流的原理,正弦式电流的图象和三角函数表达,最大值与有效值,周期与频率Ⅱ6、电阻、电感和电容对交变电流的作用,感抗和容抗Ⅰ电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,突出考查考生理解能力、分析综合能力,尤其从实际问题中抽象概括构建物理模型的创新能力。
因此,本专题涉及的内容是历年高考考查的重点,年年都有考题,且多为计算题,分值高,难度大,对考生具有较高的区分度。
因此,本专题是复习中应强化训练的重要内容。
知识整合:1.受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住a =0时,速度v达最大值的特点。
2.功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.互动课堂棒的最大速度。
已知ab与导轨,导轨和金属棒的电阻都不计。
变化关系的图象可能的是:()问题再现问题3:电磁感应中的图像问题间距L=0.3m,长度足够长,,方向垂直于导轨平面向上的匀强磁场电阻,另一横跨在导轨间的金属棒与导轨间的滑动摩擦因数μ=0.5,当10m/s上滑,直至上升到最高(g取10m/s2),求上端电阻、电学元件的正确使用,对电路安全工作起着重要作用。
电磁学电磁感应与交流电
电磁学电磁感应与交流电电磁学是物理学中的一个重要分支,研究电荷与磁场之间的相互作用以及电流在电磁场中的行为。
其中,电磁感应与交流电是电磁学中的两个重要概念。
本文将分别从电磁感应和交流电两方面进行探讨。
一、电磁感应电磁感应是指当磁场的强度发生变化时,沿着磁场方向运动的导体中会产生感应电流。
电磁感应的基本原理是法拉第电磁感应定律,该定律描述了感应电动势与磁通量变化之间的关系。
在电磁感应中,磁场的强度发生变化是产生感应电动势的主要原因。
当导体与磁场相互运动或磁场的强度发生变化时,磁通量也会随之变化。
根据法拉第电磁感应定律,磁通量变化率与感应电动势成正比。
感应电动势的极性与磁通量变化率的方向有关,可以根据右手螺旋定则来确定。
除了磁场的强度变化外,导体的运动状态也会影响电磁感应效应。
当导体与磁场相对运动时,导体中会产生感应电流。
导体的速度越快,感应电流就越大。
二、交流电交流电是指电流方向和大小以一定规律周期性变化的电流。
在交流电中,电流的变化是由交流电源引起的,交流电源可以是交流电发电机。
交流电的基本特点是频率和振幅的变化。
在交流电中,频率表示单位时间内电流方向的变化次数,单位为赫兹(Hz)。
频率越高,电流方向变化的速度就越快。
振幅表示电流的最大值,通常用有效值来表示。
在交流电中,电流的大小是不断变化的,但是其平均值为零。
交流电的传输和应用离不开变压器。
变压器是一种基于电磁感应原理的电器设备,用于改变交流电的电压大小。
变压器由两个相互绝缘的线圈组成,通过磁场耦合实现电能的传输。
除了变压器之外,交流电在电力输送、家庭用电、电子设备等方面都有广泛应用。
交流电的传输效率高,可以通过变压器将电压升高或降低,满足不同场合的需求。
总结:电磁感应与交流电是电磁学中的重要内容。
电磁感应通过描述磁场变化引起的感应电动势,揭示了电磁场与导体相互作用的物理规律。
交流电则是电流方向和大小以一定规律周期性变化的电流,通过交流电源和变压器的配合,实现了电能的传输和应用。
电磁感应、交流电知识概述
电磁感应一、磁通量:1.定义:匀强场中的磁通量:Φ=BS ⊥(S ⊥为垂直磁场方向的面积),B 又叫做磁通密度,在数值上等于穿过垂直磁场方向上单位面积的磁感线条数。
2.物理意义:穿过某一面积的磁感线条数。
标量,有正负,比较绝对值。
3.单位:韦伯wb4.注意合磁通问题5.平动中磁通量的变化6.转动中磁通量的变化二、产生感应电流的条件:穿过闭合回路的磁通量发生变化。
注意研究电磁感应现象的演示实验(连成两个独立回路,大线圈与电流表相连,小线圈与电源相连)。
三、楞次定律:1.感应电流的磁场,总要阻碍引起感应电流的磁通量变化。
即阻碍原磁通变化。
注意阻碍不等于阻止。
2.感应电流的磁场总要阻碍产生感应电流的导体和引起感应电流的导体间的相对运动。
3.由于电磁感应而产生的安培力总指向阻碍磁通量变化的方向或阻碍相对运动的方向。
4.感应电动势总要阻碍通过导体的电流的变化(自感)四、法拉第电磁感应定律与右手定则1.法拉第电磁感应定律:感应电动势的大小与穿过这一回路的磁通量变化率成正比。
tn E ∆∆Φ=2.对法拉第电磁感应定律的理解⑴感生电动势:处在变化磁场中的导体是电源,电源内部的电流方向由负极指向正极。
感生电动势产生的原因是变化的磁场产生感生(涡旋)电场。
若B=B 0±kt ,则E=nSk ;若Φ是正(余)弦规律变化的,则t ∆∆Φ是余(正)弦规律变化的。
Φ=0, t∆∆Φ不一定为零;反之亦然。
(2)动生电动势:切割磁感线的导体是电源,电源内部的电流方向由负极指向正极,用右手定则判断电源内部的电流方向。
动生电动势产生的原因在于电荷在洛仑兹力的作用下发生定向运动。
①E=Blv 的推导;②E=Blv 中,l 是有效长;v 是垂直磁场方向上的相对速度;③B 、l 、v 两两垂直,若有任意两个平行,则E=0;注意电路的连接和有势无流的情况。
④平动物体,v 为平均速率,则E 为平均感应电动势;v 为瞬时速率,E 为瞬时感应电动势。
专题06电磁感应交流电中的图像(原卷版)
专题06 电磁感应、交流电中的图像目录一.电磁感应中的图像问题综述 (1)二.根据Bt图像的规律,选择Et图像、It图像 (1)三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、 (2)U-x图像和I-x图像 (2)四.根据自感、互感的规律,选择E t-图像、U t-图像、I t-图像 (4)五.借助图像分析电磁感应三定则一定律 (5)六.应用图像分析电磁感应的综合问题 (6)七.交流电的变化规律图像的应用 (8)A.B.C.D.【典例分析2】(2023·北京西城·统考二模)如图1所示,一闭合金属圆环处在垂直圆环平面的匀强磁场中.若磁感应强度B随时间t按如图2所示的规律变化,设图中磁感应强度垂直纸面向里的方向为正方向,环中感应电流沿顺时针方向为正方向,则环中电流随时间变化的图象是()A.B.C.D.三.根据线圈穿越磁场的规律,选择E t-图像、U t-图像、I t-图像或E-x图像、U-x图像和I-x图像【分析要点】线框匀速穿过方向不同的磁场,在刚进入或刚出磁场时,线框的感应电流大小相等,方向相同.当线框从一种磁场进入另一种磁场时,此时有两边分别切割磁感线,产生的感应电动势正好是两者之和,根据E=BLv,求出每条边产生的感应电动势,得到总的感应电动势.由闭合电路欧姆定律求出线框中的感应电流,此类电磁感应中图象的问题,近几年高考中出现的较为频繁,解答的关键是要掌握法拉第电磁感应定律、欧姆定律、楞次定律、安培力公式等等知识,要知道当线框左右两边都切割磁感线时,两个感应电动势方向相同,是串联关系.【典例分析1】(2024上·四川攀枝花·高三统考期末)如图所示,在边长为2l的正三角形ABC区域内有垂直直面向外的匀强磁场,一边长为l的菱形单匝金属线框abcd的底边与BC在同一直线上,菱形线框的∠=。
使线框保持恒定的速度沿平行于BC方向匀速穿过磁场区域。
电磁感应和交流电的产生机制
电磁感应和交流电的产生机制电磁感应是电磁学中一个重要的概念,它描述了电流产生磁场或磁场变化引起电流的现象。
而交流电则是一种在电路中流动的电流,其方向和大小都随时间变化。
那么,电磁感应和交流电是如何产生的呢?首先,我们需要了解电磁感应的基本原理。
根据法拉第电磁感应定律,当一个导体在一个磁场中运动时,会在导体两端引起电位差,从而产生电流。
这就是所谓的感应电流。
具体来说,当导体与磁场垂直运动时,感应电流的大小与导体的速度成正比;而当导体与磁场平行运动时,感应电流的大小与导体的长度成正比。
这个现象由于磁场线穿过闭合线圈时会引起线圈内的电流。
这种电磁感应的现象被广泛应用在发电机中。
发电机利用磁场线穿过线圈产生电流,通过旋转电磁铁(通常由大型涡轮与磁铁组成),使得磁场线与线圈交叉运动,从而产生交流电。
当电磁铁旋转时,磁场线会不断切割线圈,导致感应电流的产生。
这个原理也是交流电发电的基础。
而交流电的产生机制可以通过交变磁场的作用来解释。
在交变磁场中,磁场的大小和方向都会随时间的变化而改变。
在一个交变磁场中放置一个导线,磁场的变化会引起导线两端的电荷的分离,从而产生交流电。
这是由于磁场的变化会导致感应电流的产生,进而形成交流电。
这个现象也称为电磁感应现象。
交流电的特点是电流的方向和大小都会周期性地变化。
这是因为在交变磁场中,磁场线的方向和大小都会反复变化,进而引起导线两端电荷的反复分离。
这种周期性的电流变化就构成了交流电。
交流电的频率表示了单位时间内电流方向的变化次数,单位为赫兹(Hz)。
而交流电的幅值则表示了电流的最大值。
交流电在现代生活中起着重要的作用。
它被广泛应用在电力系统中,用于供电和传输电能。
而交流电还可以通过变压器进行变换,从而适应不同电压和功率的需要。
此外,交流电还广泛应用于电子设备、通信系统、照明和动力控制等领域。
综上所述,电磁感应和交流电的产生机制是密切相关的。
电磁感应是产生交流电的基础,而交流电又是在交变磁场中产生的。
电磁感应与交变电流
十二、电磁感应1.★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和.3.★楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)对楞次定律的理解①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量.②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少.(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★★★★ 4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsin θ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画等效电路. (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解.8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.②求回路中电流强度.③分析研究导体受力情况(包含安培力,用左手定则确定其方向).④列动力学方程或平衡方程求解.(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点.9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画出等效电路,求出回路中电阻消耗电功率表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.10.电磁感应中图像问题电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定.用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围.另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断.十三、交变电流1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流.按正弦规律变化的电动势、电流称为正弦交流电.2.正弦交流电 ----(1)函数式:e=E m sinωt (其中★E m =NBSω)(2)线圈平面与中性面重合时,磁通量最大,电动势为零,磁通量的变化率为零,线圈平面与中心面垂直时,磁通量为零,电动势最大,磁通量的变化率最大.(3)若从线圈平面和磁场方向平行时开始计时,交变电流的变化规律为i=I m cosωt.. (4)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
什么是交流电路?
什么是交流电路?交流电路是一种通过电磁感应的方式传输电能的电路系统。
它是现代生活中不可或缺的技术基础,广泛应用于工业、家庭和通信领域。
交流电路的原理以及其在电子设备中的作用对于我们理解电力传输和使用至关重要。
下面将从几个关键方面介绍交流电路的基本概念和原理。
一、交流电和直流电交流电是指电流方向周期性变化的电流,它与直流电的最显著差异在于电流方向的改变。
交流电的波形一般为正弦波,其特点是电流大小和方向围绕着零点交替变化。
而直流电则是电流方向始终不变的电流,波形一般为恒定的直线。
交流电的传输距离较远,损耗较小,适合用于长距离电力传输。
而直流电的传输距离较短,损耗较大,适合用于电子设备的供电。
二、交流电路的组成和作用交流电路由电源、负载和导线组成,其中电源提供能量,负载消耗能量,导线将能量传输到负载。
在交流电路中,电源通过改变电流方向进行能量传输,负载根据需要消耗电能,导线则起到传输作用。
交流电路通过合理的设计可以实现对电能的精确控制和分配,以满足各种不同的用电需求。
三、交流电路的基本元件交流电路的基本元件包括电阻、电容和电感,它们的作用和相互关系对于交流电路的性能具有重要影响。
电阻用于限制电流流动的大小,电容则用于储存和释放电能,电感则用于延迟电流的响应。
这三种元件在交流电路中起到不同作用,通过它们的组合和调整可以实现对交流电路的控制和优化。
四、交流电路的应用交流电路在现代电子设备中有着广泛的应用。
例如,交流电路可以用于电力系统中的变压器和发电机,实现电能的高效传输和转换。
交流电路还用于家庭中的电灯、电视、冰箱等常见电器设备,为人们提供生活所需的便利。
此外,交流电路在通信系统中的放大器和滤波器等部件中也发挥着重要作用,确保信号传输的稳定性和质量。
五、交流电路的未来发展随着科技的进步和电子技术的不断革新,交流电路正在不断发展和改进。
未来,交流电路有望更加高效、稳定和可靠,适应社会对电力传输和供电的不断追求。
电磁感应 交流电
电磁感应交流电
[知识结构]
[重点知识回顾]
一. 法拉第电磁感应定律
1. 引起某一回路磁通量变化的原因
(1)磁感强度的变化
(2)线圈面积的变化
(3)线圈平面的法线方向与磁场方向夹角的变化
2. 电磁感应现象中能的转化
感应电流做功,消耗了电能。
消耗的电能是从其它形式的能转化而来的。
在转化和转移中能的总量是保持不变的。
3. 法拉第电磁感应定律:
(1)决定感应电动势大小因素:穿过这个闭合电路中的磁通量的变化快慢
(2)注意区分磁通量中,磁通量的变化量,磁通量的变化率的不同
—磁通量,—磁通量的变化量,
(3)定律内容:感应电动势大小决定于磁通量的变化率的大小,与穿过这一电路磁通量的变化率成正比。
(4)感应电动势大小的计算式:
注:(1)若闭合电路是一个匝的线圈,线圈中的总电动势可看作是一个线圈感应电动势的n倍。
(2)E是时间内的平均感应电动势
(5)几种题型
①线圈面积S不变,磁感应强度均匀变化:
②磁感强度不变,线圈面积均匀变化:
③B、S均不变,线圈绕过线圈平面内的某一轴转动时,计算式为:。
专题四电路与电磁感应第2讲电磁感应 交流电
目录
(2)通过分析,可得电路图为
图 4-2-6 (3)设电路中的总电阻为 R 总,根据电路图可知, 1 4 R 总=R+ R= R ④ 3 3 ab 两端电势差 E 1 Uab =E-IR=E- R= E≈1.2×10- 2 V ⑤ R总 4
目录
设 ab 离开磁场区域的时刻为 t1,下一根金属条进入磁场区 域的时刻为 t2, θ 1 t1 = = s ⑥ ω 12 π 2 1 t2 = = s ⑦ ω 4 设轮子转一圈的时间为 T, 2π T= =1 s ⑧ ω 在 T=1 s 内,金属条有四次进出,后三次与第一次相同.⑨ 由⑤、⑥、⑦、⑧、⑨可画出如下 Uab-t 图象.
目录
2.交变电流瞬时值表达式书写的基本思路 (1)根据已知图象或由公式Em=NBSω求出相应峰值. (2)明确线圈的初始位置,找出对应的函数关系式. ①线圈从中性面开始计时,函数表达式为i=Imsinωt. ②线圈从垂直中性面开始计时,函数表达式为i=Imcosωt.
目录
例3 (2012· 高考安徽卷)如图4-2-9甲是交流发电机模型 示意图.在磁感应强度为B的匀强磁场中,有一矩形线圈 abcd可绕线圈平面内垂直于磁感线的轴OO′转动,由线圈 引出的导线ae和df分别与两个跟线圈一起绕OO′转动的金
目录
热点三
交变电路综合分析
1.交变电流的“四值” 最大值 ⇒ Em =NBSω ⇒ 计算电容器的耐压值 计算闪光电器 瞬时值 ⇒ e=Em sinωt ⇒ 的闪光时间等 电表的读数及计 正余弦交流 ⇒ E=Em / 2 ⇒ 算电热、电功及保 电的有效值 险丝的熔断电流 平均值 ⇒ E =NΔΦ/Δt ⇒ 计算通过导体的电荷量
通量的变化率较大,所以感应电流的反向最大值大于正向
法拉第电磁感应定律交流电
第四章电磁感应第一、二节划时代的发现探究感应电流的产生条件【学习目标】学习时间:1学时1.了解奥斯特“电生磁”的实验和法拉第“磁生电”的实验,体会对称性思维在物理学发现中的作用;2.知道电磁感应和感应电流的定义;3.能根据实验事实归纳产生感应电流的条件;4.进一步认识磁通量的概念,会运用产生感应电流的条件判断具体实例中有无感应电流。
【静思独学】阅读教材思考下面几个问题:(1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景?(2)电流磁效应的发现有何意义?谈谈自己的感受。
(3)法拉第做了大量实验都是以失败告终,失败的原因是什么?(4)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么?(5)总结统一性思维和对称性思维在物理学发现中所发挥的作用。
问题二:阅读教材,思考并回答练习册P10—11问题一和问题三。
问题三:阅读教材,思考并回答练习册P11问题四。
{基础自测}1.练习册P6、P11自主测评2.教材P7—8:问题与练习:1、2【群思互学•展示共学】1.回答问题一中各个小问;2.教材P7—8:问题与练习:3、4、5、6;3.练习册P13—14:4、6、7、8。
【拓展应用】1.教材P8:问题与练习:7;2.练习册P13—14:9、11。
第三节 楞次定律【学习目标】 学习时间:1学时1.理解楞次定律的内容,理解楞次定律中“阻碍”二字的含义,能初步应用楞次定律判定感应电流方向,理解楞次定律与能量守恒定律是相符的;2.通过实验教学,感受楞次定律的实验推导过程,逐渐培养自己的观察实验,分析、归纳、总结物理规律的能力;3.能够熟练应用楞次定律判断感应电流的方向4.掌握右手定则,并理解右手定则实际上为楞次定律的一种具体表现形式。
【静思独学】 问题一: 复习思考:1、要产生感应电流必须具备什么样的条件?2、磁通量的变化包括哪情况? 问题二:阅读教材,完成教材P10表2及下表,思考并回答练习册P18问题二。
2023版高考物理二轮总复习第1部分题突破方略专题4电路与电磁感应第1讲直流电路与交流电路课件
命题热点•巧突破
考点一 直流电路的计算与分析
考向1 直流电路的动态分析
1.(2021·广东广州模拟)如图所示的电路中,当变阻器R1的滑动触
头向上滑动时,A、B两灯亮度的变化情况为
(A )
A.A灯和B灯都变亮
B.A灯和B灯都变暗
C.A灯变亮,B灯变暗
D.A灯变暗,B灯变亮
【解析】 “串反并同”指的是在一个闭合回路中某一个电学元件 的阻值发生了变化,则与其并联的电学元件的电学量的变化趋势与其相 同,与其串联的电学元件的电学量的变化趋势与其相反,这里的并联是 指两电学元件之间没有电流的流进流出关系,串联指的是电流有流进流 出关系.当变阻器R1的滑动触头向上滑动时,滑动变阻器的阻值增大, 根据“串反并同”规律可知A、B灯泡与之并联,则两灯都变亮,所以A 正确,B、C、D错误.故选A.
则下列描述电阻R两端电压UR随时间t变化的图象中,正确的是 (A )
【解析】 当电容器两端电压变化时,电容器由于充放电,电路中 会有电流 I=ΔΔQt =CΔΔtU,而充电放电时,电流方向相反,电阻 R 两端电 压 UR=IR=CΔΔtUR,由图(b)可知,(1~2)s 电容器充电,(3~5)s 过程电 容放电,且放电时电流为充电时的一半,故选 A.
( AD )
A.若将电容器上极板上移少许,则液滴的电势能增大
B.若减小电容器两极板的正对面积,则液滴向下加速运动
C.闭合 S,则电路稳定后电容器所带电荷量比原来增加C3E
D.闭合 S,若电路稳定后液滴还在板间运动,则其加速度大小为13g
【解析】 若将电容器上极板上移少许,和电容并联部分电路没有 发生改变,电容器两端的电压不变,根据 E=Ud 可知电场强度变小,则油 滴所受向上电场力变小,油滴向下运动,电场力做负功,油滴的电势能 增大,故 A 正确;若减小电容器两极板的正对面积,不改变极板间的电 场强度,则油滴所受向上电场力不变,油滴仍然静止,故 B 错误;
电磁感应 交流电 (20)
如图所示的闭合电路中,改变滑动变阻器的电阻R可以改变伏特表和安培表的读数及电灯L的功率,电灯L的电阻为R L,以下说法正确的是A. R变大,则伏特表和安培表的读数都变大B. R变小,则伏特表和安培表的读数都变大C.调节滑动变阻器R=r-R L时,电灯L可达到最亮D. R=0时,伏特表和安培表的读数乘积最大7.如图所示,两平行足够长的金属导轨水平放置,处于范围足够大,方向竖直向下的匀强磁场中,磁感强度为B,左侧接有电阻R,金属棒PQ垂直导轨放置,质量为m,长度为L,电阻为r,电路其他部分电阻为零。
现在突然给棒一个向右的速度V0,棒开始运动,直至棒静止的过程中A.可以确定回路最大瞬时电功率及全过程棒中产生的热量B.棒是做匀减速运动C.棒是做加速度不断减小的减速运动D.已知棒某时刻速度,可以确定该时刻棒的加速度8.如图所示,AO斜面与OC水平面相交处为一小段圆弧,斜面与水平面的动摩擦因数相等,一小滑块从A点由静止释放,最终停在水平面上的B点,若保持A点位置不变,改变斜面倾角,斜面与水平面交点移到O/,滑块仍然从A点由静止释放,则A.滑块进入水平面后最终仍然停在B点B.滑块进入水平面后可能停在B点的右侧C.滑块A O/过程克服摩擦力所做功大于AO过程克服摩擦力所做功D.要让小滑块滑到水平面上,O/点不能超过B点9.1924年法国物理学家德布罗意提出物质波的概念,任何一个运动着的物体,小到电子,大到行星、恒星都有一种波与之对应,波长为λ=h/p, p为物体运动的动量,h是普朗克常数。
同样光也具有粒子性,光子的动量为: p=h/λ。
根据上述观点可以证明一个静止的自由电子如果完全吸收一个γ光子,会发生下列情况:设光子频率为ν,则E=hν , p=h/λ=hν/c,被电子吸收后有hν=m e v2/2hν/c= m e v解得:v=2c,电子的速度为两倍光速,显然这是不可能的。
关于上述过程以下说法正确的是A.因为在微观世界动量守恒定律不适用,上述论证错误,所以电子有可能完全吸收一个γ光子B.因为在微观世界能量守恒定律不适用,上述论证错误,所以电子有可能完全吸收一个γ光子C.动量守恒定律、能量守恒定律是自然界中普遍适用规律,所以唯一结论是电子不可能完全吸收一个γ光子D.若γ光子与一个静止的自由电子发生作用,则γ光子被电子散射后频率会减小10.如图所示,全反射玻璃三棱镜,折射率n= ,一束光线垂直于ac边从点O射入棱镜,现在让入射光线绕O点旋转改变入射方向,以下结论正确的是A.若入射光线从图示位置顺时针旋转,则折射光线将从ab边射出且向右移动B.若入射光线从图示位置顺时针旋转,则折射光线将会从ab、bc两边射出 C.若入射光线从图示位置逆时针旋转,则折射光线将从ab边射出且向右移动D.若入射光线从图示位置逆时针旋转,则折射光线将从ac边射出且向下偏转移动,。
电磁感应 交流电(9)
例6如图 11-20所示光滑平行金属轨道abcd,轨道的水平部分bcd处于竖直向上的匀强磁场中,bc部分平行导轨宽度是cd部分的2倍,轨道足够长。
将质量相同的金属棒P和Q分别置于轨道的ab段和cd段。
P棒位于距水平轨道高为h的地方,放开P棒,使其自由下滑,求P棒和Q 棒的最终速度。
【错解】
设P,Q棒的质量为m,长度分别为2l和l,磁感强度为B,P棒进入水平轨道的速度为v0,对于P棒,运用机械能守恒定律得
当P棒进入水平轨道后,切割磁感线产生感应电流。
P棒受到安培力作用而减速,Q棒受到安培力而加速,Q棒运动后也将产生感应电动势,与P棒感应电动势反向,因此回路中的电流将减小。
最终达到匀速运动时,回路的电流为零,所以
εP=εQ
即2Blv P=Blv Q
2v p=v Q
对于P,Q棒,运用动量守恒定律得到
mv0=mv p+mv Q
【错解原因】
错解中对P,Q的运动过程分析是正确的,但在最后求速度时运用动量守恒定律出现错误。
因为当P,Q在水平轨道上运动时,它们所受到的合力并不为零。
F P=2Bll F Q=Bll(设I为回路中的电流),因此P,Q组成的系统动量不守恒。
【分析解答】
设P棒从进入水平轨道开始到速度稳定所用的时间为△t,P,Q
对PQ分别应用动量定理得
【评析】
运用动量守恒定律和机械能守恒定律之前,要判断题目所给的过程是否满足守恒的条件。
动量守恒的条件是:系统所受的合外力为零,或者是在某一方向上所受的合外力为零,则系统在该方向上动量的分量守恒。
计算题(4)电磁感应-交流电
重点题型训练:电磁感应交流电1:如图所示,电路甲、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。
则()A.在电路甲中,断开S,D将逐渐变暗B.在电路甲中,断开S,D将先变得更亮,然后渐渐变暗C.在电路乙中,断开S,D将渐渐变暗D.在电路乙中,断开S,D将变得更亮,然后渐渐变暗2.线圈在匀强磁场中匀速转动,产生交变电流的图象如图所示,从图可知:()A.在A和C时刻线圈处于中性面位置B.在B和D时刻穿过线圈的磁通量为零C.在A时刻到D时刻线圈转过的角度为πradD.若从O时刻到D时刻经过0.02s,则在1s内交变电流的方向改变100次3如图所示为理想变压器原线圈所接交流电压的图象。
原、副线圈匝数比n1∶n2=10∶1,原线圈电路中电流为1A,下列说法正确的是( )A.变压器输出端的交流电频率为100HzB.变压器输出端的电流为102AC.变压器输出端电压为22VD.变压器的输出功率为2002W4:圆形线圈P静止在水平桌面上,其正上方悬挂一相同的线圈Q.P和Q共轴,Q中通有变化电流, 电流随时间变化规律如图.P所受的重力为G,桌面对P的支持力为N,则( )A. t1时刻,N>GB. t2时刻,N>GC. t3时刻,N<GD. t4时刻,N=G5、把一线框从一匀强磁场中拉出,如图所示。
第一次拉出的速率是 v ,第二次拉出速率是 2 v ,其它条件不变,则前后两次拉力大小之比是,拉力功率之比是___________,线框产生的热量之比是____________,通过导线截面的电量之比是_______________ 。
6、通过某电阻的周期性交变电流的图象如右。
该交流电的有效值I= ________7、在如图甲所示的电路中,螺线管匝数n = 1500匝,横截面积S = 20cm2。
螺线管导线电阻r = 1.0Ω,R1 = 4.0Ω,R2 = 5.0Ω,C=30μF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一只低压教学电源输出的交变电压瞬时值e =102sin314t (V),以下关于该电源的说法正确的是 AA .该电源能使“10V2W ”的灯泡正常发光B .该电源的交变电压的周期是314sC .该电源在t =0.01s 时电压达到最大值D .接入一个10Ω的电阻,1分钟内电阻上产生的热量是1200J 10.如图所示,为两个有界匀强磁场,磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L ,距磁场区域的左侧L 处,有一边长为L 的正方形导体线框,总电阻为R ,且线框平面与磁场方向垂直,现用外力F 使线框以速度v 匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E 为正,磁感线垂直纸面向里时磁通量Φ的方向为正,外力F 向右为正。
则以下关于线框中的磁通量Φ、感应电动势E 、外力F 和电功率P 随时间变化的图象正确的是( C )18.如图甲所示,理想变压器原、副线圈的匝数比为10︰1,电阻R=22Ω,各电表均为理想电表。
原线圈输入电压的变化规律如图乙所示。
下列说法正确的是( BD )A .该输入电压的频率为100HzB .电压表的示数为22VC .电流表的示数是1AD .电阻R 消耗的电功率是22W24.(22分)如图甲所示,间距为L 、电阻不计的光滑导轨固定在倾角为θ的斜面上。
在MNPQ 矩形区域内有方向垂直于斜面向上、磁感应强度大小为B ;在CDEF 矩形区域内有方向垂直于斜面的匀强磁场,磁感应强度大小为B 1, B 1随时间t 变化的规律如图4-11乙所示,其中B 1的最大值为2B 。
现将一根质量为M 、电阻为R 、长为L 的金属细棒cd 跨放在MNPQ 区域间的两导轨上,并把它按住使其静止。
在t = 0时刻,让另一根长为L 的金属细棒ab 从CD 上方的导轨上由静止开始下滑,同时释放cd 棒。
已知CF 长度为2L ,两根细棒均与导轨良好接触,在ab 从图中位置运动到EF 处的过程中,cd 棒始终静止不动,重力加速度为g ;t x 是未知量。
(1)求通过ab 棒的电流,并确定CDEF 矩形区域内磁场的方向; (2)当ab 棒进入CDEF 区域后,求cd 棒消耗的电功率;图甲图乙(3)能求出ab 棒刚下滑时离CD 的距离吗?若不能,则说明理由;若能,请列方程求解,并说明每一个方程的解题依据。
(4)根据以上信息,还可以求出哪些物理量?请说明理由(至少写出两个物理量及其求解过程)。
(24(22分)(1)θsin Mg BIL =(2分)BL Mg I /sin θ= (2分)CDEF 区域区域内的磁场方向垂直于斜面向下(1分)(2) R I P 2= (1分) R BL Mg P 2)/sin (θ= (2分)(3)xt LV 2=(1分) x = L (1分) (4)根据以上信息,还可以求出ab 刚好到达CDEF 区域的边界CD 处的速度大小、ab 到达CDEF 区域的边界CD 处所需的时间、ab 棒的质量及电阻等。
(评分细则:至少写出两个物理量的求解过程,每求出一个物理量给2分,满分为4分)19.如图所示,平行金属导轨MN 和PQ 与水平面成θ角,导轨两端各与阻值均为R 的固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面。
质量为m 、电阻为R/2的导体棒以一定的初速度沿导轨向上滑动,在滑动过程中导体棒与金属导轨始终垂直并接触良好。
已知t 1时刻导体棒上滑的速度为v 1,此时导体棒所受安培力的功率为P 1;t 2时刻导体棒上滑的速度为v 2,此时电阻R 2消耗的电功率为P 2,忽略平行金属导轨MN 和PQ 的电阻且不计空气阻力。
则 ( C )A .t 1时刻电阻R 1的功率为P 1/2B t 2时刻导体棒的电功率为4P 2C .t 2时刻导体棒受到的安培力为4P 2/v 2D .t 1~t 2这段时间内整个回路产生的电热22121122Q mv mv =-3.如图甲所示,在变压器的输入端串接上一只整流二极管D ,在变压器输入端加上如图乙所示的交变电压u1=Um1sin ωt ,设t=0时刻为a “+”、b “-”,则副线圈输出的电压的波形(设c端电势高于d 端电势时的电压为正)是下图中的 B10.(16分)如图(甲)所示,一对平行光滑轨道放置在水平面上,两轨道相距l=1m ,两轨道之间用R=2Ω的电阻连接,一质量m=0.5kg 的导体杆与两轨道垂直,静止放在轨道上,杆及轨道的电阻均可忽略不计,整个装置处于磁感应强度B=2T 的匀强磁场中,磁场方向垂直轨道平面向上,现用水平拉力沿轨道方向拉导体杆,拉力F 与导体杆运动的位移s 间的关系如图(乙)所示,当拉力达到最大时,导体杆开始做匀速运动,当位移s=2.5m 时撤去拉力,导体杆又滑行了s ′=2m 停下,求: (1)导体杆运动过程中的最大速度;(2)拉力F 作用过程中,电阻R 上产生的焦耳热。
(1)vm=8m/s(2)J W F 305.0162)166(21=⨯+⨯+=电阻R 上产生的焦耳热Q=WF -21mvm2=30-16=14J8.如图所示,两光滑平行导轨放置在匀强磁场中,磁场与导轨所在的平面垂直,金属棒ab 可沿导轨自由移动,导轨左端接一定值电阻R,金属棒和导轨的电阻不计.金属棒在平行于导轨的外力F 作用下从静止开始沿导轨运动,若保持拉力恒定,经过时间t l 后,速度为V ,加速度为a l ,最终以2V 做匀速运动;若保持拉力的功率恒定,经过时间t 2后,速度变为V,加速度为a 2,最终也以2 V 做匀速运动,则( C ) A .t l =t 2 B .t l <t 2 C .a 2=3a l D .a 2=4a l10.如图所示,线圈abcd每边长l=0.20m,线圈质量m1=0.10kg、电阻R=0.10Ω,砝码质量m2=0.14kg.线圈上方的匀强磁场磁感强度B=0.5T,方向垂直线圈平面向里,磁场区域的宽度为h=l=0.20m.砝码从某一位置下降,使ab边进入磁场开始做匀速运动.求:(1)线圈做匀速运动的速度.(2)从ab进入磁场到线圈穿出磁场过程中产生的热量.V=4m/s Q=0.16J5.如图所示,L为自感系数很大,直流电阻不计的线圈,D1、D2、D3为三个完全相同的灯泡,E为内阻不计的电源,在t=0时刻闭合开关S,当电路稳定后D1、D2两灯的电流分别为I1、I2,当时刻为t1时断开开关S,若规定电路稳定时流过D1、D2的电流方向为电流的正方向,则下图能正确定性描述电灯电流i与时间t关系的是D8.如图所示,理想变压器的原、副线圈匝数之比为10:1,R=1 ,与原线圈相连的熔断器(保险丝)的熔断电流为1A,通过副线圈电压传感器测得副线圈电压图像如图所示,则下列说法正确的是BD220VA.原线圈输入电压的有效值为2B.副线圈两端交变电压的频率为50 HzC.原、副线圈铁芯中磁通量变化率之比为10:1D.为保证电路安全工作,滑动变阻器的阻值不得小于1.2Ω9.如图所示,竖直放置的两块很大的平行金属板a、b,相距为d,ab间的电场强度为E,今有一带正电的微粒从a板下缘以初速度v0竖直向上射入电场,当它飞到b板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d的狭缝穿过b板而进入bc区域,bc区域的宽度也为d ,所加电场大小为E ,方向竖直向上,磁感强度方向垂直纸面向里,磁场磁感应强度大小等于E / v 0 ,重力加速度为g ,则下列关于粒子运动的有关说法正确的是ABDA.粒子在ab 区域的运动时间为gv 0B.粒子在bc 区域中做匀速圆周运动,圆周半径r=2dC.粒子在bc 区域中做匀速圆周运动,运动时间为06v dπ D.粒子在ab 、bc 区域中运动的总时间为3)6(v d+π 13.(本题15分)如图所示,两平行光滑金属导轨MN 、PQ 被固定在同一水平面内,间距为L ,电阻不计。
导轨的M 、P 两端用导线连接一定值电阻,阻值为R ,在PM 的右侧0到2x 0区域里有方向竖直向下的磁场,其磁感应强度B 随坐标x 的变化规律为B =kx (k 为正常数)。
一直导体棒ab 长度为L ,电阻为R ,其两端放在导轨上且静止在x =x 0处,现对导体棒持续施加一作用力F (图中未画出)使导体棒从静止开始做沿x 正方向加速度为a 的匀加速运动,求:(用L 、k 、R 、x 0、a 表示):(1)导体棒在磁场中运动到2x 0时导体棒上所消耗的电功率 (2)导体棒离开磁场瞬间导体棒的加速度a '的大小 (3)导体棒从x 0运动到2x 0过程中通过电阻R 的电量Ra L x k R )R R E (P 230222=+=:mRax L x k a L mRax BL Ba a 0220202222+=+='⑶ RLkx R Lx B q 432200==4、如图所示,原、副线圈匝数比为100∶1的理想变压器,b 是原线圈的中心抽头,电压表和电流表均为理想电表,从某时刻开始在原线圈c 、d 两端加上交变电压,其瞬时值表达式为u 1=310sin314t (V ),则( B )A .当单刀双掷开关与a 连接时,电压表的示 数为3.1VB .副线圈两端的电压频率为50HzC .单刀双掷开关与a 连接,在滑动变阻器触头P 向上移动的 过程中,电压表和电流表的示数均变小D .当单刀双掷开关由a 扳向b 时,原线圈输入功率变小10.电源E 、开关S 、定值电阻R 、小灯泡A 和带铁芯的线圈L (其电阻可忽略),连成如图所示的电路,闭合开关S ,电路稳定时,小灯泡A 发光,则断开S 瞬间,以下说法正确的是 (B )A.小灯泡A立即熄灭B.小灯泡A逐渐变暗,且电流方向与断开S前相同C.小灯泡A逐渐变暗,且电流方向与断开S前相反D.小灯泡A先变得比断开S前更亮,然后逐渐变暗11.如图所示的电路中,电源电动势为E,内阻为r,R为可变电阻,其余电阻为定值电阻。
则开关S闭合后,当R变小时,以下说法正确的是( B )A.电阻R1的功率变小B.电阻R2的功率变小C.电阻R3的功率变大D.电阻R4的功率变小17.(14分)如图1所示,在坐标系xOy中,在-L≤x<0区域存在强弱可变化的磁场B1,在0≤x≤2L区域存在匀强磁场,磁感应强度B2=2.0T,磁场方向均垂直于纸面向里。
一边长为L=0.2m、总电阻为R=0.8Ω的正方形线框静止于xOy平面内,线框的一边与y轴重合。
(1)若磁场B1的磁感应强度在t=0.5s的时间内由2T均匀减小至0,求线框在这段时间内产生的电热为多少?(2)撤去磁场B1,让线框从静止开始以加速度a=0.4m/s2沿x轴正方向做匀加速直线运动,求线框刚好全部出磁场前瞬间的发热功率。