最新高三第一轮复习——函数的基本性质

合集下载

高三数学第一轮复习单元讲座第03讲 函数的基本性质

高三数学第一轮复习单元讲座第03讲 函数的基本性质

高三数学第一轮复习3—函数的基本性质一.知识整合1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

3、高三一轮复习:函数的概念与性质

3、高三一轮复习:函数的概念与性质

3、高三一轮复习:函数的概念与性质-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN函数的概念【知识要点】 一、函数的概念:1、定义:(x y 22=、22x y =、||x y =、x y =||都是函数吗)2、函数的三要素:定义域、对应法则、值域;3、图像特征:在函数的定义域内作垂直于x 轴的直线,它与函数图像有且只有一个交点;4、表示方法:解析法、图像法、列表法等;5、函数的运算:函数的和与积(关键:定义域求交集)。

二、定义域(集合或区间表示): 1、分式)()(x g x f y =:分母0)(≠x g ; 2、偶次根式n x f y 2)(=(∈n N *):被开方数0)(≥x f ; 3、零次幂0)]([x f y =:底数0)(≠x f ;4、对数)(log x f y a =(0>a 且1≠a ):真数0)(>x f ;5、正切)(tan x f y =:2ππ)(+≠k x f ,∈k Z ; 此外,要注意实际问题中的背景意义。

【例题解析】1、判断下列函数是否是同一函数?(1)55x y =与2x y =;(否) (2)x y e ln =与x y ln e = ;(否) (3)3)3)(1(++-=x x x y 与1-=x y ;(否) (4)0x y =与01xy =;(是)(5)33-+=x x y 与33-+=x x y ;(否) (6)2lg x y =与x y lg 2=;(否)(7)12)(2-=x x f 与12)(2-=t t g ;(是) (8)x y cos =与||cos x y =。

(是)2、求下列函数的定义域:(1))|lg(|12x x x y --=; (⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--0,2121,1 )(2))45(log )1(x x y -=+; ()5log ,0()0,1(4 -) (3)05.0)32(51log -++-=x x x y ; (⎪⎭⎫⎝⎛∞+⎪⎭⎫ ⎝⎛,2323,1 ) (4))]23(lg[log 21--=x y 。

高三数学一轮复习必备精品3:函数基本性质 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

高三数学一轮复习必备精品3:函数基本性质  【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第3讲 函数根本性质备注:【高三数学一轮复习必备精品共42讲 全部免费 欢送下载】一.【课标要求】1.通过已学过的函数特别是二次函数,理解函数的单调性、最大〔小〕值及其几何意义;2.结合具体函数,了解奇偶性的含义;二.【命题走向】从近几年来看,函数性质是高考命题的主线索,不管是何种函数,必须与函数性质相关联,因此在复习中,针对不同的函数类别及综合情况,归纳出肯定的复习线索预测2021年高考的出题思路是:通过研究函数的定义域、值域,进而研究函数的单调性、奇偶性以及最值预测明年的对本讲的考察是: 〔1〕考察函数性质的选择题1个或1个填空题,还可能结合导数出研究函数性质的大题; 〔2〕以中等难度、题型新颖的试题综合考察函数的性质,以组合形式、一题多角度考察函数性质估计成为新的热点 三.【要点精讲】1.奇偶性〔1〕定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也肯定是定义域内的一个自变量〔即定义域关于原点对称〕。

〔2〕利用定义推断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并推断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 假设f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 假设f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数 〔3〕简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇 2.单调性〔1〕定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕;注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) 〔2〕如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有〔严格的〕单调性,区间D 叫做y =f (x )的单调区间。

高考一轮复习资料函数的基本性质知识点总结(高中老师手写笔记二)

高考一轮复习资料函数的基本性质知识点总结(高中老师手写笔记二)

高考一轮复习资料函数的基本性质知识点总结(高中老师手写
笔记二)
函数的学习贯穿于整个高中数学,占有及其重要的位置。

函数的基本性质是函数的基本主脉,是函数的知识主线,因此,我们要整体把握函数基本性质的基础知识、基本技能,在头脑中要有一个有效的知识网络。

高考大纲对函数的基本性质的要求是:(1)理解函数的单调性、最大(小)值及其几何意义;了解函数奇偶性的含义.(2)会运用基本初等函数的图象分析函数的性质.
所以我们在平常中要强调函数的单调性、奇偶性、周期性和最值的学习,并要熟悉基本初等函数的这些性质,通过练习提升自我。

以下是函数基本性质的知识笔记:。

高考数学一轮复习: 第二章 函数 2.2 函数的基本性质

高考数学一轮复习: 第二章 函数 2.2 函数的基本性质

换元法:若f(x+2)=f(x-2),令x+2=t,则x=t-2,
∴f(t)=f(t-4),∴周期T=4.
例4 (1)(2016江苏泰州模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3
≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2 017)等
在(0,1)上递减;∵2>1,∴y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减 的函数序号是②③.
答案 ②③
2019年5月18日
缘分让我在这里遇见你缘
10
方法 2 函数单调性的应用
函数的单调性有如下几个方面的基本应用:
(1)利用函数的单调性解不等式;
(2)在已知函数单调性的条件下,求参数的取值范围.
例2
已知函数f(x)=
ax (a
(x 0), 3)x
4a(
x

0)
满足对任意x1≠x2,都有
f (x1) f (x2 ) <0成立,则a的取值范围是
.
x1 x2
2019年5月18日
缘分让我在这里遇见你缘
11
解析
由对任意x1≠x2都有
f (x1) f (x2 ) <0成立,知f(x)是减函数,于是
(5)利用导数判断单调性.
1
例1 给定函数①y= x 2 ,②y=lo g1 (x+1),③y=|x-1|,④y=2x+1,其中在区间(0,
2
1)上单调递减的函数序号是
.
2019年5月18日

高三第一轮复习《函数的基本性质》

高三第一轮复习《函数的基本性质》

课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
高三第一轮复习《函数的基本性质》
考点 六 考点 五 考点 四 考点 三 考点 二 考点 一
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
大家学习辛苦了,还考点突破
返回
返回
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
返回
考点 三
返回
返回
返回
返回
考点 四
返回
返回
返回
考点 五
返回
返回
返回
返回
返回
返回
考点 六
返回
返回
返回
真题再现
返回
返回
返回
返回
误区警示
返回
规律探究
返回
返回
返回
即时巩固
返回
返回
返回
返回
返回

(完整版)高三一轮复习:函数的基本性质(含答案)

(完整版)高三一轮复习:函数的基本性质(含答案)

高三一轮复习:函数的基天性质一、选择题:1、以下各组函数中,表示同一函数的是()A 、f ( x) 1, g( x) x0B 、f ( x) x 2, g( x)x24x2 C、f ( x)x , g (x)x, x0 D 、f (x) x, g (x) ( x )2x, x0x3, x10,则 f (8) 2、已知函数f ( x)5)], x ()f [ f (x10A 、 2B、 4C、 6D、 73、设函数 f ( x) 和 g( x) 分别是R上的偶函数和奇函数,则以下结论恒建立的是()A 、f ( x)g( x) 是偶函数B 、f (x)g( x) 是奇函数C、f ( x)g ( x) 是偶函数 D 、f ( x)g( x) 是奇函数4、假如奇函数 f (x)在区间[ 3,7]上是增函数且最小值为5,那么 f ( x) 在区间 [ 7,3] 上是()A、增函数且最小值为C、减函数且最小值为55B、增函数且最大值为D、减函数且最大值为555、设f ( x)是R上的奇函数, f ( x 2) f (x) ,当0x 1时,f (x)x ,则 f (7.5)()A、0.5B、0.5C、1.5D、 1.5二、填空题:6、已知函数 f ( x)3x , x 1,若 f (x)2,则 xx, x17、已知函数 f (x), g(x) 分别由下表给出:x123x f ( x)131g(x)123 321则 f [ g(1)] 的值为;知足 f [ g( x)] g[ f (x)] 的 x 的值为8f ( x)为 R上的减函数,则知足f () f (1)的实数 x 的取值范围是、已知1x9 f ( x) 关于随意实数 x 知足条件 f (x 1) f (3x),若 f ( 1)8,则 f (5)、函数、设函数 f ( x)( x 1)( xa)为奇函数,则a10x11、设 f 1 (x) cos x ,定义 f n 1 (x) 为 f n (x) 的导数,即 f n 1( x) f n (x) ,n*,若ABC的内角 A 知足 f 1 ( A) f 2 ( A) f 2013( A) 0,则 sin A 的值是12、在 R 上定义运算: x y x(1 y) ,若对随意 x2 ,不等式 ( x a)x a 2 都建立,则实数 a 的取值范围是三、解答题:13、已知 f x 是二次函数, 不等式 f x0 的解集是 0, 5 ,且 fx 在点 1, f 1处的切线与直线 6x y 1 0 平行 .(1)求 fx 的分析式;(2)能否存在tN *,使得方程f x370 在区间 t, t 1 内有两个不等的实数x根?若存在,求出t 的值;若不存在,说明原因.【参照答案】1、 C2、 D 【分析】f (8) f [ f (85)] f [ f (13)] f (10)73、 C4、 B5、 B 【分析】 f (x2) f ( x) , f ( x4) f ( x2) ,即 f (x4) f ( x)f ( x) 是以周期为 4 的周期函数,f ( 7.5) f (7.58) f ( 0.5) f (0.5)0.56、log32【分析】由x1得, x log 3 2 ;由x 1得, x 无解3x2x27、 1; 2【分析】f [ g (1)] f (3)1;把 x 1,2,3 分别代入 f [ g( x)]g[ f ( x)] 进行考证8、(,0)(1,) 【分析】由11得,x10 ,即x 0或 x 1x x9、810、111、 1【分析】由题意可知, f n ( x) 是一个周期为 4 的周期函数,且f1 (x) f2 (x)f3 (x) f 4 ( x)0 ,所以 f1 ( A) f 2 ( A)f2013 ( A) f 2013( A)f1( A) cos A0,即 A2 sin A112、(,7] 【分析】 ( x a)x( x a)(1x)x2ax x ax2ax x a a 2 对随意x 2 恒建立即 a x2x22 恒建立x2对随意xx2x2( x2)432( x 2)47x22x 3x2当且仅当 x24,即 x4时等号建立xa7213、( 1)解法 1:∵f x是二次函数,不等式 f x0 的解集是0,5 ,∴可 f x ax x5, a0 .⋯⋯⋯⋯⋯ 1分∴ f / ( x)2ax5a .⋯⋯⋯⋯⋯ 2分∵函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.⋯⋯⋯⋯⋯ 3分∴ 2a5a6,解得 a2.⋯⋯⋯⋯⋯ 4分∴ f x2x x52x210x .⋯⋯⋯⋯⋯ 5分解法 2:f x ax2bx c ,∵不等式 f x0的解集是 0, 5 ,∴方程 ax2bx c0的两根0, 5.∴ c0, 25a5b0 .①⋯⋯⋯⋯⋯ 2分∵ f / ( x)2ax b .又函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.∴ 2a b 6 .②⋯⋯⋯⋯⋯ 3分由①② , 解得a 2 ,b10 .⋯⋯⋯⋯⋯ 4分∴ f x2x210x .⋯⋯⋯⋯⋯ 5分( 2)解:由( 1)知,方程f x370 等价于方程 2x310 x2370 .x⋯⋯⋯⋯⋯ 6 分h x2x310 x237 ,h/x6x220x2x3x10 .⋯⋯⋯⋯⋯ 7分当x0,10,/0h x10上减;⋯⋯⋯ 8分h x,函数在33当 x10,, h/x0 ,函数 h x 在10 ,33上增 .⋯9分∵ h 310, h 1010, h450,⋯⋯⋯⋯⋯ 12分327∴方程在区,10,10,内分有独一数根,在区h x0340, 3,334,内没有数根 .⋯⋯⋯⋯⋯ 13分∴存在独一的自然数 t 3 ,使得方程 f x 37t, t 1 内有且只0 在区x有两个不等的数根 .⋯⋯⋯⋯⋯ 14分。

2022届高考数学一轮复习(新高考版) 第2章第3课时 函数性质的综合问题

2022届高考数学一轮复习(新高考版) 第2章第3课时 函数性质的综合问题
解析 依题意,f(x)的周期为8,且f(x)是奇函数,其图象关于x=2对称, 当x∈[0,2]时,f(x)单调递增, ∴f(x)在[-2,2]上单调递增, 又f(-80)=f(0),f(-25)=f(-1),f(11)=f(3)=f(1), ∴f(-1)<f(0)<f(1). 即f(-25)<f(-80)<f(11).
D.6
解析 ∵f(4-x)=-f(x),
∴f(x)的图象关于点(2,0)对称,
∴f(-x)=-f(x+4),
又∵f(-x)=-f(x),
∴f(x+4)=f(x).
∴T=4.
(2)函数y=f(x)对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的 图象关于点(1,0)对称,f(1)=4,则f(2 020)+f(2 021)+f(2 022)的值为_4___.
当fxx<0 时,xf(x)<0,即 f(x)的图象在二、四象限, 即-2<x<0或0<x<2.
思维升华
解决不等式问题,一定要充分利用已知条件,一是把已知不等式化成 f(x1)>f(x2)或f(x1)<f(x2)的形式,再利用单调性解不等式;二是利用函数的 性质,画出f(x)的图象,利用图象解不等式.
课时精练
KESHIJINGLIAN
基础保分练 1.函数f(x)=x+ 9 (x≠0)是
x A.奇函数,且在(0,3)上是增函数
√B.奇函数,且在(0,3)上是减函数
C.偶函数,且在(0,3)上是增函数 D.偶函数,且在(0,3)上是减函数
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
解析 由①知f(x)在(0,+∞)上单调递减,由②知f(x)为奇函数.

高三一轮复习3函数的基本性质

高三一轮复习3函数的基本性质

第三讲:函数的基本性质一,单调性与最大(小)值1. 增函数与减函数增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间. 减函数:如果对于区间D 上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.2. 单调性与单调区间如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间。

函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质,单调区间有可能是整个定义域,也有可能是定义域的真子集,也有的函数没有单调区间; 3. 最大(小)值定义一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.例1:若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f fD .)1()23()2(-<-<f f f4. 函数单调性的证明与判定方法1) 定义法利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f(x 1)-f(x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负);○5 下结论(即指出函数f(x)在给定的区间D 上的单调性). 2) 图像法先画出图像,根据图像判断单调性与单调区间。

2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版

2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版

其次讲 函数的基本性质1.[2024江西红色七校第一次联考]下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是 ( )A.y=cos xB.y=x 2C.y=ln|x|D.y=e-|x|2.[2024湖北省四地七校联考]若函数f(x)=sin x·ln(mx+√1+4x 2)的图象关于y 轴对称,则m= ( )A.2B.4C.±2D.±43.[2024郑州三模]若函数f(x)={e x -x +2a,x >0,(a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是( )A.[1,+∞)B.(1,3]C.[12,1) D.(1,2]4.[2024广州市阶段模拟]已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且 f(x)-g(x)=x 3+x 2+a,则g(2)=( ) A.-4B.4C.-8D.85.[2024长春市第一次质量监测]定义在R 上的函数f(x)满意f(x)=f(x+5),当x∈[-2,0)时,f(x)=-(x+2)2,当x∈[0,3)时,f(x)=x,则f(1)+f(2)+…+f(2 021)= ( )A.809B.811C.1 011D.1 0136.[2024陕西省部分学校摸底检测]已知函数f(x)=2x cosx 4x +a是偶函数,则函数f(x)的最大值为 ( )A.1B.2C.12 D.37.[2024济南名校联考]已知定义在R 上的函数f(x)满意f(x+6)=f(x),y=f(x+3)为偶函数,若f(x)在(0,3)上单调递减,则下面结论正确的是 ( )A.f(192)<f(e 12)<f(ln 2)B.f(e 12)<f(ln 2)<f(192)C.f(ln 2)<f(192)<f(e 12) D.f(ln 2)<f(e 12)<f(192)8.[2024江苏苏州初调]若y=f(x)是定义在R 上的偶函数,当x∈[0,+∞)时,f(x)={sinx,x ∈[0,1),f(x -1),x ∈[1,+∞),则f(-π6-5)= .9.函数f(x)=x 3-3x 2+5x-1图象的对称中心为 .10.[2024蓉城名校联考]已知函数f(x)=x+cosx,x∈R,设a= f(0.3-1), b= f(2-0.3),c= f(log 20.2),则 ( )A.b<c<aB.c<a<bC.b<a<cD.c<b<a11.[2024辽宁葫芦岛其次次测试]已知y=f(x-1)是定义在R 上的偶函数,且y=f(x)在[-1,+∞)上单调递增,则不等式f(-2x-1-1)<f(3)的解集为 ( )A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,3)12.已知f(x)是定义在(1,+∞)上的增函数,若对于随意x,y∈(1,+∞),均有f(x)+f(y)=f(2x+y),f(2)=1,则不等式f(x)+f(x-1)-2≥0的解集为 ( )A.[52,+∞)B.(52,+∞)C.[1,52]D.(2,52]13.[2024广东七校联考]已知定义在R 上的偶函数y=f(x+2),其图象是连续的,当x>2时,函数y=f(x)是单调函数,则满意f(x)=f(1-1x+4)的全部x 之积为 ( )A.3B.-3C.-39D.3914.[原创题]设增函数f(x)={lnx,x >1,-1+ax x ,0<x ≤1的值域为R,若不等式f(x)≥x+b 的解集为{x|c≤x≤e},则实数c 的值为 ( )A.e -√e 2-42B.e+√e 2-42C.e±√e 2-42D.1215.[多选题]已知奇函数f(x)在(-∞,+∞)上单调递增,f(1)=2,若0<f(m)<2,则 ( )A.log m (1+m)<log m (1+m 2) B.log m (1-m)<0 C.(1-m)2>(1+m)2D.(1-m )13>(1-m )1216.[2024湖南六校联考][多选题]已知f(x)是定义在R 上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是( ) A.g(x)为偶函数B.g(x)在(1,2)上单调递增C.g(x)在[2 016,2 020]上恰有三个零点D.g(x)的最大值为2答 案其次讲 函数的基本性质1.D 函数y=cos x 是偶函数且是周期为2π的周期函数,所以y=cos x 在(0,+∞)上不具有单调性,所以A 选项不符合题意;函数y=x 2为偶函数,但在(0,+∞)上单调递增,所以B 选项不符合题意;函数y=ln|x|={lnx,x >0,ln(-x),x <0为偶函数,但在(0,+∞)上单调递增,所以C 选项不符合题意;函数y=e -|x|={e -x ,x ≥0,e x ,x <0为偶函数,在(0,+∞)上单调递减,所以D 选项符合题意.故选D.2.C ∵f(x)的图象关于y 轴对称,∴f(x)为偶函数,又y=sin x 为奇函数,∴y=ln(mx+√1+4x 2)为奇函数,即ln[-mx+√1+4·(-x)2]+ln(mx+√1+4x 2)=0,即ln(1+4x 2-m 2x 2)=0,1+4x 2-m 2x 2=1,解得m=±2.故选C.3.B 当x>0时,f(x)=e x -x+2a,则f '(x)=e x-1>0,所以函数f(x)在(0,+∞)上单调递增.因为函数f(x)在(-∞,+∞)上是单调函数,所以函数f(x)在(-∞,+∞)上是单调递增函数.当x≤0时,f(x)=(a-1)x+3a-2是单调递增函数,所以a-1>0,得a>1.e 0-0+2a≥(a -1)×0+3a -2,解得a≤3.所以1<a≤3,故选B.4.C 依题意f(x)是偶函数,g(x)是奇函数,且f(x)-g(x)=x 3+x 2+a ①,所以f(-x)-g(-x)=-x 3+x 2+a,即f(x)+g(x)=-x 3+x 2+a ②,②-①得2g(x)=-2x 3,g(x)=-x 3,所以g(2)=-23=-8.故选C. 5.A 由f(x)=f(x+5)可知f(x)的周期为5,又f(0)=0,f(1)=1,f(2)=2,f(-1)=-1,f(-2)=0,∴f(3)=f(-2)=0,f(4)=f(-1)=-1,f(5)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)=2,∴f(1)+f(2)+…+f(2 021)=f(1)+2×404=809.故选A. 6.C 解法一 因为函数f(x)=2x cosx 4x +a 是偶函数,所以f(-x)=f(x),即2-x cos(-x)4-x +a=2x cosx 4x +a ,化简可得a(4x -1)=4x-1,得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .又cos x≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)≤12.故选C. 解法二 因为函数f(x)为偶函数,所以f(-1)=f(1),即2-1cos(-1)4-1+a=21cos14+a ,解得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .因为cosx≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)max =12,故选C.7.A 由f(x+6)=f(x)知函数f(x)是周期为6的函数.因为y=f(x+3)为偶函数,所以f(x+3)=f(-x+3),所以f(192)=f(72)=f(12+3)=f(-12+3)=f(52).(题眼)(难点:利用函数的性质把自变量的取值化到同一个单调区间内) 因为1<e 12<2,0<ln 2<1,所以0<ln 2<e 12<52<3.因为f(x)在(0,3)上单调递减,所以f(52)<f(e 12)<f(ln 2),即f(192)<f(e 12)<f(ln 2),故选A.8.12 因为y=f(x)是定义在R 上的偶函数,所以f(-π6-5)=f(π6+5).因为x≥1时,f(x)=f(x-1),所以f(π6+5)=f(π6+4)=…=f(π6).又0<π6<1,所以f(π6)=sin π6=12.故f(-π6-5)=12.9.(1,2) 解法一 由题意设图象的对称中心为(a,b),则2b=f(a+x)+f(a-x)对随意x 均成立,代入函数解析式得,2b=(a+x)3-3(a+x)2+5(a+x)-1+(a-x)3-3(a-x)2+5(a-x)-1=2a 3+6ax 2-6a 2-6x 2+10a-2=2a 3-6a 2+10a-2+(6a-6)x 2对随意x 均成立,所以6a-6=0,且2a 3-6a 2+10a-2=2b,即a=1,b=2,即f(x)的图象的对称中心为(1,2).解法二 由三次函数对称中心公式可得,f(x)的图象的对称中心为(1,2).10.D f(x)=x+cos x,则f '(x)=1-sin x≥0,所以f(x)在R 上单调递增,又log 20.2<2-0.3<1<0.3-1=103,所以f(log 20.2)<f(2-0.3)<f(103),即c<b<a.11.D 由题可知y=f(x-1)的图象关于y 轴对称.因为y=f(x)的图象向右平移1个单位长度得到y=f(x-1)的图象,所以y=f(x)的图象关于直线x=-1对称.因为y=f(x)在[-1,+∞)上单调递增,所以f(x)在(-∞,-1)上单调递减.所以|-2x-1-1-(-1)|<|3-(-1)|,即0<2x-1<4,解得x<3,所以原不等式的解集为(-∞,3),故选D.12.A 依据f(x)+f(y)=f(2x+y),f(2)=1,可得2=1+1=f(2)+f(2)=f(24),所以f(x)+f(x-1)-2≥0得f(22x-1)≥f(24).又f(x)是定义在(1,+∞)上的增函数,所以{22x -1≥24,x >1,x -1>1, 解得x≥52.所以不等式f(x)+f(x-1)-2≥0的解集为[52,+∞).13.D 因为函数y=f(x+2)是偶函数,所以函数y=f(x)图象关于x=2对称,因为f(x)在(2,+∞)上单调,所以f(x)在(-∞,2)上也单调,所以要使f(x)=f(1-1x+4),则x=1-1x+4或4-x=1-1x+4.由x=1-1x+4,得x 2+3x-3=0,Δ1>0,设方程的两根分别为x 1,x 2,则x 1x 2=-3;由4-x=1-1x+4,得x 2+x-13=0,Δ2>0,设方程的两根分别为x 3,x 4,则x 3x 4=-13.所以x 1x 2x 3x 4=39.故选D.14.A 当x>1时,f(x)为增函数,且f(x)∈(0,+∞), 当0<x≤1时,-1+ax x=a-1x≤a -1,即f(x)∈(-∞,a -1].因为f(x)为增函数,所以a-1≤0,则a≤1,又函数f(x)的值域为R,所以a-1≥0,即a≥1,从而a=1,函数f(x)={lnx,x >1,-1+x x,0<x ≤1.因为不等式f(x)≥x+b 的解集为{x|c≤x≤e},易知ln x=x+b 的解为x=e,所以b=1-e,当x=1时,x+b=1+1-e=2-e<0=f(1),故0<c<1.令-1+x x=x+1-e,得x 2-ex+1=0,从而x=e -√e 2-42,则c=e -√e 2-42,故选A.15.AD ∵f(x)为奇函数,0<f(m)<2,f(1)=2,f(0)=0,∴f(0)<f(m)<f(1).又f(x)在R 上单调递增,∴0<m<1,∴1+m>1,0<1-m<1,∴log m (1-m)>0,B 错误.∵1+m>1+m 2,∴log m (1+m)<log m (1+m 2),A 正确.∵y=x 2在(0,+∞)上单调递增,1-m<1+m,∴(1-m)2<(1+m)2,C 错误.∵y=(1-m)x在(0,+∞)上单调递减,∴(1-m )13>(1-m )12,D 正确.故选AD. 16.AD 易知函数g(x)的定义域为R,且g(-x)=|f(-x)|+f(|-x|)=|-f(x)|+f(|x|)=|f(x)|+f(|x|)=g(x),所以g(x)为偶函数,故A 正确.因为f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,又f(x)是奇函数,所以f(x)是周期为4的函数,其部分图象如图D 2-2-1所示,图D 2-2-1所以当x≥0时,g(x)={2f(x),x∈[4k,2+4k]0,x∈(2+4k,4+4k],k∈N,当x∈(1,2)时,g(x)=2f(x),g(x)单调递减,故B错误.g(x)在[2 016,2 020]上零点的个数等价于g(x)在[0,4]上零点的个数,而g(x)在[0,4]上有多数个零点,故C错误. 当x≥0时,易知g(x)的最大值为2,由偶函数图象的对称性可知,当x<0时,g(x)的最大值也为2,所以g(x)在整个定义域上的最大值为2,故D正确.综上可知,选AD.。

高三第一轮复习——函数的基本性质

高三第一轮复习——函数的基本性质

函数的基本性质之一——单调性【基本概念】1.函数单调性①正向结论:若()y f x =在给定区间上是增函数,则当12x x <时,12()()f x f x <;当12x x >,12()()f x f x >;②逆向结论:若()y f x =在给定区间上是增函数,则当12()()f x f x <时,_________;当12()()f x f x >时,_________。

当()y f x =在给定区间上是减函数时,也有相应的结论。

2.函数最值的求解求函数最值的常用方法有单调性与求导法。

此处重点讲解二次函数的最值。

求二次函数的最值有两种类型:一是函数定义域为R ,可用配方法求出最值;二是函数定义域为某一区间,此时应该考虑对称轴是否在给定的区间内。

3.易混淆点:对单调性和在区间上单调两个概念理解错误【考点一】单调性的判断与证明1.下列函数()f x 中,满足“对任意12,(0,)x x ∈+∞,当12x x <时,都有12()()f x f x >”的是( )A .1()f x x= B. 2()(1)f x x =- C. ()x f x e = D. ln(1)y x =+ 2.给定函数①12y x =;②12log (1)y x =+;③1y x =-;④12x y +=,其中在区间(0,1)上单调递减的函数的序号是()A .①② B.②③ C.③④ D.①④3.证明y x =在[0,)+∞是增函数4.证明4y x x=+在[2,)+∞是增函数。

【学案编号】数学总复习 学案5 【编辑】韩晶飞 【审核】马省珍【主题】 函数的基本性质【考点二】利用单调性求参数与解不等式3.已知函数(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩.若()f x 在(,)-∞+∞上单调递增,则a 的取值范围为________________4.已知()f x 为R 上的减函数,则满足1()(1)f f x>的实数x 的取值范围是( ) .(,1)A -∞ B. (1,)+∞ C. (,0)(0,1)-∞⋃ D. (,0)(1,)-∞⋃+∞5.若函数()f x 的定义域为R,并且在(0,)+∞上是减函数,则下列不等式成立的是( ) A 23()(1)4f f a a >-+ B. 23()(1)4f f a a ≥-+ C. 23()(1)4f f a a <-+ D. 23()(1)4f f a a ≤-+ 6.已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若2(2)()f a f a ->,则实数a 的取值范围是( ) A. (,1)(2,)-∞-⋃+∞ B.(1,2) C. (2,1)- D. (,2)(1,)-∞-⋃+∞【考点三】区分单调性和在区间上单调这两个概念7.若函数2()2(1)2f x x a x =+-+的单调区间是(,4]-∞,则实数a 的取值范围是_________.8. 若函数2()2(1)2f x x a x =+-+在(,4]-∞上单调递减,则实数a 的取值范围是_______.【考点四】二次函数的单调性与最值(注意:常常需要分情况讨论)9.已知函数2()22,[1,1]f x x ax x =-+∈-,求函数()f x 的最小值。

函数的性质知识点总结- 高三数学一轮复习

函数的性质知识点总结- 高三数学一轮复习

知识点总结 3-2函数的性质一.函数的奇偶性偶函数 奇函数 定义如果对于函数f(x)的定义域内任意一个x 都有f(-x)=f(x),那么函数f(x)是偶函数 都有f(-x)=-f(x),那么函数f(x)是奇函数图象特征 关于y 轴对称 关于原点对称 (1)函数的定义域关于原点对称是函数具有奇偶性的前提条件. (2)若f(x)≠0,则奇(偶)函数定义的等价形式如下: ①f(x)为奇函数⇔f(-x)=-f(x)⇔f(-x)+f(x)=0⇔f(−x)f(x)=-1.②f(x)为偶函数⇔f(-x)=f(x)⇔f(-x)-f(x)=0⇔f(−x)f(x)=1. (3)如果一个奇函数f(x)在x =0处有定义,那么一定有f(0)=0. (4)如果函数f(x)是偶函数,那么f(x)=f(|x|).(5)在关于原点对称的区间上:奇函数具有相同的单调性;偶函数具有相反的单调性. (6)若y =f(x +a )是奇函数⇔f(x)关于点(a ,0)对称; 若y =f(x +a )是偶函数⇔f(x)关于直线x=a 对称.(7)奇函数的最值:若奇函数f (x)在区间D 上有最值,则f mzx (x)+f min (x)=0;(8)若函数f(x)的定义域关于原点对称,则函数f(x)能表示成一个偶函数与一个奇函数的和的形式. 即f(x)=g(x)+h(x),其中:g(x)=12[f(x)+f(−x)] ,h(x)=12[f(x)−f(−x)];二.函数的周期性(差为常数有周期)1.如果存在一个非零常数T ,使得当x 取定义域内任何值时,都有f(x +T)=f(x),就称函数y =f(x)为周期函数, 称T 为这个函数的周期。

2.最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期. 提醒:若T 是函数f(x)的一个周期,则nT(n ∈Z ,n≠0)也是函数f(x)的周期. 3.周期性的几个常用结论(1)f(x +a )=−f(x)+t(t ∈R),则T =2a . (2)f(x +a )=kf(x),(k ∈R,k ≠0),则T =2a . (3)f(x +a )=1−f(x)1+f(x),则T =2a ; f(x +a )=1+f(x)1−f(x);则T =4a ;(5)若f(x +2a )=f(x +a )−f(x),则T =6a (a >0).4.函数对称性与周期性的关系(类比三角函数):若函数存在两个对称关系,则必然是周期函数; 口诀:两次对称成周期,两轴两心二倍差,一轴一心四倍差(或:同性两距离,异性4距离)。

高三数学高考基础知识复习:函数性质

高三数学高考基础知识复习:函数性质

高考数学基础知识复习:函数性质一、 知识清单:1、函数的单调区间可以是整个定义域,也可以是定义域的一部分. 对于具体的函数来说可能有单调区间,也可能没有单调区间,如果函数在区间(0,1)上为减函数,在区间(1,2)上为减函数,就不能说函数在0112(,)(,)上为减函数.2、单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。

判断函数单调性的方法:① 定义法(作差比较和作商比较); ② 图象法;③ 单调性的运算性质(实质上是不等式性质); ④ 复合函数单调性判断法则; ⑤ 导数法(适用于多项式函数)注:函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。

3.偶函数⑴偶函数:)()(x f x f =-.设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. ⑵偶函数的判定:两个条件同时满足① 定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ② 满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1)()(=-x f x f . 4. 奇函数⑴奇函数:)()(x f x f -=-.设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. ⑵奇函数的判定:两个条件同时满足①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数.②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时,1)()(-=-x f x f . 注:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如()()0f x f x -±=,()1()f x f x -=±(f (x )≠0)5.反函数⑴定义:只有满足x y ←−−→唯一,函数)(x f y =才有反函数. 例如:2y x =无反函数.函数)(x f y =的反函数记为)(1y fx -=,习惯上记为)(1x fy -=.⑵.求反函数的步骤:①将)(x f y =看成关于x 的方程,解出)(1y f x -=,若有两解,要注意解的选择; ②将y x ,互换,得)(1x fy -=;③写出反函数的定义域(即)(x f y =的值域)。

函数基础知识梳理高三数学一轮复习

函数基础知识梳理高三数学一轮复习

函数基础知识梳理一、函数的概念与表示【知识清单】1.函数的概念:设A ,B 是两个 ,如果对于集合A 中的 一个数x ,按照某种确定的对应关系f ,使,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A .在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的 .特别地,如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. 3.函数的表示法表示函数的常用方法有 、图象法和 . 4.分段函数(1)若函数在其定义域的不同子集上,因 不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的 ,其值域等于各段函数的值域的 ,分段函数虽由几个部分组成,但它表示的是一个函数. 【必备知识】 1.常见函数的定义域(1)分式函数中分母不等于0. (2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域为R . (4)零次幂的底数不能为0. (5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为 .(6)y =log a x (a >0,a ≠1)的定义域为 . (7)y =tan x 的定义域为 . 2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域:当a >0时,值域为 ;当a <0时,值域为 . (3)y =kx(k ≠0)的值域是 .(4)y =a x (a >0且a ≠1)的值域是 .(5)y =log a x (a >0且a ≠1)的值域是 . 补充(1)一次分式函数()()0ax b f x c cx d+=≠+的值域 ;(2)函数()()0,0bf x ax a b x =+>>的值域为 ;(3)函数()()0,0b f x ax a b x=->>的值域为 ; (4)函数()(),,R f x x a x b a b x =-+-∈的值域为),a b ⎡-+∞⎣; 函数()(),,R f x x a x b a b x =---∈的值域为,a b a b ⎡---⎤⎣⎦.二、函数的基本性质【知识清单】 1.函数的单调性 (1)单调函数的定义自左向右看图象是 的自左向右看图象是 的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.★函数单调性的证明:定义法“取值—作差—变形—定号—结论”。

(完整版)高三一轮复习函数专题1---函数的基本性质

(完整版)高三一轮复习函数专题1---函数的基本性质

函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。

2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。

(常见方法有哪些)4、如何求函数的值域。

(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。

【高三复习】函数的基本性质

【高三复习】函数的基本性质

4知识梳理: 1.单调函数的定义:设函数()f x 的定义域为I ,如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,,x x 当12x x <时, ① 若12()()f x f x <,则()f x 在区间D 上是增函数。

② 若12()()f x f x >,则()f x 在区间D 上是减函数。

问:设[]12,,,x x a b ∈那么下列命题是否成立? ①1212()()0()f x f x f x x x ->⇔-在[],a b 上是增函数; ②1212()()0()f x f x f x x x -<⇔-在[],a b 上是减函数;③ []1212()()()0x x f x f x -->⇔ ()f x 在[],a b 上是增函数; ④ []1212()()()0()x x f x f x f x --<⇔在[],a b 上是减函数。

注意:将概念当作性质实用增函数:x 和对应的f (x ),同大同小。

y 随x 的增大而增大。

不等号方向不变。

图象上升。

减函数:x 和对应的f (x ),大小相反。

y 随x 的增大而减小。

不等号方向改变。

图象下降。

2. 单调区间的定义:若函数()f x在区间D上是增函数或减函数,则称函数()f x 在这一区间上具有(严格的)单调性,区间D叫做()f x的单调区间。

特别提醒:一个函数的增区间(或减区间)有多个时,一般不能直接用“ ”将它们连接起来。

3. 函数的最值:(1)一般地,设函数()y f x=的定义域为I,如果存在实数M满足:①对于任意的,x I∈都有();f x M≤②存在0,x I∈使得0()f x M=.那么,我们称M是函数()y f x=的最大值。

(2)一般地,设函数()y f x=的定义域为I,如果存在实数N满足:①对于任意的,x I∈都有();f x N≥②存在0,x I∈使得0()f x N=.那么,我们称N是函数()y f x=的最小值。

函数的概念与性质(5知识点+4重难点+5方法技巧+5易错易混)(解析版)2025高考数学一轮知识清单

函数的概念与性质(5知识点+4重难点+5方法技巧+5易错易混)(解析版)2025高考数学一轮知识清单

专题03函数的概念与性质(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1函数的有关概念1、函数的概念:一般地,设,A B 是非空的数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.2、函数的三要素:(1)在函数(),y f x x A =∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;(2)与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域。

显然,值域是集合B 的子集.(3)函数的对应关系:(),y f x x A =∈.3、相等函数与分段函数(1)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(2)分段函数:在函数定义域内,对于自变量x 取值的不同区间,有着不同的对应关系,这样的函数称为分段函数。

分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

分段函数虽然是由几个部分构成,但它表示的是一个函数,各部分函数定义域不可以相交。

知识点2函数的单调性1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数。

当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。

单调性的图形趋势(从左往右)上升趋势下降趋势2、函数的单调区间若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间.【注意】(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,故单调区间的端点若属于定义域,则区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大;(4)单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;3、函数单调性的性质若函数)(x f 与)(x g 在区间D 上具有单调性,则在区间D 上具有以下性质:(1))(x f 与C x f +)((C 为常数)具有相同的单调性.(2))(x f 与)(x f -的单调性相反.(3)当0>a 时,)(x af 与)(x f 单调性相同;当0<a 时,)(x af 与)(x f 单调性相反.(4)若)(x f ≥0,则)(x f 与)(x f 具有相同的单调性.(5)若)(x f 恒为正值或恒为负值,则当0>a 时,)(x f 与)(x f a具有相反的单调性;当0<a 时,)(x f 与)(x f a具有相同的单调性.(6))(x f 与)(x g 的和与差的单调性(相同区间上):简记为:↗+↗=↗;(2)↘+↘=↘;(3)↗﹣↘=↗;(4)↘﹣↗=↘.(7)复合函数的单调性:对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或(g (b ),g (a ))上是单调函数若t =g (x )与y =f (t )的单调性相同,则y =f [g (x )]为增函数若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称“同增异减”.知识点3函数的奇偶性1、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数关于原点对称2、函数奇偶性的几个重要结论(1)()f x 为奇函数⇔()f x 的图象关于原点对称;()f x 为偶函数⇔()f x 的图象关于y 轴对称.(2)如果函数()f x 是偶函数,那么()()f x f x =.(3)既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x ∈D ,其中定义域D 是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.知识点4函数的周期性1、周期函数的定义对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()+=f x T f x ,那么就称函数()f x 为周期函数,称T 为这个函数的周期.2、最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.知识点5函数的对称性1、关于线对称若函数()y f x =满足()()f a x f b x +=-,则函数()y f x =关于直线2a b x +=对称,特别地,当a =b =0时,函数()y f x =关于y 轴对称,此时函数()y f x =是偶函数.2、关于点对称若函数()y f x =满足()()22-=-f a x b f x ,则函数()y f x =关于点(a ,b )对称,特别地,当a =0,b =0时,()()f x f x =--,则函数()y f x =关于原点对称,此时函数()f x 是奇函数.重难点01求函数值域的七种方法法一、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y =f (x )在区间[a ,b ]上单调递增,则y max =f (b ),y min =f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则y max =f (a ),y min =f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.【典例1】(23-24高三·全国·专题)函数()221f x x =-([]2,6x ∈)的最大值为()A .2B .23C .25D .235【答案】B【解析】因为函数21y x =-在[]2,6上单调递增,所以根据单调性的性质知:函数()221f x x =-在[]2,6上单调递减,所以当2x =时,函数()221f x x =-取到最大值为()2222213f ==-.故选:B 【典例2】(23-24高三·全国·专题)函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,则值域为()A .9,1110⎡⎤-⎢⎥⎣⎦B .9,1110⎡⎤⎢⎥⎣⎦C .99,10⎡⎤-⎢⎥⎣⎦D .[]9,11-【答案】A【解析】因为函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,且lg ,y x y x ==在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内的最小值为191010f ⎛⎫=- ⎪⎝⎭,最大值为()1011f =,所以值域为9,1110⎡⎤-⎢⎥⎣⎦.故选:A.法二、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x 的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x 函数的图象,从而利用图象求得函数的值域.【典例1】(23-24高三上·河南新乡·月考)对R x ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为()()(){}max ,M x f x g x =,若函数()(){}2max 3,1M x x x =-+-,则()M x 的最小值为.【答案】1【解析】当()231x x -+≥-,即220x x --≤,即12x -≤≤时,()3M x x =-+,当()231x x -+<-,220x x -->,即2x >或1x <-时,()()21M x x =-,所以()[]()()()23,1,21,,12,x x M x x x ∞∞⎧-+∈-⎪=⎨-∈--⋃+⎪⎩,函数图象如图所示:由图可得,函数()M x 在(),1-∞-,()1,2上递减,在()2,+∞上递增,所以()()min 2231M x M ==-+=.【典例2】(23-24高三上·重庆北碚·月考)高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:对于实数x ,符号[]x 表示不超过x 的最大整数,例如[e]3-=-,[2.1]2=,定义函数()[]f x x x =-,则函数()f x 的值域为.【答案】[0,1)【解析】由高斯函数的定义可得:当01x ≤<时,[]0x =,则[]x x x -=,当12x ≤<时,[]1x =,则[]1x x x -=-,当23x ≤<时,[]2x =,则[]2x x x -=-,当34x ≤<时,[]3x =,则[]3x x x -=-,易见该函数具有周期性,绘制函数图象如图所示,由图象知()f x 的值域为[0,1).法三、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.【典例1】(23-24高三上·全国·专题)函数()f x )A .[]0,2B .[)0,∞+C .[)2,+∞D .()()0,22,+∞U 【答案】A【解析】令2230x x --+≥得,31x -≤≤,故定义域为[]3,1-,()[]0,2f x ==.故选:A【典例2】(2023高三·江西萍乡·开学考)函数212y x x =-++的值域为.【答案】4(,0)[,)9-∞+∞ 【解析】由题得220,1x x x -++≠∴≠-且2x ≠.因为221992()244x x x -++=--+≤,且220x x -++≠.所以原函数的值域为4(,0)[,)9-∞+∞ .法四、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围.(2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理【典例1】(2023高三上·广东河源·开学考试)函数()2f x x =的最大值为.【答案】178()0t t =≥,则21x t =-,所以()22117222048y t t t t ⎛⎫=-++=--+≥ ⎪⎝⎭,由二次函数的性质知,对称轴为14t =,开口向下,所以函数2117248y t ⎛⎫=--+ ⎪⎝⎭在10,4⎡⎤⎢⎣⎦单调递增,在1,4⎛⎫+∞ ⎪⎝⎭上单调递减.所以当14t ==,即1516x =时,()f x 取得最大值为max 151517()()1688f x f ===.【典例2】(23-24高三·全国·专题)函数1y x =-的值域为()A .1,2⎛⎤-∞ ⎥⎝⎦B .[)0+,∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】Ct =,()0t ≥,则212t x -=,所以函数()22211112222t t t y t t +-=++=++=,函数在[)0,+∞上单调递增,0=t 时,y 有最小值12,所以函数1y x =-1,2⎡⎫+∞⎪⎢⎣⎭.故选:C法五、分离常数法:主要用于含有一次的分式函数,形如+=+ax by cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下:第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式,第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。

高三总复习数学函数性质及题型归纳

高三总复习数学函数性质及题型归纳
(2)若函数 (常数 )是偶函数,且它的值域为 ,则该函数的解析式 .
(3)(08辽宁)若函数 为偶函数,则a=
4.(1)若函数 是奇函数,则常数 值为__________。
(2)已知 是奇函数,则常数m的值是;
5、函数 的图像关于()
A、 轴对称B、 轴对称C、原点对称D、直线 对称
变式(08全国)函数 的图像关于()
7.已知函数f(x)=x2-2x+3在闭区间[0,m]上最大值为3,最小值为2,则m的取值范围为.
五.单调性
1、函数 的定义域为 ,且对其内任意实数 均有: ,则 在 上是()
(A)增函数(B)减函数(C)奇函数(D)偶函数
2.函数 在实数集上是增函数,则()
A. B. C. D.
3.(1)函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是
C. D.
5.已知f满足f(ab)=f(a)+f(b),且f(2)= , 那么 等于()
A. B. C. D.
6.(08陕西卷11)定义在 上的函数 满足 ( ), ,则 等于()
A.2B.3C.6D.9
10.(08北京卷2)若 ,
则( A )
A. B.
C. D.
4.(08湖北卷13)方程 的实数解的个数为. 2
补充:分段函数
4.已知函数 ,若 ,则 的取值范围是
A. B. C. D.
2.已知函数 则函数 的零点个数为( )
. . . .
11.已知函数 ,则 .
5.对 记 ,函数
的最小值是( )
A. ;B. ;C. ;D.
13.已知函数 ,方程 有三个
实根,由 取值范围是。

2023版高考数学一轮总复习:函数的基本性质课件文

2023版高考数学一轮总复习:函数的基本性质课件文
(5)若函数f(x)的图象既关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)
的周期是2|b-a|;
(6)若函数f(x)的图象既关于直线x=a对称,又关于点(b,0)对称,则函数f(x)
的周期是4|b-a|.
理解自测
判断正误(正确的打“√”,错误的打“✕”).
(1)对于函数y=f(x),若f(1)<f(3),则f(x)为增函数.( ✕ )
1 −2
2.函数单调性的常用结论
若函数f(x),g(x)在区间I上具有单调性,则在区间I上有:
(1)f(x)与a·f(x)在a>0时单调性相同,在a<0时单调性相反;
考点1
函数的单调性与最值
(2)当f(x),g(x)都是增(减)函数时,f(x)+g(x)是增(减)函数;
(3)当f(x)为增函数,g(x)为减函数时,f(x)-g(x)为增函数,g(x)-f(x)为
减函数;
(4)当f(x)≠0时,函数f(x)与-f(x),
1
()
在公共定义域内单调性相反;
(5)复合函数y=f(g(x))的单调性与y=f(t),t=g(x)单调性有关,即“同增
异减”.
考点1
函数的单调性与最值
3.对勾函数的单调性

函数y=x+ (a>0)在(-∞,
]和[ ,+∞)上单调递增,在[- ,0)和
对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,
都有 f(x+T)=f(x) ,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
2.最小正周期
如果在周期函数f(x)的所有周期中存在最小的正数,那么这个最小的正数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的基本性质之一——单调性【基本概念】1.函数单调性①正向结论:若()y f x=在给定区间上是增函数,则当12x x<时,12()()f x f x<;当12x x>,12()()f x f x>;②逆向结论:若()y f x=在给定区间上是增函数,则当12()()f x f x<时,_________;当12()()f x f x>时,_________。

当()y f x=在给定区间上是减函数时,也有相应的结论。

2.函数最值的求解求函数最值的常用方法有单调性与求导法。

此处重点讲解二次函数的最值。

求二次函数的最值有两种类型:一是函数定义域为R,可用配方法求出最值;二是函数定义域为某一区间,此时应该考虑对称轴是否在给定的区间内。

3.易混淆点:对单调性和在区间上单调两个概念理解错误【考点一】单调性的判断与证明1.下列函数()f x中,满足“对任意12,(0,)x x∈+∞,当12x x<时,都有12()()f x f x>”的是()A.1()f xx= B. 2()(1)f x x=- C. ()xf x e= D. ln(1)y x=+2.给定函数①12y x=;②12log(1)y x=+;③1y x=-;④12xy+=,其中在区间(0,1)上单调递减的函数的序号是()A.①②B.②③C.③④D.①④3.证明y=[0,)+∞是增函数4.证明4y xx=+在[2,)+∞是增函数。

【学案编号】数学总复习学案5【编辑】韩晶飞【审核】马省珍【主题】函数的基本性质【考点二】利用单调性求参数与解不等式 3.已知函数(2)1,1()log ,1aa x x f x x x --≤⎧=⎨>⎩.若()f x 在(,)-∞+∞上单调递增,则a 的取值范围为________________4.已知()f x 为R 上的减函数,则满足1()(1)f f x>的实数x 的取值范围是( ).(,1)A -∞ B. (1,)+∞ C. (,0)(0,1)-∞⋃ D. (,0)(1,)-∞⋃+∞5.若函数()f x 的定义域为R,并且在(0,)+∞上是减函数,则下列不等式成立的是( )A 23()(1)4f f a a >-+ B. 23()(1)4f f a a ≥-+C. 23()(1)4f f a a <-+D. 23()(1)4f f a a ≤-+6.已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若2(2)()f a f a ->,则实数a 的取值范围是( ) A. (,1)(2,)-∞-⋃+∞ B.(1,2) C. (2,1)- D. (,2)(1,)-∞-⋃+∞ 【考点三】区分单调性和在区间上单调这两个概念7.若函数2()2(1)2f x x a x =+-+的单调区间是(,4]-∞,则实数a 的取值范围是_________. 8. 若函数2()2(1)2f x x a x =+-+在(,4]-∞上单调递减,则实数a 的取值范围是_______. 【考点四】二次函数的单调性与最值(注意:常常需要分情况讨论) 9.已知函数2()22,[1,1]f x x ax x =-+∈-,求函数()f x 的最小值。

10.设函数2()22,[,1],f x x x x t t t R =-+∈+∈,求函数()f x 的最小值。

11.已知函数22()1266,f x x tx t x R =+-∈其中0t ≠,求()f x 的单调区间。

B 级11.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是_____________.12.设函数()y f x =在(,)-∞+∞内有定义。

对于给定的正数K ,定义函数(),()(),()K f x f x K f x K f x K≤⎧=⎨>⎩。

取函数()2xf x -=。

当12K =时,函数()K f x 的单调递增区间为( )A.(,0)-∞B. (0,)+∞C. (,1)-∞- D (1,)+∞.13.用{}min ,,a b c 表示,,a b c 三个数中的最小值。

设{}()min 2,2,10(0)x f x x x x =+-≥,则()f x 的最大值为( )A.4B.5C.6D.7函数的基本性质之二——奇偶性与周期性【基本概念】1. 函数奇偶性的判断步骤:(1) 定义域是否关于原点对称:若定义域不关于原点对称,则函数是__________函数;若关于原点对称,进行第二步。

(2) 判断()f x -与()f x 的关系:如果()f x -=()f x ,则函数为偶函数;如果________________,则函数为奇函数;如果()f x -=()f x =()f x -,则函数既是奇函数又是偶函数;2. 函数的周期性:对于函数()f x ,如果存在一个非零常数T ,使得当x 去定义域内的每一个值时,都有()()f x T f x +=,则称()f x 为周期函数,非零常数T 为这个函数的周期。

【考点一】判别奇偶性1.若函数()33x xf x -=+与()33x x g x -=-的定义域均为R ,则()f x 为___________,()g x 为______________。

(填奇函数或者偶函数)2.设函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .()()f x g x -是奇函数 B.()()f x g x +是偶函数 C .()()f x g x -是奇函数 D.()()f x g x +是偶函数3.若函数()(21)()x f x x x a =+-为奇函数,则a=( )A. 12 B. 23 C. 34D.1【考点二】利用奇偶性求参数与求值(注意:对于奇函数,若在x=0处有定义,则(0)0f =) 4.若函数2()(2)f x x b x =+-是偶函数,则b=_________.5.若1()21xf x a =+-是奇函数,则a=_________. 6.设()f x 是定义在R 上的奇函数。

当0x ≥时,()22xf x x b =++(b 为常数),则(1)f -=______________7.若函数2()f x x x a =-+为偶函数,则实数a=_____________8.已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f =_____________ 9.函数3()sin 1f x x x =++,若()2f a =,则()f a -=_____________【考点三】奇偶性与单调性的综合(注意奇函数对应区间上的单调性相同,偶函数对应区间上的单调性相反)10.定义在R 上的偶函数()f x 的部分图像如图所示,则在(2,0)-上,下列函数中与()f x 的单调性不同的是( )A .21y x =+ B.1y x =+C. 321,01,0x x y x x +≥⎧=⎨+<⎩ D. ,0,0xx e x y e x -⎧≥⎪=⎨<⎪⎩11.已知定义在R 上的奇函数满足2()2(0)f x x x x =+≥,若2(3)(2)f a f a ->,则实数a 的取值范围是_____________12.已知偶函数在区间(0,)+∞单调增加,则满足1(21)()3f x f -<的x 取值范围是________ 13.设偶函数()f x 满足()24(0)xf x x =-≥,则{}(2)0x f x ->=( ) A {}24x x x <->或B {}04x x x <>或 C.{}06x x x <>或 D.{}22x x x <->或14.设偶函数()f x 在(0,)+∞上为减函数,并且(2)0f =,则不等式()()0f x f x x+->的解集为( )A .(2,0)(2,)-⋃+∞ B. (,2)(0,2)-∞-⋃ C. (,2)(2,)-∞-⋃+∞ D. (2,0)(0,2)-⋃ 【考点四】奇偶性与周期性的综合15.设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=__________ 16.设()f x 是R 上周期为5的奇函数,且满足(1)1f =,(2)2f =,则(3)(4)f f-=______17.已知函数()f x 是R 上的偶函数,若对于0x ≥,都有(2)()f x f x +=,且当02x ≤<时,2()log (1)f x x =+,则(2008)(2009)f f -+=__________18.已知函数()f x 是R 上的奇函数,且对任意的x R ∈有()(2)f x f x =-成立,则(2010)f =__________19.已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A. (25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 20.函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则( )A .()f x 是偶函数 B. ()f x 是奇函数 C .()(2)f x f x =+ D. (3)f x +是奇函数 【考点5】抽象函数与单调性奇偶性相结合21.已知函数()f x 对任意实数,x y 均有()()()f x y f x f y +=+,且当0x >时,()0f x >,求证()f x 在R 上是增函数。

22.设函数()f x 是定义在(0,)+∞上的增函数,且满足()()()f xy f x f y =+。

若(3)1f =,且()(1)2f a f a >-+,求实数a 的取值范围。

23.已知函数()f x 对任意实数,x y 均有()()2()()f x y f x y f x f y ++-=,试判断()f x 的奇偶性。

24.函数()f x 的定义域为D={}0x x ≠,且满足对于任意,x y D ∈,有()()()f xy f x f y =+(1)求(1)f 的值。

(2)判断()f x 的奇偶性并证明。

相关文档
最新文档