1.4 非线性电路的分析方法
非线性电路及其分析方法

3.非线性器件频率变换作用的分析
这部分的内容,主要介绍当给定一个非线性器件的伏安 特性幂级数多项式和输入信号的频率成分,来判断输出量中 会产生哪些频率分量。
假设某非线性器件在工作点VQ 附近的伏安特性曲线为
i a0 a1 (v VQ ) a2 (v VQ )2 a3 (v VQ )3
线性电路:输出与输入波形相似,频率成分相同 非线性电路:输出与输入波形失真,基频相同, 频率成分不同
第4章非线性电路及其分析方法-9
下面,我们定量分析频率变换
设 i av2 vi V1m cos1t V2m cos2t
i aV12m cos2 1t aV22m cos2 2t 2aV1mV2m cos1t cos2t
其中,0 为直流项;1(V1m cos1t V2m cos2t) 为线性项,
包含频率分量1 和2 ;平方项包含的频率分量有直流 21 、 22 、1 2 和1 2 ;
第4章非线性电路及其分析方法-14
i 利用三角公式 将三次项展开整理后, 中的频率成分如下
3 (V1m cos1t V2m cos2t)3 3 (V13m cos3 1t 3V12mV2m cos2 1t cos2t 3V1mV22m cos1t cos2 2t V23m cos3 2t)
静态电感:
LQ IQ
动态电感: L(i) d di
第4章非线性电路及其分析方法-6
4.2.2 非线性电路特点
由线性元件组成的电路叫做线性电路,如无源滤波器,低频和高频小 信号放大器等;由非线性元件组成的电路叫做非线性电路,如本课程中 之后要讲的功率放大器,振荡器,及各种调制解调电路等。非线性电路 的实质是输出产生了新的频率。
非线性电路分析解析ppt课件

5
非线性电路中至少包含
一个非线性元件,它的输出 输入关系用非线性函数方程 v + 或非线性微分方程表示,右 –
图所示是一个线性电阻与二
极管组成的非线性电路。
Di
i
ZL
0
V0 v
二极管电路及其伏安特性
二极管是非线性器件,ZL为负载,V是所加信号 源,幅度不大。设非线性元件的函数关系为i = f
所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
i
kv
2 1
kv
2 2
kV12m
sin2 1t
kV22m
sin2 2t
(6)
i kV12m sin2 1t kV22m sin2 2t 2kV1mV2m sin1t sin2t
(4)
18
i
kv
2 1
kv
28
(4) m次谐波(直流成分可视作零次、基波可 视作一次)以及系数之和等于m的各组合频 率成分,其振幅只与幂级数中等于及高于 m次的各项系数有关。例:直流成分与b0 、 b2都有关,而二次谐波及组合频率为1 + 2与1 - 2的各成分其振幅只与b2有关, 而与b0无关。
29
(5) 因为幂级数展开式中含有两个信号的相 乘项,起到乘法器的作用,因此,所有 组合频率分量都是成对出现的,如有1 + 2就一定有1 – 2,有21 – 2,就 一定有21 + 2,等等。
31
信号较大时,所有实际的非
线性元件,几乎都会进入饱和
ic
如右图所示半导体二 i
i
极管的伏安特性曲线。当 (a)
某一频率的正弦电压作
非线性电路分析法

1)半流通角 电流流通时间所对应的相角叫流通角,用
叫做半流通角或截止角。有 c
2c 表示,
上式来自以下推导:
vB VBB Vbm cost
iC gc (vB VBZ )
gc (VBB Vbm cos t VBZ )
当wt=θc时,iC=0。代入上式即得。
21
2)集电极电流脉冲
iC gc (VBB Vbm cos t VBZ )
式 sin cos 1 sin( ) 1 sin( )
2Hale Waihona Puke 2cos sin 1 sin( ) 1 sin( )
2
2
9
3,幂级数分析法的具体应用举例 设非线性元件的静态特性用三次多项式表示
i b0 b1 (v V0 ) b2 (v V0 )2 b3 (v V0 )3
工作范围尿限于特性曲线得起始弯曲部分因此可以用幂级数的前三项来近似3结合输入电压的时间函数求电流写出静态特性的幂级数表示式后将输入电压的时间函数代入然后用三角恒等式展开并加以整理即可得到电流的傅立叶级数展开式从而求出电流的各频谱成分
非线性电路分析法
变系数线性微分方程、非线性微分方程的求解问题:
1 困难
3)电流中的直流成分、偶次谐波以及组合频率系数之和为偶数的各种组合频率成 分,振幅只与幂级数的偶次项(包括常数项)有关;奇次谐波等的组合频率成分, 振幅则只与幂级数的奇次项有关。
14
4)m次谐波以及系数之和等于m的各个组合频率成分,振幅只与幂级数中等于及 高于m次的各项系数有关。
5)所有组合频率都是成对出现的。 掌握这些规律很重要。 可以利用这些规律,根据不同的要求,选用具有适当特性的非线性元 件,或者选择合适的工作范围,以得到所需的频率成分,而尽量减弱 甚至消除不需要的频率成分。
1.4 非线性电路的分析方法

1.4 非线性电路的分析方法如前所述,在小信号放大器的分析和设计中, 通常是采用等效电路法,以便采用经典电路理论来进行分析、计算。
线性电路中,通常信号幅度小,整个信号的动态范围在元器件特性的线性范围内,所以器件的参数均视为常量,可以借助于公式计算电路的性能指标。
“模拟电子技术基础”课程中“低频小信号放大器”以及本课程中 “高频小信号谐振放大器”的分析中都涉及线性电路的分析。
在通信电子线路中,除了小信号放大电路外,有源器件还常工作在大信号或非线性状态。
与线性电路相比,非线性电路的分析和计算要复杂得多。
在非线性电路中,信号的幅度较大时,信号的动态范围涉及元器件特性的整个范围,半导体器件工作在非线性状态。
它们的参数不再是常数而是变量了。
因此,难以用等效电路和简单的公式计算电路了。
此外,在线性、非线性频谱搬移电路中,都涉及非线性电路的分析方法。
非线性电路的分析是本课程中的重要内容。
分析非线性电路时,常用幂级数分析法、指数函数分析法、折线分析法、开关函数分析法和时变参数分析法等。
1.4.1 幂级数分析法常用的非线性元器件的特性曲线大都可以用幂级数来表示。
在小信号运用的条件下,可以将一些非线性元器件的特性曲线用幂级数近似表示,使问题简化。
用这种方法分析非线性电路,虽然存在一定的准确性问题,但可以较好地说明非线性器件的频率变换作用。
因此在小信号检波、小信号调幅等电路分析时常常采用。
下面以图1.4.1所示电路为例,介绍幂级数分析法。
图中二极管是非线性器件,所加信号电压u 的幅度较小,称为小信号;L R 为负载, 0U 是静态工作点电压。
设流过二极管的电流i 函数关系为:)(u f i =若该函数)(u f 的各阶导数存在,则这个函数可以在静态工作点0U 处展开成幂级数(或称为泰勒级数)。
+-+-+-+=300///200//00/0)(!3)()(!2)())(()(U u U fU u U fU u U f U f i+-+-+-+=303202010)()()(U u b U u b U u b b (1-4-1)式中 0)(00U u iU f b ===为工作点处的电流u LR 图 1.4.1 二极管及其伏安特性(a)o(b)Id d )(0/1U u ui U f b === 为过静态工作点切线的斜率,即跨导;0220//2d d !21)(U u ui U f b ===kk0k k d d !1)(U u ui K U f b ===如果取00=U ,即静态工作点选在原点,则式(1-4-1)可写为 ++++=332210u b u b u b b i (1-4-2)从数学分析来看,上述幂级数展开式是一收敛函数,幂次越高的项其系数越小。
非线性电路分析技巧

非线性电路分析技巧在电子领域中,非线性电路的分析是十分重要的。
与线性电路不同,非线性电路的元件特性与电压和电流之间的关系不是线性的。
因此,针对非线性电路的分析方法需要更为复杂和精确。
本文将介绍一些非线性电路分析的技巧,帮助读者更好地理解和应用于实践。
一、利用近似法分析非线性电路中,非线性元件的特性曲线通常很复杂,很难直接得到解析解。
此时,我们可以利用近似法来简化问题,使其更易于分析。
最常用的近似方法之一是泰勒级数展开。
通过将非线性特性曲线在某个工作点处展开,可以得到一个线性近似,进而使用线性分析方法进行求解。
其他常用的近似方法还包括小信号模型和大信号模型等。
二、使用等效电路模型为了更方便地分析非线性电路,我们可以将其等效为线性电路。
这样,我们就可以使用线性电路的分析方法进行求解。
等效电路模型可以通过查找手册、仿真软件或实验数据来获取。
常见的等效电路模型包括二极管的小信号模型、伏安特性曲线拟合模型等。
通过将非线性元件替换为等效线性元件,可以将问题简化并应用线性电路分析法。
三、使用迭代法对于复杂的非线性电路,我们可以使用迭代法逐步逼近真实解。
迭代法通常结合着近似法和等效电路模型。
步骤如下:首先,根据近似法建立初始的线性近似电路;然后,通过求解线性近似电路得到数值解;接着,将数值解代入非线性元件中得到新的特性曲线;最后,根据新的特性曲线更新线性近似电路,并重复上述步骤直到收敛为止。
四、考虑非线性电路的稳定性非线性电路的稳定性问题是在分析时需要特别关注的。
由于非线性电路的元件特性会随着电压和电流变化,系统可能会失去稳定性。
为了确保电路正常工作,我们需要对非线性电路进行稳定性分析。
常见的稳定性判断方法包括利用极点分布法、利用Bode图分析法和利用Lyapunov稳定性判据等。
五、利用仿真软件进行分析随着计算机技术的不断发展,仿真软件已经成为非线性电路分析的重要工具。
利用仿真软件,我们可以建立电路的数学模型,并模拟其电压、电流和功率等参数的变化。
《非线性电路》课件

状态空间法
通过建立和求解状态方程,分析系统的动态 行为和稳定性。
05
非线性电路的仿真 技术
电路仿真软件介绍
Multisim
一款功能强大的电路仿真软件, 适用于模拟和数字电路的仿真, 特别适合非线性电路的仿真。
PSPICE
由MicroSim公司开发的一款电路 仿真软件,适用于模拟和混合信 号电路的仿真。
LTSpice
一款专门用于模拟电路仿真的软 件,具有强大的分析功能和直观 的用户界面。
仿真步骤与技巧
建立电路模型
根据非线性电路的原理图,在仿真软件中建立相应的电路模型。
设置仿真参数
根据需要,设置适当的仿真参数,如时间步长、仿真类型(稳态或瞬态)等。
运行仿真
设置好参数后,运行仿真,观察仿真结果。
分析仿真数据
04
非线性电路的稳定 性分析
稳定性定义
稳定性定义
一个电路在受到扰动后能够回到原来的平衡状态,则称该电路是 稳定的。
平衡状态
电路中各元件的电压、电流和功率达到一种相对静止的状态。
扰动
任何能使电路状态发生变化的外部作用,如电源电压波动、元件参 数变化等。
稳定性判据
1 2
劳斯稳定判据
通过计算系统的传递函数,确定系统稳定性的判 据。
非线性电路在各领域的应用前景
在通信领域,非线性电路可用于信号 处理、调制解调和光通信等方面,提 高通信系统的性能和稳定性。
在生物医学领域,非线性电路可用于 生理信号处理、医学影像和生物信息 等方面,为生物医学研究和临床应用 提供新的工具和方法。
在能源领域,非线性电路可用于电力 电子、电机控制和可再生能源转换等 方面,提高能源利用效率和系统稳定 性。
非线性电路特性及分析方法

则产生电流: i k (v1 v2 ) 2 k (V1m sin 1t V2m sin 2 kV2m sin 2 2t 2kV1m sin 1t V2m sin 2t
2 2 2 1 cos21t 2 1 cos22t kV1m ( ) kV2m ( ) 2 2 2kV1mV2m cos(1 2 )t cos(1 2 )t ) 2 k 2 2 (V1m V2m ) kV1mV2m cos(1 2 )t kV1mV2m cos(1 2 )t 2 k k 2 2 V1m cos21t V2m cos22t 2 2 新产生的频率分量
非线性电路:含有非线性元件的电路即是。(以后各章
均讨论非线性电路,包括功放、振荡器、调制、解调等)
非线性电路的常用分析方法:图解法、解析法
5.2 非线性元件的特性
1、非线性元件的工作特性:非线性元件中有多种含义不同 的参数,且这些参数都随激励量的大小而变化。
例见非线性电阻器件,常用参数有直流电导、交流电导、平均电导。
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较 大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜 率是不同的,故引入平均电导的概念。 I g 1m Vm g 除与工作点 V 有关外,还随 v ( t) 幅度的不同而变化。 Q
2、非线性元件的频率变换作用
2 例:设非线性电阻的伏安特性曲线具有抛物线形状,即: i kv ,式中k为 常数。若在该元件上加入两个正弦电压:v V sin t , v V sin t 1 1 m 1 2 2 m 2
它是一周期函数,用傅 氏级数展开,可得频谱 成份: ic= I k cos k t
电路分析第十五章-非线性电路

西南交通大学
一、曲线相加法
1.两电阻R1、R2串联:
i +
i1
R1
u
i2
R2 -
+ u1
+
u2 -
由电路知:
i1 = i2 = i
u = u1 + u2
西南交通大学
(1)若知解析式 u1 = f1 (i1 ), u2 = f 2 (i2 ) 则串联后的伏安特性
u = u1 + u2 = f1 (i) + f 2 (i) (2)若其中一个为压控型,或只知R1和R2的伏安特 性曲线 f1(u1, i1)=0、 f2(u2, i2)=0, 可用图解法求等效 的伏安 特性 f (u,i)=0。
求u和i
R0
i
i
+
+
Us
R
u
-
-
u
0
曲线相交法:
端口左侧电路 非线性电阻R
u = U s − R0i
i = g(u)
(1) (2)
西南交通大学
通常把方程(1)所画直线称为负载线。 两曲线的交点即为电路的解。
i Us R0
IQ
u
0
UQ U s
i
Q1
Q2 Q3
0
u
如果R的伏安曲线如图,交点Q1、Q2、Q3,即 该电路有三个解。
R0
1 +
Rd
us (t)
西南交通大学
例:非线性电阻的伏安特性为 u = i 2 (i > 0),
电源 U0 = 8V , us = 0.2 sin 2tV , 求u和i。
+
非线性电路讲解

谢谢
伏安特性可以看成G1、 G2 、G3三个电导并联后 的等效电导的伏安特性 。
G2 =Gb- Ga G3=Gc- Gb
1.3 工作在非线性范围的运算放大器
1.理想运算放大器的饱和特性
uu+ iud i+ _ + ∞ + Usat uo o ud uo
有关系式: i 0 i 0
-Usat
解
u 100i i 3 100 0.01 0.013 1 10 6 V 忽略高次项, u 100 0.01 1
性化引起的误差很小。
当输入信号很小时,把非线性问题线 表明
3.非线性电阻的串联和并联
①非线性电阻的串联
i1
i2
i i1 i2 u u1 u2
把伏安特性分解为三个特性: 当u < U1有: G1u =Gau
G1=Ga
Ga
U1 U2
当U1 <u < U2,有:
i
G1u+G2u =Gbu G1+G2 =Gb
当U2 <u ,有: o Ga U1
Gb
U2
Gc u
G1u+G2u +G3u=Gcu G1+G2 +G3=Gc
解得: G =G 1 a
结论 隧道二极管的
u
u
非线性电阻在某一工作状态 下(如P点)的电压对电流的导数。
注意
①静态电阻与动态电阻都与工作点有关。当P点 位置不同时,R 与 Rd 均变化。 ②对压控型和流控型非线性电阻,伏安特性曲 线的下倾段 Rd 为负,因此,动态电阻具有 “负电阻”性质。
例 一非线性电阻的伏安特性 u 100i i
非线性电路分析

18
3. 非线性电路不满足叠加原理
对于非线性电路来说,叠加原理不再适用了。 例如,将式v = v1 + v2 = V1m sin1t + V2m sin2t 作 用于式i = k v2 所表示的非线性元件时,得到如式(4) 所表征的电流。如果根据叠加原理,电流i应该是v1和 v2分别单独作用时所产生的电流之和,即
15
若设非线性电阻的伏安特性曲线具有抛物 线形状,即 i = k v2 (2)
式中,k 为常数。
当该元件上加有两个正弦电压 v1 = V1m sin1t和 v2 = V2m sin2t时,即 v = v1 + v2 = V1m sin1t + V2m sin2t(3)
16
可求出通过元件的电流为
5
若满足f[vi1(t)]+f[vi2(t)]= f[vi1(t)+vi2(t)], avo2(t)= f [avi2(t)],则称为具有均匀性,这里 a是常数。若同时具有叠加性和均匀性,即 a1*f[vi1(t)]+a2*f[vi2(t)]=
f[a1*vi1(t)+a2*vi2(t)], 则称函数关系f所描述的系统为线性系统。
k 2 k 2 V1m cos 21t V2m cos 22t 2 2
(5)
17
上式说明,电流中不仅出现了输入电压频率的 二次谐波21和22,而且还出现了由1和2组 成的和频(1+ 2)与差频(1 – 2)以及直流 k 2 2 成 V中所没包含的。 V1。这些都是输入电压 V m 2m 2
非线性电路分析方法

在非线性电路中,基尔霍夫电流定律(KCL)和基尔霍夫 电压定律(KVL)仍然适用,用于建立节点电流方程和回 路电压方程。
状态变量的引入
对于含有记忆元件(如电容、电感)的非线性电路,需要 引入状态变量,建立状态方程。
数值求解方法
迭代法
有限差分法
有限元法
通过设定初值,采用迭代算法(如牛 顿-拉夫逊法、雅可比迭代法等)逐 步逼近方程的解。
实验设计思路及步骤
实验目的
01
明确实验的目标和意义,如验证非线性电路模型的正确性、探
究非线性电路的特性等。
实验器材
02
列出进行实验所需的设备和器材,如信号发生器、示波器、电
阻、电容、电感等。
实验步骤
03
详细阐述实验的操作过程,包括搭建电路、设置实验参数、记
录实验数据等。
实验结果分析与讨论
数据处理
描述函数法
通过描述函数将非线性元件的特性线性化,构造一个等效的线性化模型,再根据奈奎斯特稳定判据等方法判断稳 定性。
大信号稳定性分析方法
相平面法
在相平面上绘制非线性电路的状态轨迹,通过观察轨迹的形状和趋势来判断电 路的稳定性。
李雅普诺夫法
利用李雅普诺夫稳定性定理及其推论,构造适当的李雅普诺夫函数,通过分析 函数的性质来判断非线性电路的稳定性。
非线性电路分析方法
• 引言 • 非线性元件特性 • 非线性电路方程的建立与求解 • 非线性电路的时域分析 • 非线性电路的频域分析 • 非线性电路的稳定性分析 • 非线性电路仿真与实验验证
01
引言
非线性电路的定义与特点
定义:非线性电路是指电路中至少有一 个元件的电压与电流之间呈现非线性关 系的电路。
笫4章非线性电路及其分析方法ppt课件

I0
1
2
i(t) cos )
I1
1
i(t
)
costdt
I
m
sin (1
cos cos )
In
1
i(t) cos ntdt
Im
2(sin
n cos n cos n n (n2 1)(1 cos
sin )
)
2、折线分析法(续4)
上图
▪ 各式等号右边部分除电流峰值 I m 外,其余为流通角
非线性电阻电路的近似解析分析
1、幂级数分析法(输入为小信号)
▪ 将非线性电阻电路的输出输入特性用一个N阶幂级数近似表 示,借助幂级数的性质,实现对电路的解析分析。
例如,设非线性元件的特性用非线性函数i f (v) 来描述。
• 如果 f (v) 的各阶导数存在,则该函数可以展开成以下幂
级数: i a0 a1v a2v2 a3v3
非线性电路与线性电路分析方法的异同点
▪ 基尔霍夫电流和电压定律对非线性电路和线性电路均适用。
▪ 线性电路具有叠加性和均匀性。 非线性电路不具有叠加性和均匀性。
▪ 线性系统传输特性只由系统本身决定,与激励信号无关。 而非线性电路的输出输入特性则不仅与系统本身有关, 而且与激励信号有关。
▪ 线性电路可以用线性微分方程求解并可以方便地进行电路 的频域分析。 而非线性电路要用非线性微分方程表示,因此对 非线性电路进行频域分析与是比较困难的。 ▪对非线性电路(非线性电阻电路)工程上一般采用近似 分析手段--图解法和解析法。
i b0 b2vi2 b3vi3
加在该元件上的电压为:
vi 5cos1t 2 cos2t
(v)
电流 i 中所包含的频谱成份中含有下述频率中的那
非线性电路的工程分析方法

2.2.1 非线性电路的工程分析方法
(1)幂级数分析法
①外加一个电压信号时
设电压为,则
设电压为,且,则
2.2.1 非线性电路的工程分析方法
(2)折线近似分析法
用一组直线段来代替实际特性曲线。
放大区()截止区()
①转移特性曲线
②
输出特性曲线
2.2.1 非线性电路的工程分析方法
(3)线性时变电路分析法
假设,,且。
泰勒级数:
将在时变工作点
处展开为
减少组合频率分量,加大频率分量的间隔,易于选频。
假设,,且。
2.2.1 非线性电路的工程分析方法
式中,为回路电导。
无用组合频率分量进一步减少,有用信号的能量相对集中。
非线性电路特性及分析方法

常数
k 2
V1m 2
c
os21t
k 2
V2 m 2
c
os22t
新产生的频率分量
3、非线性电路不满足叠加原理
见上例:若符合叠加定理,输入应为: i kv12 kv22
非线性电路:非线性元件+选频网络
5.3 非线性电路分析法
1、幂级数分析法:小信号时较适用
任 何 非 线 性 元 件 特 性 曲线i f (v), 只 要 该 曲 线 在 某 区 间内 任 意 点VQ附 近
直流电导:又称静态电导,指非线性电阻器件伏安特性曲线上任一点与
原点之间连线的斜率,如图OQ线,表示为: 很显然,go值与外加VQ的大小有关。
go
IQ VQ
tg
交流电导:又称增量电导或微分电导,指伏安特性曲线上任一点的斜率
或近似为该点上增量电流与增量电压的比值,表为:
gd 值也是VQ (或IQ )的非线性函数。
gd
lim
v0
i v
di dv
Q
tg
平均电导:当非线性电阻器两端在静态直流电压的基础上又叠加幅度较
大的交变信号,对其不同的瞬时值,非线性电阻器的伏安特性曲线的斜
率是不同的,故引入平均电导的概念。
g I1m
g除与工作点VQ有关外,还随v(t)幅度的不同而变化。
Vm
2、非线性元件的频率变换作用
式 中 , 各 系 数 为 处 的 各阶 导 数
b0 f (v) vVQ b0 I0 , 是 静 态 工 作 点 电 流 ;
b1
f '(VQ ) 1!
b1 gd , 是 静 态 工 作 点 处 的 电导 , 动 态 电 阻 的 倒 数
第4章 非线性电路及其分析方法1

4.1 非线性电路的基本概念与非线性元件
4.1.1 非线性电路的基本概念 电路是若干无源元件或(和)有源元件的有序联结体。 它可以分为线性与非线性两大类。
1、从元件角度: 线性元件:元件的值与加于元件两端的电压或电流大小
无关。例如:R,L,C。
非线性元件:元件的值与加于元件两端的电压或电流大
小有关。例如:晶体管的 rbe ,变容管的结电容 CJ 。
则在二极管导通时,输出电流可表示为:
i(t) g(VB Vim cost Vth )
17
根据流通角 的定义:
当 t 时,电流 i(t)=0,即:
折线图
i(t) g(VB Vim cos Vth ) 0
cos Vth VB
Vim
利用这一关系式,可将 i(t) 式改写为:
i(t) gVim (cost cos )
可以看出如下规律:
表示式
(1)由于特性曲线的非线性,输出电流中产生了输入电压 中不曾有的新的频率成份:输入频率的谐波 21 和 2 2 ,
31 和 32 ; 输入频率及其谐波所形成的各种组合频率:
1 2 ,1 2 ,1 22 ,1 22 ,21 2 ,21 2
(2)由于表示特性曲线的幂多项式最高次数等于三,所以 电流中最高谐波次数不超过三,各组合频率系数之和最高也 不超过三。一般情况下,设幂多项式最高次数等于n,则电流 中最高谐波次数不超过n;
(5)所有组合频率都是成对出现的。例如,有 1 2 就ห้องสมุดไป่ตู้ 定有1 2 ;有 21 2 就一定有 21 2 等。
掌握以上规律是重要的。我们可以利用这些规律,根据不同 的要求,选用具有适当特性的非线性元件,或者选择合适的 工作范围,以得到所需要的频率成分,而尽量减弱甚至消除 不需要的频率成分。
非线性电路分析法

工程上,非线性电阻电路除了作用有直流电源外,往往同时作用有时变电源,因此在非线性电阻的响应中除了有直流分量外,还有时变分量。例如:半导体放大电路中,直流电源是其工作电源,时变电源是要放大的信号,它的有效值相对于直流电源小得多(10-3),一般称之为小信号(small-sigal)。对含有小信号的非线性电阻电路的分析在工程上是经常遇到的。
第六章 非线性电路
非线性电路:电路中元件性质(R的伏安特性、L的韦安特性、C的库伏特性)不再是线性关系,即其参数不再是常量。含有非线性元件的电路称为非线性电路。
第一节 非线性元件
一、电阻元件:VAR不符合欧姆定律的电阻元件。
①流控型电阻(CCR):电阻两端的电压是通过其电流的单值函数。VAR如图。
②压控型电阻(VCR):通过电阻的电流是其两端电压的单值函数。VAR如图。
例:用图解法示求电路中的电流i
+-
2)DP图法和TC图法
① DP图法:若某非线性一端口网络的端口伏安关系也称为驱动点(drive point)特性曲线DP确定,则已知端口的激励波形,通过图解法可求得响应的波形。
t
②TC图法:输入与输出是不同端口的电压、电流,其关系曲线称为转移特性(transmission character )TC曲线。已知TC曲线和激励波形,通过图解法可求得响应的波形。见P170
将其在工作点处展开为泰勒级数:
在小信号作用时非线性电阻可看作线性电阻,参数为其在工作点处的动态电阻。
画出小信号等效电路如图:
~
据线性电路的分析方法求出非线性电阻的电压电流增量。
总结以上过程的小信号法步骤:
①只有直流电源作用求解非线性元件的电压电流即静态工作点Q( UQ,IQ)
非线性电路及其分析方法

非线性元件的基本特性
非线性电阻 :二极管、三极管、场效应管
非线性元件
非线性电抗 :磁芯电感、钛酸钡介质电容
这里以非线性电阻(半导体二极管)为例,讨论非线性元件的特性
非线性元件的基本特性
非线性元件的工作特性
线性电阻的伏安特性曲线
半导体二极管的伏安特性曲线
与线性电阻不同,非线性电阻的伏安特性曲线不是直线。
非线性电路的分析方法
分析原则:
对于电路的分析,应当基于其所包含的电子元器件的基本物 理特性及其相互作用关系
在电路的分析与计算中,基尔霍夫定律对于线性电路和非线 性电路均适用,对于非线性电路的求解最终要归结于求应用 基尔霍夫定律得到的非线性方程或方程组的解的问题
非线性电路的分析方法
分析方法:
对非线性电路的分析没有统一的方法。对非线性电路的分析 只能针对某一类型的非线性电路采用适合这种电路的分析方 法。 常见的非线性电路分析方法有:直接分析法、数值分析法、 图解分析法、微变等效电路分析法、分段线性分析法、小信 号分析法等
非线性元件的基本特性
非线性元件的频率变换作用
线性电阻上的电压
正弦电压作用于二极管
与电流波形
产生非正弦周期电流
非线性电阻的输出电流与输入电压相比,波形不同,周期相同。
可知,电流中包含电压中没有的频率成分。
非线性元件的基本特性
例:设非线性电阻的伏安特性曲线具有抛物线形状,即:i kv2 ,式中 k 为常数。
非线性电路的分析方法
数值分析法——应用“牛顿法”求解非线性电阻电路
牛顿法: 对于含有一个非线性电阻元件的电路应用基尔霍夫电压定律可 以得到一个一元非线性方程 f( x) = 0, x 为待求解的变量,一 般为电压或者电流。牛顿法是将f( x) = 0 逐步归结为某种线性 方程来求解。设已知方程 f( x) = 0 有近似根 xk, 将 f( x) = 0 在点 xk处泰勒展开:
高等电路理论与技术课件非线性电阻电路分析方法

试用分段线性化方法确定隧道二极管的工作点。
i
R0
u
U0
i / mA
4
3 Q1
Q2
2
1
Q3
0
0.1
0.3
解 负载线方程 u 0.6 200i
第1段折线的方程 i 3102u
第2段折线的方程 i 2 102u 5 103
第3段折线的方程 i 102u 1103
-
UC0=4V,Cd=4 10-6F, uc=1/3(1-e-62.5t) (t) V uc=4.33-0.33e-62.5t V,t>0
例5:已知u1= i13 i12 i1 (单位:V, A), =(10-3/3) il3(Wb, A), q =(10-3/54) uc2(C,V),
R2d
du2 di2
I2 1A
1
6i
2 2
I2 1A
7
R3d
du3 di3
I3 1A
2
3i
2 3
I3 1A
5
画出小信号工作等效电路,求 u , i
I1 2
+
Emsinw_t
I2
I3
7
+ _U2
5
+ _ U3
I1=Emsinw t /(2+35/12)= 0.2033 Emsinw t I2= I1 5/12 =0.0847 Emsinw t I3= I1 7/12 =0.1186 Emsinw t
含有一个非线性电阻元件电路的求解:
先用戴维南等效电路化简,再用图解法求解
电子工程师学习指南

电子工程师学习指南第1章基础理论知识 (4)1.1 电路分析基础 (4)1.1.1 电路基本概念 (4)1.1.2 基本电路定律 (4)1.1.3 简单电路分析方法 (5)1.1.4 非线性电路分析 (5)1.2 电子元件及其特性 (5)1.2.1 电阻器 (5)1.2.2 电容器 (5)1.2.3 电感器 (5)1.2.4 二极管 (5)1.2.5 晶体管 (5)1.3 信号与系统 (5)1.3.1 信号的分类与描述 (5)1.3.2 信号的时域分析 (5)1.3.3 信号的频域分析 (6)1.3.4 系统的分类与描述 (6)1.3.5 系统的时域分析 (6)1.3.6 系统的频域分析 (6)第2章模拟电子技术 (6)2.1 放大器电路设计 (6)2.1.1 放大器基本概念 (6)2.1.2 电压放大器设计 (6)2.1.3 功率放大器设计 (6)2.1.4 运算放大器应用 (6)2.2 模拟信号处理 (6)2.2.1 模拟信号处理基础 (6)2.2.2 模拟信号放大 (7)2.2.3 模拟信号滤波 (7)2.2.4 模拟信号调制与解调 (7)2.3 滤波器设计 (7)2.3.1 滤波器基础 (7)2.3.2 RC滤波器设计 (7)2.3.3 RL滤波器设计 (7)2.3.4 LC滤波器设计 (7)2.3.5 有源滤波器设计 (7)第3章数字电子技术 (7)3.1 数字逻辑设计 (7)3.1.1 数字逻辑基础 (7)3.1.2 组合逻辑设计 (8)3.1.3 时序逻辑设计 (8)3.2.1 数字电路基础 (8)3.2.2 数字电路分析 (8)3.2.3 数字电路设计 (8)3.3 逻辑门电路与触发器 (8)3.3.1 逻辑门电路 (8)3.3.2 触发器 (9)3.3.3 触发器应用 (9)第4章微电子技术与集成电路 (9)4.1 半导体物理基础 (9)4.1.1 半导体材料的性质 (9)4.1.2 能带理论 (9)4.1.3 载流子理论 (9)4.1.4 半导体器件的基本工作原理 (9)4.2 集成电路设计流程 (9)4.2.1 需求分析 (9)4.2.2 电路设计 (9)4.2.3 电路仿真 (9)4.2.4 版图绘制 (9)4.2.5 版图验证 (9)4.2.6 生产制造 (9)4.3 VLSI设计与EDA工具 (10)4.3.1 VLSI设计基本概念 (10)4.3.2 EDA工具概述 (10)4.3.3 前端设计工具 (10)4.3.4 后端设计工具 (10)4.3.5 设计验证与测试 (10)第5章电子测量与仪器 (10)5.1 电子测量原理 (10)5.1.1 测量基本概念 (10)5.1.2 测量方法 (10)5.1.3 测量误差 (10)5.2 常用电子测量仪器 (10)5.2.1 万用表 (11)5.2.2 示波器 (11)5.2.3 信号发生器 (11)5.2.4 频率计数器 (11)5.2.5 数字相位计 (11)5.3 测量误差与数据处理 (11)5.3.1 测量误差的处理 (11)5.3.2 数据处理 (11)第6章电子电路仿真 (12)6.1 电路仿真原理与方法 (12)6.1.1 电路仿真原理 (12)6.2 常用电路仿真软件 (12)6.2.1 Multisim (12)6.2.2 PSpice (12)6.2.3 LTspice (12)6.2.4 Electronics Workbench (12)6.3 仿真案例分析 (13)6.3.1 案例描述 (13)6.3.2 电路原理 (13)6.3.3 仿真步骤 (13)第7章嵌入式系统设计 (13)7.1 嵌入式系统概述 (13)7.1.1 嵌入式系统的基本概念 (14)7.1.2 嵌入式系统的发展历程 (14)7.1.3 嵌入式系统的分类及特点 (14)7.2 微控制器与应用 (14)7.2.1 微控制器的基本原理 (14)7.2.2 微控制器的架构 (15)7.2.3 微控制器的选型 (15)7.2.4 微控制器的应用 (15)7.3 嵌入式系统编程与调试 (15)7.3.1 嵌入式系统编程概述 (15)7.3.2 编程语言 (15)7.3.3 调试方法 (16)7.3.4 调试工具 (16)第8章通信原理与应用 (16)8.1 通信系统基础 (16)8.1.1 通信系统的模型 (16)8.1.2 信号与噪声 (16)8.1.3 信号调制与解调 (16)8.1.4 通信信道 (16)8.2 数字通信技术 (17)8.2.1 源编码与信道编码 (17)8.2.2 数字信号传输 (17)8.2.3 错误检测与纠正 (17)8.2.4 带宽效率与功率控制 (17)8.3 无线通信与RF设计 (17)8.3.1 无线通信原理 (17)8.3.2 无线通信标准与技术 (17)8.3.3 RF电路设计 (17)8.3.4 天线设计与辐射特性 (17)第9章电源技术与新能源 (17)9.1 电源电路设计 (18)9.1.1 电源电路概述 (18)9.1.3 电源电路设计原则 (18)9.1.4 电源电路元件选型 (18)9.1.5 电源电路保护 (18)9.2 电力电子技术 (18)9.2.1 电力电子器件 (18)9.2.2 电力电子变换技术 (18)9.2.3 电力电子控制技术 (18)9.2.4 电力电子技术在新能源领域的应用 (18)9.3 新能源技术与应用 (18)9.3.1 新能源概述 (18)9.3.2 太阳能技术 (18)9.3.3 风能技术 (18)9.3.4 电动汽车技术 (19)9.3.5 其他新能源技术 (19)第10章电子工程实践与项目管理 (19)10.1 电子工程实践技巧 (19)10.1.1 设计与仿真 (19)10.1.2 原理图与PCB设计 (19)10.1.3 焊接与调试 (19)10.2 常用电子元器件选型 (19)10.2.1 电阻、电容、电感 (19)10.2.2 集成电路 (19)10.2.3 半导体器件 (20)10.3 项目管理与团队协作 (20)10.3.1 项目规划 (20)10.3.2 团队协作 (20)10.3.3 风险管理 (20)10.3.4 项目总结 (20)第1章基础理论知识1.1 电路分析基础1.1.1 电路基本概念电流、电压、电阻、电导等基本电路参数的定义与测量;电路元件的连接方式,包括串联、并联和混联。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 非线性电路的分析方法
2020/5/28
1
非线性电路的分析方法
1. 三种分析方法 (1)解析分析法
求解方程组,得出待求的电流和电压值。 (2)图解分析法
在非线性器件的伏安特性曲线上作图分析。 (3)等效电路分析法
建立线性模型
直流等效模型
微变等效模型
确定Q点坐标,
计算交流指标,
弥补“图解法”不足
如 、R i、Ro
2020/5/28
2
非线性电路的分析方法
2. 分析方法的应用 (1)图解法
回路电压方程
该式确定的直线与二极管伏安曲线交点为Q。
图解法避免“解析法”求解超越方程 确定Q点的困难。
2020/5/28
3
非线性电路的分析方法
(通
截止
2020/5/28
6
理想开关 正向导通UD = 0 反向截止 Is = 0
正向导通 硅管:0.7V 锗管:0.2或0.3V
反向截止 Is = 0
4
非线性电路的分析方法 ② 微变等效模型
可用一个动态电阻rd来等效。
式中,(T=300K时) UT 26mV ,IDQ为Q点处的 静态电流值。
2020/5/28
5
非线性电路的分析方法