第十二章 线性回归分析

合集下载

线性回归分析教程ppt

线性回归分析教程ppt

04
线性回归分析的应用
预测与决策
销售预测
通过分析历史销售数据,建立线性回归模型,预测未来销售趋势,为企业的生产和库存管理提供决策 依据。
投资决策
利用线性回归分析评估投资项目的潜在收益和风险,帮助投资者做出明智的决策。
市场细分与定位
市场细分
通过线性回归分析,识别不同消费群体 的特征和需求,将市场细分为不同的子 市场,以便更有针对性地进行营销。
影响预测精度。
数据不平衡
03
在某些情况下,某些类别的样本数量过少,可能导致模型对少
数类别的预测能力不足。
样本选择偏差
过拟合
训练数据集过小或过于特定,导致模型对训练数据过度拟合,而 对新数据预测能力不足。
欠拟合
训练数据集过大或过于复杂,导致模型过于简单,无法捕捉到数 据中的复杂模式。
选择偏差
由于某些原因(如实验设计、数据收集过程等),训练数据可能 存在选择偏差,导致模型预测能力下降。
通过残差分析、决定系数、显著性检 验等统计方法对模型进行检验,评估 模型的拟合效果。
多重共线性问题
多重共线性定义
多重共线性是指线性回归模型中自变量 之间存在高度相关或完全相关的情况。
多重共线性的诊断
通过计算自变量之间的相关系数、条 件指数、方差膨胀因子等方法诊断多
重共线性。
多重共线性的影响
多重共线性会导致模型不稳定、参数 估计不准确、甚至出现完全的多重共 线性。
பைடு நூலகம்
VS
定位策略
基于线性回归分析的结果,确定目标市场 和产品定位,制定有效的市场推广策略。
成本预测与控制
成本预测
通过分析历史成本数据,建立线性回归模型,预测未来的生产成本,为企业制定合理的 价格策略提供依据。

线性回归分析PPT

线性回归分析PPT

分析宏观经济因素对微观 经济主体的影响,为企业 决策提供依据。
评估政策变化对经济的影 响,为政策制定提供参考。
市场分析
STEP 02
STEP 03
评估市场趋势和竞争态势, 为企业战略规划提供支持。
STEP 01
分析消费者行为和偏好, 优化产品设计和营销策略。
预测市场需求和销售量, 制定合理的生产和销售计 划。
参数解释
(beta_0) 是截距项,表示当所有自变量值为0时,因变量的值;(beta_1, beta_2, ..., beta_p) 是斜率项,表示自 变量变化一个单位时,因变量变化的单位数量。
线性回归分析的假设
线性关系
自变量和因变量之间存在线性关系, 即它们之间的关系可以用一条直线近 似表示。
01
02
无多重共线性
自变量之间不存在多重共线性,即它 们之间没有高度的相关性,每个自变 量对因变量的影响是独特的。
03
无异方差性
误差项的方差不随自变量的值变化。
无随机性
误差项是随机的,不包含系统的、可 预测的模式。
05
04
无自相关
误差项之间不存在自相关性,即一个 误差项与另一个误差项不相关。
Part
02
线性回归模型的建立
确定自变量与因变量
01
根据研究目的和数据特征,选择 与因变量相关的自变量,并确定 自变量和因变量的关系。
02
考虑自变量之间的多重共线性问 题,避免选择高度相关的自变量 。
散点图与趋势线
通过绘制散点图,观察自变量与因变 量之间的关系,了解数据的分布和趋 势。
根据散点图的分布情况,选择合适的 线性回归模型,如简单线性回归或多 元线性回归。

第12章-多重线性回归分析

第12章-多重线性回归分析
8
6 因变量总变异的分解
P
(X,Y)

Y
(Y Y) (Y Y)

(Y Y)
Y X

Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)

血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86

12章 多元线性回归

12章 多元线性回归

统计学第十二章 多元线性回归一. 选择题1. 在多元线性回归分析中,t 检验是用来检验( ) A 总体线性关系的显著性 B.各回归系数的显著性 C.样本线性关系的显著性 D .H 0:β1=β2=…βk =02.在多元线性回归模型中,若自变量x i 对因变量y 的影响不显著,那么它的回归系数 βi 的取值( )A.可能为0B.可能为1C.可能小于0 D 可能大于13.在多元线性回归方程 y i ˆ=βˆ0+x 11ˆβ+x 22ˆβ+…+xkkβˆ中,回归系数βˆi表示( ) A.自变量x i 变动1个单位时,因变量y 的平均变动额为βˆiB.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的平均变动额为βˆiC.其他变量不变的条件下,自变量x i 变动1个单位时,因变量y的变动总额为βˆiD.因变量y 变动1个单位时,因变量x i 的变动总额为βˆi4.设自变量的个数为5个,样本容量为20。

在多元回归分析中,估计标准误差的自由度为( )A.20B.15C.14D.18 5.在多元回归分析中,通常需要计算调整的多重判定系数R a2,这样可以避免的值()A. 由于模型中自变量个数的增加而越来越接近1B. 由于模型中自变量个数的增加而越来越接近0C. 由于模型中样本容量的增加而越来越接近0D. 由于模型中样本容量的增加而越来越接近16.在多元线性回归分析中,如果F检验表明线性关系显著,则意味着()A.在多个变量中至少有一个自变量与因变量之间的线性关系显著B.所有的自变量与因变量之间的线性关系都显著C.在多个变量中至少有一个自变量与因变量之间的线性关系不显著D.所有的自变量与因变量之间的线性关系都不显著7.在多元线性回归分析中,如果t检验表明回归系数βi不显著,则意味着()A.整个回归方程的线性关系不显著B.整个回归方程的线性关系显著C.自变量x i与因变量之间的线性关系不显著D.自变量x i与因变量之间的线性关系显著8.设多元线性回归方程为Yˆ=βˆ0+x11ˆβ+x22ˆβ+…+xkkβˆ,若自变量x i的回归系数βˆi的取值接近0,这表明()A.因变量y对自变量ix的影响不显著B.因变量y对自变量ix的影响显著C.自变量ix对因变量y的影响不显著D.自变量x对因变量y的影响显著i9.一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(a=0.05)根据上表计算的判定系数为()A. 0.9229B. 1.1483C. 0.3852D. 0.851610. 一家出租汽车公司为确定合理的管理费用,需要研究出租车四级每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的估计标准误差为()A. 306.18B. 17.50C. 16.13D. 41.9311. 一家出租汽车公司为确定合理的管理费用,需要研究出租车司机每天的收入(元)与他的行驶时间(小时)、行驶的里程(公里)之间的关系,为此随机调查了20位出租车司机,根据每天的收入(y)、行驶时间(x1)和行驶的里程(x2)的有关数据进行回归,得到下面的有关结果(α=0.05)根据上表计算的用于检验线性关系的统计量F=()A. 306.18B. 48.80C. 5.74D. 41.9312.一家产品销售公司在30个地区设有销售分公司。

第十二章 线性回归分析

第十二章  线性回归分析

回归是回归分析中最基本、最简单的一种,
回归方程
一、直线回归方程的一般表达式为
ˆ a bX Y

(12 1)
ˆ Y 为各X处Y的总体均数的估计。
回归方程的应用
一、线性回归的主要用途 1.研究因素间的依存关系 自变量和应变 量之间是否存在线性关系,即研究一个或多个 自变量对应变量的作用,或者应变量依赖自变 量变化而变化的规律。
否存在实际意义。 3.两变量间存在直线关系时,不一定
表明彼此之间就存在因果关系。
4.建立回归方程后,须对回归系数
进行假设检验。
5. 使用回归方程进行估计与预测时,
一般只适用于原来的观测范围,即自变量
的取值范围,不能随意将范围扩大。
6. 在线性回归分析时,要注意远离
群体的极端值对回归效果的影响。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 9 10 11 12 合计
X 进食量(g)
(2) 305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6 2957.9 (Σ X)
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数”
等统计学概念。如研究糖尿病人血糖
与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系,
不同于一般数学上的X 和Y的函数 关系。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3)

线性回归分析

线性回归分析

线性回归分析线性回归是一种用来建立和预测变量间线性关系的统计分析方法。

它可以帮助我们了解变量之间的相互影响和趋势,并将这些关系用一条直线来表示。

线性回归分析常被应用于经济学、社会科学、自然科学和工程等领域。

一、概述线性回归分析是一个广泛使用的统计工具,用于建立变量间的线性关系模型。

该模型假设自变量(独立变量)与因变量(依赖变量)之间存在线性关系,并通过最小化观测值与模型预测值之间的误差来确定模型的参数。

二、基本原理线性回归分析基于最小二乘法,通过最小化观测值与模型预测值之间的残差平方和来确定模型的参数。

具体来说,线性回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1到Xn是自变量,β0到βn是回归系数,ε是误差项。

回归系数表示自变量对因变量的影响程度。

三、应用步骤进行线性回归分析时,通常需要以下几个步骤:1. 收集数据:获取自变量和因变量的样本数据。

2. 建立模型:根据数据建立线性回归模型。

3. 评估模型的准确性:通过计算残差、决定系数等指标来评估模型的准确性。

4. 进行预测和推断:利用模型对未知数据进行预测和推断。

四、模型评价指标在线性回归分析中,有几个常用的指标用于评价模型的准确性:1. R平方值:R平方值表示因变量的变异性能够被模型解释的比例,数值范围为0到1。

R平方值越接近1,表示模型对数据的拟合程度越好。

2. 残差分析:进行残差分析可以帮助我们判断模型是否符合线性回归的基本假设。

一般来说,残差应该满足正态分布、独立性和等方差性的假设。

五、优缺点线性回归分析有以下几个优点:1. 简单易懂:线性回归模型的建立和解释相对较为简单,无需复杂的数学知识。

2. 实用性强:线性回归模型适用于很多实际问题,可以解决很多预测和推断的需求。

然而,线性回归分析也存在以下几个缺点:1. 假设限制:线性回归模型对于变量间关系的假设比较严格,不适用于非线性关系的建模。

12章多重线性回归与相关

12章多重线性回归与相关

一、自变量筛选的标准与原则
2.残差均方缩小与调整决定系数增大 MS残=SS残/(n-p-1) MS残缩小的准则可以看做是在SS残缩小准则的基础上 增加了(n-p-1)-1因子,该因子随模型中自变量个数 p的增加而增加,体现了对模型中自变量个数增加而 施加的“惩罚”。 调整决定系数Ra2越大越好,与MS残等价。
包含汽车流量、气温、气湿与风速这四个自变量的回
归方程可解释交通点空气NO浓度变异性的78.74%
2.复相关系数R (multiple correlation coefficient)
定义为确定系数的算术平方根,
R SS回 SS总
表示变量Y与k个自变量的线性相关的密切程度。 对本例R=0.8837,表示交通点空气NO浓度与汽车流量、
表12-5 空气中NO浓度与各自变量的相关系数与偏相关系数
自变量 车流X1 相关系数 0.80800 偏相关系数 0.6920 偏相关系数P值 0.0005
气温X2
气湿X3 风速X4
0.1724
0.2754 -0.67957
0.47670
-0.00218 -0.59275
0.0289
0.9925 0.0046
第十二章
第一节 第二节 第三节 第四节
多重线性回归与相关
多重线性回归的概念与统计描述 多重线性回归的假设检验 复相关系数与偏相关系数 自变量筛选
一、整体回归效应的假设检验(方差分析)
表12-2 检验回归方程整体意义的方差分析表
变异来源 回归模型
残差 总变异
SS
0.0639 6 0.0172 7 0.0812 3
风速
(X4) 2.00 2.40 3.00 1.00 2.80 1.45 1.50 1.50 0.90 0.65 1.83 2.00

第十二章 回归分析

第十二章 回归分析
第十二章 回归分析
回归分析
如果我们将存在相关的两个变量,一个作为自变 量,另一个作为因变量,并把两者之间不十分稳 定的、准确的关系,用数学方程式来表达,则可 利用该方程由自变量的值来估计、预测因变量的 估计值,这一过程称为回归分析。 相关表示两个变量之间的双向相互关系,回归表 示一个变量随另一个变量做不同程度变化的单向 关系。
• 线性回归的基本假设
– – – – 线性关系 正态分布 独立性假设 误差等分散性假设
• 回归方程的建立
– 步骤:1)作散点图;2)设直线方程;3)选定具体方 法,计算表达式中的a和b;4)将a和b代入表达式,得 到回归方程。 – 方法:1)平均数法;2)最小二乘法。 • 最小二乘法:在配置回归线时,回归系数b的确定原则是 使散布图上各点距回归线上相应点的纵向距离平方和为最 小,这种求b的方法即最小二乘法。
• 回归分析与相关分析的关系
– 理解: • 同属相关分析; • 对称设计与不对称设计。 – 回归系数与相关系数的关系 • 相关系数是两个回归系数的几何平均数。
第二节 一元线性回归方程的检验
• 估计误差的标准差
某一X值相对应的诸Y 值,是以Y的平均数YX 为中 ˆ 心呈正态分布的。而与某一X值相对应的回归值 Y 就是与该X值相对应的那些诸Y值的平均数YX的估 ˆ 计值。由 Y 估计YX 会有一定的误差。误差大小 与X值相对应的诸Y值分布范围有关,范围大,误 差大,估计的准确性、可靠性小,范围小,误差小, 估计的准确性、可靠性大。 ˆ 我们需要一个用来描述由Y 估计YX 时误差大小的 指标,即估计误差的标准差。平均数与标准差未知, 样本的无偏估计量为:

a YX Y bYX X
• 列回归方程式(见教材)

线性回归分析课件

线性回归分析课件

线性回归分析
24
01-03 回归分析的应用
两种回归分析工具使用总结: • 利用回归分析工具进行线性回归的优缺点如下: ① 优点:可以进行一元线性回归,也可以进行多元线性回归。 ② 缺点:只能进行线性回归,不能直接进行非线性回归。 • 利用散点图和趋势线进行回归分析的优缺点如下: ① 优点:不仅能进行线性回归,还能进行非线性回归。 ② 缺点:只能进行一元回归,不能进行多元回归。
线性回归分析
10
01-03 回归分析的应用
案例分析:
表:小区超市的年销售额(百万元)与小区常住人口数(万人)统计表
线性回归分析
11
01-03 回归分析的应用
分析步骤:(一)
线性回归分析
12
01-03 回归分析的应用
分析步骤:(二)
反映模型的拟合度
线性回归分析
13
01-03 回归分析的应用
分析步骤:(三) • 一元线性回归 y=kx+b
线性回归分析
5
01-02 回归分析的概念
• 分类
(1)回归分析按照涉及的变量多少,分为 一元回归分析 多元回归分析
(2)按照自变量和因变量之间的关系类型,可分为 线性回归分析 非线性回归分析线性回归分析601-02 回归分析的概念
• 步骤
线性回归分析
7
01-02 回归分析的概念
• 决定系数
当变量之间的关系可以用一个数学模型来模拟时,我们用决定系数( R2)判定数学模型拟合效果的好坏。
利用Excel散点图和趋势线进行回归分析: 在现实生活中,很多社会经济现象是非线性发展的,此时数据点分布在 一条曲线附近,例如指数曲线、抛物线等。 将例中的直线模型改成指数模型,操作如下。

线性回归分析教程PPT课件

线性回归分析教程PPT课件

实例二:销售预测
总结词
线性回归分析在销售预测中,可以通过分析历史销售数据,建立销售量与影响因子之间的线性关系, 预测未来一段时间内的销售量。
详细描述
在销售预测中,线性回归分析可以用于分析历史销售数据,通过建立销售量与影响因子(如市场需求 、季节性、促销活动等)之间的线性关系,预测未来一段时间内的销售量。这种分析方法可以帮助企 业制定生产和销售计划。
自相关检验
自相关是指残差之间存在 相关性。应通过图形或统 计检验方法检验残差的自 相关性。
05
线性回归模型的预测与 优化
利用线性回归模型进行预测
确定自变量和因变量
01
在预测模型中,自变量是预测因变量的变量,因变量是需要预
测的目标变量。
建立模型
02
通过收集数据并选择合适的线性回归模型,利用数学公式表示
一元线性回归模型
一元线性回归模型是用来研究一个因变量和一个 自变量之间的线性关系的模型。
它通常用于预测一个因变量的值,基于一个自变 量的值。
一元线性回归模型的公式为:y = b0 + b1 * x
多元线性回归模型
01 多元线性回归模型是用来研究多个自变量和一个 因变量之间的线性关系的模型。
02 它通常用于预测一个因变量的值,基于多个自变 量的值。
线性回归模型与其他模型的比较
01
与逻辑回归的比较
逻辑回归主要用于分类问题,而 线性回归主要用于连续变量的预 测。
02
与决策树的比较
决策树易于理解和解释,但线性 回归在预测精度和稳定性方面可 能更优。
03
与支持向量机的比 较
支持向量机适用于小样本数据, 而线性 Nhomakorabea归在大样本数据上表现 更佳。

线性回归分析的基本原理

线性回归分析的基本原理

线性回归分析的基本原理线性回归分析是一种常用的统计分析方法,用于研究自变量与因变量之间的线性关系。

它通过拟合一条直线来描述两个变量之间的关系,并利用这条直线进行预测和推断。

本文将介绍线性回归分析的基本原理,包括模型假设、参数估计、模型评估等内容。

一、模型假设线性回归模型假设自变量与因变量之间存在线性关系,即因变量Y可以用自变量X的线性组合来表示。

线性回归模型可以表示为:Y = β0 + β1X + ε其中,Y表示因变量,X表示自变量,β0和β1表示模型的参数,ε表示误差项。

模型的目标是通过估计参数β0和β1来找到最佳的拟合直线,使得预测值与观测值之间的误差最小。

二、参数估计线性回归模型的参数估计通常使用最小二乘法来进行。

最小二乘法的基本思想是通过最小化观测值与预测值之间的误差平方和来估计参数。

具体而言,参数估计的目标是找到一组参数β0和β1,使得误差平方和最小化。

参数估计的公式如下:β1 = Σ((Xi - X_mean)(Yi - Y_mean)) / Σ((Xi - X_mean)^2)β0 = Y_mean - β1 * X_mean其中,Xi和Yi分别表示第i个观测值的自变量和因变量,X_mean和Y_mean分别表示自变量和因变量的均值。

三、模型评估在进行线性回归分析时,需要对模型进行评估,以确定模型的拟合程度和预测能力。

常用的模型评估指标包括残差分析、决定系数和假设检验。

1. 残差分析残差是观测值与预测值之间的差异,残差分析可以用来检验模型的拟合程度和误差分布是否符合模型假设。

通常,残差应该满足以下几个条件:残差的均值为0,残差的方差为常数,残差之间相互独立,残差服从正态分布。

通过绘制残差图和正态概率图,可以对残差进行可视化分析。

2. 决定系数决定系数是评估模型拟合程度的指标,表示因变量的变异程度中可以由自变量解释的比例。

决定系数的取值范围为0到1,越接近1表示模型的拟合程度越好。

决定系数的计算公式如下:R^2 = 1 - (SSR / SST)其中,SSR表示回归平方和,SST表示总平方和。

(完整版)第十二章相关和回归分析练习试题

(完整版)第十二章相关和回归分析练习试题

第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。

2.相关关系按方向不同,可分为_____ 和________ 。

3. 相关关系按相关变量的多少,分为和复相关。

4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。

自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。

5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。

6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。

7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。

7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。

8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。

这种分析方法,通常又称为(回归分析)。

9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。

二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。

A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。

A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。

A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。

线性回归分析-PPT课件

线性回归分析-PPT课件

总离差平方和:
S S S T R E
R
回归均方差(组间方差): M

2 ( Y y ) j jME
(Y
j 1
m
j
yj )
2
m n 1
计算F值,
M F M
R E
由F值查表,得到P。讨论显著度水平: <=α 自变量作用显著 P >α 自变量作用不显著
将未进入方程的某自变量Xi与Y做方差分析,各水平均值差异显著,满足: F > 3.84 或P<= 0.05 则该Xi可以进入回归方程。而已进入回归方程的Xi与回归后的Y如果出现: F < 2.71 , P> 0.1 则该Xi 必须从回归方程中剔除。 3. 回归系数的显著性检验 对已进入方程的变量的回归系数做 T检验,该检验的原假设是 Bi=0,即第 i 个偏回归系数与0无差异。它意味着,当偏回归系数Bi为0时,无论xi取值如何变 化都不会引起y 的线性百脑汇,xi无法解释y 的线性变化,它们之间不存在线性 关系。 T值的计算为: B
四、线性回归分析的具体操作步骤 ⒈回归分析命令菜单
执行:[Analyze] [Regression] [Linear] 选择因变量到:“Dependent”因变量框内 选择若干个自变量移动到:“Independent(s)” 自变量 框内。
⒉回归方法
“Method”下拉菜单提供了五种筛选策略供选择: 强行介入法Enter(默认,通常在一元线性回归中) 向前筛选Forward 向后筛选Backward 逐步筛选Stepwise 强行剔除Remove
T

i
SE
通过查表可以得到P(即:Sig T)。 若P> 0.1的Xi须可以考虑首先从回归方程中剔除。 其中: Bi为偏回归系数 SEBi为偏回归系数的标准误

第十二章 简单回归分析

第十二章  简单回归分析

第十二章简单回归分析选择题A1型每一道题下面有A、B、C、D、E五个备选答案,请从中选择一个最佳答案。

1、线性回归分析可用于下列()的依存关系的研究A、性别与身高B、年龄与体重C、职业与工龄D、民族语血型E、国籍与智商2、对变量X和Y同时进行线性相关分析和线性回归分析,其结果一定是()A、r>0,b<0B、r<0,b>0C、r b≥0D、r=bE、r与b的符号无关3、已知相关系数r=1,则一定有()A、SS总=SS残B、SS总=SS回C、SS残=SS回D、a=1E、b=14、线性回归分析中,对总体回归系数B是否为0做t检验,其自由度是()A、nB、n-1C、n-2D、2n-1E、2n-25、如果对线性回归模型进行假设检验,结果是没能拒绝H0,这就意味着()A、该模型有应用价值B、该模型无应用价值C、该模型求解错误D、X与Y之间无关系E、尚无充分证据说明X与Y之间有线性关系6、求得X与Y的线性回归方程后,对回归系数作假设检验的目的是:对()作出统计推断A、样本截距B、总体截距C、样本斜率D、总体斜率E、决定系数7、在求出Y关于X变化的线性回归方程后发现,将原始数据中的某一点(X k,Y k)的横坐标值X k代入方程所得的Y k≠Y k,则可以认为()A此现象正常B、此现象无法解释C、计算有错误D、X与Y之间呈非线性关系E、X与Y之间呈线性关系8、对含有两个随机变量的同一批资料,既作线性相关,有作线性回归分析。

对相关系数检验的t值记为t r,对回归系数检验的t值记为t b,则二者之间的关系是()A、t r>t bB、t r<t bC、t r≥t bD、t r≤t bE、t r=t b9、对以X为自变量,Y为因变量作线性回归分析时,下列正确的说法是()A、只要求X服从正态分布B、只要求Y服从正态分布C、只要求X与Y是定量变量D、要求X与Y都服从正态分布E、要求X与Y服从双变量正态分布10、利用最小二乘原则确定回归方程的要求是:使得各数据点()A、距回归直线纵向距离的平方和最小B、距回归直线横向距离的平方和最小C、距回归直线距离的平方和最小D、距回归直线垂直距离的平方和最小E、距回归直线平行距离的平方和最小11、线性回归分析中,当()时,回归方程拟合的效果越佳A、截距越大B、斜率越大C、回归系数越大D、相关系数越大E、决定系数越大12、线性回归分析中,若对总体回归系数B是否为0作方差分析,得到F>F a(v1,v2),则可认为()A、两变量之间存在回归关系B、两变量之间不存在回归关系C、两变量之间存在线性回归关系D、两变量之间不存在线性回归关系E、两变量之间存在因果关系【参考答案】(一)1、B 2、C 3、B 4、C 5、E 6、D 7、A 8、E 9、D 10、A 11、E 12、C。

线性回归分析

线性回归分析

线性回归分析随着社会的发展,经济体制的改革,经济管理人员迫切需要了解到投资项目或者是工程项目的影响因素,这些对投资项目具有直接或间接的影响,通过各种各样的经济分析和技术分析方法来进行综合评价。

为了使我国在日趋激烈的竞争中立于不败之地,必须注重微观管理的决策水平,强化管理手段,而其中最有效的手段之一就是运用线性回归分析方法来确定最优方案。

线性回归分析就是根据两个或多个随机变量X、 Y的相关关系,将X的值代入一个参数方程,求出解,再利用参数的数值判断该方程能否描述这两个变量之间的关系。

线性回归分析的主要作用在于:第一,判断两个随机变量是否线性相关;第二,确定参数;第三,检验假设。

一、线性回归分析方法的介绍回归分析是数理统计的基础,它可以确定被试某种因素和某些指标之间的函数关系,也可以确定一组指标与另一组指标之间的函数关系。

一般我们常用的是线性回归分析。

线性回归分析,也称为“回归”,是数学统计学的一个基本概念。

所谓线性回归,就是依照“自变量”与“因变量”的关系,运用数学公式,将自变量的变化,导致因变量的变化,用回归方程描绘出来。

回归分析是一门应用性很强的学科,在解决实际问题时,既可以从数学上证明或计算出有关结果,又可以直接利用回归分析的结果加以利用,从而弥补了试验设计的不足。

1、解释变量变量就是要研究的因变量,通过解释变量来解释自变量的变化。

2、自变量自变量就是我们要研究的原因变量,即导致投资项目X变化的原因。

3、回归直线通过回归直线将自变量Y与因变量X之间的相互关系表现出来,反映自变量变化情况,并说明因变量X的变化对自变量Y的影响。

4、相关系数相关系数是一种表示自变量与因变量之间关系密切程度的统计量。

在同一时期内,各因素间的相关程度,相关大小的程度用r来表示。

5、 R统计量R统计量是研究对比某两种现象之间的数量关系的统计量。

2、自变量就是我们要研究的原因变量,即导致投资项目X变化的原因。

3、回归直线通过回归直线将自变量Y与因变量X之间的相互关系表现出来,反映自变量变化情况,并说明因变量X的变化对自变量Y的影响。

第十二章 回归分析预测法

第十二章 回归分析预测法

全面分析影响预测对象的相关因素, 全面分析影响预测对象的相关因素,确定自变量 1、首先对所有影响因素进行分析 2、比较相关因素,找出最主要的影响因素 比较相关因素, 选择回归预测模型, 选择回归预测模型,确定模型参数 实际预测 检验预测模型和预测结果的可靠性程度
三、随机误差项的影响因素
人们的随机行为 回归模型中 省略的变量
回归分析预测法 从各种经济现象之间的相关关系出发, 从各种经济现象之间的相关关系出发, 通过对与预测对象有联系的现象变动趋势的 分析, 分析,推算预测对象未来状态数量表现的一 种预测法。 种预测法。
回归分析预测法的基本步骤 (一)根据预测的目的,选择确定自变量和 根据预测的目的, 因变量 (二)收集历史统计资料 分析.计算并建立回归 (二)收集历史统计资料,分析.计算并建立回归 收集历史统计资料,分析 预测模型 (三)进行相关分析 (四)检验回归预测模型 计算预测误差 检验回归预测模型,计算预测误差 回归预测模型 (五)计算并确定预测值
回归模型 定义:
回归分析是对具有相关关系的变量之间的 数量变化规律进行测定, 数量变化规律进行测定,研究某一随机变量 因变量)与其他一个或几个普通变量( (因变量)与其他一个或几个普通变量(自变 之间的数量变动关系, 量)之间的数量变动关系,并据此对因变量进 行估计和预测的分析方法。 行估计和预测的分析方法。由回归分析求出的 关系式, 关系式,称为回归模型
P( − t α < t < t α ) = 1 − α
2 2

P( −t α <
2
ɵ βi − βi sβɵ
i
i
< tα ) = 1− α
2
ɵ ɵ P ( βi − t α × sβɵ < βi < βi + t α × sβɵ ) = 1 − α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 线性回归分析
双变量计量资料:每个个体有两个变量值 总体:无限或有限对变量值 样本:从总体随机抽取的n对变量值 (X1,Y1), (X2,Y2), …, (Xn,Yn) 目的:研究X和Y的数量关系 方法:回归与相关
简单、基本——直线回归、直线相关
历史背景:
英国人类学家 F.Galton首次在《自然遗传》 一书中,提出并阐明了“相关”和“相关系数” 两个概念,为相关论奠定了基础。其后,他和 英国统计学家 Karl Pearson对上千个家庭的身 高、臂长、拃长(伸开大拇指与中指两端的最
215.6 (ΣY)
X2
(4)
93452.49 35569.96 76839.84 133079.04 81396.09 59878.09 65484.81 22440.04 72307.21 61305.76 28493.44 40240.36 770487.13
( X 2 )
Y2
(5)
556.96 216.09 368.64 767.29 357.21 259.21 295.84 166.41 334.89 313.29 187.69 243.36 4066.9
目前,“回归”已成为表示变量 之间某种数量依存关系的统计学术语, 并且衍生出“回归方程”“回归系数” 等统计学概念。如研究糖尿病人血糖 与其胰岛素水平的关系,研究儿童年 龄与体重的关系等。
第一节 两相关变量的散点图
一、直线回归的概念
目的:研究应变量Y对自变量X的数量依 存关系。
特点:统计关系。 X值和Y的均数的关系, 不同于一般数学上的X 和Y的函数 关系。
b lXY 2681.6 0.0648 lXX 41389.4
a Y bX 17.97 (0.0648)(246.49) 2.00
5.列出回归方程(回归直线绘制见图 12-
YˆY ˆ2 .002 .00 .00 64 8X0.0648X
X X
此直线必然通过点( , )且Y 与纵坐标轴相交
1.回归系数的方差分析
理解回归中方差分析的基本思想, 需要对应变量Y 的离均差平方和lYY 作分 解如图 12-4 所示.
(Y 2 )
XY (6)
7214.52 2772.42 5322.24 10104.96 5392.17 3939.67 4401.48 1932.42 4920.87 4382.52 2312.56 3129.36
55825.2 (ΣXY)
30
25
体重增加量(g),Y
20
15
10
5
130
180
230
第二节
回归方程
一、直线回归方程的一般表达式为
Y ˆabX (121)
Y ˆ 为各X处Y的总体均数的估计。
二、直线回归方程的求法
➢残差(residual)或剩余值,即实测值Y与假定 回归线上的估计值 Y ˆ 的纵向距离 Y Yˆ 。
➢求解a、b实际上就是“合理地”找到一条 能最好地代表数据点分布趋势的直线。
由图12-1可见,体重增加量有随进食 量增加而增大的趋势,且散点呈直线趋势, 但并非12个点都在直线上 ,此与两变量间 严格的直线函数关系不同,称为直线回归
(linear regression),其方程叫直线回归方程,以 区别严格意义的直线方程。
回归是回归分析中最基本、最简单的一种, 故又称简单回归。
大长度)做了测量,发现:
儿子身高(Y,英寸)与父亲身高(X,
英寸)存在线性关系:

Y ˆ也即33 高.73 个 子0.父51 代6X 的子代在成年之后的身
高平均来说不是更高,而是稍矮于其父代水
平,而矮个子父代的子代的平均身高不是更
矮,而是稍高于其父代水平。Galton将这种
趋向于种族稳定的现象称之“回归”。
例12-2 (续例12-1) 根据表121数据,对大白鼠的体重增加量进行 回归分析。
解题步骤
1.由原始数据及散点图(图 12-1) 的观察,两变量间呈直线趋势,故作下 列计算。
2.计算 X 、Y 的均数 X 、Y 。 3.计算离均差平方和 lXX 、lYY 与离 均差积和 lXY 。
4.求回归系数 b和截距 a。
为了直观地说明两相关变量的线性 依存关系,用表12-1第(2)、(3) 列中大白鼠的进食量和体重增加量 的数据在坐标纸上描点,得图12-1所 示的散点图(scatter plot)。
例12-1 用某饲料喂养12只大白鼠, 得出大白鼠的进食量与体重增加量 如表12-1,试绘制其散点图。
表12-1 12只大白鼠的进食量(g)与体重增加量(g)测量结果
序号 (1) 1 2 3 4 5 6 7 8 (g)X (2)
305.7 188.6 277.2 364.8 285.3 244.7 255.9 149.8 268.9 247.6 168.8 200.6
2957.9 (ΣX)
体重增加量(g) Y (3)
23.6 14.7 19.2 27.7 18.9 16.1 17.2 12.9 18.3 17.7 13.7 15.6
原则:最小二乘法(least sum of squares),即可 保证各实测点至直线的纵向距离的平方和最小
blXY lXX
(XX)(YY) (XX)2
aYbX
(12-2)
(12-3)
式 中 lX Y 为 X 与 Y 的 离 均 差 乘 积 和 :
lX Y (X X ) ( Y Y ) X Y ( X n ) ( Y )( 1 2 6 )
于截距 。如a果散点图没有从坐标系原点开
始,可在自变量实测范围内远端取易于读
数的 值代入X回归方程得到一个点的坐标,
连接此点与点( , )也可绘出回Y 归直线。
第三节 回归系数的假设检验
建立样本直线回归方程,只是完成 了统计分析中两变量关系的统计描述, 研究者还须回答它所来自的总体的直线 回归关系是否确实存在,即是否对总体 有 0?
280
330
380
进食量(g),X
图 12-1 12只大白鼠进食量与体重增重量散点图
在定量描述大白鼠进食量与体重增 加量数量上的依存关系时,习惯上将进 食量作为自变量(independent variable), 用X表示;体重增加量作为应变量 (dependent variable),用Y表示。
相关文档
最新文档