考研线性代数知识点全面总结
考研数学线性代数和概率论的复习重点
考研数学线性代数和概率论的复习重点考研数学线性代数和概率论的复习重点有许多表示刚一开始线性代数和概率论与数理统计有难处,认为看书举步维艰。
店铺为大家精心准备了考研数学线性代数和概率论的复习要点,欢迎大家前来阅读。
考研数学线性代数和概率论的复习难点▶难点事实上线性代数应该是数学三门课中最好拿分的,但是这门课有一个特点,就是入门难,但是一旦入门就一通百通。
这门课由于思维上与高数南辕北辙,所以一上来会很不适应。
总体而言,6章内容环环相扣,所以很多同学一上来看第一章发现内容涉及到第五章,看到第二章发现竟有第4章的知识点,无法形成完整的知识网络,自然无法入门。
▶学习规划总的来说,线性代数这本书6章内容应该分为三个部分逐个攻破:首先行列式和矩阵,第二向量与方程组,第三第5和第六章。
这三个内容联系得相当紧密,必须逐个攻破,这样以两章为单位,每个单位中出现的知识点定理罗列出来,找到他们彼此的关系。
最好是拿一张白纸,像C语言中的指针那样一个一个连起来,形成属于你的知识网络,这一部分有哪些板块,每个板块有哪些定义知识点,比如行列式的定义,矩阵的定义各是,你是怎么理解的,向量与方程组有什么联系与区别,这些最基础的一定要搞清。
对于概率论,第一章是整本书的思维基础,第二章与第三章的逻辑思维就好像一元积分与二元积分一样,难点在于二元积分的计算。
在学习的过程中还是要先思考这一章节有哪些部分,每个部分哪些定义,哪些知识点,自己要找一张大纸,将这些全部像C语言中二叉树一样,罗列成一个树形图,最后根据每一个知识点各个击破。
第5章不用细看,第六章第七章主要是记忆,在记忆的基础上尽可能的理解。
浙大版的书上每章的课后题相当经典,请同学们反复推敲,做过之后,请在总结一遍,比如说这几道题是属于离散型还是连续型,对应了哪些知识点。
▶视频学习法线性代数:不要一上来就看李永乐的视频,因为那个视频是强化阶段看的,建议听一下施光燕的线性代数12讲,这位老师讲的内容很基础,只有十二讲,但是全讲到重点上去了,这样你就会很容易入门了。
考研数学线性代数重点整理
考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。
以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。
2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。
3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。
4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。
5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。
6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。
7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。
8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。
9. 乘法单位元:对于任意的矢量v,有1v = v。
二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。
以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。
2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。
- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。
3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。
对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。
4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。
线性代数考研知识点总结
线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。
在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。
在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。
1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。
向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。
2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。
3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。
矩阵可以用于表示线性变换、解线性方程组等。
常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。
4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。
行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。
5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。
相似的矩阵有着相同的特征值和特征向量。
对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。
6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。
线性变换可以进行合成、求逆等操作。
7. 内积空间:内积空间是一个带有内积运算的向量空间。
内积运算满足对称性、线性性、正定性等性质。
内积空间可以用来定义向量的长度、夹角、正交性等概念。
8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。
特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。
9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。
6考研基础复习(线性代数)二次型
一、二次型的基本内容
3、用正交变换法化二次型为标准形
二 次 型 f ( x1 ,, xn ) xT Ax 经 过 正 交 变换 x Py ( P 为正交阵)化为:
r
f xT Ax yT (P T AP ) y
di
y
2 i
,
i 1
称为化二次型为标准形的正交变换法.
3、用正交变换法化二次型为标准形
对于任意一组不全为零的实数 x ( x1 ,, xn )T ,都有
f ( x1 ,, xn ) xT Ax 0 ( 0) ,
则称该二次型为正(负)定二次型,正(负) 定二次型的矩阵 A 称为正(负)定矩阵.
4、二次型和矩阵的正定性及其判别
如果实二次型 f ( x1 ,, xn ) xT Ax , 对于任意一组不全为零的实数 x ( x1 ,, xn )T ,都有
i 的单位正交特征向量;
3、用正交变换法化二次型为标准形
(4)以 1 , 2 , , t 的单位正交特 征向量为列向量,可构造出正交矩阵 P ,
, P ( p11 , p12 , , pt1 , , ptnt )
P 就是所求的正交变换矩阵,使:
P 1 AP PT AP
为对角阵,其中: diag{1 , , 2 , , , t }.
相似于对角阵 ,即:
PT AP P 1 AP diag{1 , 2 , , n } , 其中: i 0(i 1,2,n) .
4、二次型和矩阵的正定性及其判别
③ A 负定; 特征值全负;
一切奇数阶主子式全 0 , 且一切偶数阶主子式全 0;
一切奇数阶顺序主子式全 0 , 且一切偶数阶顺序主子式全 0;
z
柱面方程 2 4 2 4 ,求 a, b 的值和正 交矩阵 P .
考研数学线性代数常用公式
考研数学线性代数常用公式数学考研考前必背常考公式集锦。
希望对考生在暑期的复习中有所帮助。
本文内容为线性代数的常考公式汇总。
1、行列式的展开定理行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即A= a i1 A i1+ a i2 A i2+...+ a in A in( i =1, 2,..., n)= a1j A1j+ a 2j A2j+...+ a nj A nj( j =1, 2,..., n)推论:行列式的一行(或列)所有元素与另一行(或列)对应元素的代数余子式的乘积之和为零,即n∑a ij A kj= a i1 A k1+ a i2 A k2+...+ a in A kn=0,(i≠k )j=1n∑a ji A jk= a1i A1k+ a2i A2k+...+ a ni A nk=0(i≠k )j=12、设 A =(a ij)m⨯n,B =(b ij)n⨯k(注意 A 的列数和 B 的行数相等),定义矩阵nC =(c ij)m⨯k,其中c ij=a i1b1j+a i2b2j+...+a in b nj=∑a ik b kj,称为矩阵 A 与矩阵 B 的k =1的乘积,记作 C = AB .如果矩阵A为方阵,则定义An=A⋅A...A为矩阵 A 的 n 次幂.n个A不成立的运算法则AB≠BAAB=O≠>A =O或B=O3、设 A 为n阶方阵,A*为它的伴随矩阵则有 AA *= A * A = A E .设 A 为n阶方阵,那么当 AB = E 或 BA = E 时,有 B -1 = A4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种:第一种:交换单位矩阵的第 i 行和第 j 行得到的初等矩阵记作E ij,该矩阵也⎛ 0 0 1 ⎫ 可以看做交换单位矩阵的第 i 列和第 j 列得到的.如 E 1,3 0 1 0 ⎪= ⎪ .1 0 0 ⎪⎝ ⎭第二种:将一个非零数 k 乘到单位矩阵的第 i 行得到的初等矩阵记作 E i ( k ) ;该矩 阵 也 可 以 看 做 将 单 位 矩 阵 第 i 列 乘 以 非 零 数 k 得 到 的 . 如⎛ 1 0 0 ⎫E 2 (-5) 0 -5 0 ⎪ = ⎪ .0 0 1 ⎪⎝ ⎭第三种:将单位矩阵的第 i 行的 k 倍加到第 j 行上得到的初等矩阵记作 E ij ( k ) ;该矩阵也可以看做将单位矩阵的第 j 列的 k 倍加到第 i 列上得到的.如⎛ 1 0 0 ⎫ E 3,2 (-2) 0 1 -2 ⎪= ⎪ .0 0 1 ⎪⎝ ⎭注:1)初等矩阵都只能是单位矩阵一次初等变换之后得到的.2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵 E ij ( k ) 看做列变换是将单位矩阵第 j 列的k 倍加到第 i 列,这一点考生比较容易犯错.5、矩阵 A 最高阶非零子式的阶数称之为矩阵 A 的秩,记为 r ( A ) .1) r ( A ) = r ( A T ) = r ( k A ), k ≠ 0 ;2) A ≠ O ⇔ r (A ) ≥ 1;3) r ( A ) = 1 ⇔ A ≠ O 且 A 各行元素成比例;4)设 A 为 n 阶矩阵,则 r ( A ) = n ⇔ A ≠ 0 . 6、线性表出设 α1 , α 2 ,...,αm 是 m 个 n 维 向 量 , k 1 , k 2 ,...k m 是 m 个 常 数 , 则 称k 1α1 + k 2α 2 + ... + k m αm 为向量组α1 , α 2 ,...,αm 的一个线性组合.设 α1,α2 ,...,αm 是 m 个 n 维向量, β 是一个 n 维向量,如果 β 为向量组α1 , α2 ,...,αm的一个线性组合,则称向量β可以由向量组α1 , α2 ,...,αm线性表出.线性相关设α1 , α2 ,...,αm是m个n维向量,如果存在不全为零的实数k1 , k2 ,..., k m,使得k1α1+ k 2α2+...+ k mαm=0,则称向量组α1,α2,...,αm线性相关.如果向量组α1 , α2 ,...,αm不是线性相关的,则称该向量组线性无关.与线性表出与线性相关性有关的基本定理定理1:向量组α1 , α2 ,...αm线性相关当且仅当α1 , α2 ,...αm中至少有一个是其余m-1 个向量的线性组合.定理2:若向量组α1 , α2 ,...αm线性相关,则向量组α1 , α2 ,..., αm ,αm+1也线性相关.注:本定理也可以概括为“部分相关⇒整体相关”或等价地“整体无关⇒部分无关”.定理3:若向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm的延伸组⎛α⎫ ⎛α⎫⎛α⎫也线性无关.1⎪ , 2⎪,..., m⎪⎝β1⎭ ⎝β2 ⎭⎝βm ⎭定理4:已知向量组α1 , α2 ,...αm线性无关,则向量组α1 , α2 ,...αm , β线性相关当且仅当β可以由向量组α1,α2 ,...αm线性表出.定理 5:阶梯型向量组线性无关.定理6:若向量组α1 , α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且α1 , α2 ,...,αs线性无关,则有s≤t.注:本定理在理论上有很重要的意义,是讨论秩和极大线性无关组的基础.定理内容也可以等价的描述为:若向量组α1 ,α2 ,...,αs可以由向量组β1 , β2 ,..., βt线性表出,且 s > t ,则α1,α2,...,αs线性相关.对于这种描述方式,我们可以把定理内容简单地记为:“多数被少数线性表出,则必相关.”定理7:n +1个n维向量必然线性相关.7、线性方程组解的存在性设 A =(α1,α2,...,αn),其中α1,α2,...,αn为 A 的列向量,则线性方程组 Ax = b 有解⇔向量 b 能由向量组α1,α2,...,αn线性表出;⇔r (α1,α2,...,αn)= r (α1,α2,...,αn,b );⇔r ( A )= r ( A, b)线性方程组解的唯一性当线性方程组 Ax = b 有解时, Ax = b 的解不唯一(有无穷多解)⇔线性方程组的导出组 Ax =0有非零解;⇔向量组α1 , α2 ,...,αn线性相关;⇔r (α1,α2,...,αn)< n ;⇔r ( A )< n .注:1)注意该定理成立的前提条件是线性方程组有解;也就是说,仅告知r (A )< n 是不能得到 Ax = b 有无穷多解的,也有可能无解.2)定理 2是按照 Ax = b 有无穷多解的等价条件来总结的,请考生据此自行写出 Ax = b 有唯一解的条件.8、特征值和特征向量:设 A 为 n 阶矩阵,λ是一个数,若存在一个 n 维的非零列向量α使得关系式 Aα = λα成立.则称λ是矩阵 A 的特征值,α是属于特征值λ的特征向量.称为矩阵 A 的特征多项式.设 E 为 n 阶单位矩阵,则行列式λE - A注:1)要注意:特征向量必须是非零向量;2)等式 Aα = λα也可以写成(A - λE)α =0,因此α是齐次线性方程组( A - λE ) x =0的解,由于α ≠0,可知( A - λE ) x =0是有非零解的,故A - λE =0;反之,若 A - λE =0,那么齐次线性方程组( A - λE ) x =0有非零解,可知存在α ≠ 0 使得(A-λE)α = 0,也即Aα = λα.由上述讨论过程可知:λ是矩阵 A 的特征值的充要条件是 A - λE =0(或λE- A =0),而特征值λ的特征向量都是齐次线性方程组( A - λE ) x =0的非零 解.3)由于λE - A 是 n 次多项式,可知 A - λE =0有 n 个根(包括虚根),也即 n 阶矩阵有 n 个特征值;任一特征值都有无穷多特征向量9、矩阵的相似对角化定理1: n 阶矩阵 A 可相似对角化的充要条件是矩阵 A 存在 n 个线性无关的特征向量.同时,在等式 A = P ΛP-1中,对角矩阵Λ的元素为 A 的 n 个特征值,可逆矩阵 P 的列向量为矩阵 A 的 n 个线性无关的特征向量,并且 P 中特征向量的排列顺序与Λ中特征值的排列顺序一致.推论:设矩阵 A 有 n 个互不相同的特征值,则矩阵 A 可相似对角化.定理2: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,λ线性无关的特征向量个数都等于λ的重数.推论: n 阶矩阵 A 可相似对角化的充要条件是对任意特征值λ,n - r (λE - A)=λ的重数.10、设 A 为实对称矩阵( A T= A ),则关于 A 的特征值与特征向量,我们有如下的结论:定理1: A 的所有特征值均为实数,且 A 的的所有特征向量均为实数.定理2: A 属于不同特征值的特征向量必正交.定理3:A 一定有 n 个线性无关的特征向量,即 A 可以对角化.且存在正交矩阵 Q ,使得 Q -1 AQ = Q T AQ = diag (λ1,λ2,...,λn),其中λ1,λ2,...,λn为矩阵 A 的特征值.我们称实对称矩阵可以正交相似于对角矩阵.n n11、如果二次型∑∑a i j x i x j中,只含有平方项,所有混合项 x i x j(i ≠ j)的系i=1j =1数全为零,也即形如 d1 x12+ d 2 x22+...+ d n x n2,则称该二次型为标准形。
考研数学之线性代数讲义(考点知识点+概念定理总结)
考研数学之线性代数讲义(考点知识点+概念定理总结)线性代数讲义目录第一讲基本概念矩阵的初等变换与线性矩阵方程的消去完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第4讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的判别基本解系统和通解第6讲特征向量和特征值的相似性和对角化特征向量与特征值―概念,计算与应用相似对角化―判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量取代了实对称矩阵惯性指数正定二次型与正定矩阵的合同标准化与规范化附录二向量空间及其子空间附录III两个线性方程组的解集之间的关系附录四06,07年考题一第一讲基本概念1.线性方程组的基本概念。
线性方程组的一般形式是:a11x1+a12x2++a1nxn=b1,a21x1+a22x2+?+a2nxn=b2,????am1x1+am2x2+?+amnxn=bm,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2,k,kn)(称为解向量),它满足当每个方程中的未知数席被Ki替换时,它变成一个方程。
线性方程组的解的情况有三种:无解,唯一解,无穷多解.在线性方程组的讨论中有两个主要问题:(1)判断解(2)求解,特别是当存在无穷多个连接时求通解b1=b2=?=bm=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解。
因此,齐次线性方程组只有两种解:唯一解(即只要零解)和无限解(即非零解)把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.是M吗?一张表有M行和N列,以N个数字排列,两边用括号或方括号括起来,就变成了M?例如N型矩阵2-101111102254-29333-18是4吗?5矩阵对于上述线性方程组,它被称为矩阵a11a12?a1na11a12?a1nb1a=a21a22?a2n和(a|?)=a21a22?a2nb2??????? am1am2?amnam1am2?amnbm为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.矩阵中的数字称为其元素,第I行和第J列中的数字称为(I,J)位元素所有元素为0的矩阵称为零矩阵,通常记录为0两个矩阵a和b相等(记作a=b),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.N个数的有序数组称为N维向量,这些数称为其分量书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,?,an的向量可表示成二a1(a1,a2,?,an)或a2,┆an请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1?n矩阵,右边是n?1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个M?n的矩阵的每一行是一个n维向量,称为其行向量;每一列都是一个m维向量,称为它的列向量。
线性代数-考研笔记
第一章行列式性质1 行列式与它的转置行列式相等。
性质2互换行列式的两行(列),行列式变号。
推论如果行列式的两行(列)完全相同,则此行列式等于零。
性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。
第行(或者列)乘以,记作(或)。
推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。
第行(或者列)提出公因子,记作(或)。
性质4行列式中如果两行(列)元素成比例,此行列式等于零。
性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。
定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。
引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。
范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。
定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。
定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。
行数和列数都等于的矩阵称为阶矩阵或阶方阵。
阶矩阵也记作。
特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。
考研数学:线性代数知识点汇总
2019考研数学:线性代数知识点汇总摘要:尽管考研数学的考查内容各个学校的侧重点不一样,但是都是在考研大纲里面的更改。
因此,了解好考研数学的每一个小知识点,才能全面掌握考研数学。
就帮大家整理了一些线性代数的知识点,分享给在数学上犯愁的同学们。
►【行列式】1、行列式本质就是一个数2、行列式概念、逆序数考研:小题,无法联系其他知识点,当场解决。
3、二阶、三阶行列式具体性计算考研:不会单独出题,常常结合伴随矩阵、可逆矩阵考察。
4、余子式和代数余子式考研:代数余子式的正负是一个易错点,了解代数余子式才能学习行列式展开定理。
5、行列式展开定理考研:核心知识点,必考!6、行列式性质考研:核心知识点,必考!小题为主。
7、行列式计算的几个题型①、划三角(正三角、倒三角)②、各项均加到第一列(行)③、逐项相加④、分块矩阵⑤、找公因这样做的目的,在行/列消出一个0,方便运用行列式展开定理。
考研:经常运用在找特征值中。
⑥数学归纳法⑦范德蒙行列式⑧代数余子式求和⑨构造新的代数余子式8、抽象型行列式(矩阵行列式)①转置②K倍③可逆③伴随④题型丨A+B丨;丨A+B-1丨;丨A-1+B丨型(这部分内容放在第二章,但属于第一章的内容)考研:出小题概率非常大,抽象性行列式与行列式性质结合考察。
►【矩阵】1、矩阵性质考研:与伴随矩阵、可逆矩阵、初等矩阵结合考察。
2、数字型n阶矩阵运算①方法一:秩是1②方法二:含对角线上下三角为0的矩阵③方法三:利用二项式定理,拆写成E+B型④方法四:利用分块矩阵⑤方法五:P-1AP=B;P-1APP-1AP=B2方法五涉及相似对角化知识。
方法三涉及高中知识。
考研:常见在大题出现,是大题的第一问!看到数字型n阶矩阵运算,一定出自这5个方法。
(二战考上,如果本题不会做,你的问题出在只掌握这五种方法的某几种,所以你是失败在归纳总结上了)3、伴随矩阵考研:伴随矩阵常与其他知识考察,与行列式、转置、K倍、可逆、伴随的伴随结合考察。
考研数学 线性代数(高等代数)重点知识整理总结
考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。
2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。
重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。
(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。
推论:若行列式中某两行(列)对应元素相等,则行列式等于零。
(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。
(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。
(4)行列式具有分行(列)可加性。
行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。
(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。
余子式ij M 、代数余子式ij ji ij M A +-=)1(。
(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。
定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。
逆否:若方程组存在非零解,则D 等于零。
③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。
④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。
考研线性代数知识点全面总结
《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
考研线性代数知识点全面总结教材
《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijj i ijM A+-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa ⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x,,。
考研数二知识点总结
考研数二知识点总结一、线性代数1. 行列式行列式是矩阵的一个重要性质,它可以用于求解线性方程组的解。
行列式的定义是一个数学函数,用来将一个矩阵转换为一个标量。
行列式的计算方法有代数余子式法、拉普拉斯展开法和行列式性质法等。
2. 矩阵矩阵是线性代数中的一个重要概念,它是由数域上的元素组成的矩形阵列。
矩阵有加法、数量乘法和矩阵乘法的运算法则。
矩阵的转置、逆矩阵、行列式以及特征值和特征向量都是矩阵的重要性质。
3. 向量向量是线性代数中的另一个重要概念,它是一个具有方向和大小的量。
向量的基本运算有加法、数量乘法和点积。
向量的线性相关性、线性无关性以及向量的表示都是考研数学中的重要知识点。
4. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要概念,它们可以用来描述矩阵的性质和特征。
特征值和特征向量在物理学、工程学和经济学等领域都有重要的应用。
5. 矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,如果存在一个非奇异矩阵P,使得P^-1AP=B成立,则称矩阵A与B相似。
相似矩阵具有相同的特征值,但不一定有相同的特征向量。
6. 线性空间线性空间是线性代数的一个重要概念,它是指一个集合,它满足一些线性运算的性质。
线性空间中的向量可以进行线性组合和线性相关的运算。
7. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持了向量空间的线性运算性质。
线性变换可以用矩阵来描述,它在计算机图形学、物理学和工程学中都有重要的应用。
二、概率论1. 概率空间概率空间是概率论的一个重要概念,它由一个样本空间和一个事件的集合组成。
概率空间中的事件有概率分布,它描述了事件发生的可能性大小。
2. 随机变量随机变量是描述随机现象的数学变量,它可以是离散型随机变量或连续型随机变量。
随机变量的分布函数、密度函数以及期望和方差都是概率论中的重要知识点。
3. 事件的独立性事件的独立性是指两个事件的发生不受到另一个事件的影响。
考研数学《线性代数》考点知识点总结
第一章行列式二元线性方程组:a x11ax21a12a22yyb1b2aa1112D,aa2122ba112D,1ba222ab111D2ab212xD1D,yD2D排列的逆序数:ttn1ti〔t为排列p1p2p n中大于p i且排于p i前的元素个数〕it为奇数奇排列,t为偶数偶排列,t0标准排列。
a 11 a12a1nn阶行列式:Daaa21222ndet(a)=ij(1)t为列标排列的逆序数.t aaa1p12p np2na n1 an2ann定理1:排列中任意两个元素对换,排列改变奇偶性推论:奇〔偶〕排列变为标准排列的对换次数为奇〔偶〕数定理2:n阶行列式可定义为tD(1)a1a2a=pppn12n (1).t aaat aaa1p12p np2nT 1.D=DT,D为D转置行列式.(沿副对角线翻转,行列式同样不变)推论:两行(列)完全一样的行列式等于零.2.互换行列式的两行(列),行列式变号.记作:r i r〔c i c j〕DD.j 记作:r i r〔c i c j〕DD0.j推论:某一行(列)所有元素公因子可提到行列式的外面.3.行列式乘以k等于某行(列)所有元素都乘以k.记作:kDr i k〔kDc i k〕.记作:kDrki〔kDc i k〕.4.两行(列)元素成比例的行列式为零.记作:r j r i k〔c j c i k〕D0.行列式的性质:a11a12(a1ia1i) a1na11a12a1ia1na11a12a1ia1n5.D a21a22(a2ia2i) a2n Da21a22a2ia2na21a22a2ia2na n1 an2(aniani) annan1an2aniannan1an2aniann上式为列变换,行变换同样成立.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.记作:c i ckc(r i r i kr j),D不变.ij注:任何n阶行列式总能利用行运算r i+kr j化为上(下)三角行列式.对角行列式上D〔下DT〕三角形行列式00a11011212nn(n1)2 2,n(1)12aa2122Da11a22ann00nn an1an2anna 11 a1ka11a1kabD1det(aij)假设对Dak1c11akkc1kb11b1k设ak1bakkb,假设2nabD2,n11 1n 阶行列式cdc k1 ckkbk1bkkD2det(bij)bn1bnncd2n那么有D=D1D2.有D2n=(ad-bc)n.n.ij余子式:n 阶行列式中把a ij 所在的第i 行和第j 列去掉后,余下n-1阶行列式.代数余子式:ijA ij (1)M引理:n 阶行列式D 中,假设第i 行所有元素除a ij 外都为零,那么有Da ij A ij .行列式等于它的任一行(列)的各元素与其对应的代数余子式乘机之和.定理3:推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘机之和等于零. (代数余子式性质) D,ij,当n aAD ki 当kjijk10,ij;或 D,当j i naAD ikjkij 当 k 10,ij, ; 其中 ij1, 0, 当 当 i ij , j.1111X 德蒙德 行列式:xxxx123n2222Dxxxx =n123nnij ( 1x i x).证明用数学归纳法.jn x11n x21n x 31n nx1设方程组a x111ax211a12a22x2x2a xnxn1na2nb,1b,2aa111n,假设0D ,那么方程组有惟一解:克拉默法ax n11a n2 x 2a nnx nbna n1 ann那么:DDD12nx,x,,x1,其中2nDDDD ja 11 a n1 a 1,a n ,j j 1 1 b 1 b n a 1,a n,j j 1 1a 1nann(j1,2,,n).定理4:假设上线性方程组的系数行列式D0,那么方程组一定有惟一解;假设无解或有两个不同解,那么D0.定理5:假设齐次线性方程组(b n =0)的系数行列式D0,那么齐次线性方程组无非零解;假设有非零解,那么D0.第二章矩阵及其运算对角矩阵(对角阵):n 阶单位矩阵(单位阵):纯量阵:100 λ000λ1E0100Λλ00 λ2E00100 λ0n0 λEAAEA.另可记作diag(,,,)Λ.12n(E)AA,A(E)A.矩阵与矩假设(a)Α是一个ms矩阵,B(b ij)是一个sn矩阵,且CAB,那么C(c ij)是一个mn矩阵,ij阵相乘:且cabababimij1122(1,2,,;j1,2,,n).假设ABBA ,称A与B是可交换的.ijijissjT矩阵转置:假设Α(a ij),那么(a)ΑjiTTTTTT(AB)AB,(AB)BA假设TA,A为对称阵A方阵的行列式:n阶方阵A元素构成的行列式,记A或det A.方阵行列式的运算规律:A 11 A21An1A为行列式A中对应元素的ijT;1.AA伴随矩阵:A* A12A22An2代数余子式.n;2.AAA 1n A2nAnnAA**A A A E 13.ABAB,1AA.逆矩阵:假设ABBAE,那么A可逆,且称B为A的逆矩阵,记B=A-1,A的逆阵是唯一的.定理1:假设矩阵A可逆,那么A0.定理2:假设A0,那么矩阵A可逆,且A1 1.*AA奇异矩阵:当A0时,A称为奇异矩阵.矩阵A可逆的充要条件:A0,即矩阵A是非奇异矩阵。
数学一线代知识点
考研数学一《线性代数》知识点总结第一部分行列式一、本部分内容重点1.了解行列式的概念,掌握行列式的性质。
2.会用行列式的性质和行列式按行(列)展开法则计算行列式。
二、考点分析1.行列式是基础,它与后续要学的内容——方阵构成的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都有重要应用。
所以必须要弄清楚行列式在处理有关问题中的功能与作用,熟练掌握行列式的性质和计算方法,为应用行列式处理有关问题打下良好的基础。
2.计算行列式的常用方法:1)用定义法计算行列式中含某一项的系数;2)应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法);3)将各行(列)加到某一行(列),提取公因式;4)按行(列)展开行列式——降阶法(在此基础上,有些题可用数学归纳法、有些题可用递推关系式法来计算行列式)。
5)逐行(列)相加减;6)拆项法——将一个行列式分成几个较简单的行列式进行计算;7)公式法——如对角行列式、范德蒙德行列式等;8)升阶法。
在实际计算过程中,常常将上述方法交替使用。
第二部分矩阵一、本部分内容重点1.理解矩阵的概念。
2.了解单位矩阵、数量矩阵、对角矩阵、对称矩阵和反对称矩阵,以及它们的性质。
3.掌握矩阵的线性运算、乘法、转置,以及它们的运算律,了解方阵的幂,掌握方阵乘积的行列式。
4.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
5.掌握矩阵的初等变换,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
6.了解分块矩阵及其运算。
二、考点分析1.矩阵的运算(含逆矩阵)是矩阵考试内容中的重点,其中,又以矩阵乘法和逆矩阵最为重要。
要掌握矩阵运算,除了要理解各种运算的定义外,还要熟练掌握各种运算的运算律和运算性质。
在作矩阵运算时,一般要先利用运算法则通过“字母”运算进行化简。
考研数学有哪些线性代数复习重点
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
考研数学历年真题线性代数的考点总结
考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。
为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。
?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。
主要方法是利用行列式的性质或者展开定理即可。
而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。
06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。
第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。
本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。
其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。
14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。
16年只有数二了矩阵等价的判断确定参数。
第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。
重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。
复习的时候要注意构造和从不同角度理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数》复习提纲第一章、行列式(值,不是矩阵)1.行列式的定义:用2n 个元素ija 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ijM 、代数余子式ijji ij M A +-=)1(定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:nq q q n a aa⋯=∑21t211-D )(,t 为nq q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
:若线性方程组无解或有两个不同的解,则系数行列式D=0. :若齐次线性方程组的系数行列式0D ≠,则其没有非零解。
:若齐次线性方程组有非零解,则其系数行列式D=0。
6.112nr r r nr r rr ==∏O,()11(1)221nr n n r r nr r r r -==-∏N()n a ba bad bc c d cd=-ON N O,1232222123111111231111()n n i j n i j n n n n nx x x x x x x x x x x x x x ≥>≥----=-∏L L L M M M M L,(两式要会计算)题型:Page21(例13)第二章、矩阵1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算(1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论:①矩阵乘法一般不满足交换律(若AB =BA ,称A 、B 是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;范德蒙德行列③若A 、B 为同阶方阵,则|AB|=|A|*|B|; ④|kA|=nk *|A|。
只有方阵才有幂运算。
(3)转置:(kA )T =kA T , ()TTA B AB T=(4)方阵的行列式:AA T=,A k kA n=,B A AB = (5)伴随矩阵:EA A A AA **==,-1)A(E A A*=,*A 的行元素是A 的列元素的代数余子式(6)共轭矩阵:)=(Aija ,A+B=A+B ,A k kA =,B A AB =(7)矩阵分块法:⎪⎪⎪⎭⎫⎝⎛++++=+sr sr s s r r B A BA B A B A ΛM MΛ11111111B A ,⎪⎪⎪⎭⎫ ⎝⎛=T sr r 11s T11T A A A A A ΛM MΛT T3.对称阵:方阵AA T=。
对称阵特点:元素以对角线为对称轴对应相等。
3.矩阵的秩(1)定义:非零子式的最大阶数称为矩阵的秩; (2)秩的求法:一般不用定义求,而用下面结论:矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。
求秩:利用初等变换将矩阵化为阶梯阵得秩。
(3)0≤R(nm A ⨯)≤min{m,n} ; ()()A R A R T= ;若B ~A ,则R(A)=R(B) ;若P 、Q 可逆,则R(PAQ)=R(A) ; max{R(A),R(B)} ≤R(A,B) ≤R(A)+R (B) ;若AB=C ,R(C)≤min{R(A),R(B)} 4.逆矩阵(1)定义:A 、B 为n 阶方阵,若AB =BA =I ,称A 可逆,B 是A 的逆矩阵(满足半边也成立); (2)性质:()111---=A B AB , ()()' A A'1-1-=;(A B 的逆矩阵,你懂的)(注意顺序)(3)可逆的条件:① |A|≠0; ②r(A)=n;??③A->I; (4)逆的求解:○1伴随矩阵法A*1-A A =;②初等变换法(A:I )->(施行初等变换)(I:1-A )(5)方阵A 可逆的充要条件有:○1存在有限个初等矩阵1P ,…,lP ,使lP P P A Λ21=○2E A ~ 第三章、初等变换与线性方程组1、 初等变换:○1()()B Aji−−→−↔,○2()()BAki−→−⨯,○3()()BAji+k−−→−⨯ 性质:初等变换可逆。
等价:若A 经初等变换成B ,则A与B等价,记作B ~A ,等价关系具有反身性、对称性、传递性。
初等矩阵:由单位阵E 经过一次初等变换得到的矩阵。
定理:对nm A ⨯施行一次初等行变换,相当于在A 的左边乘相应的m 阶初等矩阵;对nm A ⨯施行一次初等列变换,相当于在A 的右边乘相应的n 阶初等矩阵。
等价的充要条件:○1 R(A)=R(B)=R(A,B)○2nm ⨯的矩阵A、B等价⇔存在m 阶可逆矩阵P 、n 阶可逆矩阵Q ,使得PAQ=B 。
线性方程组解的判定定理:(1) r(A,b)≠r(A)? 无解;(2) r(A,b)=r(A)=n? 有唯一解;(3)r(A,b)=r(A)<n?? 有无穷多组解;特别地:对齐次线性方程组AX=0,(1)? r(A)=n? 只有零解;(2)? r(A)<n? 有非零解;??? ?再特别,若为方阵,(1)|A|≠0? 只有零解;(2)|A|=0?? 有非零解 2.齐次线性方程组(1)解的情况:r(A)=n ⇔只有零解 ; r(A)<n ⇔有无穷多组非零解。
(2)解的结构:rn r n a c a c ac X --++=Λ2211。
(3)求解的方法和步骤:①将增广矩阵通过行初等变换化为最简阶梯阵;②写出对应同解方程组; ③移项,利用自由未知数表示所有未知数;④表示出基础解系;⑤写出通解。
(4)性质:○1若1ξ=x 和2ξ=x 是向量方程A*x=0的解,则21ξξ+=x 、1ξk x =也是该方程的解。
○2齐次线性方程组的解集的最大无关组是该齐次线性方程组的基础解系。
○3若rAnm =⨯)(R ,则n 元齐次线性方程组A*x=0的解集S 的秩r-=n RS。
3.非齐次线性方程组(1)解的情况:○1有解⇔ R(A)=R(A,b)。
○2唯一解⇔ R(A)=R(A,b)=n 。
○3无限解⇔ R(A)=R(A,b)<n 。
(2)解的结构: X=u+rn r n a c ac a c --++Λ2211。
(3)无穷多组解的求解方法和步骤:与齐次线性方程组相同。
(4)唯一解的解法:有克莱姆法则、逆矩阵法、消元法(初等变换法)。
(5)○1若1η=x 、2η=x 都是方程b Ax =的解,则21ηη-=x 是对应齐次方程0=Ax 的解○2η=x 是方程b Ax =的解,ξ=x 是0=Ax 的解,则ηξ+=x 也是b Ax =的解。
第四章、向量组的线性相关性1.N 维向量的定义(注:向量实际上就是特殊的矩阵——行矩阵和列矩阵;默认向量a 为列向量)。
2.向量的运算:(1)加减、数乘运算(与矩阵运算相同); (2)向量内积 α'β=a1b1+a2b2+…+anbn ; (3)向量长?22221a na a a a a +++='=Λ????(4)向量单位化 (1/|α|)α;3.线性组合 (1)定义:若mm a a aλλλ+++=Λ2211b ,则称b 是向量组1a ,2a ,…,na 的一个线性组合,或称b 可以用向量组1a ,2a ,…,na 的线性表示。
(2)判别方法:将向量组合成矩阵,记 A =(1a ,2a ,…,na )○1 B=(1a ,2a ,…,na ,β),则:r?(A)=r?(B) ⇔b 可以用向量组1a ,2a ,…,na 线性表示。
○2B=(1b ,2b ,…,mb ),则: B 能由A 线性表示⇔R(A)=R(A,B) ⇔AX=B 有解⇒R(B)≤R(A).(3)求线性表示表达式的方法:矩阵B 施行行初等变换化为最简阶梯阵,则最后一列元素就是表示的系数。
注:求线性表示的系数既是求解Ax=b 4.向量组的线性相关性 (1)线性相关与线性无关的定义 设?02211=+++n n a k a k a k Λ,若k1,k2,…,kn 不全为0,称线性相关;若全为0,称线性无关。
(2)判别方法:①?r(α1,α 2,…,αn)<n ,线性相关;??? r(α1,α 2,…,αn)=n ,线性无关。
②若有n 个n 维向量,可用行列式判别: n 阶行列式|{ija }|=0,线性相关(≠0无关) ○3A:1a ,2a ,…,na , B:1a ,2a ,…,n a ,1+n a ,若A 相关则B 一定相关,若B 相关A不一定相关;若A 无关,B 相关,则向量1+n a 必能由A 线性表示,且表示式唯一。
注:含零向量的向量组必定相关。
5.极大无关组与向量组的秩(1)定义:最大无关组所含向量个数称为向量组的秩(2)求法:设A =(1a ,2a ,…,na ),将A 化为阶梯阵,则A 的秩即为向量组的秩,而每行的第一个非零元所在列的向量就构成了极大无关组。
(3)矩阵的秩等于它的行向量组的秩也等于它的列向量组的秩。
注:如何证明()()A R A A R T=,101P .第五章、相似矩阵及二次型 1、向量内积:[]y x y x T=,。
内积性质:[][]x y y x ,,=,[][]x y y x ,,λλ=,[][][]x z x y y z x ,,,+=+; :当x=0时,[]0,=x x ,当x ≠0时,[]0,>x x 2、向量长度:[]22221,nx x x x x x+⋯++==性质:非负性0≥x 、齐次性xxλλ=、三角不等式yx yx +≤+3、正交:[]0,=y x 称x 与y 正交。