基本不等式知识梳理资料
基本不等式知识点和基本题型
基本不等式知识点和基本题型基本不等式专题辅导一、知识点总结1、基本不等式原始形式若$a,b\in R$,则$a+b\geq 2ab$,其中$a^2+b^2$为定值。
2、基本不等式一般形式(均值不等式)若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$。
3、基本不等式的两个重要变形若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$,其中$\frac{a+b}{2}\leq \sqrt{\frac{a^2+b^2}{2}}$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当$a=b$时取“=”。
4、求最值的条件:“一正,二定,三相等”。
5、常用结论若$x>1$,则$\frac{x+1}{2}>\sqrt{x}$(当且仅当$x=1$时取“=”)。
若$x<1$,则$\frac{x+1}{2}<-\frac{1}{x}$(当且仅当$x=-1$时取“=”)。
若$ab>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“=”)。
若$a,b\in R$,则$a^2+b^2\geq 2ab$,$\frac{a+b}{2}\geq \frac{2ab}{a+b}$,$\frac{a+b}{2}\leq \sqrt{a^2+b^2}$。
6、柯西不等式若$a,b\in R$,则$(a^2+b^2)(1+1)\geq (a+b)^2$。
题型分析题型一:利用基本不等式证明不等式1、设$a,b$均为正数,证明不等式:$ab\geq\frac{a^2+b^2}{2}$。
2、已知$a,b,c$为两两不相等的实数,求证:$a^2+b^2+c^2\geq ab+bc+ca$。
3、已知$a+b+c=1$,求证:$a^2+b^2+c^2+\frac{9}{4}\geq 2(ab+bc+ca)$。
基本不等式完整版(非常全面)
基本不等式完整版(非常全面) 基本不等式专题辅导一、知识点总结1、基本不等式原始形式1) 若 $a,b\in R$,则 $a^2+b^2\geq 2ab$2) 若 $a,b\in R$,则 $ab\leq \frac{a^2+b^2}{2}$2、基本不等式一般形式(均值不等式)若 $a,b\in R^*$,则 $a+b\geq 2\sqrt{ab}$3、基本不等式的两个重要变形1) 若 $a,b\in R^*$,则 $\frac{a+b}{2}\geq \sqrt{ab}$2) 若 $a,b\in R^*$,则 $ab\leq \left(\frac{a+b}{2}\right)^2$总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4、求最值的条件:“一正,二定,三相等”5、常用结论1) 若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)2) 若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)3) 若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)4) 若 $a,b\in R$,则 $ab\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}$5) 若 $a,b\in R^*$,则 $\frac{1}{a^2+b^2}\leq\frac{1}{2ab}\leq \frac{1}{a+b}$特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6、柯西不等式1) 若 $a,b,c,d\in R$,则 $(a^2+b^2)(c^2+d^2)\geq(ac+bd)^2$2) 若 $a_1,a_2,a_3,b_1,b_2,b_3\in R$,则$(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)\geq(a_1b_1+a_2b_2+a_3b_3)^2$3) 设 $a_1,a_2,\dots,a_n$ 与 $b_1,b_2,\dots,b_n$ 是两组实数,则有$(a_1^2+a_2^2+\dots+a_n^2)(b_1^2+b_2^2+\dots+b_n^2)\geq (a_1b_1+a_2b_2+\dots+a_nb_n)^2$二、题型分析题型一:利用基本不等式证明不等式1、设 $a,b$ 均为正数,证明不等式:$ab\geq\frac{1}{2}(a+b)^2$2、已知 $a,b,c$ 为两两不相等的实数,求证:$a^2+b^2+c^2>ab+bc+ca$3、已知 $a+b+c=1$,求证:$a^2+b^2+c^2\geq\frac{1}{3}$4、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$(1-a)(1-b)(1-c)\geq 8abc$5、已知 $a,b,c\in R^+$,且 $a+b+c=1$,求证:$\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\geq\frac{9}{2(a+b+c)}$题型二:利用柯西不等式证明不等式1、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\geq\frac{(a+b+c)^2}{2(a+b+c)}$2、已知 $a,b,c\in R^+$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3$3、已知 $a,b,c\in R^+$,且 $abc=1$,求证:$\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq a+b+c$4、已知 $a,b,c\in R^+$,求证:$\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\geq a+b+c$5、已知 $a,b,c\in R^+$,求证:$\frac{a^3}{b^2-bc+c^2}+\frac{b^3}{c^2-ca+a^2}+\frac{c^3}{a^2-ab+b^2}\geq a+b+c$题型三:求最值1、已知 $a,b$ 均为正数,且 $a+b=1$,求 $ab$ 的最大值和最小值。
基本不等式知识点
基本不等式知识点基本不等式知识点1、不等式的基本性质 ①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+ (同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)db c a dc b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d>><<⇒>⑥(平方法则)0(,1)nna b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>⇒∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b=时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均). 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立. ⑧排序不等式(排序原理): 设1212...,...n na aa b b b ≤≤≤≤≤≤为两组实数.12,,...,nc c c 是12,,...,nb b b的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...na a a ===或12...nb bb ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数) 若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法: ①舍去或加上一些项,如22131()();242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根. 四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f xg x a a f x g x >⇔> ⑵当01a <<时,()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法 ⑴当1a >时,()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化. 11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥④()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法 解形如2axbx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小; ⑵讨论∆与0的大小; ⑶讨论两根的大小. 14、恒成立问题 ⑴不等式2ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=< ②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max();f x a ⇔< ()f x a≤恒成立max();f x a ⇔≤⑷()f x a >恒成立min();f x a ⇔>()f x a≥恒成立min().f x a ⇔≥15、线性规划问题 常见的目标函数的类型: ①“截距”型:;z Ax By =+ ②“斜率”型:y z x=或;y bz x a-=-③“距离”型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
《基本不等式》 知识清单
《基本不等式》知识清单一、基本不等式的形式基本不等式是高中数学中的一个重要知识点,它有两种常见形式:1、对于任意两个正实数 a 和 b,有\(a + b \geq 2\sqrt{ab}\),当且仅当\(a = b\)时,等号成立。
2、如果\(a\gt 0\),\(b\gt 0\),则\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当\(a = b\)时,等号成立。
这两个形式本质上是等价的,它们都反映了两个正数的算术平均数不小于几何平均数的重要关系。
二、基本不等式的证明我们先来证明第一个形式\(a + b \geq 2\sqrt{ab}\)。
因为\((\sqrt{a} \sqrt{b})^2 \geq 0\),展开得到:\\begin{align}a 2\sqrt{ab} +b &\geq 0\\a +b &\geq 2\sqrt{ab}\end{align}\当且仅当\(\sqrt{a} \sqrt{b} = 0\),即\(a = b\)时,等号成立。
对于第二个形式\(\sqrt{ab} \leq \frac{a + b}{2}\),证明如下:因为\((a b)^2 \geq 0\),所以\(a^2 2ab + b^2 \geq 0\),移项得到\(a^2 + 2ab + b^2 \geq 4ab\),即\((a + b)^2 \geq 4ab\)。
因为\(a\gt 0\),\(b\gt 0\),所以\(a + b \gt 0\),两边同时除以 4 得到:\\begin{align}\frac{(a + b)^2}{4} &\geq ab\\\frac{a + b}{2} &\geq \sqrt{ab}\end{align}\当且仅当\(a = b\)时,等号成立。
三、基本不等式的应用1、求最值基本不等式在求最值问题中有着广泛的应用。
例如,求函数\(y = x +\frac{1}{x}\)(\(x\gt 0\))的最小值。
不等式知识点大全
不等式知识点大全一、不等式的基本概念:1.不等式的定义:不等式是一个包含不等号(>,<,≥,≤)的数学语句。
2.不等式的解集:解集是满足不等式的所有实数的集合。
3.不等式的求解方法:解不等式的方法主要有代入法、分析法、图像法和区间法等。
二、一元一次不等式:1.一元一次不等式的定义:一元一次不等式是指只含有一个未知数的一次函数与一个实数的大小关系。
2.一元一次不等式的解集:一元一次不等式的解集可以用一个开区间或闭区间表示。
三、二次不等式:1.二次不等式的定义:二次不等式是指含有一个未知数的二次函数与一个实数的大小关系。
2.二次不等式的解集:二次不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
四、绝对值不等式:1.绝对值不等式的定义:绝对值不等式是指含有绝对值符号的不等式。
2.绝对值不等式的解集:绝对值不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
五、分式不等式:1.分式不等式的定义:分式不等式是指含有一个未知数的分式与一个实数的大小关系。
2.分式不等式的解集:分式不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
六、三角不等式:1.三角不等式的定义:三角不等式是指三角函数与一个实数之间的大小关系。
2.三角不等式的解集:三角不等式的解集可以用一个开区间、闭区间、半开半闭区间或不等式组表示。
七、复合不等式:1.复合不等式的定义:复合不等式是由两个或多个不等式通过与或或连接构成的不等式。
2.复合不等式的解集:复合不等式的解集是满足所有不等式的实数的交集或并集。
八、常用的不等式:1.平均不等式:包括算术平均不等式、几何平均不等式、加权平均不等式等。
2.布尔不等式:包括与或非不等式和限制条件不等式等。
3.等价不等式:等式两边取绝对值后变为不等式。
4.单调性不等式:利用函数单调性性质证明不等式。
5.导数不等式:利用函数的导数性质证明不等式。
6.积分不等式:利用积分性质及定积分的性质来推导不等式。
《不等式的基本性质》 知识清单
《不等式的基本性质》知识清单不等式是数学中一个非常重要的概念,它在解决各种实际问题和数学理论中都有着广泛的应用。
而要深入理解和运用不等式,就必须掌握不等式的基本性质。
一、不等式的定义不等式是用不等号(大于“>”、小于“<”、大于等于“≥”、小于等于“≤”)表示两个数或表达式之间关系的式子。
例如:3 < 5,x + 2 > 5 等都是不等式。
二、不等式的基本性质1、对称性如果 a < b,那么 b > a;如果 a > b,那么 b < a。
这就好比两个人比身高,如果甲比乙矮,那么乙就比甲高,反之亦然。
2、传递性如果 a < b 且 b < c,那么 a < c;如果 a > b 且 b > c,那么 a >c。
比如说,甲比乙矮,乙比丙矮,那自然甲比丙矮;甲比乙高,乙比丙高,那甲肯定比丙高。
3、加法性质如果 a < b,那么 a + c < b + c;如果 a > b,那么 a + c > b +c。
这意味着在不等式两边同时加上同一个数,不等号方向不变。
就像甲有一定数量的苹果,乙比甲的苹果多,当两人都再得到相同数量的苹果时,乙还是比甲多。
4、减法性质如果 a < b,那么 a c < b c;如果 a > b,那么 a c > b c。
类似于加法性质,在不等式两边同时减去同一个数,不等号方向不变。
5、乘法性质如果 a > b 且 c > 0,那么 ac > bc;如果 a > b 且 c < 0,那么 ac < bc。
当不等式两边同时乘以一个正数时,不等号方向不变;乘以一个负数时,不等号方向改变。
举个例子,如果甲比乙的钱数多,两人都乘以一个正数(比如收入相同的奖金),甲还是比乙多;但如果乘以一个负数(比如都要交相同数额的罚款),那么甲就可能比乙少了。
6、除法性质如果 a > b 且 c > 0,那么 a÷c > b÷c;如果 a > b 且 c < 0,那么a÷c < b÷c (c ≠ 0)。
不等式知识点总结
不等式知识点总结1、不等式的基本性质①(对称性)a b b a >⇔> ②(传递性),a b b c a c >>⇒> ③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, (异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0, bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d cd>><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且 ⑦(开方法则)0,1)a b n N n >>⇒∈>且 ⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b+≥ ()a b R +∈,,(当且仅当a b =时取到等号).2.2a b ab +⎛⎫≤ ⎪⎝⎭用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>>(当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b aab a b<+≤-若则(当仅当a=b 时取等号) ⑦ban b n a m a m b a b <++<<++<1其中(000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小.⑧220;a x a x a x a x a >>⇔>⇔<->当时,或 22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:112a b a b --+≤≤+()a b R +∈,,(当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n+++≥+++ ③二维形式的三角不等式:④二维形式的柯西不等式22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和)当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->解集的步骤: 一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集. 规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解. 8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩ 2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解. 9、指数不等式的解法: ⑴当1a >时,()()()()f x g x aa f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化. 10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时,()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集. 13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小. 14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是:①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是: ①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤ ⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥。
不等式知识点总结
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
《基本不等式》 知识清单
《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么\(\sqrt{ab} \leq \frac{a + b}{2}\),当且仅当 a = b 时,等号成立。
其中,\(\frac{a + b}{2}\)叫做正数 a,b 的算术平均数,\(\sqrt{ab}\)叫做正数 a,b 的几何平均数。
基本不等式表明:两个正数的算术平均数不小于它们的几何平均数。
二、基本不等式的推导对于正数 a,b,有:\((\sqrt{a} \sqrt{b})^2 \geq 0\)\(a 2\sqrt{ab} + b \geq 0\)\(a + b \geq 2\sqrt{ab}\)\(\frac{a + b}{2} \geq \sqrt{ab}\)当且仅当\(\sqrt{a} =\sqrt{b}\),即 a = b 时,等号成立。
三、基本不等式的几何解释以长为 a + b 的线段为直径作圆,在直径 AB 上取点 C,使 AC = a,CB = b。
过点 C 作垂直于直径 AB 的弦 DE,连接 AD,DB。
根据圆的性质,可得\(CD =\sqrt{ab}\),而半径\(\frac{a+ b}{2}\)。
因为半径不小于弦长的一半,所以\(\frac{a + b}{2} \geq \sqrt{ab}\),当且仅当 C 为圆心时,等号成立,即 a = b 。
四、基本不等式的变形1、\(a^2 + b^2 \geq 2ab\)(当且仅当 a = b 时,等号成立)推导:\(a^2 + b^2 2ab =(a b)^2 \geq 0\),所以\(a^2 +b^2 \geq 2ab\)2、\(ab \leq (\frac{a + b}{2})^2\)(当且仅当 a = b 时,等号成立)推导:由基本不等式\(\frac{a + b}{2} \geq \sqrt{ab}\),两边平方可得\(ab \leq (\frac{a + b}{2})^2\)3、\(\frac{b}{a} +\frac{a}{b} \geq 2\)(a,b 同号且不为 0,当且仅当 a = b 时,等号成立)推导:\(\frac{b}{a} +\frac{a}{b} \geq 2\sqrt{\frac{b}{a} \times \frac{a}{b}}= 2\)五、用基本不等式求最值1、若两个正数的和为定值,则当这两个数相等时,它们的积取得最大值。
《基本不等式》 知识清单
《基本不等式》知识清单一、基本不等式的定义如果 a,b 是正数,那么$\sqrt{ab} \leq \frac{a + b}{2}$,当且仅当 a = b 时,等号成立。
我们把$\frac{a + b}{2}$称为正数 a,b 的算术平均数,把$\sqrt{ab}$称为正数 a,b 的几何平均数,所以基本不等式也可以表述为:两个正数的算术平均数不小于它们的几何平均数。
二、基本不等式的推导对于正数 a,b,有:$(a b)^2 \geq 0$ ,展开得到:$a^2 2ab + b^2 \geq 0$ ,即$a^2 + b^2 \geq 2ab$ 。
两边同时加上 2ab ,得到:$(a + b)^2 \geq 4ab$ ,因为 a,b 为正数,所以$a + b > 0$ ,两边同时除以 4,得到:$\frac{a + b}{2} \geq \sqrt{ab}$,当且仅当 a = b 时,等号成立。
三、基本不等式的几何解释以直角三角形为例,设直角三角形的两条直角边长度分别为 a,b,那么它的斜边长为$\sqrt{a^2 + b^2}$,而三角形的面积为$\frac{1}{2}ab$ 。
根据勾股定理有$a^2 + b^2 = c^2$ (c 为斜边长),而直角三角形的面积还可以表示为$\frac{1}{2}ch$ (h 为斜边上的高)。
因为同一个三角形面积相等,所以$\frac{1}{2}ab =\frac{1}{2}ch$ ,即$ab = ch$ 。
又因为$c \geq h$ ,所以$\sqrt{ab} \leq \frac{a + b}{2}$。
四、基本不等式的变形1、$a^2 + b^2 \geq 2ab$ (当且仅当 a = b 时,等号成立)2、$ab \leq (\frac{a + b}{2})^2$ (当且仅当 a = b 时,等号成立)3、$\frac{b}{a} +\frac{a}{b} \geq 2$ (a,b 同号,当且仅当 a = b 时,等号成立)五、基本不等式的应用1、求最值(1)如果积 xy 是定值 P,那么当 x = y 时,和 x + y 有最小值$2\sqrt{P}$。
(完整版)基本不等式知识点
基本不等式知识点1、不等式的基本性质①(对称性)a b b a >⇔>②(传递性),a b b c a c >>⇒>③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>,(异向可减性)d b c a d c b a ->-⇒<>,④(可积性)bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性)0,0a b c d ac bd >>>>⇒> (异向正数可除性)0,0a b a b c d c d >><<⇒>⑥(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且⑦(开方法则)0,1)a b n N n >>∈>且 ⑧(倒数法则)b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤②(基本不等式)2a b +≥()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).④()222a b c ab bc ca a b R ++≥++∈,(当且仅当a b c ==时取到等号).⑤3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号)0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,,规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=号).(即调和平均≤几何平均≤算术平均≤平方平均).变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:≥1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式: 2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++ ⑦向量形式的柯西不等式:设,αβ是两个向量,则,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式(排序原理):设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,则12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++(反序和≤乱序和≤顺序和),当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或则称f(x)为凸(或凹)函数.4、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等. 常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大(缩小),如211,(1)kk k <- 211,(1)k k k>+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ (<≤“或”时同理)规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩⑵2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时,()()()()f x g x a a f x g x >⇔< 规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数(或恒成立)的条件是: ①当0a =时 0,0;b c ⇒=>②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数(或恒成立)的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔<()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔>()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距”型:;z Ax By =+ ②“斜率”型:y z x =或;y b z x a -=-③“距离”型:22z x y =+或z = 22()()z x a y b =-+-或z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.。
基本不等式完整版(非常全面)
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+(2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形 (1)若*,R b a ∈,则ab ba ≥+2(2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;特别说明:以上不等式中,当且仅当b a =时取“=”4、求最值的条件:“一正,二定,三相等”5、常用结论 (1)若0x >,则12x x+≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d a c b d ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有二、题型分析题型一:利用基本不等式证明不等式1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知cb a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥ 4、已知,,a b c R+∈,且1a b c ++=,求证:a b cc b a 8)1)(1)(1(≥--- 5、已知,,a b c R+∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲 设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
不等式知识点总结
不等式知识点总结不等式是数学中的一个重要概念,它描述了数的大小关系。
在不等式中,通过使用不等号(<, ≤, >, ≥)来表示不同数的大小关系。
1. 基本不等式:- 加减法不等式:如果a > b,则有a + c > b + c,a - c > b - c; - 乘法不等式:如果a > b 且 c > 0,则有ac > bc;如果a > b且 c < 0,则有ac < bc;- 除法不等式:如果a > b 且 c > 0,则有a/c > b/c;如果a >b 且c < 0,则有a/c < b/c;- 幂不等式:如果a > b 且 n > 1,则有a^n > b^n;如果0 < a < b 且 0 < n < 1,则有a^n > b^n。
2. 不等式的性质:- 传递性:如果a > b 且 b > c,则有a > c;- 对称性:如果a > b,则有b < a;- 反身性:对于任意的a,有a = a;- 加减性:如果a > b,则有a + c > b + c;- 乘除性:如果a > b 且 c > 0,则有ac > bc,a/c > b/c。
3. 不等式的求解:- 确定不等式的解集:通过比较不等式中的数的大小关系,可以确定不等式的解集。
例如,对于不等式2x + 1 > 5,可以通过移项得到2x > 4,再除以2得到x > 2,解集为{x | x > 2}。
- 不等式的逆运算:对于不等式a > b,可以通过取倒数、开平方、开n次方等逆运算来改变不等式的大小关系。
- 不等式的绝对值:当不等式中存在绝对值时,需要对绝对值进行分类讨论,分别讨论绝对值的正负情况,然后求解不等式。
基本不等式(很全面)
基本不等式【知识框架】1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小值;4、求最值的条件:“一正,二定,三相等”5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) (4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab b a +≤+≤≤+6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+【题型归纳】题型一:利用基本不等式证明不等式题目1、设b a ,均为正数,证明不等式:ab ≥b a 112+题目2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a++>++222题目3、已知1a b c ++=,求证:22213a b c ++≥题目4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---题目5、已知,,a b c R +∈,且1a b c ++=,求证:1111118⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪题目6、(新课标Ⅱ卷数学(理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.题型二:利用不等式求函数值域题目1、求下列函数的值域(1)22213x x y += (2))4(x x y -=(3))0(1>+=x x x y (4))0(1<+=x x x y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;变式3:已知2<x ,求函数4224x y x x =+-的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;题目2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数)题目1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值;变式2:设230<<x ,求函数)23(4x x y -=的最大值。
完整版)不等式知识点归纳大全
完整版)不等式知识点归纳大全不等式》知识点总结一、解不等式1.解不等式时,最终需要用集合的形式表示解集。
不等式解集的端点值通常是不等式对应方程的根或不等式有意义范围的端点值。
2.解分式不等式f(x)。
a(a≠0)的一般思路是移项通分,分子分母分解因式,使x的系数变为正值,标根及奇穿过偶弹回。
3.含有两个绝对值的不等式需要分类讨论、平方转化或换元转化去绝对值。
4.解含参不等式时,常常需要分类等价转化。
按参数讨论时,最后需按参数取值分别说明其解集;按未知数讨论时,最后需要求并集。
二、利用重要不等式求函数的最值1.在利用重要不等式a+b≥2ab以及变式ab≤(a+b)²求函数的最值时,需要注意a、b∈R⁺(或a、b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时)。
2.常用的不等式有:a、2(a²+b²+c²)≥ab+bc+ca(当且仅当a=b=c时,取等号);b、a+b+c≥√(3(ab+bc+ca))(当且仅当a=b=c时,取等号)。
三、含立方的几个重要不等式1.对于正数a、b、c,有a³+b³+c³≥3abc(当且仅当a=b=c 时,取等号)。
2.对于正数a、b、c,有(a+b+c)³≥27abc(当且仅当a=b=c 时,取等号)。
四、最值定理1.积定和最小:当x、y>0,且x+y≥2xy时,若积xy=P (定值),则当x=y时和x+y有最小值2P。
2.和定积最大:当x、y>0,且x+y≥2xy时,若和x+y=S (定值),则当x=y时积xy有最大值S²/4.3.已知a、b、x、y∈R,且ax+by=1,有x/y+y/x的最小值为(a+b+√(a²+b²))/2.4.对于已知x>0、y>0、x+2y+2xy=8的等式,x+2y的最小值为4,最大值为8.注:删除了一些明显有问题的段落,并对每段话进行了小幅度的改写。
基本不等式知识点
根本不等式知识点1、不等式的根本性质①〔对称性〕a b b a >⇔>②〔传递性〕,a b b c a c >>⇒>③〔可加性〕a b a c b c >⇔+>+〔同向可加性〕d b c a d c b a +>+⇒>>,〔异向可减性〕d b c a d c b a ->-⇒<>,④〔可积性〕bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤〔同向正数可乘性〕0,0a b c d ac bd >>>>⇒> 〔异向正数可除性〕0,0a b a b c d c d >><<⇒>⑥〔平方法那么〕0(,1)n n a b a b n N n >>⇒>∈>且⑦〔开方法那么〕0,1)a b n N n >>∈>且 ⑧〔倒数法那么〕b a b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式 ①()222a b ab a b R +≥∈,,〔当且仅当a b =时取""=号〕. 变形公式:22.2a b ab +≤②〔根本不等式〕2a b +≥()a b R +∈,,〔当且仅当a b =时取到等号〕.变形公式:a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭ 用根本不等式求最值时〔积定和最小,和定积最大〕,要注意满足三个条件“一正、二定、三相等〞.③〔三个正数的算术—几何平均不等式〕3a b c ++≥()a b c R +∈、、〔当且仅当a b c ==时取到等号〕.() 222,++≥++∈a b c ab bc ca a b R ④〔当且仅当a b c ==时取到等号〕.⑤3333(0,0,0)a b c abc a b c ++≥>>> 〔当且仅当a b c ==时取到等号〕. ⑥0,2b a ab a b >+≥若则〔当仅当a=b 时取等号〕0,2b a ab a b <+≤-若则〔当仅当a=b 时取等号〕 ⑦b a n b n a m a m b a b <++<<++<1,〔其中000)a b m n >>>>,,规律:小于1同加那么变大,大于1同加那么变小. ⑧220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<< ⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:1122a b a b --+≤≤+,,a b R +∈(,当且仅当a b =时取""=号〕.〔即调和平均≤几何平均≤算术平均≤平方平均〕.变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ ②幂平均不等式:222212121...(...).n n a a a a a a n +++≥+++③二维形式的三角不等式:1122(,,,).x y x y R ∈④二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立. ⑤三维形式的柯西不等式:2222222123123112233()()().a a ab b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设,αβ是两个向量,那么,αβαβ⋅≤当且仅当β是零向量,或存在实数k ,使k αβ=时,等号成立.⑧排序不等式〔排序原理〕:设1212...,...n n a a a b b b ≤≤≤≤≤≤为两组实数.12,,...,n c c c 是12,,...,n b b b 的任一排列,那么12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++〔反序和≤乱序和≤顺序和〕,当且仅当12...n a a a ===或12...n b b b ===时,反序和等于顺序和.⑨琴生不等式:〔特例:凸函数、凹函数〕假设定义在某区间上的函数()f x ,对于定义域中任意两点1212,(),x x x x ≠有12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或那么称f(x)为凸〔或凹〕函数.4、不等式证明的几种常用方法 常用方法有:比拟法〔作差,作商法〕、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131()();242a a ++>+ ②将分子或分母放大〔缩小〕,如211,(1)k k k <- 211,(1)k k k >+=⇒<*,1)k N k >∈>等.5、一元二次不等式的解法求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿〔奇穿偶切〕,结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,那么()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩ 〔<≤“或”时同理〕规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解⑴2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a ≥⎧<>⇔⎨<⎩⑶2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或⑷2()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩⑸()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小〞的一边分析求解.9、指数不等式的解法:⑴当1a >时,()()()()f x g x a a f x g x >⇔>⑵当01a <<时, ()()()()f x g x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当1a >时, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵当01a <<时, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法: ⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩ ⑵平方法:22()()()().f x g x f x g x ≤⇔≤⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥ ②(0);x a x a x a a ≥⇔≥≤-≥或 ③()()()()()(()0)f xg x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个〔或两个以上〕绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.14、恒成立问题⑴不等式20ax bx c ++>的解集是全体实数〔或恒成立〕的条件是:①当0a =时 0,0;b c ⇒=> ②当0a ≠时00.a >⎧⇒⎨∆<⎩ ⑵不等式20ax bx c ++<的解集是全体实数〔或恒成立〕的条件是:①当0a =时0,0;b c ⇒=<②当0a ≠时00.a <⎧⇒⎨∆<⎩ ⑶()f x a <恒成立max ();f x a ⇔< ()f x a ≤恒成立max ();f x a ⇔≤⑷()f x a >恒成立min ();f x a ⇔> ()f x a ≥恒成立min ().f x a ⇔≥15、线性规划问题常见的目标函数的类型:①“截距〞型:;z Ax By =+ ②“斜率〞型:y z x =或;y b z x a -=-③“距离〞型:22z x y =+或z =22()()z x a y b =-+-或z =在求该“三型〞的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。
不等式强基知识点
不等式强基知识点一、知识概述《不等式强基知识点》①基本定义:不等式呢,简单说就是表示两个数或者表达式之间大小关系的式子。
不是等于,而是大于、小于、大于等于、小于等于这样的关系。
就好比你和小伙伴比谁零花钱多,有个人钱比另一个人的多,这就可以用不等式表示。
②重要程度:在数学里那是相当重要的。
无论是代数、几何还是函数等很多领域都要用到不等式。
它能帮我们确定取值范围,解决很多实际和理论上关于范围、最值等问题。
③前置知识:需要掌握简单的代数式运算、数的大小比较这些基础知识。
要是连数大小都不会比,那不等式可就太难学啦。
比如说你得知道5比3大这种简单的比较。
④应用价值:在生活中,比如安排预算的时候,你的收入只能小于等于你的总收入,不然就超支了。
在工程里,材料的用量也得考虑不等式关系,总不能用无穷多的材料吧。
二、知识体系①知识图谱:不等式在数学学科里就像是经脉一样,贯穿很多其他知识体系。
像在函数学习里,求函数的定义域、值域就经常用到不等式。
②关联知识:和方程关系就挺紧密的。
有时候方程解完了,要确定一些参数的取值范围就会用到不等式。
还和函数的单调性有关联,如果一个函数单调递增,那自变量的大小关系和函数值的大小关系就可以用不等式来表示。
③重难点分析:- 掌握难度:对一些学生来讲,不等式抽象的概念理解起来有点难,尤其是多个不等式一起的情况。
我就见过有的同学,一看到好几个不等式组成的不等式组,就晕头转向的。
- 关键点:理解不等号两边的数量关系,还有就是移项、变形这些操作的时候,要遵循不等式的基本性质,就像玩游戏得遵守游戏规则一样。
④考点分析:- 在考试中的重要性:那可大了。
不论是小考还是大考,都经常出现不等式的题目。
- 考查方式:会有单纯解不等式的,还有在应用题里需要列不等式求解实际问题的,也有和其他知识点结合起来考查的,像跟函数图像结合,求满足不等式条件的自变量取值范围之类的。
三、详细讲解【理论概念类】①概念辨析:- 核心概念准确含义:不等式最重要的就是表示一种不平衡的关系。
(完整版)基本不等式知识点和基本题型
基本不等式专题辅导一、知识点总结1、基本不等式原始形式(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 当两个正数的和为定植时,它们的积有最小值; 特别说明:以上不等式中,当且仅当b a =时取“=” 4、求最值的条件:“一正,二定,三相等” 5、常用结论(1)若0x >,则12x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则12x x+≤- (当且仅当1x =-时取“=”)(3)若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)(4)若R b a ∈,,则2)2(222b a b a ab +≤+≤ (5)若*,R b a ∈,则2211122b a b a ab ba +≤+≤≤+ 特别说明:以上不等式中,当且仅当b a =时取“=” 6、柯西不等式(1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+(2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++(3)设1212,,,,,,n n a a a b b ⋅⋅⋅⋅⋅⋅与b 是两组实数,则有22212(n a a a ++⋅⋅⋅+)22212)n b b b ++⋅⋅⋅+(21122()n n a b a b a b ≥++⋅⋅⋅+ 二、题型分析题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥ba 112+2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2223、已知1a b c ++=,求证:22213a b c ++≥4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥---已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、选修4—5:不等式选讲: 已知0>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域 (1)22213x x y += (2))4(x x y -= (3))0(1>+=x x x y (4))0(1<+=x xx y题型三:利用不等式求最值 (一)(凑项) 1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最大值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最大值;题型四:利用不等式求最值 (二)(凑系数) 1、当时,求(82)y x x =-的最大值;变式1:当时,求4(82)y x x =-的最大值; 变式2:设230<<x ,求函数)23(4x x y -=的最大值。
(整理)基本不等式知识点归纳
基本不等式知识点归纳1.基本不等式2ba ab +≤(1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义?提示:①当b a =时,ab b a ≥+2取等号,即.2ab ba b a =+⇒= ②仅当b a =时,ab b a ≥+2取等号,即.2b a ab b a =⇒=+ 2.几个重要的不等式).0(2);,(222>≥+∈≥+ab b aa b R b a ab b a),(2)2();,()2(2222R b a b a b a R b a b a ab ∈+≤+∈+≤3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2ba +,几何平均数为ab ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数.4.利用基本不等式求最值问题 已知,0,0>>y x 则(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小).(2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.42p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,xx y 1+=在2≥x 时的最小值,利用单调性,易知2=x 时.25min =y[自测·牛刀小试]1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81D .243解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.2.若函数)2(21)(>-+=x x x x f 在a x =处取最小值,则=a ( ) A .1+ 2 B .1+ 3 C .3 D .4 3.已知,02,0,0,0=+->>>z y x z y x 则2y xz的( ) A .最小值为8 B .最大值为8 C .最小值为18 D .最大值为184.函数xx y 1+=的值域为 ____________________. 5.在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________.利用基本不等式证明不等式[例1] 已知,0,0>>b a ,1=+b a 求证:.9)11)(11(≥++ba保持例题条件不变,证明:a +12+b +12≤2.———————————————————利用基本不等式证明不等式的方法技巧利用基本不等式证明不等式是综合法证明不等式的一种情况,要从整体上把握运用基本不等式,对不满足使用基本不等式条件的可通过“变形”来转换,常见的变形技巧有:拆项、并项,也可乘上一个数或加上一个数,“1”的代换法等.1.已知,0,0,0>>>c b a 求证:.c b a cab b ca a bc ++≥++利用基本不等式求最值[例2] (1)(2012·浙江高考)若,0,0>>y x 满足,53xy y x =+则y x 43+的最小值是( ) A.245 B.285C .5D .6(2)已知,0,0>>b a ,1222=+b a 则21b a +的最大值为________. ———————————————————应用基本不等式求最值的条件利用基本不等式求最值时,要注意其必须满足的三个条件:(1)一正二定三相等.“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.1.(1)函数)1,0(1≠>=-a a ay x的图象过定点,A 若点A 在直线)0,(01>=-+n m ny mx 上,求nm 11+的最小值; (2)若正数b a ,满足,3++=b a ab 求ab 的取值范围.利用基本不等式解决实际问题[例3] 为响应国家扩大内需的政策,某厂家拟在2014年举行促销活动,经调查测算,该产品的年销量(即该厂的年产量)x 万件与年促销费用)0(≥t t 万元满足124+-=t kx (k 为常数).如果不搞促销活动,则该产品的年销量只能是1万件.已知2014年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).(1)将该厂家2014年该产品的利润y 万元表示为年促销费用t 万元的函数; (2)该厂家2014年的年促销费用投入多少万元时,厂家利润最大? ———————————————————解实际应用题时应注意的问题(1)设变量时一般要把求最大值或最小值的变量定义为函数;(2)根据实际问题抽象出函数的解析式后,只需再利用基本不等式求得函数的最值; 3在求函数的最值时,一定要在定义域使实际问题有意义的自变量的取值范围内求. 4有些实际问题中,要求最值的量需要用几个变量表示,同时这几个变量满足某个关系式,这时问题就变成了一个条件最值,可用求条件最值的方法求最值.3.某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最高为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入)600(612-x 万元作为技改费用,投入50万元作为固定宣传费用,投入x 51万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1个技巧——公式的逆用运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如ab b a 222≥+逆用就是),0,0(222>>+≤b a b a ab 逆用就是)0,()2(2>+≤b a b a ab 等,还要注意“添、拆项”技巧和公式等号成立的条件等.2个变形——基本不等式的变形(1)).,,(2)2(222”时取“当且仅当==∈≥+≤+b a R b a ab b a b a (2),0,0(1122222>>+≥≥+≥+b a ba ab b a b a ).”时取“当且仅当==b a 3个关注——利用基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.(3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致.创新交汇——基本不等式在其他数学知识中的应用1.考题多以函数、方程、立体几何、解析几何、数列等知识为载体考查基本不等式求最值问题.2.解决此类问题的关键是正确利用条件转换成能利用基本不等式求解的形式,同时要注意基本不等式的使用条件. [典例] (2012·湖南高考)已知两条直线m y l =:1和),0(128:2>+=m m y l 1l 与函数x y 2log =的图象从左至右相交于点A 、B ,2l 与函数x y 2log =的图象从左至右相交于点C 、D ,记线段AC 和BD 在x 轴上的投影长度分别为.,b a 当m 变化时,ab的最小值为( ) A .16 2 B .8 2 C .348 D .344 [名师点评]1.本题具有以下创新点(1)本题是对数函数的图象问题,通过分析、转化为基本不等式求最值问题.(2)本题将指数、对数函数的性质与基本不等式相结合,考查了考生分析问题、解决问题的能力. 2.解决本题的关键有以下几点(1)正确求出A 、B 、C 、D 四点的坐标;(2)正确理解b a ,的几何意义,并能正确用A 、B 、C 、D 的坐标表示; (3)能用拼凑法将)0(128>++m m m 化成利用基本不等式求最值的形式.[变式训练]1.已知,0,0>>y x y b a x ,,,成等差数列y d c x ,,,成等比数列,则cdb a 2)(+的最小值是( )A .0B .1C .2D .42.若直线),0,0(02>>=+-b a by ax 被圆014222=+-++y x y x 截得的弦长为4,则ba 11+的最小值为( ) A.14 B. 2 C.32+ 2 D.32+2 2 3.若,0,0>>y x 且y x a y x +≤+恒成立,则a 的最小值是________.练习一、选择题(本大题共6小题,每小题5分,共30分) 1.(2012·福建高考)下列不等式一定成立的是( ) A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(212R x x x ∈≥+ D.)(1112R x x ∈>+ 2.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (b a <),其全程的平均时速为,v 则( ) A .ab v a << B .ab v =C.2ba v ab +<< D .2ba v +=3.若,0,0>>b a 且,0)ln(=+b a 则ba 11+的最小值是( ) A.14B .1C .4D .8 4.(2013·淮北模拟)函数)1(122>-+=x x x y 的最小值是( ) A .23+2 B .23-2 C .2 3 D .25.设,0,0>>b a 且不等式011≥+++ba kb a 恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-26.(2013·温州模拟)已知M 是ABC ∆内的一点,且AB ·AC =23,,300=∠BAC 若MCA MBC ∆∆,和MAB ∆的面积分别为,,,21y x 则y x 41+的最小值是( )A .20B .18C .16D .19 二、填空题(本大题共3小题,每小题5分,共15分)7.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用1y 和2y 分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站________公里处.8.若,2,0,0=+>>b a b a 则下列不等式对一切满足条件的b a ,恒成立的是________(写出所有正确命题的编号).①1≤ab ②2≤+b a ③222≥+b a ④322≥+b a ⑤.211≥+ba 9.(2013·泰州模拟)已知,822,0,0=++>>xy y x y x 则y x 2+的最小值是________.三、解答题(本大题共3小题,每小题12分,共36分) 10.已知.0,0,0,0>>>>d c b a 求证:.4≥+++acadbc bd bc ad11.提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数)(x v 的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时))()(x v x x f ⋅=可以达到最大,并求出最大值.(精确到1辆/小时)1.已知,1log log 22≥+b a 则ba93+的最小值为________.2.设b a ,均为正实数,求证:.221122≥++ab b a3.已知,45<x 求54124)(-+-=x x x f 的最大值.4.某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形A 1B 1C 1D 1的休闲区和环公园人行道(阴影部分)组成.已知休闲区A 1B 1C 1D 1的面积为4 000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比|A 1B 1||B 1C 1|=),1(>x x 求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;(2)要使公园所占面积最小,则休闲区A 1B 1C 1D 1的长和宽该如何设计?[归纳·知识整合]1.合情推理 (1)归纳推理:①定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.②特点:是由部分到整体、由个别到一般的推理. (2)类比推理①定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②特点:类比推理是由特殊到特殊的推理. [探究] 1.归纳推理的结论一定正确吗?提示:不一定,结论是否真实,还需要经过严格的逻辑证明和实践检验.2.演绎推理 (1)模式:三段论①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. (2)特点:演绎推理是由一般到特殊的推理. [探究] 2.演绎推理所获得的结论一定可靠吗?提示:不一定,只有前提是正确的,推理形式是正确的,结论才一定是真实的,错误的前提则可能导致错误的结论.[自测·牛刀小试]1.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,由此得出凸多边形的内角和是(n -2)·180°.A .①②B .①③C .①②④D .②④2.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 013的末四位数字为( )A .3 125B .5 625C .0 625D .8 1253.(教材习题改编)有一段演绎推理是这样的:“直线平行于平面,则直线平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误归纳推理[例1] (1)(2012·江西高考)观察下列各式:,,11,7,4.3,155443322=+=+=+=+=+b a b a b a b a b a 则=+1010b a ( )A .28B .76C .123D .199 (2)设,331)(+=xx f 先分别求),3()2(),2()1(),1()0(f f f f f f +-+-+然后归纳猜想一般性结论,并给出证明.利用本例(2)的结论计算)2015()1()0()1()2013()2014(f f f f f f ++++-++-+- 的值.归纳推理的分类常见的归纳推理分为数的归纳和形的归纳两类(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等.(2)形的归纳主要包括图形数目归纳和图形变化规律归纳.1.观察下列等式:1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15…13=113+23=913+23+33=3613+23+33+43=10013+23+33+43+53=225…可以推测:13+23+33+…+3n =________(n ∈N *,用含n 的代数式表示).类比推理[例2] (2013·广州模拟)已知数列}{n a 为等差数列,若b a a a n m ==,),,,1(+∈≥-N n m m n 则,mn manb a m n --=+类比等差数列}{n a 的上述结论,对于等比数列}{n b ),,0(+∈>N n b n 若d a c a n m ==,),,,2(+∈≥-N n m m n 则可以得到=+m n b ________. ———————————————————类比推理的分类类比推理的应用一般为类比定义、类比性质和类比方法(1)类比定义:在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求解;(2)类比性质:从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键;(3)类比方法:有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移.2.在ABC ∆中,,AC AB ⊥BC AD ⊥于D ,求证:.111222AC AB AD +=演 绎 推 理[例3] 已知函数).10()(≠>+-=a a aa ax f x且 (1)证明:函数)(x f y =的图象关于点)21,21(-对称; (2)求)3()2()1()0()1()2(f f f f f f ++++-+-的值.———————————————————演绎推理的结构特点(1)演绎推理是由一般到特殊的推理,其最常见的形式是三段论,它是由大前提、小前提、结论三部分组成的.三段论推理中包含三个判断:第一个判断称为大前提,它提供了一个一般的原理;第二个判断叫小前提,它指出了一个特殊情况.这两个判断联合起来,提示了一般原理和特殊情况的内在联系,从而产生了第三个判断:结论.(2)演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提.一般地,若大前提不明确时,一般可找一个使结论成立的充分条件作为大前提.3.已知函数,)(bx xax f +=其中),,0(,0,0+∞∈>>x b a 试确定)(x f 的单调区间,并证明在每个单调区间上的增减性.2个步骤——归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同性质;②从已知的相同性质中推出一个明确表述的一般性命题(猜想); ③检验猜想.实验、观察→概括、推广→猜测一般性结论 (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想); ③检验猜想.观察、比较→联想、类推→猜想新结论 1个区别——合情推理与演绎推理的区别 (1)归纳是由特殊到一般的推理; (2)类比是由特殊到特殊的推理; (3)演绎推理是由一般到特殊的推理;(4)从推理的结论来看,合情推理的结论不一定正确,有待证明;若大前提和小前提正确,则演绎推理得到的结论一定正确.创新交汇——合情推理与证明的交汇创新1.归纳推理主要有数与式的归纳推理、图形中的归纳推理、数列中的归纳推理;类比推理主要有运算的类比、性质的类比、平面与空间的类比.题型多为客观题,而2012年福建高考三角恒等式的推理与证明相结合出现在解答题中,是高考命题的一个创新.2.解决此类问题首先要通过观察特例发现某些相似性(特例的共性或一般规律);然后把这种相似性推广到一个明确表述的一般命题(猜想);最后对所得的一般性命题进行检验.一、选择题(本大题共6小题,每小题5分,共30分)1.(2013·合肥模拟)正弦函数是奇函数,)1sin()(2+=x x f 是正弦函数,因此)1sin()(2+=x x f 是奇函数,以上推理( )A .结论正确B .大前提不正确C .小前提不正确D .全不正确2.(2013·银川模拟)当x ∈(0,+∞)时可得到不等式,3)2(224,2122≥++=+≥+xx x x x x x 由此可以推广为,1+≥+n xpx n 取值p 等于( ) A .nn B .2nC .nD .1+n3.(2012·江西高考)观察下列事实:|x |+|y |=1的不同整数解(y x ,)的个数为4,|x |+|y |=2的不同整数解(y x ,)的个数为8,|x |+|y |=3的不同整数解(y x ,)的个数为12,…,则|x |+|y |=20的不同整数解(y x ,)的个数为( )A .76B .80C .86D .925.设ABC ∆的三边长分别为a 、b 、c ,ABC ∆的面积为S ,内切圆半径为r ,则;2cb a Sr ++=类比这个结论可知:四面体ABCD S -的四个面的面积分别为1S 、2S 、3S 、4S ,内切球的半径为R ,四面体ABC S -的体积为V ,则R =( )A.4321S S S S V+++B.43212S S S S V+++C.43213S S S S V+++D.43214S S S S V+++6.已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个数对是( )A.(7,5) B.(5,7) C.(2,10) D.(10,1) 二、填空题(本大题共3小题,每小题5分,共15分) 7.(2012·陕西高考)观察下列不等式1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为________.8.(2012·湖北高考)回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3443,94249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.1.正方形ABCD的边长是a,依次连接正方形ABCD各边中点得到一个新的正方形,再依次连接新正方形各边中点又得到一个新的正方形,依此得到一系列的正方形,如图所示.现有一只小虫从A点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个正方形的边逆时针方向爬行,如此下去,爬行了10条线段.则这10条线段的长度的平方和是( )A.1 0232 0482a B.1 0237682aC.5111 0242a D.2 0474 0962a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式【考纲要求】1.2a b+≤的证明过程,理解基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;2.2a b+≤解决最大(小)值问题. 3.会应用基本不等式求某些函数的最值;能够解决一些简单的实际问题 【知识网络】【考点梳理】考点一:重要不等式及几何意义 1.重要不等式:如果,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”). 2.基本不等式:如果,a b是正数,那么2a b+≥(当且仅当a b =时取等号“=”). 要点诠释:222a b ab +≥和2a b +≥两者的异同:(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”。
(3)222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤. 3.如图,AB 是圆的直径,点C 是AB 上的一点,AC a =,BC b =,过点C 作DC AB ⊥交圆于点D ,连接AD 、BD .易证~Rt ACD Rt DCB ∆∆,那么2CD CA CB =⋅,即CD ab =.这个圆的半径为2b a +,它大于或等于CD ,即ab ba ≥+2,其中当且仅当点C 与圆心重合,即a b =时,等号成立.要点诠释:1.在数学中,我们称2ba +为,ab 的算术平均数,称ab 为,a b 的几何平均数. 因此基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.2.如果把2ba +看作是正数,ab 的等差中项,ab 看作是正数,a b 的等比中项,那么基本不等式可以叙述为:两个正数的等差中项不小于它们的等比中项.考点二:基本不等式2a bab +≤的证明 1. 几何面积法如图,在正方形ABCD 中有四个全等的直角三角形。
设直角三角形的两条直角边长为a 、b 22a b +4个直角三角形的面积的和是2ab ,正方形ABCD 的面积为22a b +。
由于4个直角三角形的面积小于正方形的面积,所以:222a b ab +≥。
当直角三角形变为等腰直角三角形,即a b =时,正方形EFGH 缩为一个点,这时有222a b ab +=。
得到结论:如果+,R a b ∈,那么222a b ab +≥(当且仅当a b =时取等号“=”) 特别的,如果0a >,0b >,a b 分别代替a 、b ,可得: 如果0a >,0b >,则2a b ab +≥,(当且仅当a b =时取等号“=”). 通常我们把上式写作:如果0a >,0b >2a bab +≤,(当且仅当a b =时取等号“=”) 2. 代数法∵2222()0a b ab a b +-=-≥,当a b ≠时,2()0a b ->;当a b =时,2()0a b -=.所以22()2a b ab +≥,(当且仅当a b =时取等号“=”).特别的,如果0a >,0b >,分别代替a 、b ,可得:如果0a >,0b >,则a b +≥,(当且仅当a b =时取等号“=”). 通常我们把上式写作:如果0a >,0b >2a b+≤,(当且仅当a b =时取等号“=”).2a b+≤求最大(小)值在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等。
① 一正:函数的解析式中,各项均为正数;② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值。
要点四、几个常见的不等式 1)()R b a ab b a ∈≥+,222,当且仅当a=b 时取“=”号。
2)()+∈≥+R b a ab ba ,2,当且仅当a=b 时取“=”号。
3)()02>⋅≥+b a ab b a ;特别地:()021>≥+a aa ;4)ba ab ab b a b a +≥≥+≥+22222 (),a b R +∈ 5)()()+∈≥⎪⎭⎫⎝⎛++R b a b a b a ,411; 【典型例题】2a b+≤的理解 例1. 0a >,0b >,给出下列推导,其中正确的有 (填序号).(1)a b++; (2)11()()a b a b++的最小值为4; (3)14a a ++的最小值为2-. 【解析】(1);(2)(1)∵0a >,0b >,∴a b++≥≥2a b ==时取等号).(2)∵0a >,0b >,∴11()()4a ba b ++≥=(当且仅当a b =时取等号).(3)∵0a >,∴11444244a a a a +=++-≥=-++, (当且仅当144a a +=+即413a a +==-,时取等号) ∵0a >,与3a =-矛盾,∴上式不能取等号,即124a a +>-+【总结升华】在用基本不等式求函数的最值时,必须同时具备三个条件:一正二定三取等,缺一不可. 举一反三:【变式1】给出下面四个推导过程:① ∵,a b R +∈,∴2a b b a +≥=;② ∵,x y R +∈,∴lg lg x y +≥③ ∵a R ∈,0a ≠,∴44a a +≥=;④ ∵,x y R ∈,0xy <,∴[()()]2x y x y y x y x +=--+-≤-=-. 其中正确的推导为( )A.①②B.②③C.③④D.①④ 【解析】①∵,a b R +∈,∴,b aR a b+∈,符合基本不等式的条件,故①推导正确. ②虽然,x y R +∈,但当(0,1)x ∈或(0,1)y ∈时,lg ,lg x y 是负数,∴②的推导是错误的.③由,a R ∈不符合基本不等式的条件,∴44a a +≥=是错误的. ④由0,xy <得,y x x y 均为负数,但在推导过程中,将整体x y y x+提出负号后,()()x yy x -+-均变为正数,符合基本不等式的条件,故④正确.选D.【变式2】下列命题正确的是( )A.函数1y xx =+的最小值为2. B.函数2y =的最小值为2C.函数423(0)y x x x =-->最大值为2- D.函数 423(0)y x x x=-->的最小值为2 【答案】C【解析】A 选项中,∵0x ≠,∴当0,x >时由基本不等式12x x+≥;当0x <时12x x+≤-.∴选项A 错误. B选项中,∵22y === 21=时,成立)2,∴这是不可能的. ∴选项B 错误. C 选项中,∵0x >,∴44232(3)2y x x x x=--=-+≤-C 正确。
2a b+≤求最值 例2.设0a b >>,则211()a ab a a b ++-的最小值是 A .1 B .2C .3D .4【解析】221111()()11()()()4a a ab ab ab a a b ab a a b a a b ab a a b ab++=-+++--=-+++-≥ 当且仅当1()()1a ab a a b ab ab ⎧-=⎪-⎪⎨⎪=⎪⎩即a b ==.【答案】D 举一反三:【变式1】若0x <,求9()4f x x x=+的最大值. 【解析】因为0x <,所以0x ->, 由基本不等式得:99()(4)(4)()12f x x x x x -=-+=-+-≥==,(当且仅当94x x -=-即32x =-时, 取等号) 故当32x =-时,9()4f x x x=+取得最大值12-.【变式2】已知0x <,求16()204f x x x=++的最大值.【解析】∵0x <,∴0x ->,∴4()224x x -+≥=⨯=-(当且仅当4x x-=-,即2x =-时,等号成立) ∴4()204[()]20444f x x x =--+≤-⨯=-(当且仅当4x x-=-,即2x =-时,等号成立) 故当2x =-时,()f x 的最大值为4.例3.已知a >0,b >0,a +b =2,则y =14a b+的最小值是 A .72B .4C .92D .5【解析】∵0a >,0b >,∴141141419()()(5)(52222b a a b a b a b a b +=++=++≥+= 答案选C 举一反三:【变式1】若0x >,0y >,且281x y+=,求xy 的最小值 . 【解析】∵0x >,0y >,∴281x y =+≥=(当且仅当2812x y ==即4x =,16y =时,等号成立) ∴64xy ≥(当且仅当4x =,16y =时,等号成立) 故当4x =,16y =时,xy 的最小值为64.【变式2】已知x >0,y >0,且191x y+=,求x+y 的最小值。
【解析】∵191x y +=,∴199()10y xx y x y x y x y ⎛⎫+=+⋅+=++ ⎪⎝⎭∵x >0,y >0,∴96y x x y +≥= (当且仅当9y x x y=,即y=3x 时,取等号)又191x y+=,∴x=4,y=12 ∴当x=4,y=12时,x+y 取最小值16。
类型三:基本不等式应用例4. 设,x y R +∈,1x y +=,求证:1125()()4x y x y ++≥ 【证明】11254x y x y ⎛⎫⎛⎫⇐++≥⎪ ⎪⎝⎭⎝⎭ ()()222222222251042512104332041804124x y x y xy x y xy xy x y xy xy xy x y xy ⇐++-+≥⇐+--+≥⇐-+≥⎛⎫⇐--≥ ⎪⎝⎭+⎛⎫⇐≤=⎪⎝⎭Q ()1804xy xy ⎛⎫⇐∴--≥ ⎪⎝⎭成立 举一反三:【变式1】已知3a >,求证:473a a +≥-【解析】44(3)333733a a a a +=+-+≥==-- (当且仅当433a a =--即5a =,等号成立). 【例5】(2015春 东城区期末)已知0,0,0abc >>>,且1a b c ++=.(1)若a b c ==则111111a b c ⎛⎫⎛⎫⎛⎫---⎪⎪⎪⎝⎭⎝⎭⎝⎭的值为 . (2)求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥⎪⎪⎪⎝⎭⎝⎭⎝⎭【解析】(1)由题意可得13a b c ===带入计算可得1111118a b c ⎛⎫⎛⎫⎛⎫---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)由题意和基本不等式可得0a b +≥>,0a c +≥>,0b c +≥>1a b c ++=Q111111118a b c a b c a b c a b c a b c b c a c a b a b c a b c++++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴---=-- ⎪⎪⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭+++=≥=1111118a b c ⎛⎫⎛⎫⎛⎫∴---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭举一反三:【变式】(2015 石家庄一模)已知函数()f x =R.(1)求实数m 的取值范围.(2)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求7a +4b 的最小值.【解析】(1)因为函数的定义域为R,130x x m ∴++--≥恒成立设函数()13g x x x =+--则m 不大于()g x 的最小值()13134x x x x ++-≥+--=Q 即()g x 的最小值为4,4m ∴≤(2)由(1)知n=421432a b a b ∴+=++()()()1217462243222322211955242344a b a b a b a b a b a b a b a b a b ⎛⎫∴+=++++ ⎪++⎝⎭⎛++⎛⎫=++≥+⋅= ⎪ ++⎝⎭⎝当且仅当23a b a b +=+时,即2b a =时取等号.74a b ∴+的最小值为94类型四:基本不等式在实际问题中的应用例6. 某农场有废弃的猪圈,留有一面旧墙长12m,现准备在该地区重新建立一座猪圈,平面图为矩形,面积为2112m ,预计(1)修复1m 旧墙的费用是建造1m 新墙费用的25% ,(2)拆去1m 旧墙用以改造建成1m 新墙的费用是建1m 新墙的50%,(3)为安装圈门,要在围墙的适当处留出1m 的空缺。