匀速直线运动的规律

匀速直线运动的规律
匀速直线运动的规律

【《课标》解读】

1.《课标》原文

(一)运动的描述

(3)经历匀变速直线运动的实验研究过程,理解位移、速度和加速度,了解匀变速直线运动的规律,体会实验在发现自然规律中的作用。

(4)能用公式和图像描述匀变速直线运动,体会数学在研究物理问题中的重要性。

2.《课标》解读

知识性行为动词2个;技能性行为动词1个;体验性行为动词3个。由此不难看出,新课程在重视知识的同时,更加强调学生的体验过程。

【教材分析】

教材安排了两个活动一个讨论交流,即:活动1“飞机跑道的设计”;活动2“飞机制动系统的设计”;讨论交流“一起交通事故的分析”。“设计”两个字反映出编者意在把学生放在自主学习的位置,活动中要求学生“1.画出设计分析草图2.写出设计依据的公式3.算出你的结果”也适合对学生进行过程和方法的训练,如果在加上“4.拿你的设计方案和同学交流”就多了一个探究要素。

因此,这节课不应该是一节普通的习题课,而应该是一节应用规律解决实际问题的探究课。

考虑到活动1和活动2本身构成了一个有机整体及课时原因,本节课删减了讨论交流“一起交通事故的分析”等内容。

【设计思路】

本节的内容是应用匀变速直线运动的规律探究和解决实际问题。教学中以协和飞机失事事件为线索,激发学生的探究兴趣,通过独立思考、交流讨论,让学生体会应用物理规律解决实际问题的过程和方法。教学过程中力求体现新课程的教学理念,落实三维目标。

【教学目标】

(一)知识与技能

1.在应用中加深对匀变速直线运动规律的理解。

2.尝试运用物理知识解决生活中的实际问题。

(二)过程与方法

1.在探究活动中体会用匀变速直线运动规律解决问题的一般过程和方法。

2.使学生在对设计结果的分析、论证和交流中,尝试经过思考发表自己的见解。(三)情感、态度与价值观

1.从真实事件入手,激发学生探究问题的热情。

2.使学生进一步领会养成良好学习习惯的重要性。

3.使学生从协和飞机失事事件中,领悟细节决定成败,提高责任意识。

【教学重点】

用匀变速直线运动规律解决问题的过程和方法

【教学难点】

将实际问题转化为物理问题

【教学方法】

探究讨论、分析讲解

【教学资源】

教材、PPT课件和视频资料。

【教学过程】

(一)通过协和飞机失事视频的演示,创设问题情境,激发学生对飞机起降问题的关注

赋有“空中骄子”之称的协和超音速飞机是由英国和法国联合研制的一种超音速客机,它的最大飞行速度可达2.04马赫(2150km/h)。

1969年10月1日,协和飞机首次超音速飞行;2003年10月24日,协和式飞机退出了商用飞机的历史舞台。

2000年7月25日,协和客机AF4590班机在法国戴高乐机场进行起飞,当起飞速度达到328km/h时,飞机接到塔台传来消息飞机尾部起火。但是,机长还是拉起了飞机。飞机于起飞后约2分钟爆炸,坠毁于机场附近,这场悲剧造成了113人丧生。

(二)通过对〖问题1〗的探究和讨论体会用匀变速直线运动规律解决问题的一般过程和方法

〖问题1〗飞机跑道的设计(教材P30)

请你设计一种飞机跑道,给一种特殊类型的喷气式飞机使用。

该飞机在跑道上滑行以a=4.0m/s2恒定的加速度增速,当速率达到85m/s时就升空,如果允许飞机在达到起飞速度的瞬间停止起飞而仍不会滑出跑道,且能以大小为5.0m/s2的恒定加速度减速,跑道的长度应当设计为多长?

1.画出设计分析草图

2.写出设计依据的公式

3.算出你的结果

4.拿你的设计方案和同学交流

独立思考——发现问题

交流讨论——修正设计

设计展示——规范要求

(三)通过对〖问题2〗的讨论分析,加深学生对研究方法的理解和掌握,在解决实际问题的过程中体会学习乐趣

〖问题2〗协和号AF4590班机的机长为什么还是拉起了飞机?

有关数据:法国戴高乐机场跑道的总长度为4000m,飞机起飞时的加速度约为2.1m/s2,

降落过程中加速度大小能够达到约1.4 m/s2,飞机拉起时速度已达到328km/h。

此时速度达到328km/h,飞机已经跑了2000米,如果采取制动措施需要3000米长的跑道才能停下来。因此,在地面减速已经不可能了,于是机长拉起了飞机……

(四)通过对〖问题3〗、〖问题3〗的思考和讨论,引出飞机的制动系统设计问题,在解决问题的过程中提高和巩固用匀变速直线运动规律解决问题的过程和方法〖问题3〗为了避免AF4590班机空难的发生除了延长跑道长度外,还可以采取什么方法?

〖问题4〗喷气式飞机的制动系统设计(教材P30)

喷气式飞机的制动系统设计

机场跑道长为2500m,喷气式飞机以恒定的加速度a=3.5m/s2增速,当速率达到95m/s 即可升空。假定飞机在达到此速率时因故要停止飞行,设计出的喷气式飞机的制动系统至少要能产生多大的加速度。

(五)通过协和式AF4590班机失事的原因的分析,使学生领悟细节决定成败,提高责任意识。

(1)协和式AF4590班机失事的原因

事故调查结果表明:AF4590班机在进行起飞时,辗过了跑道上另一架美国大陆航空公司的DC-10班机脱落的小铁条,造成爆胎,而轮胎破片以超过音速的高速击中机翼中的油箱,之后引发大火。

(2)协和式飞机为什么退出了商用客机的历史舞台?

高能耗、高燥声、载客量少、安全性……

(3)第二代协和飞机将于2017年上天,载客能力达250人。

(六)通过师生互动归纳出用匀变速直线运动规律解决问题的一般过程和方法。

〖小结〗

用匀变速直线运动规律解决问题的一般过程和方法。

(1)将实际问题转化为物理模型;

(2)画出物理过程的分析草图;

(3)运用物理规律和方法,分析计算得出结论。

【发展空间】

汽车的制动加速度是保证行车安全的重要指标,请你设计一种测定汽车制动加速度的方法。

高中物理:第五章匀速圆周运动

第五章匀速圆周运动 本章学习提要 1.理解物体做圆周运动的原因;理解向心加速度和向心力的概念;知道向心力和哪些因素有关,能计算向心加速度和向心力,从而加深对力和运动状态变化关系的理解。 2.知道圆周运动在解释月球运动、测量分子速度、解决车辆转弯问题等方面的广泛应用。 3.知道离心现象及其应用。 本章由基础型课程中圆周运动的运动学规律,拓展到圆周运动的动力学原因,进一步加深对牛顿运动定律这一普遍规律的理解。同时,通过对圆周运动的探究,感受“以直代曲”的思想方法,通过学习圆周运动的应用,体验物理知识与生产生活的联系,在学习离心力的过程中感悟生活语言和科学概念的区别,学习用科学知识来认识和描述自然现象。 A 向心加速度向心力 一、学习要求 理解向心力,能够计算向心力。理解向心加速度,能用相关公式计算向心加速度,能分析质点在竖直平面内做圆周运动时,恰能经过最高点的受力情况。通过探究向心力与哪些因素有关的实验过程感受科学探究的基本方法,并培养细致严谨的科学作风。 二、要点辨析 1.向心力是变力 向心力是一个矢量,既有大小,也有方向。物体做圆周运动,必须要有向心力不断改变物体的速度方向,而向心力本身也总是指向圆心不断改变方向,因此向心力是变力,而且无论物体做圆周运动的速度大小是否改变,向心力都是变力,只不过当物体做匀速圆周运动时,向心力的大小保持不变。 2.向心力有来源 首先要明白,向心力是以作用效果来命名的,它不是和重力、弹力、摩擦力并列的某种特殊性质的力。因此,任何实际存在的力都可以作为向心力,也就是说重力、弹力、摩擦力都可以作为向心力。提供向心力的物体可以在圆心,例如链球的圆周运动靠位于圆心的运动员以手的控制来实现;也可以不在圆心,例如圆轨道对小车提供向心力,向心力的来源就不在圆心上。还有一个问题,向心力是合力还是分力,这要看具体情况。向心力可以是合力也可以是某个力的分力,在基础型教材中我们只讨论一个为提供向心力的情况,其实多个力提供向心力的例子也很多,例如物体在竖直平面内做网周运动,就涉及一个以上的力提供向心力。当物体做匀速圆周运动时,向心力就是合力;当物体做一般圆周运动时,如果速度大小也发生变化,向心力仅仅是合力的一个分力,另一个分力沿着圆周切线方向,使速度的大小发生变化。 3.向心力不做功 因为向心力指向圆心,与做圆周运动的物体的速度方向总是垂直,它只改变速度的方向,不改变速度的大小,因此,向心力总是不做功。当然,如果做圆周运动的物体的速度大小发

高中物理-质点直线运动的规律

质点直线运动的规律 1. 将物体竖直向上抛出后,能正确表示其速率v随时间t的变化关系的是() v v 0 t t A. B. v v 0 t t C. D. 2. 两辆完全相同的汽车,沿水平直路一前一后匀速行驶,速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车的加速度开始刹车,已知前车在刹车过程中所行距离为s,若要保证两车在上述情况中不相撞,则两车在匀速行驶时保持的距离至少为() A. 1s B. 2s C. 3s D. 4s 3. 假设汽车制动后所受阻力的大小与汽车所受重力的大小差不多,当汽车以20m/s的速度行驶时,突然制动,它还能继续滑行的距离约为() A. 40m B. 20m C. 10m D. 5m 4. 一物体作匀变速直线运动,某时刻速度的大小为4m/s,1s后速度的大小变为10m/s,在1s内该物体的() A. 位移的大小可能大于10m B. 位移的大小可能小于4m m s/ C. 加速度大小可能大于102 m s/ D. 加速度大小可能小于42

5. 船在静止水中的速度为3m/s,欲渡一条宽为30m,水流速度为4m/s的河流。下述说法正确的是() A. 此渡船的最短时间为10s B. 此船渡河的最短距离为40m C. 船沿垂直河岸开出,渡河时间最短 D. 船与河岸成53?偏向上游开出,渡河距离最短 6. 以10m/s匀速行驶的汽车,刹车后做匀减速直线运动,第2s内位移是6.25m,则刹车后5s内位移是____________m. 7. 以初速度v0竖直上抛的小球,若不计空气阻力,在上升过程中,从抛出到小球动能减少一半所经过的时间是___________________。 8. 如图示,物体放在倾角为θ的斜面上,向下轻轻一推,它刚好能匀速下滑,若给此物体一个沿斜面向上的初速度v ,则它能上滑的最大路程是______________。 θ 9. 某人骑车以4m/s的速度匀速行驶,某时刻在他前面7m处以10m/s的速度同向行驶的汽车开始关闭发动机,而以22 m s/的加速度减速前进,此人需要多少时间才能追上汽车? 10. 一物块从倾角为θ,长为s的斜面的顶端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需时间。 【试题答案】 1. D 2. B 3. B 4. B C 5. A B D 6. 20m 7. v g 01 2 2 () - 8. v g 2 4sinθ 9. 8s

《匀变速直线运动的规律》的教案设计

《匀变速直线运动的规律》的教案设计 《匀变速直线运动的规律》的教案设计 《匀变速直线运动的规律》的教案设计 教学目标 知识目标 1、掌握匀变速直线运动的速度公式,并能用来解答有关的问题. 2、掌握匀变速直线运动的位移公式,并能用来解答有关的问题. 能力目标 体会学习运动学知识的一般方法,培养学生良好的分析问题,解决问题的习惯. 教学建议 教材分析 匀变速直线运动的速度公式是本章的重点之一,为了引导学生逐渐熟悉数学工具的应用,教材直接从加速度的定义式由公式变形得到匀变速直线运动的速度公式,紧接着配一道例题加以巩固.意在简单明了同时要让学生自然的复习旧知识,前后联系起来. 匀变速直线运动的位移公式是本章的另一个重点.推导位移公式的方法很多,中学阶段通常采用图像法,从速度图像导出位

移公式.用图像法导位移公式比较严格,但一般学生接受起来较难,教材没有采用,而是放在阅读材料中了.本教材根据,说明匀变速直线运动中,并利用速度公式,代入整理后导出了位移公式.这种推导学生容易接受,对于初学者来讲比较适合.给出的例题做出了比较详细的分析与解答,便于学生的理解和今后的参考. 另外,本节的两个小标题“速度和时间的关系”“位移和时间的关系”能够更好的让学生体会研究物体的运动规律,就是要研究物体的.位移、速度随时间变化的规律,有了公式就可以预见以后的运动情况. 教法建议 为了使学生对速度公式获得具体的认识,也便于对所学知识的巩固,可以从某一实例出发,利用匀变速运动的概念,加速度的概念,猜测速度公式,之后再从公式变形角度推出,得出公式后,还应从匀变速运动的速度—时间图像中,加以再认识.对于位移公式的建立,也可以给出一个模型,提出问题,再按照教材的安排进行. 对于两个例题的处理,要引导同学自己分析已知,未知,画运动过程草图的习惯. 教学设计示例 教学重点:两个公式的建立及应用 教学难点:位移公式的建立.

研究匀速圆周运动的规律

研究匀速圆周运动的规律 ★教案目标 (一) 知识与技能 1。知道什么是向心力,理解它是一种效果力 2。知道向心力大小与哪些因素有关。理解公式的确切含义,并能用来进行计算 3。结合向心力理解向心加速度 4。理解变速圆周运动中合外力与向心力的关系 (二) 过程与方法 1。从受力分析来理解向心加速度,加深对牛顿定律的理解。 2。通过用圆锥摆粗略验证向心力的表达式的实验来了解向心力的大小与哪些因素有关,并理解公式的含义。 3。经历从匀速圆周运动到变速圆周运动再到一般曲线运动的研究过程,让学生领会解决问题从特殊到一般的思维方法。并学会用运动和力的观点分析、解决问题。 (三) 情感态度与价值观 1。通过亲身的探究活动,使学生获得成功的乐趣,培养学生参与物理活动的兴趣。 2。经历从特殊到一般的研究过程,培养学生分析问题、解决问题的能力。 3。实例、实验紧密联系生活,拉近科学与学生的距离,使学生感到科学就在身边,调动学生学习的积极性,培养学生的学习兴趣。 ★教案重点 1。理解向心力的概念和公式的建立。 2。理解向心力只改变速度的方向,不改变速度的大小。 3。运用向心力、向心加速度的知识解释有关现象。 ★教案难点 1。理解向心力的概念和公式的建立。 2。运用向心力、向心加速度的知识解释有关现象。 ★教案过程 一、引入 师:同学们,在上节课的学习中,我们单纯从运动学角度用公式 t v v a t 0-=对匀速圆周运动

的加速度进行了研究,得到的结论是:匀速圆周运动的加速度大小为v a R a R v a ωω===或或22 , 方向总是与速度方向垂直,始终指向圆心。于是我们把匀速圆周运动的加速度又称作向心加 速度。 师:今天我们将结合物体受力从动力学角度用公式m F a =来研究向心加速度。 师:现在我们已知知道了匀速圆周运动的加速度的特点,有哪位同学能告诉我:物体做匀速 圆周运动时所受的合外力有什么特点? 生:根据公式m F a =,我们知道做匀速圆周运动的物体所受的合外力应该 v m R m R v m ma F ωω或或22 ==,方向总是与速度垂直指向圆心。 二、向心力 师:由于做匀速圆周运动的物体受到的合外力始终指向圆心,所以我们把匀速圆周运动物体 所受的合外力又称作向心力。 【定义】做匀速圆周运动的物体所受的合外力由于指向圆心,所以该合外力又叫做向心力。 师:做匀速圆周运动的物体所受的合外力真的指向圆心吗?下面我们结合几个实例体会验证一下这个结论。毕竟理论只有结合实际才能被更透彻地理解。 ①地球绕太阳的运动可以近似看成匀速圆周运动,试分析做匀速圆周运动的物体(地球) 所有受的合外力的特点。 【解读】地球只受到太阳对它的吸引力,合力即为吸引力。该吸引力指向地球做圆周运动的 圆心即日心。 ②光滑桌面上一个小球,由于细绳的牵引,绕桌面上的图钉做匀速圆周运动。 【解读】小球受重力、支持力、绳子的拉力。合力是绳子的拉力,方向沿绳子指向圆心(图 钉) ③使转台匀速转动,转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动 【解读】物体受重力、支持力、静摩擦力。合外力为静摩擦力,方向指向圆心。

直线运动的基本规律

直线运动的基本规律 【学习目标】 1、熟练掌握匀变速直线运动的规律 2、能熟练地应用匀变速直线运动规律解题。 【自主学习】 一、匀速直线运动: 1、定义: 2、特征:速度的大小和方向都 ,加速度为 。 二、匀变速直线运动: 1、定义: 2、特征:速度的大小随时间 ,加速度的大小和方向 3、匀变速直线运动的基本规律:设物体的初速度为v 0、t 秒末的速度为v t 、经过的位移为S 、加速度为a ,则 ⑴两个基本公式: 、 ⑵两个重要推论: 、 说明:上述四个公式中共涉及v 0、v t 、s 、t 、a 五个物理量,任一个公式都是由其中四个物理量组成,所以,只须知道三个物理量即可求其余两个物理量。要善于灵活选择公式。 4、匀变速直线运动中三个常用的结论 ⑴匀变速直线运动的物体在连续相邻相等时间内的位移之差相等,等于加速度和时间间 隔平方和的乘积。即2 342312....T a S S S S S S S ?==-=-=-=? , 可以推广到S m - S n = 。 试证明此结论: ⑵物体在某段时间的中间时刻的瞬时速度等于该段时间内的平均速度。v t/2= 。 ⑶某段位移的中间位置的瞬时速度公式,v s/2= 。可以证明,无论匀加速直线运动还是匀减速直线运动均有有v t/2 v s/2。试证明: 5、初速度为零的匀变速直线运动的几个特殊规律: 初速度为零的匀变速直线运动(设t 为等分时间间隔) ⑴1t 末、2t 末、3t 末、…、nt 末瞬时速度之比为 v 1∶v 2∶v 3∶…∶v n = ⑵1t 内、2t 内、3t 内、…、nt 内位移之比为 s 1∶s 2∶s 3∶…∶s n = ⑶在连续相等的时间间隔内的位移之比为 s Ⅰ∶s Ⅱ∶s Ⅲ∶…∶s n = ⑷通过1s 、2s 、3s 、…、ns 的位移所用的时间之比为 t 1∶t 2∶t 3∶…∶t n =

匀变速直线运动的基本规律

第一章 直线运动 1.1 匀变速直线运动的规律 基础知识梳理 一、匀变速直线运动 1.定义:沿着一条直线,且加速度不变的运动。 2.分类: (1)匀加速直线运动:a 与v 方向相同; (2)匀减速直线运动:a 与v 方向相反。 二、匀变速直线运动的基本规律 1.匀变速直线运动的三大基本公式 (1)速度与时间的关系:v =v 0+at ; (2)位移与时间的关系:x =v 0t +12 at 2; (3)位移与速度的关系:v 2-v 20=2ax 。 2.匀变速直线运动的两个常用推论 (1)平均速度公式:匀变速直线运动的平均速度等于初速度与末速度的平均值,也等于中间时刻的速度,即2 02t v v v v =+=。 (2)位移差公式:匀变速直线运动在相邻且相等的时间间隔内的位移之差是个恒量,即Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2。 3.初速度为零的匀加速直线运动的几个比例关系 (1)1T 末,2T 末,3T 末,…,nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)1T 内,2T 内,3T 内,…,nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2. (3)第1个T 内,第2个T 内,第3个T 内,…,第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1). (4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶(2- 3)∶…∶(n -n -1). 三、自由落体运动 1.定义:物体只在重力作用下,从静止开始下落的运动叫自由落体运动。 2.基本特征:初速度为零、加速度为g 的匀加速直线运动。 3.基本规律:v =gt ,h =12 gt 2,v 2=2gh

匀变速直线运动的规律及其应用(教案及教学反思)

匀变速直线运动的规律及其应用 新洲四中物理组王杏喜 【教学内容分析】 考纲对本节所涉及的知识点均为二级要求。本节内容是高考考查的热点和重点,常与其他知识点结合考查,有时也单独考查,如实际生活中的直线运动问题。 其重点是考查学生的综合能力。 【教学目标】 1.知识与能力 (1)掌握匀变速直线运动的基本公式,并能恰当选择这些公式解决物理问题. (2)能够熟练应用匀变速直线运动的重要推论解决物理问题。 (3)培养学生运用方程组、图像等数学工具解决物理问题的能力。 (4)通过一题多解培养学生发散思维。 2.过程和方法 (1)通过例题的分析,使学生形成解题思路,体会特殊解题技巧,即获得解决物理问题的认知策略。 (2)渗透物理思想方法的教育,如模型方法、等效方法等。 3.情感态度与价值观 通过对实际生活中直线运动的研究,保持对运动世界的好奇心和探究欲。【教学重难点】 重点:熟练掌握匀变速直线运动的四个基本公式及其重要推论,并加以应用。 难点:灵活运用规律解决实际运动学问题。 【教学方法】 复习提问、讲练结合。 【教具】 幻灯片,投影仪。 【教学过程】 (一)复习提问 师:请同学们写出匀变速直线运动的四个基本公式。

生: 师分析讲解: 1、四个公式,五个物理量知三求二.公式的选取原则是:在实际应用中要以方便快捷的原则,选用合适的公式.每个公式中都涉及了5个物理量v 0、v 、a 、t 、x 中的4个,我们选用涉及已知量和所求量的公式会简捷一些.例如已知初速度、末速度、位移,求加速度时,因为不涉及时间,我们选用v 2-v 02=2ax 。 2、四个公式均为矢量方程,应用时要选择正方向。速度—时间关系式:v t =v 0+at ,位移—时间关系式:s =v 0t +1/2 at 2,位移—速度关系式:v 2-v 02=2ax 均为矢量式,所以应用时要选取正方向,一般情况取初速度的方向为正,则当物体做加速运动时a 取正值,当物体做减速运动时a 取负值. 3、对匀减速直线运动,要注意单向速度减速为零后停止(加速度变为零)和双向可逆(加速度不为变)两种情况。 刹车类问题:做匀减速运动到速度为零时,即停止运动,其加速度a 也突然消失。求解此类问题时应先确定物体实际运动的时间。注意题目中所给的时间与实际运动时间的关系。对末速度为零的匀减速运动也可以按其逆过程即初速度为零的匀加速运动处理,切忌乱套公式。 双向可逆类的运动:如一个小球沿光滑斜面以一定初速度v 0向上运动,到达最高点后就会以原加速度匀加速下滑,整个过程加速度的大小、方向不变,所以该运动也是匀变速直线运动,因此求解时可对全过程列方程,但必须注意在不同阶段v 、x 、a 等矢量的正负号。 教师引导学生回忆下面的几个推论式: (1)在任意两个连续相等的时间内的位移之差为恒量, 即: =恒量 可以推广到: (2)在某段时间内的平均速度等于该段时间中间时刻的瞬时速度,即 2 021at t x +=υax t 220 2 =-υυt t x t 2 0υυυ+= =- at t +=0υυ2aT x =?2 )(aT n m x x n m -=-202 _ t t υυυυ+= =

直线运动的基本公式

直线运动的基本知识点 一、匀变速直线运动的规律 1. 变速直线运动 定义:沿着一条直线运动,且加速度不变的运动. 2. 变速直线运动的规律 (1)速度公式:v =v 0+at . (2)位移公式:x =v 0t +12 at 2. (3)位移速度关系式:v 2-v 20=2ax . 二、匀变速直线运动的推论 1. 变速直线运动的两个重要推论 (1)物体在一段时间内的平均速度等于这段时间中间时刻的瞬时速度,还等于初、末时 刻速度矢量和的一半,即:v =v t 2=v 0+v 2 . (2)任意两个连续相等的时间间隔T 内的位移之差为一恒量, 即:Δx =x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2. 推论法利用Δx =aT 2:其推广式x m -x n =(m -n )aT 2,对于纸带类问题用这种方法尤为快捷. 三、自由落体运动和竖直上抛运动 1. 由落体运动 (1)条件:物体只受重力,从静止开始下落. (2)运动性质:初速度v 0=0,加速度为重力加速度g 的匀加速直线运动. (3)基本规律 ①速度公式:v =gt . ②位移公式:h =12gt 2. ③速度位移关系式:v 2=2gh . 2. 直上抛运动 (1)运动特点:加速度为g ,上升阶段做匀减速直线运动,下降阶段做自由落体运动. (2)基本规律 ①速度公式:v =v 0-gt . ②位移公式:h =v 0t -12 gt 2. ③速度位移关系式:v 2-v 20=-2gh . ④上升的最大高度:H =v 202g . ⑤上升到最高点所用时间:t =v 0g .

四、规律总结 匀变速直线运动的规范求解 1.一般解题的基本思路 2.描述匀变速直线运动的基本物理量涉及v 0、v 、a 、x 、t 五个量,每一个基本公式中都涉及四个量,选择公式时一定要注意分析已知量和待求量,根据所涉及的物理量选择合适的公式求解,会使问题简单化. 1.a =Δv Δt 是加速度的定义式,加速度的决定式是a =F m ,即加速度的大小由物体受到的 合力F 和物体的质量m 共同决定,加速度的方向由合力的方向决定. 2.根据a 与v 方向间的关系判断物体是在加速还是在减速 (1)当a 与v 同向或夹角为锐角时,物体速度大小变大. (2)当a 与v 垂直时,物体速度大小不变. (3)当a 与v 反向或夹角为钝角时,物体速度大小变小. 五. x -t 图象 (1)物理意义:反映了物体做直线运动的位移随时间变化的规律. (2)斜率的意义:图线上某点切线斜率的大小表示物体速度的大小,斜率正负表示物体速度的方向. 六. v -t 图象 (1)物理意义:反映了做直线运动的物体的速度随时间变化的规律. (2)斜率的意义:图线上某点切线斜率的大小表示物体在该点加速度的大小,斜率正负表示物体加速度的方向. (3)“面积”的意义 ①图线与时间轴围成的面积表示相应时间内的位移的大小. ②若面积在时间轴的上方,表示位移方向为正;若此面积在时间轴的下方,表示位移方向为负.

第一章 直线运动(第2单元 匀变速直线运动的基本规律)

高三一轮复习教学案一体化(第一章 直线运动) 第2单元 匀变速直线运动的基本规律 班级_________姓名____________ 一、概念、原理、方法 (一)四个基本公式 1、速度公式:0v v at =+ 析:由加速度的定义式和物理量变化量的概念证明。 证明:如图1,加速度v a t ?= ?,而0v v v ?=-,0t t ?=-,有00 v v a t -=-,变形即得0v v at =+。 2、位移公式1:02 v v x t += 证明:(1)如图2,用“微元法”将物体的运动分成无数段,则每一小段物体的“匀变速直线运动”都可以“近似地看成匀速直线运动”,则物体的位移120112x x x v t v t =++=?+?+ (2)上述物理思想用v-t 表示如图3,物体的位移x 即为图中“阴影矩形面积的和”。 (3)如图4,如果整个过程划分得非常非常细,则“无数阴影矩形的面积的和”即为图中“梯形的面积”。由梯形面积公式“2S =?上底+下底 高”即可得02 v v x t +=。 3、位移公式2:2 012 x v t at =+ 证明:如图5,注意到表达式中不含末速度“v ”,由0v v at =+得0at v v =-,代入02 v v x t += 有200011 ()22 x v v at t v t at =++=+。 4、位移公式3:2 20 2v v x a -= 或22 02v v ax -= 证明:如图6,注意到表达式中不含时间“t ” ( v 0 a — t , x = x = v 0 a 图5 图6 图7 图8 v v 0 /2?t v = v /2t # /2t v 0 /2?x v = v /2x /2x a a v 0 ? a v v 1 v 2 x = v 0 《v v 2v v v 图1 图2 图3 图4 v 0 a t ! v =

匀变速直线运动规律教案

第1节 匀变速直线运动的规律. 规律总结 规律:运动学的基本公式. 知识:匀变速直线运动的特点. 方法:(1)位移与路程:只有单向直线运动时位移的大小与路程相等,除此之外均不相等.对有往返的匀变速直线运动在计算位移、速度等矢量时可以直接用运动学的基本公式,而涉及路程时通常要分段考虑. (2)初速度为零的匀变速直线运动的处理方法:通过分析证明得到以下结论,在计算时可直接使用,提高了效率和准确程度. ①从运动开始计时,t 秒末、2t 秒末、3t 秒末、…、n t 秒末的速度之比等于连续自然数之比:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . ②从运动开始计时,前t 秒内、2t 秒内、3t 秒内、…、n t 秒内通过的位移之比等于连续自然数的平方之比:s 1∶s 2∶s 3∶…∶s n =12∶22∶32∶…∶n 2. ③从运动开使计时,任意连续相等的时间内通过的位移之比等于连续奇数之比:s 1∶s 2∶s 3∶…∶s n =1∶3∶5∶…∶(2n -1). ④通过前s 、前2s 、前3s …的用时之比等于连续的自然数的平方根之比:t 1∶t 2∶t 3∶…t n =1∶2∶3∶…∶n . ⑤从运动开始计时,通过任意连续相等的位移所用的时间之比为相邻自然数的平方根之差的比:t 1∶t 2∶t 3∶…t n =1∶)12(-∶)23(-∶)1(--n n . ⑥从运动开始通过的位移与达到的速度的平方成正比:s ∝v 2. 新题解答 【例1】子弹在枪膛内的运动可近似看作匀变速直线运动,步枪的枪膛长约0.80m ,子弹出枪口的速度为800m /s ,求子弹在枪膛中的加速度及运动时间. 解析:子弹的初速度为零,应为已知信息,还有末速度、位移两个已知信息,待求的信息是加速度,各量的方向均相同,均设为正值.选择方程v t 2-v 02=2as 计算.

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

直线运动教学设计教案

三、直线运动 教学目标: 1、知识探究点及教学要求 (1)通过事例及探究,认识直线运动的两种类型及规律:匀速直线运动和变速直线运动。(2)理解匀速直线运动速度的公式和物理意义。 (3)知道平均速度的物理意义,能举例说明运动的物体具有动能。 2、能力训练点及要求 (1)通过组织学生探究引导学生认识匀速直线运动速度特点。 (2)利用生活中具体事例让学生切身体验,学会测量物体的平均速度。 3、价值观渗透点及要求 (1)能乐于参与探究活动并体验发现规律的乐趣。 (2)尝试用速度描述物体的运动,真正达到学有所为,学有所用。 重点、难点 1、重点:匀速直线运动速度概念、公式。 2、难点:匀速直线运动速度的理解 变速直线运动平均速度的理解。 教学准备:学案、自制课件、玻璃管、彩色橡皮筋、刻度尺、秒表等。 教学程序: 一、情境导入 师:请同学们看一段录像:播放课件flash动画:龟兔赛跑。 请一位同学同时进行解说。 师:究竟谁更快? 师:要知道它的答案我们首先研究最简单的运动——充水玻璃管中气泡的运动有什么规律?二、合作探究 1.匀速直线运动 活动:探究充水玻璃管中气泡的运动规律 演示:将内径1cm,长约50cm 的玻璃管内灌满水,内封有一小气泡,翻转后竖直放置。观察:将玻璃管竖直放置,使气泡由管底竖直上升,观察气泡的运动情况。 提出问题:充水玻璃管中气泡的运动有什么规律? 提出猜想:--------- 小组讨论:如何验证猜想? (屏显)如何测出气泡通过10cm、20cm、30cm和40cm所用的时间? 需要哪些器材?测量物理量?实验方案? 如何设计表格,并画在学案上。

小组交流:------ 适时引导: 师:1、为了便于对路程和时间进行读数,可采取什么方法? 2、标记的起点最好离管底稍远一些。 3、秒表测时间之前,让管中气泡运动几次,对其运动快慢情况有一定认识,以便更准确地测量运动时间。 4、为了便于观察,可采取什么方法? 做一做:按照方案动手做一做并把测量数据填入表中,计算出相关的速度。 小组讨论:气泡在上升过程中,运动规律如何? 小组交流:气泡在上升一段路程后,运动的路程和时间近似成_ 比例,运动速度可以看做 是 的。 画 一 画:根据实验数据作出s —t 图、v —t 图。 交流论证:这种运动的特点? (板 书) 1、匀速直线运动: (1)速度不变的直线运动叫做匀速直线运动。 (2)做匀速直线运动的物体在任意相等的时间内,通过的路程是相等的。 师:你能举出一些做匀速直线运动的例子吗? 生:在平直轨道上行驶的火车;空中匀速下落的雨滴;站在商场自动扶梯上的顾客--------。 2、变速直线运动 演示课件:中国跨栏名将刘翔2004年在第28届雅典奥运会上创造了110m 跨栏的奥运会记录时 的情景,并附有刘翔通过不同距离所用的时间表:如下 想一想:刘翔在这110 m 的运动过程中做的是匀速直线运动吗? 生 :不是。 议一议:为什么刘翔在这110 m 的运动过程中不是匀速直线运动呢?你的判断依据是什么? 110m 的运动过程中,哪个路程段的速度最大?哪个最小?有没有哪段路程中速度相等?

研究匀速圆周运动的规律教案

也4点时,其速度方如图所示,物体在圆周上从点经?段时间运动到点.物体在答案 月点的切线方向,如果没有力的作用(因而没有加速度)向沿,物体将因惯性而沿着切线运动网 点的切线方向.这说明物体'点,而实际上物体是运动到圆周上的点,且速度方向是到有加速 度.这个加速度只改变速度的方向,所以这个加速度应该总是跟该点的速度方向垂直,即沿着 半径指向圆心. [耍点捉炼] 4π ==ω = = ω=l.向心加速度的大小::TR —— 2.向心加速度的作用 向心加速度的方向始终与速度方向垂宜,只改变速度的方向,不改变速度的人小. ------------- 3. 向心加速度的物理意义:描述线速度方向变化的快慢. --------------- 4. 匀速圆周运动的性质 向心加速度的方向始终指向圆心,方向时刻改变,是?个变加速度,所以匀速圆周运动不是匀变 速运动,而是非匀变速运动. --------------------------- 说明:向心加速度的公式也适用于非匀速圆周运动,且无论是匀速圆周运动还是非匀速 ----------- 圆周运动,向心加速度的方向都指向圆心. ----------- [延伸思考] RaaRa= 3=知向心加速度成反比:与运动半径甲同学认为由公式而乙同学认为由公式一 KR a R 成正比,他们两人谁的观点正确?说?说你的观点.与运动半径知向心加速度 旧屆届(与成正比.与成反比;当3 ?定时,答案他们两人的观点都不正确.当?定时,斤的关 系图象如图所示) (a) 二、向心力 [问题设计] 1. 如图1所示,用手拉细绳使小球在光滑水平面内做匀速圆周运动,小球受力情况如何?是什 (b)

直线运动知识点详细归纳

第一章:直线运动 一.复习要点 1.机械运动,参照物,质点、位置与位移,路程,时刻与时间等概念的理解。2.匀速直线运动,速度、速率、位移公式S=υt,S~t图线,υ~t图线 3.变速直线运动,平均速度,瞬时速度 4.匀变速直线运动,加速度,匀变速直线运动的基本规律:S v t at =+ 02 1 2、at v v t + = 匀变速直线运动的υ~t图线 5.匀变速直线运动规律的重要推论 6.自由落体运动,竖直上抛运动 7.运动的合成与分解。 第一模块:描述运动和物理量 『夯实基础知识』 1、机械运动 一个物体相对于另一个物体的位置的改变,叫做机械运动,简称运动,它包括平动、转动和振动等运动形式. ①运动是绝对的,静止是相对的。 ②宏观、微观物体都处于永恒的运动中。 2、参考系(参照物) 参考系:在描述一个物体运动时,选作标准的物体(假定为不动的物体) ①描述一个物体是否运动,决定于它相对于所选的参考系的位置是否发生变化,由于所选的参考系并不是真正静止的,所以物体运动的描述只能是相对的。 ②描述同一运动时,若以不同的物体作为参考系,描述的结果可能不同 ③参考系的选取原则上是任意的,但是有时选运动物体作为参考系,可能会给问题的分析、求解带来简便, 一般情况下如无说明,通常都是以地球作为参考系来研究物体的运动. 3、平动与转动 平动:物体不论沿直线还是沿曲线平动时,都具有两个基本特点: (a)运动物体上任意两点所连成的直线,在整个运动过程中始终保持平行 (b)在同一时刻,平动物体上各点的速度和加速度都相同,因此在研究物体的运动规律时,可以不考虑物体的大小和形状,而把它作为质点来处理。 转动:分为定轴转动和定点转动,定轴转动的特点为:(a)在转动过程中,物体上有一条直线(轴)的位置不变,其它各点都绕轴做圆周运动,且轨迹平面与轴垂直。(b)物体上各点的状态参量,除角速度之外都不相等。定点转动的特点是运动过程中,物体内某一点保持不动的机械运动,绕定点转动的物体只有一点不动,其它各点分别在以该固定点为中心的同心球面上运动。

3.1_匀变速直线运动的规律教案

第三章匀变速直线运动的研究 第一节匀变速直线运动的规律(2课时) ★教学目标 (一)知识与技能 1.进一步理解位移、速度和加速度等概念。 2.掌握匀变速直线运动的速度公式,知道它是如何推导出来的,知道它的图象的物理意 义,会应用这一公式分析和计算. 3.掌握匀变速直线运动的位移公式,会应用这一公式分析和计算. 4.能推出匀变速直线运动的位移和速度的关系式,并会运用它进行计算. (二)过程与方法 1、从表格中分析处理数据并能归纳总结.培养学生将已学过的数学规律运用到物理当 中,将公式、图象及物理意义联系起来加以运用,培养学生运用数学工具解决物理问题的能力. 2.能根据加速度的概念,推导出匀变速直线运动的速度公式。 3.能根据平均速度的概念,推导出匀变速直线运动的位移公式。 4.会用公式法和图象法研究匀变速直线运动,了解微积分的思想,体会数学在研究物理问题中的重要性。 (三)情感、态度与价值观 从具体情景中抽象出本质特点, 体验匀变速直线运动的奇妙与和谐,领略运动的艺术美,保持对运动世界的好奇心和探究欲。 ★教学重点 重点:速度公式、位移公式的推导和运动图象物理意义的理解与应用。 ★教学难点 难点:1.注意数学手段与物理过程的紧密联系. 2.将公式、图象及其物理意义联系起来. 3.获得匀变速运动的规律,特别是用图象描述运动.图象的应用和公式的选择是 两个难点. ★教具准备 多媒体工具,作图工具 ★教学过程 (一)新课引入 物理学中将物体速度发生变化的运动称为变速运动.一般来说,做变速运动的物体,速度变化情况非常复杂.本节,我们仅讨论一种特殊的变速运动——匀变速直线运动. 通过一个表格让学生讨论其中数据的特点:

高一物理 第四章 A 匀速圆周运动教案 沪科版

第四章 A 匀速圆周运动 一、教学任务分析 匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。 学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。 从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。 通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。 通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。 通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣 二、教学目标 1、知识与技能 (1)知道物体做曲线运动的条件。 (2)知道圆周运动;理解匀速圆周运动。 (3)理解线速度和角速度。 (4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。 2、过程与方法 (1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。 (2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。 3、态度、情感与价值观 (1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。 (2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。 三、教学重点难点 重点: (1)匀速圆周运动概念。 (2)用线速度、角速度描述圆周运动的快慢。

探究匀变速直线运动规律

探究匀变速直线运动规 律 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章探究匀变速直线运动规律 第一节探究自由落体运动(探究小车速度沿时间变化的规律) Ⅰ、实验操作 实验中应注意: ⒈实验物体在桌面摆放平整:左右水平,前后水平; ⒉若有必要,适当把桌面垫斜,以免挂的钩码太轻拖不动小车:平衡摩擦力; ⒊先通电打点计时器,后放手是小车运动; ⒋多次测量:重复2-3次,选择清晰的一组) ⒌注意小车、限位孔、纸带是在同一直线上,以免纸带发生倾斜与限位孔的旁边发生摩擦,增大摩擦对实验的误差 Ⅱ、数据处理 1.选点(选看得清的点开始为计数点) 2.计数点:每间隔四个点取一个“计数点”,t= 3.匀变速直线运动时,等时间间隔的时间中点的速度等于这段时间内的平均速度 Ⅲ、作图原则 ⒈剔除偏差较大的点(排除实验当中出现的偶然误差) ⒉用一条平滑的直线或曲线尽可能地穿过更多的点 ⒊尽可能地让未能落到线上的点均匀分布在线的两侧 第二节速度与时间的关系(匀变速直线运动) 1.从加速度的角度出发a=△v/△t=(v-vo)/t 推出v=vo+at 适用于匀变速直线运动 矢量式 例题: 1、40km/h的速度匀速行驶,如果以0.6m/s2的加速度加速,10s后速度是多少km/h? 17m/s=61km/h 2、做匀变速直线运动的物体在时间t内的位移是s,若物体通过这段时间位移中间时刻的瞬时速度为v1,中间位置的瞬时速度为v2,那么下列说法正确的是() A、匀加速直线运动时,v1>v2 B、匀减速直线运动时,v1>v2 C、匀减速直线运动时,v1

匀速直线运动教案

匀速直线运动(一) [教学设计] 本节内容教学可以分为两个课时: 第一课时主要探究匀速直线运动规律为重点,让学生参与活动,研究充水玻璃管中气泡的运动规律,进而自然提出匀速直线运动的定义。既使他们学到课程标准要求的知识和技能又体验到探究的乐趣。通过学生间的相互配合、分工协作和对实验现象的分析处理,培养团结互助的合作精神和实事求是的科学态度。教学过程中也应重视物理图像的教学,进一步训练他们运用、分析物理图线的技能。 变速直线运动的概念通过学生熟悉的两个实例引入,引导学生根据实际情况用不同的方法判断直线运动的性质。 [教学目标] 1.通过对“充水玻璃管中气泡的运动规律”的研究,了解最简单的运动——匀速直线运动。 2.在活动中尝试设计实验方案,并与同学合作,交流完成研究任务。 3.尝试用图像来描述物体的简单运动,体会到用图像来研究问题的方便。 [教学重点与难点] 1.认识匀速直线运动及其规律。 2.了解变速直线运动定义及判断方法。 3.知道平均速度的物理意义。 [教具、实验器材] 计算机及课件、实物投影。一米长的一端封闭的玻璃管,管内注入水,并留约2厘米长的一段空气柱,管口被封闭。秒表。 [教学过程] 一、新课引入 1.播放课件flash动画:龟兔赛跑。 2.有一则关于“龟兔赛跑”的寓言故事,说的是兔子思想麻痹,骄傲自大。比赛过程中跑一会儿睡一会儿,而乌龟不甘落后,连续奋斗,终于先到了终点。 提出问题:究竟谁的速度更快一些? 要知道它的答案我们就要研究本节匀速直线运动。 学生猜想:兔子快(乌龟快) 激发学习新知识的兴趣 二、直线运动与曲线运动 直线运动与曲线运动是按照物体运动的路线来区分的。 1.经过的路线是直线的运动就是直线运动。 2.经过的路线是曲线的运动就是曲线运动。 提问:在日常生活中,有哪些运动属于直线运动?哪些运动属于曲线运动? 今天我们主要研究的是直线运动。 活动一: 以小组为单位,通过生活实践在全班交流。 学生讨论后举例:

直线运动规律

直线运动规律提升 活动一、初速度为0的匀加速直线运动规律 匀加速直线运动规律的一般规律:??? ? ??? 若初速度为0,则规律变化为:??? ?? ?? 若物体作初速度为0,加速度为22/s m , 求1s 末, 2s 末, 3s 末, 4s 末的速度分别为 求1s 末, 2s 末, 3s 末, 4s 末的位移分别为 求第1s 内, 第2s 内, 第3s 内, 第4s 内的位移分别为 求1m 末, 2m 末, 3m 末, 4m 末的速度分别为 求前1m , 前2m , 前3m , 前4m 的所用时间分别为 求第1m , 第2m , 第3m , 第4m 的所用时间分别为 例题:如图所示,一小球从A 点由静止开始沿斜面向下做 匀变速直线运动,若到达B 点时速度为v ,到达C 点时速度为 2v ,则xAB ∶xBC 等于 ( ). A .1∶1 B .1∶2 C .1∶3 D .1∶4

活动二、追及问题总结 1、匀加速追匀速 能否追上?最远距离? 例题甲车在前作匀速运动,速度为,在它后面m处,乙车以初速度,加速度,作匀加速运动,求乙车何时追上甲车,追上前甲乙2车的最大距离为。 2、匀速追匀减速 能否追上?最远距离?追上时,前车是否已经停止? 例题甲车在后作匀速运动,速度为,在它前面m处,乙车以初速度,加速度,作匀减速运动,求甲车何时追上乙车,追上前甲乙2车的最大距离为。 3、匀速追匀加速 能否追上? 追不上条件 相遇一次条件 相遇2次条件 例题甲车在后作匀速运动,速度为,在它前面m处,乙车以初速度,加速度,作匀加速运动,求甲车何时追上乙车,若追不上则甲乙2车的最小距离为。 4、匀减速追匀速 能否追上? 追不上条件 相遇一次条件 相遇2次条件 例题甲车在前作匀速运动,速度为,在它后面m处,乙车以初速度,加速度,作匀减速运动,求乙车何时追上甲车,若追不上则甲乙2车的最小距离为。若相遇2次,第二次相遇时,乙车是否停下?

相关文档
最新文档