2020年安徽省江南十校综合素质检测理科数学(含解析)

合集下载

安徽省2020年江南十校4月综合素质测试理科数学试题及答案解析

安徽省2020年江南十校4月综合素质测试理科数学试题及答案解析
△PAB 为等腰直角三角形,PA=PB,平面 PAB⊥底面 ABCD,E 为 PD 的中点. (1)求证:AE∥平面 PBC; (2)若平面 EBC 与平面 PAD 的交线为 l,求二面角 P-l -B 的正弦值.
19.(本小题满分 12 分)
一种游戏的规则为抛掷一枚硬币,每次正面向上得 2 分,反面向上得 1 分.
x cos x
4.函数 f (x)
在[ , ] 上的图象大致为
2x 2x
22
5.若(l+ax)(l+x)5 的展开式中 x2,y3 的系数之和为-10,则实数 a 的值为 A.-3 B.-2 C.-l D.1
6.已知 a=log3 2 ,b=ln3,c=2-0.99,则 a,b,c 的大小关系为
赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的
成绩,若将 6 拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为
1
A.
5
1
B.
3
3
C.
5
2
D.
3
1
7
9.已知正项等比数列{an}的前 n 项和为 Sn,S2= ,S3 = ,则 a1a2…an 的最小值为
9
27
2
4 A.
D.2
11.已知 f (x) 1 2 cos2 (x )( 0) .给出下列判断: 3
①若 f(xl)=l,f(x2)= -1,且|x1-x2|min=π,则ω=2;
②存在ω∈(0,2),使得 f(x)的图象右移 个单位长度后得到的图象关于 y 轴对称;
6
41 47 ③若 f(x)在[0,2π]上恰有 7 个零点,则ω的取值范围为[ , ]

2020年安徽省江南十校高考数学二模试卷(理科)(有答案解析)

2020年安徽省江南十校高考数学二模试卷(理科)(有答案解析)
三、解答题(本大题共7小题,共 82.0分)
17.已知等比数列 {an},公比q>0,an+2=an+1+2an,5为 a1, a3的等差中项( 1)求数列{an}的通项;
(2)若,且a1bm+a2bm-1+a3bm-2+⋯ +amb1=12-2m,求 m的值
18. 已知多面体ABC-DEF,四边形BCDE为矩形,△ADE 与△BCF为边长为的等边三角形,AB=AC=CD=DF=EF=2.
二、填空题(本大题共4小题,共 20.0分)
13.学校现有高一学生1500名,在一年时间里, 学生利用课余时间参加各种社会公益活动, 据统计, 他们的累计时长X(小时)近似服从正态分布 N(50,σ2),且 P(70> X>30)=0.7,则累计时长超过30小时的人数大约有.
14.已知顶点为O,圆心角为,半径为 2的扇形AOB,P为圆弧 AB上任意一点, PQ⊥OB于 Q点,
2.答案:B
故选:B.利用复数代数形式的乘除运算化简,求得z的实部与虚部,作和得答案. 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.
3.答案:D解析: 解:∵=(0,1), ∴||=1,
又∵向量、 的夹角为 60°,?=,
∴||=1,
∵|t +|=,∴( t +)2=3,
∴t2+t-2=0,∴t=1或 t=-2.
( 1)证明:平面ADE ∥平面 BCF;
( 2)求BD与平面BCF所成角的正弦值.
19.某工厂生产加工某种产品,年初招收了工人100名,每个工人的工资由一个单位工作时间内的 基本工资和计件工资组成, 其中基本工资为80元招收的工人试用期为一个月, 试用期单位工作 时间内加工产品平均件数不少于3件的工人转正留用,其他工人解除聘用

【精准解析】安徽省“江南十校”2020届高三下学期4月综合素质检测数学(理)试题.

【精准解析】安徽省“江南十校”2020届高三下学期4月综合素质检测数学(理)试题.
1.已知复数 z (1 a) (a 2 1)i ( i 为虚数单位, a 1),则 z 在复平面内对应的点所在的象
限为( )
A. 第一象限
B. 第二象限
C. 第三象限
D. 第四象限
【答案】B
【解析】
【分析】 分别比较复数 z 的实部、虚部与 0 的大小关系,可判断出 z 在复平面内对应的点所在的象限.
s 1 2 3 4 1 1 1 1 ,i 5 , 5555 234
s 1 2 3 4 5 1 1 1 1 1 ,i 6 ,结束循环, 55555 2345
故输出 s=
1 (1 2 3 4 5) 5
1
1 2
1 3
1 4
1 5
3 137 60
43 60

故选:D.
A. 1 12
23
B.
60
【答案】D
【解析】
【分析】
根据框图,模拟程序运行,即可求出答案.
【详解】运行程序,
s 1 1,i 2 , 5
s 1 2 1 1 ,i 3 , 55 2
s 1 2 3 1 1 1 ,i 4 , 555 23
11
C.
20
43
D.
60
-4-
s 1 2 3 4 1 1 1 1 ,i 5 , 5555 234
6.已知 a log3 2 , b ln 3 , c 20.99 ,则 a, b, c 的大小关系为(
A. b c a
B. a b c
C. c a b
cba
【答案】A
) D.
-3-
【解析】
【分析】
根据指数函数与对数函数的单调性,借助特殊值即可比较大小.
【详解】因为 log3 所以 a 1 .

安徽省“江南十校”2020届高三数学下学期4月综合素质检测试题理含解析

安徽省“江南十校”2020届高三数学下学期4月综合素质检测试题理含解析

安徽省“江南十校”2020届高三数学下学期4月综合素质检测试题 理(含解析)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名和座位号填写在答题卡上.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的标号涂黑;非选择题请用直径0.5毫米黑色签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.............................一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2(1)(1)i z a a =-+-(i 为虚数单位,1a >),则z 在复平面内对应的点所在的象限为( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】 【分析】分别比较复数z 的实部、虚部与0的大小关系,可判断出z 在复平面内对应的点所在的象限. 【详解】因为1a >时,所以10a -<,210a ->,所以复数z 在复平面内对应的点位于第二象限. 故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题. 2.已知集合{}{}234,870A x x x B x x x =<+=-+<,则A B =( )A. (1,2)-B. (2,7)C. (2,)+∞D. (1,2)【答案】D 【解析】 【分析】分别求出集合,A B 对应的不等式的解集,然后取交集即可.【详解】由题意,{}{}342A x x x x x =<+=<,{}{}287017B x x x x x =-+<=<<,所以{}12AB x x =<<.故选:D.【点睛】本题考查不等式的解法,考查集合的交集,考查学生的计算求解能力,属于基础题. 3.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为( ) A. 58厘米 B. 63厘米C. 69厘米D. 76厘米【答案】B 【解析】 【分析】由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可. 【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长, 故导线长度约为230203ππ⨯=≈63(厘米). 故选:B .【点睛】本题主要考查了扇形弧长的计算,属于容易题. 4.函数cos ()22x xx x f x -=+在,22ππ⎡⎤-⎢⎥⎣⎦上的图象大致为( ) A. B. C.D.【解析】 【分析】根据函数的奇偶性及函数在02x π<<时的符号,即可求解.【详解】由cos ()()22x xx xf x f x --=-=-+可知函数()f x 为奇函数. 所以函数图象关于原点对称,排除选项A ,B ; 当02x π<<时,cos 0x >,cos ()220x xx xf x -∴=+>,排除选项D ,故选:C .【点睛】本题主要考查了函数的奇偶性的判定及奇偶函数图像的对称性,属于中档题. 5.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A. 3-B. 2-C. 1-D. 1【答案】B 【解析】 【分析】由555(1)(1)(1)(1)ax x x ax x ++=+++,进而分别求出展开式中2x 的系数及展开式中3x 的系数,令二者之和等于10-,可求出实数a 的值. 【详解】由555(1)(1)(1)(1)ax x x ax x ++=+++,则展开式中2x 的系数为1255105C aC a +=+,展开式中3x 的系数为32551010C aC a +=+,二者的系数之和为(105)(1010)152010a a a +++=+=-,得2a =-. 故选:B.【点睛】本题考查二项式定理的应用,考查学生的计算求解能力,属于基础题.6.已知3log a =ln3b =,0.992c -=,则,,a b c 的大小关系为( ) A. b c a >>B. a b c >>C. c a b >>D.c b a >>【答案】A【分析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小. 【详解】因为331log 2log 32<=, 所以12a <. 因为3>e ,所以ln3ln 1b e =>=,因为00.991>->-,2xy =为增函数,所以0.991221c -=<< 所以b c a >>, 故选:A .【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题. 7.执行下面的程序框图,则输出S 的值为 ( )A. 112-B.2360C.1120D.4360【答案】D 【解析】 【分析】根据框图,模拟程序运行,即可求出答案. 【详解】运行程序,11,25s i =-=,1211,3552s i =+--=,123111,455523s i =++---=,12341111,55555234s i =+++----=,12341111,55555234s i =+++----=,1234511111,6555552345s i =++++-----=,结束循环,故输出1111113743=(12345)135********s ⎛⎫++++-++++=-= ⎪⎝⎭, 故选:D .【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.8.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A .15B.13C.35D.23【答案】A 【解析】 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题. 9.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( )A. 24()27B. 34()27C. 44()27D. 54()27【答案】D 【解析】 【分析】由2317,927S S ==,可求出等比数列{}n a 的通项公式1227n n a -=,进而可知当15n ≤≤时,1n a <;当6n ≥时,1n a >,从而可知12n a a a 的最小值为12345a a a a a ,求解即可.【详解】设等比数列{}n a 的公比为q ,则0q >,由题意得,332427a S S =-=,得2111427190a q a a q q ⎧=⎪⎪⎪+=⎨⎪>⎪⎪⎩,解得11272a q ⎧=⎪⎨⎪=⎩,得1227n n a -=.当15n ≤≤时,1n a <;当6n ≥时,1n a >, 则12n a a a 的最小值为551234534()()27a a a a a a ==. 故选:D.【点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.10.已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( )D. 2【答案】A 【解析】 【分析】设点P 的坐标为(,)m n ,代入椭圆方程可得222222b m a n a b -=,然后分别求出点P 到两条渐近线的距离,由距离之积为214c ,并结合222222b m a n a b -=,可得到,,a b c 的齐次方程,进而可求出离心率的值.【详解】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C 的两条渐近线的距222222222b m a n a b a b c-==+, 所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =故选:A.【点睛】本题考查双曲线的离心率,构造,,a b c 的齐次方程是解决本题的关键,属于中档题. 11.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称; ③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦. 其中,判断正确的个数为( ) A. 1 B. 2C. 3D. 4【答案】B 【解析】 【分析】对函数()f x 化简可得π()sin(2)6f x x ω=+,进而结合三角函数的最值、周期性、单调性、零点、对称性及平移变换,对四个命题逐个分析,可选出答案. 【详解】因为2π2ππ()12cos ()cos(2)sin(2)336f x x x x ωωω=-+=-+=+,所以周期2ππ2T ωω==.对于①,因为12min1π2x x T -==,所以ππ2T ω==,即12ω=,故①错误;对于②,函数()f x 的图象向右平移6π个单位长度后得到的函数为ππsin(2)36y x ωω=-+,其图象关于y 轴对称,则ππππ()362k k ω-+=+∈Z ,解得13()k k ω=--∈Z ,故对任意整数k ,(0,2)ω∉,所以②错误;对于③,令π()sin(2)06f x x ω=+=,可得π2π6x k ω+=()k ∈Z ,则ππ212k x ωω=-, 因π(0)sin 06f =>,所以()f x 在[]0,2π上第1个零点1>0x ,且1ππ212x ωω=-,所以第7个零点7ππππ3π41π321221212x T ωωωωωω=-+=-+=,若存在第8个零点8x ,则8ππ7ππ7π47π2122212212x T ωωωωωω=-+=-+=,所以782πx x ≤<,即2π41π47π1212ωω≤<,解得41472424ω≤<,故③正确; 对于④,因为π(0)sin 6f =,且ππ0,64⎡⎤∈-⎢⎥⎣⎦,所以πππ2662πππ2462ωω⎧⎛⎫-+≥- ⎪⎪⎪⎝⎭⎨⎪⨯+≤⎪⎩,解得23ω≤,又0>ω,所以203ω<≤,故④正确.故选:B.【点睛】本题考查三角函数的恒等变换,考查三角函数的平移变换、最值、周期性、单调性、零点、对称性,考查学生的计算求解能力与推理能力,属于中档题.12.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A. 12B. 2C.23D.163【答案】C【解析】 【分析】过P 作PE BD ⊥于E,连接CE ,易知CE BD ⊥,PE CE =,从而可证BD ⊥平面PCE ,进而可知1833P BCD B PCE D PCE PCEPCEV V V S BD S ---=+=⋅=,当PCES最大时,P BCD V -取得最大值,取PC 的中点F ,可得EF PC ⊥,再由2112PCES PC EF PE =⋅=-,求出PE 的最大值即可.【详解】在BPD △和BCD 中,PB BC PD CD BD BD =⎧⎪=⎨⎪=⎩,所以BPD BCD ≌,则PBD CBD ∠=∠,过P 作PE BD ⊥于E ,连接CE ,显然BPE BCE ≌,则CE BD ⊥,且PE CE =, 又因为PECE E =,所以BD ⊥平面PCE ,所以1833P BCD B PCE D PCE PCEPCEV V V S BD S ---=+=⋅=,当PCES最大时,P BCD V -取得最大值,取PC 的中点F ,则EF PC ⊥,所以2112PCES PC EF PE =⋅=-, 因为10,8PB PD BD +==,所以点P 在以,B D 为焦点的椭圆上(不在左右顶点),其中长轴长为10,焦距长为8,所以PE 的最大值为椭圆的短轴长的一半,故PE 最大值为22543-=, 所以PCE S ∆最大值为22,故P BCD V -的最大值为8223⨯162=. 故选:C.【点睛】本题考查三棱锥体积的最大值,考查学生的空间想象能力与计算求解能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()ln f x x x =+,则曲线()y f x =在点(1,(1))f 处的切线方程为___________.【答案】320x y --= 【解析】 【分析】根据导数的几何意义求出切线的斜率,利用点斜式求切线方程. 【详解】因为1()2f x x x'=+, 所以(1)3k f '==, 又(1)1,f =故切线方程为13(1)y x -=-, 整理为320x y --=, 故答案为:320x y --=【点睛】本题主要考查了导数的几何意义,切线方程,属于容易题.14.若200,50x x ∃∈-<R 为假,则实数a 的取值范围为__________. 【答案】(],4-∞ 【解析】 【分析】由200,50x x ∃∈-<R 为假,可知2,50x x ∀∈-≥R 为真,所以2a ≤对任意实数x 2的最小值,令2min a ≤即可.【详解】因为200,50x x ∃∈-<R 为假,则其否定为真,即2,50x x ∀∈-≥R 为真,所以2a ≤x 恒成立,所以2min a ≤.24=≥,=即x =时,等号成立,所以4a ≤. 故答案为:(],4-∞.【点睛】本题考查全称命题与特称命题间的关系的应用,利用参变分离是解决本题的关键,属于中档题.15.在直角坐标系xOy 中,已知点(0,1)A 和点(3,4)B -,若点C 在AOB ∠的平分线上,且||310OC =OC 的坐标为___________.【答案】(3,9)- 【解析】 【分析】点C 在AOB ∠的平分线可知OC 与向量||||OA OBOA OB +共线,利用线性运算求解即可. 【详解】因为点C 在AOB ∠的平线上,所以存在(0,)λ∈+∞使3439(0,1),,5555||||OA OB OC OA OB λλλλλ⎛⎫⎛⎫⎛⎫=+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,而||(OC =-= 可解得5λ=, 所以(3,9)OC =-, 故答案为:(3,9)-【点睛】本题主要考查了向量的线性运算,利用向量的坐标求向量的模,属于中档题. 16.已知抛物线2:4C y x =,点P 为抛物线C 上一动点,过点P 作圆22:(3)4M x y -+=的切线,切点分别为,A B ,则线段AB 长度的取值范围为__________.【答案】)4⎡⎣ 【解析】 【分析】连接,,PM MA MB ,易得,,MA PA MB PB PM AB ⊥⊥⊥,可得四边形PAMB 的面积为12PM AB PA MA ⋅=⋅,从而可得22441PA MA AB PM PM ⋅==-,进而求出PM 的取值范围,可求得AB 的范围.【详解】如图,连接,,PM MA MB ,易得,,MA PA MB PB PM AB ⊥⊥⊥,所以四边形PAMB 的面积为12PM AB ⋅,且四边形PAMB 的面积为三角形PAM 面积的两倍,所以12PM AB PA MA ⋅=⋅,所以22442441PM PA MA AB PM PM PM-⋅===-,当PM 最小时,AB 最小,设点(,)P x y ,则2222(3)69429PM x y x x x x x =-+=-++=-+,所以当1x =时,min22PM=,则min 441228AB =-=, 当点(,)P x y 的横坐标x →+∞时,PM →+∞,此时4AB →, 因为AB 随着PM 的增大而增大,所以AB 的取值范围为)22,4⎡⎣. 故答案为:)22,4⎡⎣.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在ABC 中,角,,A B C 的对边分别为,,a b c,且πsin sin()3c B b C =-+. (1)求角C 的大小; (2)若3c a b =+=,求AB 边上的高.【答案】(1)2π3;(2【解析】 【分析】(1)利用正弦定理将边化成角,可得πsin sin()3C C =-,展开并整理可得πsin()16C -=,从而可求出角C ;(2)由余弦定理得2222cos c a b ab C =+-,进而可得2()7a b ab +-=,由3a b +=,可求出ab 的值,设AB 边上的高为h ,可得ABC 的面积为11sin 22ab C ch =,从而可求出h . 【详解】(1)由题意,由正弦定理得πsin sin sinsin()3C B B C B =-. 因为(0,π)B ∈,所以sin 0B >,所以πsin sin()3C C =-,展开得1sinsin 2C C C =-πsin()16C -=.因为0πC <<,所以ππ5π666C -<-<,故ππ62C -=,即2π3C =.(2)由余弦定理得2222cos c a b ab C =+-,则227a b ab ++=,得2()7a b ab +-=,故2()7972ab a b =+-=-=,故ABC 的面积为12πsin sin 232ab C ==. 设AB 边上的高为h h =,故h =, 所以AB 边上的高为7. 【点睛】本题考查正弦、余弦定理在解三角形中的应用,考查三角形的面积公式的应用,考查学生的计算求解能力,属于中档题.18.如图,在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//,24,2AB CD CD AB AD ===,PAB △为等腰直角三角形,PA PB =,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证://AE 平面PBC ;(2)若平面EBC 与平面PAD 的交线为l ,求二面角P l B --的正弦值. 【答案】(1)证明见解析;(2)149【解析】 【分析】(1)取PC 的中点F ,连接,EF BF ,易得//,2EF CD CD EF =,进而可证明四边形ABFE 为平行四边形,即//AE BF ,从而可证明//AE 平面PBC ;(2)取AB 中点O ,CD 中点Q ,连接OQ ,易证PO ⊥平面ABCD ,OQ ⊥平面PAB ,从而可知,,AB OQ OP 两两垂直,以点O 为坐标原点,向量,,OQ OB OP 的方向分别为,,x y z 轴正方向建立如图所示空间直角坐标系,进而求出平面PAD 的法向量(,,)m x y z =,及平面EBC 的法向量为(,,)n a b c =,由cos ,m n m n m n=⋅⋅,可求得平面EBC 与平面PAD 所成的二面角的正弦值.【详解】(1)证明:如图1,取PC 的中点F ,连接,EF BF .,PE DE PF CF ==,//,2EF CD CD EF ∴=, //,2AB CD CD AB =,//AB EF ∴,且EF AB =, ∴四边形ABFE 为平行四边形,//AE BF ∴.又BF ⊂平面PBC ,AE ⊄平面PBC ,//AE ∴平面PBC .(2)如图2,取AB 中点O ,CD 中点Q ,连接OQ .,,OA OB CQ DQ PA PB ===,,PO AB OQ AB ∴⊥⊥,平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ∴⊥平面ABCD ,OQ ⊥平面PAB ,,,AB OQ OP ∴两两垂直.以点O 为坐标原点,向量,,OQ OB OP 的方向分别为,,x y z 轴正方向建立如图所示空间直角坐标系.由,2PA PB AB ⊥=,可得1,2OA OB OP DQ CQ =====, 在等腰梯形ABCD 中,2,4,2AB CD AD ===1OQ =,11(0,0,0),(0,1,0),(0,1,0),(1,2,0),(0,0,1),(1,2,0),(,1,)22O A B C P D E ∴---.则(0,1,1),(1,1,0)AP AD ==-,11(1,1,0),(,2,)22BC EB ==--,设平面PAD 的法向量为(,,)m x y z =,则0m AP y z m AD x y ⎧⋅=+=⎪⎨⋅=-=⎪⎩,取1y =,得(1,1,1)m =-. 设平面EBC 的法向量为(,,)n a b c =,则0112022n BC a b n EB a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩,取1b =-,得(1,1,5)n =--.因为1155m n ⋅=-+=,3m =,33n =,所以cos ,59333m n m n m n==⋅⋅=⨯,所以平面EBC 与平面PAD 所成的二面角的正弦值为255621419819⎛⎫-== ⎪⎝⎭.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.19.一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分. (1)设抛掷4次的得分为X ,求变量X 的分布列和数学期望.(2)当游戏得分为*(N )n n ∈时,游戏停止,记得n 分的概率和为11,2n Q Q =. ①求2Q ;②当*N n ∈时,记111,2n n n n n n A Q Q B Q Q ++=+=-,证明:数列{}n A 为常数列,数列{}n B 为等比数列.【答案】(1)分布列见解析,数学期望为6;(2)①34;②证明见解析 【解析】 【分析】(1)变量X 的所有可能取值为4,5,6,7,8,分别求出对应的概率,进而可求出变量X 的分布列和数学期望;(2)①得2分只需要抛掷一次正面向上或两次反面向上,分别求出两种情况的概率,进而可求得2Q ;②得n 分分两种情况,第一种为得2n -分后抛掷一次正面向上,第二种为得1n -分后抛掷一次反面向上,可知当3n ≥且*N n ∈时,121122n n n Q Q Q --=+,结合112n n n A Q Q +=+,可推出12111122n n n n n n A Q Q Q Q A ++++=+=+=,从而可证明数列{}n A 为常数列;结合1n n n B Q Q +=-,可推出121111()22n n n n n n B Q Q Q Q B ++++=-=--=-,进而可证明数列{}n B 为等比数列.【详解】(1)变量X 的所有可能取值为4,5,6,7,8.每次抛掷一次硬币,正面向上的概率为12,反面向上的概率也为12, 则4142444111113(4)(),(5)(),(6)()2162428P X P X C P X C =====⨯===⨯=, 3444441111(7)(),(8)()24216P X C P X C ==⨯===⨯=.所以变量X 的分布列为:故变量X 的数学期望为11311()4567861648416E X =⨯+⨯+⨯+⨯+⨯=. (2)①得2分只需要抛掷一次正面向上或两次反面向上,概率的和为22113()224Q =+=. ②得n 分分两种情况,第一种为得2n -分后抛掷一次正面向上,第二种为得1n -分后抛掷一次反面向上,故3n ≥且*N n ∈时,有121122n n n Q Q Q --=+, 则*N n ∈时,211122n n n Q Q Q ++=+,所以1211111111122222n n n n n n n n n A Q Q Q Q Q Q Q A ++++++++==+=+=,故数列{}n A 为常数列; 又1211111111111()222222n n n n n n n n n n n B Q Q Q Q Q Q Q Q Q B +++++++=-=+-=-+=--=-, 121311424B Q Q =-=-=,所以数列{}n B 为等比数列.【点睛】本题考查离散型随机变量的分布列及数学期望,考查常数列及等比数列的证明,考查学生的计算求解能力与推理论证能力,属于中档题.20.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,且过点73(,)24,点P 在第一象限,A 为左顶点,B 为下顶点,PA 交y 轴于点C ,PB 交x 轴于点D .(1)求椭圆E 的标准方程; (2)若//CD AB ,求点P 的坐标.【答案】(1)2214x y +=;(2)22,⎭【解析】 【分析】(1)由题意得2222232791416c a a b c a b⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩,求出22,a b ,进而可得到椭圆E 的方程;(2)由(1)知点A ,B 坐标,设直线AP 的方程为(2)y k x =+,易知102k <<,可得点C 的坐标为(0,2)k ,联立方程22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,得到关于y 的一元二次方程,结合根与系数关系,可用k 表示P 的坐标,进而由,,P B D 三点共线,即BD PB k k =,可用k 表示D 的坐标,再结合CD AB k k =,可建立方程,从而求出k 的值,即可求得点P 的坐标.【详解】(1)由题意得22222791416c a a b c a b ⎧=⎪⎪⎪=+⎨⎪⎪+=⎪⎩,解得2241a b ⎧=⎨=⎩,所以椭圆E 的方程为2214x y +=.(2)由(1)知点(2,0)A -,(0,1)B -, 由题意可设直线AP 的斜率为k ,则102k <<,所以直线AP 的方程为(2)y k x =+,则点C 的坐标为(0,2)k ,联立方程22(2)14y k x x y =+⎧⎪⎨+=⎪⎩,消去y 得:2222(14)161640k x k x k +++-=. 设11(,)P x y ,则212164214k x k --⋅=+,所以2128214k x k -=-+, 所以2122824(2)1414k k y k k k -=-+=++,所以222824(,)1414k kP k k--++. 设D 点的坐标为0(,0)x ,因为点,,P B D 三点共线,所以BD PB k k =,即2202411148214kk k x k ++=--+,所以02412k x k -=+,所以24(,0)12k D k -+. 因为//CD AB ,所以CD AB k k =,即2124212k k k=---+,所以24410k k +-=,解得12k -=, 又102k <<,所以k =计算可得228214k k --=+2414k k =+,故点P的坐标为. 【点睛】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查平行线的性质,考查学生的计算求解能力,属于难题. 21.已知函数2()ln ()f x x x ax a =-+∈R .(1)若()0f x ≤恒成立,求a 的取值范围;(2)设函数()f x 的极值点为0x ,当a 变化时,点00(,())x f x 构成曲线M ,证明:过原点的任意直线y kx =与曲线M 有且仅有一个公共点. 【答案】(1)1a ≤;(2)证明见解析 【解析】 【分析】(1)由()0f x ≤恒成立,可得ln x a x x≤-恒成立,进而构造函数ln ()xg x x x =-,求导可判断出()g x 的单调性,进而可求出()g x 的最小值min ()g x ,令min ()a g x ≤即可;(2)由221()x ax f x x -++'=,可知存在唯一的0(0,)x ∈+∞,使得0()0f x '=,则200210x ax -++=,0012a x x =-,进而可得2000()ln 1f x x x =+-,即曲线M 的方程为2ln 1y x x =+-,进而只需证明对任意k ∈R ,方程2ln 1x x kx +-=有唯一解,然后构造函数2()ln 1F x x x kx =+--,分0k ≤、0k <≤k >分别证明函数()F x 在(0,)+∞上有唯一的零点,即可证明结论成立.【详解】(1)由题意,可知0x >,由()0f x ≤恒成立,可得ln xa x x≤-恒成立. 令ln ()x g x x x =-,则221ln ()x xg x x-+'=. 令2()1ln h x x x =-+,则1()2h x x x'=+, 0x,()0h x '∴>,2()1ln h x x x ∴=-+在(0,)+∞上单调递增,又(1)0h =,(0,1)x ∴∈时,()0h x <;(1,)x ∈+∞时,()0h x >,即(0,1)x ∈时,()0g x '<;(1,)x ∈+∞时,()0g x '>,(0,1)x ∴∈时,()g x 单调递减;(1,)x ∈+∞时,()g x 单调递增,1x ∴=时,()g x 取最小值(1)1g =,1a ∴≤.(2)证明:由2121()2x ax f x x a x x-++'=-+=,令22(1)x a T x x -=++,由1(0)0T =>,结合二次函数性质可知,存在唯一的0(0,)x ∈+∞,使得0()0f x '=,故()f x 存在唯一的极值点0x ,则200210x ax -++=,0012a x x =-, 22000000()ln ln 1f x x x ax x x ∴=-+=+-, ∴曲线M 的方程为2ln 1y x x =+-.故只需证明对任意k ∈R ,方程2ln 1x x kx +-=有唯一解.令2()ln 1F x x x kx =+--,则2121()2x kx F x x k x x-+'=+-=,①当0k ≤时,()0F x '>恒成立,()F x ∴在(0,)+∞上单调递增.21,e e 1k k ≤≤,22(e )e e 1(1e )e 10k k k k k F k k k ∴=+--=-+-≤,(1)0F k =-≥,∴存在t 满足e 1k t ≤≤时,使得()0F t =.又()F x 单调递增,所以x t =为唯一解.②当0k <≤221x x y k -+=,满足280k ∆=-≤, 则()0F x '≥恒成立,()F x ∴在(0,)+∞上单调递增.(1)0F k =-<,333263(e )3e e 1(e e )0k F k =+--=+>-,∴存在3(1,e )t ∈使得()0F t =,又()F x 在(0,)+∞上单调递增,x t ∴=为唯一解.③当k >221x x y k -+=,满足280k ∆=->, 此时()0F x '=有两个不同的解12,x x ,不妨设12x x <,1212x x =⋅,1202x x ∴<<<, 列表如下:由表可知,当1x x =时,()F x 的极大值为21111()ln 1F x x x kx =+--.211210x kx -+=,2111()ln 2F x x x ∴=--,102x <<<,211ln 2x x ∴<+, 2111()ln 20F x x x ∴=--<,21()()0F x F x ∴<<.22222222(e )e e 1(e )e 1k k k k k F k k k k =+--=-+-.下面来证明2e 0k k ->,构造函数2()ln (m x x x x =->,则2121()2x m x x x x-'=-=,∴当)x ∈+∞时,()0m x '>,此时()m x 单调递增,∴3()8ln 202m x m >=->,∴)x ∈+∞时,2ln x x >,∴2ln e e x x x >=,故2e 0k k ->成立.∴2222(e )(e )e 10k k k F k k =-+->, ∴存在22(,e )k t x ∈,使得()0F t =.又()F x 在2(,)x +∞单调递增,x t ∴=为唯一解.所以,对任意k ∈R ,方程2ln 1x x kx +-=有唯一解,即过原点任意的直线y kx =与曲线M 有且仅有一个公共点.【点睛】本题考查利用导数研究函数单调性的应用,考查不等式恒成立问题,考查利用单调性研究图象交点问题,考查学生的计算求解能力与推理论证能力,属于难题.22.在直角坐标系xOy 中,直线1l 的参数方程为1(1)x my k m =-⎧⎨=-⎩为参数),直线2l 的参数方程2x n n y k =⎧⎪⎨=+⎪⎩(为参数),若直线12,l l 的交点为P ,当k 变化时,点P 的轨迹是曲线C (1)求曲线C 的普通方程;(2)以坐标原点为极点,x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线3l 的极坐标方程为(0)θαρ=,4tan 032παα⎛⎫=<< ⎪⎝⎭,点Q 为射线3l 与曲线C 的交点,求点Q 的极径.【答案】(1)22(1)1(0)x y x +-=≠;(2)85【解析】 【分析】(1)将两直线化为普通方程,消去参数k ,即可求出曲线C 的普通方程; (2)设Q 点的直角坐标系坐标为(cos ,sin )(0)a ρραρ>,求出43sin ,cos 55a a ==, 代入曲线C 可求解.【详解】(1)直线1l 的普通方程为()y k x =-,直线2l 的普通方程为2xy k-= 联立直线1l ,2l 方程消去参数k ,得曲线C 的普通方程为2(2)y y x -=- 整理得22(1)1(0)x y x +-=≠.(2)设Q 点的直角坐标系坐标为(cos ,sin )(0)a ρραρ>, 由4tan 032a a π⎛⎫=<< ⎪⎝⎭可得43sin ,cos 55a a == 代入曲线C 的方程可得2805ρρ-=, 解得8,05ρρ==(舍), 所以点Q 的极径为85. 【点睛】本题主要考查了直线的参数方程化为普通方程,普通方程化为极坐标方程,极径的求法,属于中档题.23.已知函数()|1||2|f x x x =-++. (1)求不等式()3f x x <+的解集;(2)若不等式22()m x x f x --在R 上恒成立,求实数m 的取值范围.【答案】(1){|02}x x <<;(2)(,2]-∞ 【解析】 【分析】(1)分类讨论去绝对值号,即可求解;(2)原不等式可转化为22()m x x f x ++在R 上恒成立,分别求函数2()2g x x x =+与()f x 的最小值,根据能同时成立,可得22()x x f x ++的最小值,即可求解.【详解】(1)①当2x <-时,不等式()3f x x <+可化为123x x x ---<+,得43x >-,无解;②当-2≤x ≤1时,不等式()3f x x <+可化为123x x x -++<+得x >0,故0<x ≤1; ③当x >1时,不等式()3f x x <+可化为123x x x -++<+,得x <2,故1<x < 2. 综上,不等式()3f x x <+的解集为{|02}x x << (2)由题意知22()m x x f x ++在R 上恒成立, 所以()2min 2()xmxx f x ++令2()2g x x x =+,则当1x =-时,min ()1g x =-又当21x -时,()f x 取得最小值,且min ()3f x = 又1[2,1]-∈-所以当1x =-时,()f x 与()g x 同时取得最小值. 所以()2min2()132x x f x ++=-+=所以2m ≤,即实数m 的取值范围为(,2]-∞【点睛】本题主要考查了含绝对值不等式的解法,分类讨论,函数的最值,属于中档题.。

2020年安徽省江南十校联考理科数学试题及答案

2020年安徽省江南十校联考理科数学试题及答案

2020年安徽省江南十校联考理科数学试题及答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March绝密★启用前2020年安徽省“江南十校”综合素质检测理科数学考生注意:1.本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2.答卷前,考生务必用毫米黑色签字笔将自己的姓名和座位号填写在答题卡上。

3.考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无..........................效.。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z=(1-a)+(a2-1)i(i为虚数单位,a>1),则z在复平面内的对应点所在的象限为A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|3x<x+4},B={x|x2-8x+7<0},则A∩B=A.(-1,2)B.(2,7)C.(2,+∞)D.(1,2)3.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为厘米厘米厘米厘米4.函数f(x)=cos22x xx x-+在[-2π,2π]上的图象大致为5.若(1+ax)(1+x)5的展开式中x2,x3的系数之和为-10,则实数a的值为A.-3B.-2C.-16.已知a=log2,b=ln3,c=2-,则a,b,c的大小关系为>c>a >b>c >a>b >b>a7.执行下面的程序框图,则输出S的值为A.112-B.2360C.1120D.43608.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题。

2020届安徽省江南十校高三第二次联考数学(理)试题(解析版)

2020届安徽省江南十校高三第二次联考数学(理)试题(解析版)

2020届安徽省江南十校高三第二次联考数学(理)试题一、单选题1.已知全集{}xU y y e =|=,集合(){}ln 10A x x =|-<,则UA =ð( )A .(][)–,02,∞⋃+∞B .[)2,+∞C .(][)–,12,∞⋃+∞D .(][)0,12,+∞U【答案】D【解析】分别求两个集合,再求U C A . 【详解】解得{}|0U y y =>,01112x x <-<⇒<<∴{}|12A x x =<<, ∴(][)0,12,U A =⋃+∞ð.故选:D 【点睛】本题考查指对函数表示集合,集合的补集,意在考查基本计算,属于基础题型. 2.函数136,0()2,0xx x f x x +<⎧=⎨≥⎩,若角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边经过(5,12)P -,则()cos f f α=⎡⎤⎣⎦( ) A .1 B .2C .3D .4【答案】B【解析】首先根据三角函数的定义,先求cos α,再代入分段函数求值. 【详解】根据三角函数的定义可知13OP =, 所以5cos 13α=-, 故()55cos 13611313f f α⎛⎫⎛⎫=-=⨯-+= ⎪ ⎪⎝⎭⎝⎭, 则()()cos 12f f f α⎡⎤⎣==⎦.故选:B 【点睛】本题考查三角函数的定义,分段函数求值,属于基础题型.3.已知点(),P x y 满足不等式3205050x y x y x -≥⎧⎪+-≥⎨⎪-≤⎩,点(),Q x y 是函数2()1f x x =-的图像上任意一点,则两点P ,Q 之间距离的最小值为( ) A .5212- B .131-C .4D .522【答案】A【解析】首先画出不等式表示的可行域和函数()f x 的图象,根据数形结合表示两点间距离的最小值. 【详解】如图所示,点P 在平面区域阴影内任一点P ,()222110y x y x y =-⇒=-≥ ,即()2210x y y +=≥点Q 在半圆221(01)x y y +=≤≤上,如图,过点O 作直线50x y +-=的垂线,垂足为P ,交半圆于Q ,此时PQ 取最小值,求得min 5=1252||12PQ =--.故选:A 【点睛】本题考查不等式表示的平面区域,函数图象的做法,意在考查数形结合解决问题的能力,属于中档题型. 4.已知1b >,04πα<<,log sin (cos )b x αα=,log cos (cos )b y αα=,log sin (sin )b z αα=则x ,y ,z 的大小关系为( ) A .x y z >> B .z x y >>C .z y x >>D .y z x >>【答案】B【解析】首先比较sin α与cos α的大小,再根据指对函数的单调性比较,x y 的大小,根据幂函数的单调性比较,x z 的大小. 【详解】解:()log b f t t =为增函数,0sin cos 1αα<<<为减函数得log sin log cos 0b b αα<<, ()(cos )t g t α=为减函数,则x y >.当0a <时,()ah t t =在第一象限单调递减,log sin b a α=且cos sin αα>,则x z <.故z x y >>. 故选:B 【点睛】本题考查根据指对幂函数的单调性比较大小,以及三角函数的大小,重点考查函数单调性的应用,属于中档题型.5.如果关于实数θ的方程22sin 10x x θ--=有解,那么实数x 的取值范围是( ) A .{|11}x x x ≤-≥或 B .0{}1|x x x >=-或 C .0{|}1x x x <=或 D .{}1,1-【答案】D【解析】首先参变分离为1sin 22x xθ=+,利用基本不等式求sin θ的范围,再结合sin θ的值域,求sin θ的值,再解实数x 的值. 【详解】解:由题得0x =不是方程的解,∴1sin 22x xθ=+,由1122x x +≥或1122x x+≤-且1sin 1θ-≤≤得: sin 1θ=±,故1x =±.故选:D 【点睛】本题考查根据函数零点求参数的取值范围,意在考查转化与化归的思想,属于中档题型.6.要得到函数y x =的图像,只需将函数sin 2cos2y x x =+的图像( ) A .向左平移8π个单位 B .向右平移8π个单位 C .向左平移38π个单位 D .向右平移38π个单位 【答案】D【解析】首先将两个函数化简为同名三角函数,再判断图象平移过程. 【详解】解:sin 2cos2)2()48y x x x x ππ=+=+=+2)2()24y x x x ππ==-=-,故向右移38π个单位. 故选:D 【点睛】本题考查三角恒等变换,和函数平移变换,本题的关键是两个函数一定要化为同名三角函数,熟练应用诱导公式和辅助角公式.7.在公差不为0的等差数列{}n a 中取三项248,,a a a ,这三个数恰好成等比数列,则此等比数列的公比为( ) A .13B .12C .2D .3【答案】C【解析】根据题意2428a a a =⋅,解得22a d =,再代入求公比.【详解】解:422a a d =+,826a a d =+,因为2428a a a =⋅,且0d ≠,求得22a d =,所以公比422 a q a ==; 或解:84844242422a a a a d q a a a a d-=====-. 故选:C 【点睛】本题考查等比数列和等差数列的基本量的计算,重点考查计算,属于基础题型. 8.设m 、n 是两条不同直线,α、β是两个不同的平面.命题://p m n ,且ρ是命题q 的必要条件,则q 可以是( ) A .//,//,//m n αβαβ B .,,//m n αβαβ⊂⊂ C .,,//m n αβαβ⊥⊥ D .,//,//m n αβαβ⊂【答案】C【解析】由题意可知,若p 是命题q 的必要条件,则q p ⇒,逐一分析选项,判断直线,m n 的位置关系. 【详解】由题意可知,若p 是命题q 的必要条件,则q p ⇒,A.若满足//,//,//m n αβαβ,则,m n 平行,相交,异面都有可能,所以不正确;B.若满足,,//m n αβαβ⊂⊂,则,m n 平行或异面,所以不正确;C.若满足,,//m n αβαβ⊥⊥,只能推出两直线平行,故正确;D.若满足,//,//m n αβαβ⊂,则,m n 平行,相交,异面都有可能,故不正确. 故选:C 【点睛】本题考查线线,线面,面面的位置关系,以及必要条件的判断,意在考查空间想象能力,定理的灵活应用,属于基础题型.9.设函数()(0)x x f x e e x a x -=++->,若存在(]0,1b ∈使得()f f b b =⎡⎤⎣⎦成立,则实数a 的取值范围是( ) A .12,e e⎛⎤+ ⎥⎝⎦B .12,e e ⎛⎫+⎪⎝⎭C .1,e e e⎡⎤+⎢⎥⎣⎦D .[)2,+∞【答案】A【解析】首先利用导数可知函数()f x 单调递增,由题意可知()f b b =有解,参变分离后可得b b a e e -=+,(]0,1b ∈,再换元设b e t =,(]1,t e ∈,利用基本不等式求a 的取值范围. 【详解】 解:()10(0)xxf x e ex -'+>>-=,故()f x 在()0,∞+上单调递增.(]0,1b ∈时,()f f b b =⎡⎤⎣⎦成立,即()f b b =有解,则b b e e b a b -++-=. 故b b a e e -=+,(0,1]b ∈. 令b e t =,则(]1,t e ∈,112,b b e e t e t e -⎛⎤ ⎥⎝+=+∈⎦+,即12,a e e ⎛⎤∈+ ⎥⎝⎦.故选:A 【点睛】本题考查利用导数求函数的单调性,最值,和参数的取值范围,意在考查函数与方程的思想,本题的关键是根据函数的单调性,确定()f b b =.10.长度为1的线段MN 的正视图,侧视图和俯视图的投影长分别为a 、b 、c ,则a b c ++的最大值为( )A .2B .CD .3【答案】C【解析】由已知条件构造长方体,使MN 与1BD 重合,设长方体长、宽、高分别为x ,y ,z ,则2221x y z ++=,然后利用基本不等求()2a b c ++的最大值.【详解】解:构造长方体1111ABCD A B C D -,使MN 与1BD 重合. 设长方体长、宽、高分别为x ,y ,z ,则2221x y z ++=.由题知22x z a+=,22y z b +=,22x y c +=,2222a b c ++=,()2222222a b c a b c ab bc ac ++=+++++,2223()6a b c ≤++=,故6a b c ++≤.故选:C 【点睛】本题考查三视图,几何体的结构特征,考查空间想象能力,基本不等式的应用,本题的关键是构造几何体,将使MN 与几何体的体对角线重合.11.如图所示,点P 为椭圆22143x y +=上任一点,1F ,2F 为其左右两焦点,12PF F △的内心为I ,则1212IF F PF F S S =V V ( )A .13B .12C .23D .34【答案】A【解析】首先连PI 延长x 轴于D ,连1IF ,2IF ,利用角平分线定理得到1212||||||DF DF ID IP PF PF ==,再利用和比定理和椭圆的性质,得到21|||22ID c e IP a ===,从而得到面积比值. 【详解】解:连PI 延长x 轴于D ,连1IF ,2IF . 在1PF D V 中有11ID DF IP PF =,在2PF DV 中有22ID DF IP PF =, 故1212121221||||||22DF DF ID DF DF c e IP PF PF PF PF a +======+, 故1212||1||3IF F PF F S ID S PD ==V V .故选:A 【点睛】本题考查椭圆的性质和角平分线定理解决三角形面积比值,意在考查转化与化归的思想,数形结合分析问题,属于中档题型,本题的难点是角平分线定理的应用.12.偶函数()y f x =满足()()22f x f x +=-,当[]2,0x =-时有()2xf x -=.若存在实数12,,,n x x x ⋯,满足120n x x x ≤<<L ,且()()()()()()12231...299n n f x f x f x f x f x f x --+-++-=,则n x 的最小值为( ) A .198 B .199C .2198log 3+D .2199log 3-【答案】B【解析】首先由条件分析函数的周期为4,并且()()1413i i f x f x +-≤-=,所以要n x 取得最小值,需尽可能多的()()13i i f x f x +-=,根据函数的周期和解析式得到n x 的最小值. 【详解】解:()()22f x f x +=-,推得()()()4f x f x f x +=-=, 故()f x 最小正周期为4.()()1413i i f x f x +-≤-=,n x 取得最小值,则需尽可能多的i x 取到最高(低)点, 由29929933=以及22x =得:(min)9921199n x =⨯+=.故选:B 【点睛】本题考查函数的周期,最值,图象,解析式的综合应用,意在考查转化与化归的思想,函数性质的灵活应用,属于中高档题型.二、填空题13.已知()()sin 2cos παπα+=-,则2sin (2cos1)2αα-=____________.【答案】25【解析】由诱导公式变形求tan 2α=,再根据三角恒等变形化简求值. 【详解】解:()()sin 2cos παπα+=-可得tan 2α=2sin (2cos 1)sin cos αααα-=222sin cos tan 2sin cos tan 15αααααα===++故答案为:25【点睛】本题考查三角恒等变形,意在考查转化与化归的思想,属于基础题型. 14.已知三棱锥A BCD -所有顶点都在半径为2的球面上,AD ⊥面ABC ,90BAC ∠=︒,2AD =,则三棱锥A BCD -的体积最大值为____________.【答案】2【解析】由条件可知三棱锥可补成长方体,并且求得23AE BC ==,底面22212AB AC BC +==,根据基本不等式可求得AB AC ⋅的最大值和体积的最值.【详解】因为,,AB AC AD 两两垂直,所以三棱锥可补成长方体,底面三角形ABC 可补成长方形ACEB ,连结AE ,DE ,则DE 是长方体的体对角线,也是球的直径,AE 是小圆的直径,如图,4DE =,22232AE DE DA r BC =-===222122AB AC BC AB AC +==≥⋅.则6AB AC ⋅≤,1112326V AB AC AD AB AC =⋅⋅⋅⋅=⨯⋅123AB AC =⨯⋅≤.故答案为:2 【点睛】本题考查三棱锥和球的组合体的综合问题,意在考查空间想象能力,基本不等式解决最值问题,属于中档题型,本题的关键是确定三棱锥可补成长方体,利用长方体的性质和基本不等式求底面的最大值.15.函数()f x 是定义在R 上的奇函数,若对任意()12,,0x x ∈-∞且12x x ≠,都有()()1122120x f x x f x x x -<-成立,则不等式()()()110xf x x f x -++<的解集为_________. 【答案】 1|2x x ⎧⎫⎨-⎩>⎬⎭【解析】设函数()()g x xf x =,由条件可知函数()g x 是偶函数,并且在(),0-∞单调递减,不等式等价于()()1g x g x <+,利用函数的性质解抽象不等式. 【详解】解:令()()g x xf x =,由112212()()0x f x x f x x x -<-,得()g x 在()–,0∞为减函数, 且()g x 为偶函数,故()g x 在()0,∞+上为增函数,()()1g x g x <+即(||)(|1|)g x g x <+故|||1|x x <+,解得12x >-, 所以不等式的解集是 1|2x x ⎧⎫⎨-⎩>⎬⎭. 故答案为: 1|2x x ⎧⎫⎨-⎩>⎬⎭【点睛】本题考查判断函数的性质,并且根据函数的奇偶性,单调性,解抽象不等式,意在考查转化与化归的思想,本题的关键是构造函数()()g x xf x =,并判断函数的性质. 16.如图所示,12,F F 为椭圆的左右焦点,过2F 的直线交椭圆于B .D 两点且222BF F D =,E 为线段1BF 上靠近1F 的四等分点.若对于线段1BF 上的任意点P ,都有11PF PD EF ED ⋅≥⋅u u u r u u u r u u u r u u u r成立,则椭圆的离心率为________.3【解析】取1F D 的中点Q ,连EQ .PQ .根据向量的加法和减法转化1PF PD ⋅=u u u r u u u r 22114PQ DF -u u u ur u u u u r ,同理221114EF ED EQ DF ⋅=-u u u u r u u u u r u u u r u u u r ,等价于||||PQ EQ ≥u u u r u u u r ,由点P 的任意性判断1EQ BF ⊥,得到1||DF DB =,根据几何关系和椭圆定义得到边长,根据余弦定理建立方程求椭圆的离心率. 【详解】解:取1F D 的中点Q ,连EQ .PQ .221111()()4PF PD PF PD PF PD ⎡⎤⋅=+-⎣-⎦u u u r u u u r u u u r u u u r u u u r u u u r ()22221111444PQ DF PQ DF =-=-u u u u r u u u u r u u u u r u u u u r , 同理221114EF ED EQ DF ⋅=-u u u u r u u u u r u u u r u u u r ,11PF PD EF ED ⋅≥⋅u u u r u u u r u u u r u u u r 恒成立等价于||||PQ EQ ≥u u u r u u u r , 因为点P 是线段1BF 上的任意一点,故1EQ BF ⊥,得到1||DF DB =, 设2DF x =,则22BF x =,12DF a x =-, 由23a x x -=,得2ax =,12BF BF a ==,132DF a =, 在12F BF V 中,22212224cos 122a c F BF e a-∠==-, 在1DF B V 中,又222133122cos 3322a a a F BD a a ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⋅所以21123e -=,解得33e =.3【点睛】本题考查求椭圆的离心率,平面向量和几何图形的应用,意在考查转化与化归的思想,数形结合分析问题的能力,推理能力,属于中高档题型,本题的关键是把向量的数量积转化为边长关系,再根据点P 的任意性,进一步得到几何关系.三、解答题17.已知面数()2sin(2)f x x ϕ=+,22ππϕ-<<.(1)当3πϕ=时,求函数()()2sin2g x f x x =+的单调递增区间;(2)若函数()f x 满足()()66f x f x ππ-=+,求ϕ的值 【答案】(1),36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z (2)6π=ϕ【解析】(1)根据三角恒等变形为()326g x x π⎛⎫=+ ⎪⎝⎭,直接求函数的单调递增区间;(2)由题意可知函数()f x 关于6x π=对称,代入直接求ϕ的值.【详解】(1)()2sin(2)2sin 223sin(2)36g x x x x ππ=++=+, 当222262k x k πππππ-+≤+≤+,k Z ∈时函数单调递增,即()g x 的单调递增区间为,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .(2)由()()66f x fx ππ-=+得()f x 图像关于6x π=对称故32k ππϕπ+=+.,6k k πϕπ=+∈Z .又22ππϕ-<<得6π=ϕ. 【点睛】本题考查三角恒等变形,求函数的性质,以及根据函数的性质求参数,意在考查转化与化归的思想,基本能力,属于基础题型. 18.如图在ABC V 中,3BAC π∠=,满足3AD DB =u u u r u u u r.(1)若3B π∠=,求ACD ∠的余弦值;(2)点M 是线段CD 上一点,且满足12AM mAC AB =+u u u u r u u u r u u u r,若ABC V 的面积为23求||AM u u u u r的最小值.【答案】(1)513cos 26ACD ∠=(2)min ||2AM =u u u u r 【解析】(1)设DB a =u u u r ,则||3AD a =uuu r,在ACD V 和BCD V 中利用余弦定理求CD ,再在ACD V 中利用余弦定理求cos ACD ∠;或是设ACD θ∠=,在ACD V 和BCD V 中利用正弦定理,建立等量关系求ACD ∠的余弦值;(2)利用C 、M 、D 三点共线,求得13m =,再根据三角形的面积求得||||8AB AC ⋅=u u u r u u u r ,根据向量数量积求221132AM AC AB ⎛⎫=+ ⎪⎝⎭u u u u u r u u u r u u u r ,展开后利用基本不等式求最小值.【详解】(1)由题意可设DB a =u u u r ,则||3AD a =uuu r .在ACD V 中有:2222cos AC AD CD AD CD ADC =+-⋅∠① 在BCD V 中有:2222cos BC DB GD DB CD BDC =+-⋅∠②3+⋅①②可得2213CD a =,在ACD V 中有:2322cos AD AC CD AD CD ACD =+-⋅∠,解得cos ACD ∠=或解:由题意可设ACD θ∠=, 在△ACD 中:sin sin60AD CDθ=︒① 在BCD V 中:sin(60)sin 60DB CDθ=︒-︒②由①,②可得()3sin 60sin θθ︒-=,解得tan 5θ=,故cos 26θ=. (2)1223AM mAC AB mAC AD =+=+u u u u r u u u r u u u r u u u r u u u r,且C 、M 、D 三点共线,所以13m =,1||||22ABCS AB AC =⋅⋅=V u u u r u u u r , 故||||8AB AC ⋅=u u u r u u u r.22221111132943AM AC AB AC AB AC AB ⎛⎫=+=++⋅ ⎪⎝⎭u u u u u r u u u u r u u u u r u u u r u u u r u u u r u u u r224116||439||AC AC =++≥u u u r u u ur当且仅当||AC =uuu rmin ||2AM =u u u u r .【点睛】本题考查解三角形,平面向量,基本不等式求最值的综合应用,主要考查了方程的思想,转化与化归的思想,计算能力,本题的难点是结合条件,分析图形,转化为数学问题.19.已知数列{}n a 的前n 项和记为n S ,12a =且()*1(2)n n na n S n +=+∈N .(1)求数列{}n S 的前n 项和n T ; (2)数列{}n b 的通项公式(1)2nn n S b n =+,证明1321121n b b b n -⋅<+L【答案】(1)1(1)22n n T n +=-⋅+ (2)证明见解析【解析】(1)首先条件变形为()1(2)n n n n S S n S +-=+,变形后可得n S n ⎧⎫⎨⎬⎩⎭是等比数列,求2nn S n =⋅,并且利用错位相减法求和; (2)由(1)可知1n n b n =+,证法一,首先212n n -2121n n -+等式; 证法二,1n n +2nn +,再求乘积证明不等式; 【详解】(1)由*1(2),n n na n S n +=+∈N , 可得()1(2)n n n n S S n S +-=+, 即*12,1n n S Sn n n+=∈+N , 所以11221n n n S S n -=⋅=,故2n n S n =⋅ 1231222322n n T n =⨯+⨯+⨯++⋅L ①234121222322n n T n +=⨯+⨯+⨯++⋅L ②①-②得:1231122222nn n T n +-=⨯++++-⋅L1(1)22n n T n +∴=-⋅+.(2)2(1)2(1)21n n n n n S n nb n n n ⋅===++⋅+ 证法一:222221(21)(21)212(2)(2)121n n n n n n n n --+-=<=-+Q 1321132113211242352121n n n b b b n n n ---∴⋅⇒⨯⨯⨯<⨯⨯=++L L L . 证法二(参照给分):1111122nn n n n nn n n n n n +=⋅<⋅=++++++Q,1321132113211242352121n n n b b b n n n ---∴⋅=⨯⨯⨯<⋅=++L L L .【点睛】本题考查递推公式求通项公式,错位相减法求和,利用不等式放缩证明不等式,意在考查推理证明,转化与化归,第二问是本题的难点,放缩法是证明不等式的常用方法. 20.已知四棱锥P ABCD -的底面ABCD 为菱形,60BAD ∠=︒,侧面PAD 与底面ABCD所成的角为120︒,PAD △是等边三角形,点P 到平面ABCD 距离为32.(1)证明:AD PB ⊥;(2)求二面角A PB C --余弦值. 【答案】(1)证明见解析 (2)27【解析】(1)要证明线线垂直,可转化为证明线面垂直,取AD 中点E ,即证明AD ⊥平面PBE ;(2)由几何体的关系,得到如图所示的空间直角坐标系,设PB 的中点为G ,由(1)可知,AG BC 都与交线垂直,GA u u u r 与BC uuu r的夹角θ为所求二面角的平面角.【详解】(1)取AD 中点E ,则由已知得BE AD AD PE AD ⊥⎫⇒⊥⎬⊥⎭平面PBE AD PB ⇒⊥(2)AD PBE AD ABCD ⊥⎫⇒⎬⊂⎭平面平面平面ABCD ⊥平面PBE ,又平面PBE ⋂平面ABCD BE =.过P 作PO BE ⊥交BE 的延长线于O ,则PO ⊥面ABCD , 由题可得到60PEO ∠=︒建立如图所示直角坐标系,设PB 的中点为G ,则3(0,0,)2P ,33B ,PB 中点333)4G 连接AG ,32A ,33(2,2C -,33(1,)44GA =--u u u r , 333(0,)22PB =-u u u r ,(2,0,0)BC =-u u u r于是0GA PB ⋅=u u u r u u u r ,0BC PB ⋅=u u u r u u u r,GA u u u r 与BC uuu r 的夹角θ为所求二面角的平面角,则27cos 7||||GA BC GA BC θ⋅==-u u u r u u u ru u u r u u u r .【点睛】本题考查线线垂直的证明,二面角的求解,意在考查推理证明,空间直角坐标系解决空间角,属于中档题型,本题的第二问是用空间直角坐标的方法解决二面角,一般都是要求两个平面的法向量,但这个题不用,而是有和交线垂直的线,所以GA u u u r 与BC uuu r的夹角表示二面角.21.如图,已知椭圆E 的右焦点为()21,0F ,P .Q 为椭圆上的两个动点,2PQF V 周长的最大值为8.(1)求椭圆E 的标准方程;(2)记椭圆E 的左焦点为1F ,过2F 作直线l 与椭圆交于不同两点M .N ,求1F MN △面积取最大值时的直线l 方程.【答案】(1)22143x y += (2)1x =【解析】首先表示2PQF V 的周长,并利用定义转化求周长的最值,求解方程; (2)可设直线:1l x my =+,与椭圆方程联立,利用根与系数的关系表示1F MN △的面积,并通过换元法和基本不等式求最值. 【详解】(1)取左焦点()–1,0F ,2PQF V 的周长为:2121||22||PF QF PQ a PF a QF PQ ++=-+-+()114||a PF QF PQ =-+-4a ≤(三点P ,Q .1F 共线时取等号), 由48a =,2a =,椭圆E 的方程:22143x y +=.(2)可设直线:1l x my =+221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=, 122634my y m -+=+,122934y y m -=+ ()12212121212112142MF Nm S F F y y y y y y +=-=+-=V令21(1)t m t =+≥,13y t t=+在[)1,+∞单调递增, 12313S t t=≤+,1MN F S V 最大值为3,此时0m =,所以直线的方程为1x =.【点睛】本题考查了直线与椭圆的位置关系的综合问题,涉及椭圆中三角形面积的最值的求法,第二问中设而不求的基本方法也使得求解过程变得简单,在解决圆锥曲线与动直线问题中,韦达定理,弦长公式都是解题的基本工具.22.已知函数()xf x e x a =--,对于(),0x f x ∀∈≥R 恒成立.(1)求实数a 的取值范围;(2)当实数a 取最大值时,函数211()()(1sin 2)22g x f x x x x =----.当实数12x x ≠,若()()122g x g x +=,求证:120x x +<.【答案】(1)1a ≤ (2)证明见解析【解析】(1)由不等式恒成立转化为参变分离x a e x ≤-恒成立,构造函数()x h x e x =-,利用导数求函数的最小值,求a 的取值范围;(2)由(1)可知211()sin 222x g x x x e =-+,通过构造函数()()()–Q x g x g x =+,利用导数证明()Q x 单调递增,且()02Q =,由()01g =及()g x 为单调递增函数,()()122g x g x +=,则12,x x 异号,再设20x >,则()()202Q x Q >=,逐步证明.【详解】(1)0x e x a --≥恒成立,x a e x ≤-恒成立,令()x h x e x =-,()1xh x e '=-, 0x >,()0h x '>,()h x 单调递增,0x <,()0h x '<,()h x 单调递减,min ()(0)1h x h ==,故1a ≤.(2)211()sin 222x g x x x e =-+, cos (2)1cos20x g x e x x x '=-+≥+≥,()g x 单调递增,且()01g =.令()()()–Q x g x g x =+, 则221111()sin 2sin 22222x x Q x x x e x x e -=-+--+ 2x x e e x -=+-令()e e 2()x x Q x x h x -'=--=,()e e 20x x h x -'=+-≥.()h x 单调递增,()00h =,故当0x >时,()0Q x '>,所以()Q x 单调递增,且()02Q =.由()01g =及()g x 为单调递增函数,()()122g x g x +=,则12,x x 异号,不妨设20x >,则()()202Q x Q >=,即()()222g x g x +->,()()2212()g x g x g x ->-=()g x 为单调递增函数,故12x x ->,210x x +<.【点睛】本题考查利用导数研究函数单调性,恒成立的综合问题,重点考查了转化思想,构造函数思想,逻辑推理能力,属于难题,本题第二问的关键和难点是构造函数()()()=+,由函数的单调性和零点转化为自变量的大小关系.–Q x g x g x。

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份) (含答案解析)

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份) (含答案解析)

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)一、单项选择题(本大题共12小题,共60.0分) 1. 已知复数z =1+ai i(i 为虚数单位)在复平面上对应的点位于第四象限,则实数a 的取值范围为( )A. (0,+∞)B. (−∞,1)C. (1,+∞)D. (−∞,0)2. 已知集合A ={x|3x −x 2>0},B ={x|−1<x <1},则A ∩B =( )A. {x|−1<x <3}B. {x|−1<x <0}C. {x|0<x <1}D. {x|1<x <3}3. 一个半径是2的扇形,其圆心角的弧度数是,则该扇形的面积是( ) A.B.C.D. π4. 函数f(x)=sinx2+cosx (−π≤x ≤π)的图象大致为( )A.B.C.D.5. (x + y 2x)(x +y)5的展开式中x 3y 3的系数为( )A. 5B. 10C. 15D. 206. 设a =(34)0.5,b =(43)0.4,c =log 34(log 34),则( ) A. a <b <c B. a <c <b C. c <a <b D. c <b <a7. 阅读如图所示的程序框图,输出的S 的值是( )A. 2 0132 015B. 2 0132 014C. 2 0122 013D. 2 0112 0128.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个质数的和”,如10=7+3.在不超过30的质数中,随机选取两个不同的数,其和等于30的概率是()A. 112B. 114C. 115D. 1189.在正项等比数列{a n}中,若a1=2,a3=8,{a n}的前n项和为S n.则S6=()A. 62B. 64C. 126D. 12810.双曲线x2−y23=1的两条渐近线夹角是()A. 30°B. 60°C. 90°D. 120°11.关于函数f(x)=4sin(2x+π3),(x∈R)有下列命题:其中正确的是()①由f(x1)=f(x2)=0可得x1−x2必是π的整数倍;②f(x)的表达式可改写为f(x)=4cos(2x−π6);③f(x)的图象关于点(−π6,0)对称;④f(x)的图象关于直线x=π3对称;⑤f(x)在区间(−π3,π12)上是增函数.A. ②③⑤B. ①②③C. ②③④D. ①③⑤12.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC=2,M,N为线段AC上的点,若MN=2,则三棱锥P−MNB的体积为()A. 13B. √23C. √33D. 23二、填空题(本大题共4小题,共20.0分) 13. 已知函数f (x )=x 22+x −2lnx ,求函数f (x )在点(2,f (2))处的切线方程________.14. 若命题“∃x 0∈R ,x 02+x 0+m <0”是假命题,则实数m 的范围是______.15. 在平面直角坐标系xOy 中,点A(1,3),B(−2,k),若向量OA⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ,则实数k = ______ . 16. 已知A 是抛物线y 2=4x 上的一点,以点A 和点B(2,0)为直径的圆C 交直线x =1于M ,N 两点.直线l 与AB 平行,且直线l 交抛物线于P ,Q 两点.(1)求线段MN 的长;(2)若OP ⃗⃗⃗⃗⃗ ⋅OQ ⃗⃗⃗⃗⃗⃗ =−3,且直线PQ 与圆C 相交所得弦长与|MN|相等,求直线l 的方程. 三、解答题(本大题共7小题,共82.0分)17. 已知a,b,c 分别是△ABC 三个内角A ,B ,C 的对边,且2asin (C +π3)=√3b .(1)求角A 的值.(2)若b =3,c =4,点D 在BC 边上,AD =BD ,求AD 的长.18.如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,M为棱SB上的点,SA=AB=√3,BC=2,AD=1.(1)若M为棱SB的中点,求证:AM//平面SCD;(2)当SM=MB,DN=3NC时,求平面AMN与平面SAB所成的锐二面角的余弦值.19.一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为ξ,求ξ的分布列和数学期望E(ξ);(2)求恰好得到n(n∈N∗)分的概率.20. 已知椭圆E :x 2a 2+y2b 2=1(a >b >0 )的离心率为23,C 为椭圆E 上位于第一象限内的一点. (1)若点C 的坐标为(2,53),求椭圆E 的标准方程;(2)设A 为椭圆E 的左顶点,B 为椭圆E 上一点,且AB ⃗⃗⃗⃗⃗=12OC ⃗⃗⃗⃗⃗ ,求直线AB 的斜率.21. 已知函数f(x)=x|x +a|−12lnx(Ⅰ)当a ≤−2时,求函数f(x)的极值点; (Ⅱ)若f(x)>0恒成立,求a 的取值范围.22. 在平面直角坐标系xOy 中,曲线C 的参数方程为{x =−1+2cosφy =2sinφ(其中φ为参数),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l 1的极坐标方程为ρ=√2sin (θ+π4),设l 1与C 相交于A ,B 两点,AB 的中点为M ,过点M 作l 1的垂线l 2交C 于P ,Q 两点.(1)写出曲线C的普通方程与直线l1的直角坐标方程;(2)求|PQ|的值.|MP|⋅|MQ|23.已知函数f(x)=|x−1|+|x−2|.(1)解不等式:f(x)≤x+3;(2)若不等式|m|·f(x)≥|m+2|−|3m−2|对任意m∈R恒成立,求x的取值范围.【答案与解析】1.答案:A解析:本题考查复数的基本运算和复数的几何意义,属于基础题.解:由z=a−i,又∵复数z在复平面内对应的点位于第四象限,有a>0.∴实数a的取值范围为(0,+∞)故选A.2.答案:C解析:本题考查了描述法的定义,一元二次不等式的解法,交集的运算,考查了计算能力,属于基础题.可以求出集合A,然后进行交集的运算即可.解:∵A={x|0<x<3},B={x|−1<x<1},∴A∩B={x|0<x<1}.故选:C.3.答案:C解析:本题主要考查了弧长公式,扇形的面积公式的应用,属于基础题.由已知先求弧长,利用扇形的面积公式即可计算得解.解:因为扇形的弧长,则面积,故选C.4.答案:A解析:解:f(−x)=−sinx2+cosx =−f(x)则函数f(x)是奇函数,排除C , 分母2+cosx >0,则当0<x <π时,sinx >0,则f(x)>0,排除D , f(π4)=√222+√22=√24+√2<f(π2)=12,则B 不满足条件.故选:A .利用函数的奇偶性得到图象关于原点对称,利用f(π4)<f(π2),进行排除即可.本题主要考查函数图象的识别和判断,利用函数奇偶性和函数值的对应性,利用排除法是解决本题的关键.5.答案:C解析:解:因为(x + y 2x)(x +y)5=(x 2+y 2)(x+y)5x;要求展开式中x 3y 3的系数即为求(x 2+y 2)(x +y)5展开式中x 4y 3的系数;展开式含x 4y 3的项为:x 2⋅C 52x 2⋅y 3+y 2⋅C 54x 4⋅y =15x 4y 3;故(x + y 2x)(x +y)5的展开式中x 3y 3的系数为15;故选:C .先把条件整理转化为求(x 2+y 2)(x +y)5展开式中x 4y 3的系数,再结合二项式的展开式的特点即可求解.本题主要考查二项式定理的应用,二项式展开式的通项公式,二项式系数的性质,属基础题.6.答案:C解析:解:∵a =(34)0.5∈(0,1),b =(43)0.4>1,c =log 34(log 34)<0, ∴c <a <b . 故选:C .利用指数与对数函数的单调性即可得出.本题考查了指数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.答案:B解析:解:依题意,知:i=1,n=2,S=0+11×2,i=2,n=3,S=11×2+12×3,i=3, n=4, S=11×2+12×3+13×4,…i=2 013, n=2014, S=11×2+12×3+13×4+⋯+12 013×2 014=1−12 014=2 0132 014.i=2014,满足退出循环条件,故输出S值为:20132014.故选:B.由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.8.答案:C解析:本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键.利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.解:在不超过30的素数中有2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有C102=45种,和等于30的有(7,23),(11,19),(13,17),共3种,则对应的概率P=345=115,故选C.9.答案:C解析:解:在正项等比数列{a n}中,由a1=2,a3=8,得q2=a3a1=82=4,∴q=2.则S6=2(1−26)1−2=126.故选:C.由已知结合等比数列的通项公式求得公比,再由等比数列的前n项和求S6.本题考查等比数列的通项公式,考查等比数列的前n项和,是基础的计算题.10.答案:B解析:由双曲线方程,求得其渐近线方程,求得直线的夹角,即可求得两条渐近线夹角.本题考查双曲线的几何性质,考查直线的倾斜角的应用,属于基础题.解:双曲线x2−y23=1的两条渐近线的方程为:y=±√3x,所对应的直线的倾斜角分别为60°,120°,∴双曲线x2−y23=1的两条渐近线的夹角为60°,故选B.11.答案:A解析:解:①由f(x1)=f(x2)=0,得2x1+π3=kπ,2x2+π3=mπ,所以2x1−2x2=(k−m)π,即x1−x2=(k−m)π2,k,m∈Z,所以①错误.②f(x)=4cos(2x−π6)=4cos(π6−2x)=4sin[π2−(π6−2x)]=4sin(2x+π3),所以②正确.③因为f(−π6)=4sin[2(−π6)+π3]=4sin0=0,所以f(x)的图象关于点(−π6,0)对称,所以③正确.④因为f(π3)=4sin(2×π3+π3)=4sinπ=0不是函数的最大值,所以f(x)的图象关于直线x=π3不对称,所以④不正确.⑤由−π2+2kπ≤2x+π3≤π2+2kπ,得−5π12+kπ≤x≤π6+kπ,当k=0时,得−5π12≤x≤π6,即函数的一个单调增区间为[−5π12,π6],所以函数f(x)在区间(−π3,π12)上是增函数,所以⑤正确.故选A.利用三角函数的图象和性质分别判断.本题主要考查三角函数的图象和性质,要求熟练掌握三角函数的性质,综合性较强.12.答案:D解析:解:取AC的中点O,连结PO,BO.∵PA=PC,O是AC的中点,∴PO⊥AC,又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PO⊂平面PAC,∴PO⊥平面ABC.∵AB⊥BC,AB=BC=PA=PC=2,∴AC=2√2,BO=AO=12AC=√2,∴PO=√PA2−OA2=√2.∴V P−MNB=13S△BMN⋅PO=13×12×2×√2×√2=23.故选D.取AC的中点O,连结PO,BO,则利用面面垂直的性质可证PO⊥平面ABC,利用勾股定理计算BO,PO,于是V P−BMN=13S△BMN⋅PO.本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.13.答案:2x−y−2ln2=0解析:本题考查导数的几何意义,基础题型.利用导数的几何意义求解即可.解:∵函数f(x)=x22+x−2lnx,∴f′(x)=x+1−2x,∴f′(2)=2+1−1=2,f(2)=2+2−2ln2=4−2ln2,∴函数f(x)在点(2,4−2ln2)处的切线方程为y−4+2ln2=2(x−2),即2x−y−2ln2=0.故答案为2x−y−2ln2=0.14.答案:[14,+∞)解析:本题考查了特称命题与全称命题的概念,是基础题.命题“∃x 0∈R ,x 02+x 0+m <0”的否定为:“∀x ∈R ,x 2+x +m ≥0“,原命题为假,则其否定为真,由△=1−4m ≤0,可求出实数m 的范围.解:命题“∃x 0∈R ,x 02+x 0+m <0”是假命题,即命题的否定为真命题,其否定为:“∀x ∈R ,x 2+x +m ≥0“, 则△=1−4m ≤0, 解得:m ≥14,故实数m 的范围是[14,+∞).15.答案:4解析:解:∵OA ⃗⃗⃗⃗⃗ =(1,3),AB ⃗⃗⃗⃗⃗ =(−2,k)−(1,3)=(−3,k −3),向量OA ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ , ∴OA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =(1,3)⋅(−3,k −3)=−3+3(k −3)=0,解得k =4. 故答案为:4.利用向量的坐标运算和向量垂直与数量积的关系即可得出.本题考查了向量的坐标运算和向量垂直与数量积的关系,属于基础题.16.答案:解:(1)设A(y 024,y 0),圆C 方程为(x −2)(x −y 024)+y(y −y 0)=0, 令x =1,得y 2−y 0y +y 024−1=0,∴y M +y N =y 0,y M y N =y 024−1,|MN|=|y M −y N |=√(y M +y N)2−4y M y N =√y 02−4(y 024−1)=2.(2)设直线l 的方程为x =my +n ,P(x 1,y 1),Q(x 2,y 2),则 由{x =my +n,y 2=4x消去x ,得y 2−4my −4n =0, y 1+y 2=4m ,y 1y 2=−4n ,∵OP →⋅OQ →=−3,∴x 1x 2+y 1y 2=−3,则(y 1y 2)216+y 1y 2=−3,∴n 2−4n +3=0,解得n =1或n =3,当n=1或n=3时,点B(2,0)到直线l的距离为d=1√1+m2,∵圆心C到直线l的距离等于到直线x=1的距离,∴y028=1√1+m2,又m=y024−2y0,消去m得y02⋅y04+6416=64,求得y02=8,此时m=y024−2y0=0,直线l的方程为x=3,综上,直线l的方程为x=1或x=3.解析:(1)根据题意利用弦长公式求出即可得到MN的长;(2)设出直线l的方程为x=my+n,P,Q点的坐标,联立直线和抛物线方程,得到关于n的式子,解出即可得到直线方程.17.答案:解:(1)2asin(C+π3)=√3b变形为因为sinC≠0,所以,tanA=√3,因为是在三角形内,故A.(2)由题意得,a2=b2+c2−2bccosA=13,∴a=√13,根据正弦定理得到:,所以cosB=2√13,因为AD=BD,所以sin∠ADB=sin2B=2sinBcosB=2×3√32√13×52√13=15√326在△ABD中,由正弦定理得:AD sinB =ABsin∠ADB,.解析:本题考查了正弦定理和余弦定理,考查了三角形面积公式的应用,是中档题.(1)直接化简可求出tan A的值,即可解得答案;(2)利用余弦定理和正弦定理求解即可得答案.18.答案:(1)证明:取线段SC的中点E,连接ME,ED.在△SBC中,ME为中位线,∴ME//BC且ME=12BC,∵AD//BC且AD=12BC,∴ME//AD且ME=AD,∴四边形AMED为平行四边形.∴AM//DE.∵DE⊂平面SCD,AM⊄平面SCD,∴AM//平面SCD.(2)解:如图所示以点A 为坐标原点,建立分别以AD 、AB 、AS 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,则A(0,0,0),B(0,√3,0),C(2,√3,0),D(1,0,0),S(0,0,√3),于是AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12BS ⃗⃗⃗⃗⃗ =(0,√32,√32), AN ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ +34DC ⃗⃗⃗⃗⃗ =(1,0,0)+34(1,√3,0)=(74,3√34,0).设平面AMN 的一个法向量为n⃗ =(x,y,z),则{AM ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0AN ⃗⃗⃗⃗⃗⃗ ⋅n ⃗ =0将坐标代入并取y =7,得n ⃗ =(−3√3,7,−7).另外易知平面SAB 的一个法向量为m⃗⃗⃗ =(1,0,0) 所以平面AMN 与平面SAB 所成的锐二面角的余弦为|m ⃗⃗⃗ ⋅n ⃗⃗ ||m ⃗⃗⃗ ||n ⃗⃗ |=3√1525解析:【试题解析】本题考查线面平行的证明,考查二面角的余弦值的求法,考查运算求解能力,是中档题. (1)取线段SC 的中点E ,连结ME ,ED ,推导出四边形AMED 为平行四边形,从而AM//DE ,由此能证明AM//平面SCD .(2)以A 为坐标原点,建立分别以AD ,AB ,AS 所在直线为x 轴,y 轴,z 轴的空间直角坐标系,利用向量法能求出平面AMN 与平面SAB 所成的锐二面角的余弦值.19.答案:解:(1)所抛5次得分ξ的概率为P(ξ=i)=C 5i−5(12)5(i =5,6,7,8,9,10), 其分布列如下:Eξ=∑i 10i=5⋅C 5i−5(12)5=152(分).(2)令p n 表示恰好得到n 分的概率.不出现n 分的唯一情况是得到n −1分以后再掷出一次反面. 因为“不出现n 分”的概率是1−p n ,“恰好得到n −1分”的概率是p n−1, 因为“掷一次出现反面”的概率是12,所以有1−p n =12p n−1, 即p n −23=−12(p n−1−23).于是{p n −23}是以p 1−23=12−23=−16为首项,以−12为公比的等比数列. 所以p n −23=−16(−12)n−1,即p n =13[2+(−12)n ]. 答:恰好得到n 分的概率是13[2+(−12)n ].解析:本题主要考查独立重复试验,数列的递推关系求解通项,重点考查了学生的题意理解能力及计算能力.(1)由题意分析的所抛5次得分ξ为独立重复试验,利用二项分布可以得此变量的分布列; (2)由题意分析出令p n 表示恰好得到n 分的概率.不出现n 分的唯一情况是得到n −1分以后再掷出一次反面.“不出现n 分”的概率是1−p n ,“恰好得到n −1分”的概率是p n−1,利用题意分析出递推关系即可.20.答案:解:(1)由题意可知:椭圆的离心率e =c a =√1−b 2a 2=23,则b 2a 2=59,①由点C 在椭圆上,将(2,53)代入椭圆方程,4a 2+259b 2=1,② 解得:a 2=9,b 2=5, ∴椭圆E 的标准方程为x 29+y 25=1;(2)方法一:由(1)可知:b 2a 2=59,则椭圆方程:5x 2+9y 2=5a 2,设直线OC 的方程为x =my(m >0),B(x 1,y 1),C(x 2,y 2), {x =my5x 2+9y 2=5a 2,消去x 整理得:5m 2y 2+9y 2=5a 2, ∴y 2=5a 25m 2+9,由y 2>0,则y 2=√5a√5m 2+9,由AB ⃗⃗⃗⃗⃗=12OC ⃗⃗⃗⃗⃗ ,则AB//OC ,设直线AB 的方程为x =my −a , 则{x =my −a 5x 2+9y 2=5a 2,整理得:(5m 2+9)y 2−10amy =0, 由y =0,或y 1=10am5m 2+9,由AB ⃗⃗⃗⃗⃗ =12OC ⃗⃗⃗⃗⃗ ,则(x 1+a,y 1)=(12x 2,12y 2), 则y 2=2y 1, 则√5a 2=2×10am5m 2+9,(m >0),解得:m =√35,则直线AB 的斜率1m=5√33; 方法二:由(1)可知:椭圆方程5x 2+9y 2=5a 2,则A(−a,0), B(x 1,y 1),C(x 2,y 2),由AB ⃗⃗⃗⃗⃗ =12OC ⃗⃗⃗⃗⃗ ,则(x 1+a,y 1)=(12x 2,12y 2),则y 2=2y 1, 由B ,C 在椭圆上, ∴{5x 22+9y 22=5a 25(12x 2−a)2+9(y22)2=5a 2,解得:x 2=a4,y 2=4√3 则直线直线AB 的斜率k =y 2x 2=5√33;直线AB 的斜率=5√33解析:(1)利用抛物线的离心率求得b 2a 2=59,将(2,)代入椭圆方程,即可求得a 和b 的值; (2)方法一:设直线OC 的斜率,代入椭圆方程,求得C 的纵坐标,则直线直线AB 的方程为x =my −a ,代入椭圆方程,求得B 的纵坐标,由AB ⃗⃗⃗⃗⃗=12OC ⃗⃗⃗⃗⃗ ,则直线直线AB 的斜率k ; 方法二:由AB ⃗⃗⃗⃗⃗=12OC ⃗⃗⃗⃗⃗ ,y 2=2y 1,将B 和C 代入椭圆方程,即可求得C 点坐标,利用直线的离心率公式即可求得直线AB 的斜率.本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,考查直线的斜率公式,向量共线定理,考查计算能力,属于中档题.21.答案:解:(Ⅰ) 当a ≤−2时,f(x)={x 2+ax −12lnx,x ≥−a−x 2−ax −12lnx,0<x <−a . ①当x ≥−a 时,f′(x)=2x +a −12x=4x 2+2ax−12x>0,所以f(x)在(−a,+∞)上单调递增,无极值点, ②当0<x <−a 时,f′(x)=2x −a −12x=−4x 2−2ax−12x.令f′(x)=0得,−4x 2−2ax −1=0,△=4a 2−16>0, 则x 1=−a−√a2−44,x 2=−a+√a2−44,且0<x 1<x 2<−a ,当x ∈(0,x 1)时,f′(x)<0;当x ∈(x 1,x 2)时,f′(x)>0; 当x ∈(x 2,a)时,f′(x)<0,所以f(x)在区间(0,x 1)上单调递减,在(x 1,x 2)上单调递增;在(x 2,a)上单调递减. 综上所述,当a <−2时,f(x)的极小值点为x =−a−√a2−44和x =−a ,极大值点为x =−a+√a2−44;(Ⅱ)函数f(x)的定义域为x ∈(0,+∞),由f(x)>0可得|x +a|>lnx 2x…(∗)(ⅰ)当x ∈(0,1)时,lnx2x <0,|x +a|≥0,不等式(∗)恒成立; (ⅰ)当x =1时,lnx2x =0,即|1+a|>0,所以a ≠1; (ⅰ)当x >1时,不等式(∗)恒成立等价于a <−x −lnx2x恒成立或a >−x +lnx 2x恒成立.令g(x)=−x −lnx2x,则g′(x)=−1−1x⋅2x−2lnx 4x 2=−2x 2−1+lnx2x 2.令k(x)=−2x 2−1+lnx ,则k′(x)=−2x +1x=1−2x 2x<0,而k(1)=−1−1+ln1=−2<0,所以k(x)=−2x 2−1+lnx <0,即g′(x)=−2x 2−1+lnx2x 2<0,因此g(x)=−x −lnx2x在(1,+∞)上是减函数,所以g(x)在(1,+∞)上无最小值,所以a <−x −lnx 2x不可能恒成立. 令ℎ(x)=−x +lnx 2x,则ℎ′(x)=−1+1x⋅2x−2lnx 4x 2=−2x 2+1−lnx2x 2<0,因此ℎ(x)在(1,+∞)上是减函数,所以ℎ(x)<ℎ(1)=−1,所以a ≥−1.又因为a ≠−1,所以a >−1. 综上所述,满足条件的a 的取值范围是(−1,+∞).解析:(Ⅰ)由题意化简函数解析式,根据求导公式分别求出f′(x),分别判断出f′(x)与0的关系,利用导数的正负求出函数ℎ(x)的单调区间、极值点;(Ⅱ)先求出函数f(x)的定义域为x∈(0,+∞),再化简不等式f(x)>0为|x+a|>lnx2x,对x与1的关系进行分类讨论,当x>1时转化为“a<−x−lnx2x 恒成立或a>−x+lnx2x恒成立”,再分别构造函数,求出导数、函数的单调区间和值域,即可求出a的取值范围.本题考查利用导数研究函数单调性、极值、最值等,恒成立问题的转化,以及转化思想、分类讨论思想、构造函数法等,考查化简、灵活变形能力,综合性强、难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点、难点.22.答案:解:(1)由曲线C的参数方程{x=−1+2cosφy=2sinφ,消去参数φ,得曲线C的普通方程为(x+1)2+y2=4.由曲线l1的极坐标方程ρ=√2sin (θ+π4),得ρsinθ+ρcosθ=1,将x=ρcosθ,y=ρsinθ代入,得l1的直角坐标方程为x+y−1=0;(2)由l1⊥l2,得直线l2的斜率k l2=−1k l1=1,所以l2的倾斜角为π4,又l2过圆心(−1,0),所以l2的方程为y=x+1,与x+y−1=0联立,得AB的中点M(0,1),故l2的参数方程为{x=tcosπ4y=1+tsinπ4,(t为参数),即{x=√22ty=1+√22t,(t为参数),代入(x+1)2+y2=4中,化简、整理得t2+2√2t−2=0,设P,Q对应的参数分别为t1,t2,则由韦达定理得t1·t2=−2,又线段PQ为圆的直径,所以|PQ|=4,所以|PQ||MP|⋅|MQ|=4|−2|=2.解析:本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用一元二次方程根和系数关系式的应用求出结果.23.答案:解:(1)∵f(x)≤x+3,∴|x −1|+|x −2|≤x +3, ①当x ≥2时,,②当1<x <2时,,③当x ≤1时,,由①②③可得x ∈[0,6];(2)①当m =0时,0≥0,∴x ∈R ;②当m ≠0时,即f(x)≥|2m +1|−|2m −3|对m 恒成立, |2m +1|−|2m −3|≤|(2m +1)−(2m −3)|=4, 当且仅当2m ≥3,即0<m ≤23时取等号, ∴f(x)=|x −1|+|x −2|≥4, 由x ≥2,2x −3≥4,解得x ≥72; 1<x <2,x −1+2−x ≥4,解得x ∈⌀; x ≤1时,3−2x ≥4,解得x ≤−12; 综上可得x ∈(−∞,−12]∪[72,+∞).解析:(1)分别讨论x ≥2,1<x <2,x ≤1时,去掉绝对值,解不等式求并集可得;(2)讨论m =0,m ≠0,由绝对值不等式的性质可得f(x)≥4,再讨论x ≥2,1<x <2,x ≤1时,解不等式求并集可得范围.本题考查绝对值不等式的解法和绝对值不等式的性质,考查分类讨论思想方法和转化思想、运算能力,属于中档题.。

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)

2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数z=(1−a)+(a2−1)i(i为虚数单位,a>1),则z在复平面内的对应点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2. 已知集合A={x|3x<x+4},B=(x|x2−8x+7<0},则A∩B=()A.(−1, 2)B.(2, 7)C.(2, +∞)D.(1, 2)3. 某装饰公司制作一种扇形板状装饰品,其圆心角为120∘,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计).已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米B.63厘米C.69厘米D.76厘米4. 函数f(x)=x cos x2x+2−x 在[−π2, π2]上的图象大致为( )A. B.C. D.5. 若(1+ax)(1+x)5的展开式中x2,x3的系数之和为−10,则实数a的值为()A.−3B.−2C.−lD.16. 已知a=log3√2,b=ln3,c=2−0.99,则a,b,c的大小关系为( )A.b>c>aB.a>b>cC.c>a>bD.c>b>a7. 执行如图的程序框图,则输出S的值为()A.−112B.2360C.1120D.43608. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题,它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩,若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为()A.15B.13C.35D.239. 已知正项等比数列{a n}的前n项和为S n,S2=19,S3=727,则a1a2...a n的最小值为()A.(427)2 B.(427)3 C.(427)4 D.(427)510. 已知点P是双曲线C:x2a2−y2b2=1(a>0, b>0, c=√a2+b2)上一点,若点P到双曲线C的两条渐近线的距离之积为14c2,则双曲线C的离心率为( )A.√2B.√52C.√3D.211. 已知f(x)=1−2cos2(ωx+π3)(ω>0).给出下列判断:①若f(x1)=1,f(x2)=−1,且|x1−x2|min=π,则ω=2;②存在ω∈(0, 2),使得f(x)的图象右移π6个单位长度后得到的图象关于y轴对称;③若f(x)在[0, 2π]上恰有7个零点,则ω的取值范围为[4124, 4724]④若f(x)在[−π6, π4]上单调递增,则ω的取值范围为(0, 23]其中,判断正确的个数为()A.1B.2C.3D.412. 如图,在平面四边形ABCD中,满足AB=BC,CD=AD,且AB+AD=10,BD=8.沿着BD把ABD折起,使点A到达点P的位置,且使PC=2,则三棱锥P−BCD体积的最大值为()A.12B.12√2C.16√23D.163二、填空题:本题共4小题,每小题5分,共20分.已知函数f(x)=ln x +x 2,则曲线y =f(x)在点(1, f(1))处的切线方程为________.若∃x 0∈R ,x 02−a√x 02+1+5<0为假,则实数a 的取值范围为________.在直角坐标系xOy 中,已知点A(0, 1)和点B(−3, 4),若点C 在∠AOB 的平分线上,且|OC →|=3√10,则向量OC →的坐标为________.已知抛物线C:y 2=4x ,点P 为抛物线C 上一动点,过点P 作圆M :(x −3)2+y 2=4的切线,切点分别为A ,B ,则线段AB 长度的取值范围为________√2,4) .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c sin B =b sin (π3−C)+√3b .(l)求角C 的大小;若c =√7,a +b =3,求AB 边上的高.如图,在四棱锥P −ABCD 中,底面ABCD 为等腰梯形,AB // CD ,CD =2AB =4,AD =√2.△PAB 为等腰直角三角形,PA=PB ,平面PAB ⊥底面ABCD ,E 为PD 的中点.(1)求证:AE // 平面PBC ;(2)若平面EBC 与平面PAD 的交线为l ,求二面角P −l −B 的正弦值.一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分. (1)设抛掷4次的得分为X ,求变量X 的分布列和数学期望.(2)当游戏得分为n(x ∈N ∗)时,游戏停止,记得n 分的概率和为Q n ,Q 1=12. ①求Q 2;②当n ∈N ∗时,记A n =Q n+1+12Q n ,B n =Q n+1−Q n ,证明:数列{A n }为常数列,数列{B n }为等比数列.已知椭圆E:x 2a 2+y 2b 2=1(a >b >0))的离心率为√32,且过点(√72, 34).点P 在第一象限,A 为左顶点.B 为下顶点,PA 交y 轴于点C ,PB 交x 轴于点D .(1)求椭圆E 的标准方程;(2)若CD // AB ,求点P 的坐标.已知函数f(x)=ln x −x 2+ax(a ∈R). (1)若f(x)≤0恒成立,求a 的取值范围;(2)设函数f(x)的极值点为x 0,当a 变化时,点(x 0, f(x 0))构成曲线M .证明:过原点的任意直线y =kx与曲线M 有且仅有一个公共点.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为{x =1−my =k(m −1) (m 为参数),直线l 2的参数方程为{x =n y =2+k n(n为参数).若直l 1,l 2的交点为P ,当k 变化时,点P 的轨迹是曲线C . (l)求曲线C 的普通方程;以坐标原点为极点,x 轴非负半轴为极轴且取相同的单位长度建立极坐标系,设射线l 3的极坐标方程为θ=α(ρ≥0),tan α=43(0<α<π2),点Q 为射线l 3与曲线C 的交点,求点Q 的极径.[选修4-5:不等式选讲]已知函数f(x)=|x−(1)|+|x+2|.(l)求不等式f(x)<x+3的解集;(2)若不等式m−x2−2x≤f(x)在R上恒成立,求实数m的取值范围.参考答案与试题解析2020年安徽省江南十校高考数学模拟试卷(理科)(4月份)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【考点】复数的代数表示法及其几何意义【解析】由a>1可得复数z的实部与虚部的范围,则答案可求.【解答】当a>1时,1−a<0,a2−1>0,∴z在复平面内的对应点所在的象限为第二象限.2.【答案】D【考点】交集及其运算【解析】可以求出集合A,B,然后进行交集的运算即可.【解答】A={x|x<2},B={x|1<x<7},∴A∩B=(1, 2).3.【答案】B【考点】扇形面积公式弧长公式【解析】弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小,用弧长近似代替弦长,计算导线的长度即可.【解答】因为弧长比较短的情况下分成6等份,每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,所以导线长度为2π3×30=20π=20×3.14≈63(厘米).4.【答案】C【考点】函数奇偶性的性质函数的图象【解析】根据题意,利用排除法分析:先分析函数的奇偶性,再分析在区间(0, π2)上,f(x)>0,由排除法分析可得答案.【解答】解:根据题意,f(x)=x cos x2x+2−x,因为f(−x)=−x cos x2x+2−x=−f(x),则在[−π2, π2]上,f(x)为奇函数,其图象关于原点对称,排除A,B;又由在区间(0, π2)上,cos x>0,2x>0,2−x>0,则f(x)>0,排除D.故选C.5.【答案】B【考点】二项式定理及相关概念【解析】先求(1+x)5的展开式的通项公式,进而求得结论.【解答】因为(1+x)5的展开式的通项公式为:T r+1=∁5r⋅x r;可得展开式中x,x2,x3的系数分别为:∁51,∁52,∁53;故(1+ax)(1+x)5的展开式中x2的系数为:∁52+a⋅∁51=10+5a;故(1+ax)(1+x)5的展开式中x3的系数为:a⋅∁52+∁53=10+10a;∴10+5a+10+10a=20+15a=−10;∴a=−2.6.【答案】A【考点】对数值大小的比较【解析】结合指数与对数函数的单调性分别确定a,b,c的范围即可比较.【解答】解:因为a=log3√2∈(0, 12),b=ln3>1,1=20>c=2−0.99>2−1=12,故b>c>a.故选A.7. 【答案】 D【考点】 程序框图 【解析】根据循环体的算法功能可以看出,这是一个对数列{n5−1n }求前五项和的程序框图,计算可求解.【解答】由题意得S =15−1+25−12+35−13+45−14+55−15=4360. 8.【答案】 A【考点】古典概型及其概率计算公式 【解析】利用列举法求出由古典概型的基本事件的等可能性得6拆成两个正整数的和含有5个基本事件,而加数全为质数的有1个,由此能求出拆成的和式中,加数全部为质数的概率. 【解答】由古典概型的基本事件的等可能性得6拆成两个正整数的和含有5个基本事件,分别为: (1, 5),(2, 4),(3, 3),(4, 2),(5, 1), 而加数全为质数的有(3, 3),∴ 拆成的和式中,加数全部为质数的概率为P =15. 9.【答案】 D【考点】等比数列的前n 项和 【解析】由已知结合等比数列的通项公式可求a 1,q ,进而可求通项公式,然后结合项的特点可求. 【解答】由题意可得,{a 1(1+q)=19a(1+q +q 2)=727, 解可得,{a 1=127q =2 或{a 1=13q =−23(舍), 故a n =127⋅2n−1,当1≤n ≤5时,a n <1,当n ≥6,a n >1, 则a 1a 2...a n 的最小值为a 1a 2...a 5=(a 3)5=(427)5.10.【答案】 A【考点】双曲线的离心率 【解析】双曲线C:x 2a 2−y 2b 2=1(a >0,b >0的两条渐近线的方程为bx ±ay =0,设P(x, y),利用点P 到双曲线的两条渐近线的距离之积为|b 2x 2−a 2y 2b 2+a 2|=14c 2,求出a 、c 关系,即可求出双曲线的离心率.【解答】解:双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的两条渐近线的方程为bx ±ay =0, 设P(x, y),利用点P 到双曲线的两条渐近线的距离之积为|b 2x 2−a 2y 2b 2+a 2|=14c 2,可得|a 2b 2a 2+b2|=14c 2⇒a =b ,∴ 双曲线的离心率e =c a=√1+b 2a 2=√2.故选A . 11.【答案】 B【考点】命题的真假判断与应用 正弦函数的单调性 正弦函数的图象 【解析】先将f(x)化简,对于①由条件知,周期为2π,然后求出ω;对于②由条件可得−ωπ3+π6=π2+kπ(k ∈Z),然后求出ω=−1−3k(k ∈Z);对于③由条件,得7π2ω−π12ω≤2π≤4πω−π12ω,然后求出ω的范围;对于④由条件,得{−wπ3+π6≥−π2wπ2+π6≤π2,然后求出ω的范围,再判断命题是否成立即可.【解答】∵ f(x)=1−2cos 2(ωx +π3)=−cos (2ωx +2π3)=sin (2ωx +π6),∴ 周期T =2π2ω=πω.①由条件知,周期为2π,∴ w =12,故①错误; ②函数图象右移π6个单位长度后得到的函数为y =sin (2ωx −ωx 3+π6),其图象关于y 轴对称,则−ωπ3+π6=π2+kπ(k ∈Z),∴ ω=−1−3k(k ∈Z),故对任意整数k ,ω∉(0, 2),故②错误; ③由条件,得7π2ω−π12ω≤2π≤4πω−π12ω,∴4124≤ω≤4724,故③正确;④由条件,得{−wπ3+π6≥−π2wπ2+π6≤π2,∴ ω≤23,又ω>0,∴ 0<ω≤23,故④正确.12. 【答案】 C【考点】棱柱、棱锥、棱台的侧面积和表面积 【解析】过点P 作PE ⊥BD 于E ,连结CE ,推导出BD ⊥平面PCE ,当S △PCE 最大时,V P−BCD 取得最大值,取PC 的中点F ,则EF ⊥PC ,推导出点P 到以BD 为焦点的椭圆上,PE 的最大值为对应短半轴长,由此能求出三棱锥P −BCD 体积的最大值. 【解答】过点P 作PE ⊥BD 于E ,连结CE ,由题意知△BPD ≅△BCD ,CE ⊥BD ,且PE =CE , ∴ BD ⊥平面PCE ,∴ V P−BCD =V B−PCE +V D−PCE =13S △PCE ⋅BD =83S △PCE , ∴ 当S △PCE 最大时,V P−BCD 取得最大值, 取PC 的中点F ,则EF ⊥PC , ∴ S △PCE =12PC ⋅EF =√PE 2−1,∵ PB +PD =10,BD =8,∴ 点P 到以BD 为焦点的椭圆上, ∴ PE 的最大值为对应短半轴长,∴ PE 最大值为√52−42=3,∴ S △PCE 最大值为2√2, ∴ 三棱锥P −BCD 体积的最大值为16√23.二、填空题:本题共4小题,每小题5分,共20分.【答案】3x −y −2=0 【考点】利用导数研究曲线上某点切线方程 【解析】先对函数求导,然后将x =1代入导数求出斜率,再将x =1代入函数求出切点纵坐标,最后套用点斜式写出方程. 【解答】易知f(1)=1,故切点为(1, 1), f ′(x)=1x +2x ,故f′(1)=3,所以切线方程为y −1=3(x −1), 即3x −y −2=0即为所求.故答案为:3x −y −2=0. 【答案】 (−∞, 4] 【考点】命题的真假判断与应用 全称命题与特称命题 全称量词与存在量词 【解析】若∃x 0∈R ,x 02−a√x 02+1+5<0为假,则其否定命题为真, 利用分离常数法和基本不等式求出a 的取值范围. 【解答】若∃x 0∈R ,x 02−a√x 02+1+5<0为假,则其否定命题为真,即∀x ∈R ,x 2−a√x 2+1+5≥0为真,所以a ≤2√x 2+1对任意实数恒成立; 设f(x)=2√x 2+1,x ∈R ;则f(x)=√x 2+12≥2⋅√4=4,当且仅当√x 2+1=√x 2+1,即x =±√3时等号成立,所以实数a 的取值范围是a ≤4. 【答案】 (−3, 9) 【考点】平面向量的坐标运算 【解析】由点C 在∠AOB 的平分线上得存在λ∈(0, +∞),使OC →=λ(OA →|OA →|+OB→|OB →|),再由|OC →|求出λ的值即可.【解答】由点C 在∠AOB 的平分线上, 所以存在λ∈(0, +∞),使 OC →=λ(OA →|OA →|+OB →|OB →|)=λ(0, 1)+λ(−35, 45)=(−35λ, 95λ);又|OC →|=3√10,所以(−35λ)2+(95λ)2=90,解得λ=5,所以向量OC →=(−3, 9). 【答案】 [2【考点】圆与圆锥曲线的综合问题抛物线的性质【解析】画出图形,连接PM,PA,PB,易得MA⊥PA,MB⊥PB,PM⊥AB,求出四边形PAMN的面积,结合四边形PAMB的面积为三角形PAM面积的两倍,求出|AB|的表达式,然后分析求解最小值以及最大值即可.【解答】如图:连接PM,PA,PB,易得MA⊥PA,MB⊥PB,PM⊥AB,所以四边形PAMN的面积为:12PM,•AB,另外四边形PAMB的面积为三角形PAM面积的两倍,所以12|PM|⋅|AB|=|PA|⋅|MA|,所以|AB|=2|PA|⋅|MA||PM|=4√|PM|2−4|PM|=4√1−|PM|2,所以当|PM|取得最小值时,|AB|最小,设点P(x, y),则|PM|=√(x−3)2+y2=√x2−2x+9,所以x=1时,|PM|取得最小值为:2√2,所以AB的最小值为:4√1−48=2√2.当P向无穷远处运动时,|AB|的长度趋近于圆的直径,故|AB|的取值范围是[2√2, 4).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.【答案】(1)因为c sin B=b sin(π3−C)+√3b.由正弦定理可得,sin C sin B=sin B sin(π3−C)+√3sin B,因为sin B>0,所以sin C=sin(π3−C)+√3=√32cos C−12sin C,即√32sin C−12cos C=1,所以sin(C−π6)=1,∵0<C<π,所以C=2π3,(2)由余弦定理可得,c2=a2+b2−2ab cos C,所以a2+b2+ab=7,即(a+b)2−ab=7,所以ab=2,S△ABC=12ab sin C=√32,设AB边上的高为ℎ,则√72ℎ=√32,故ℎ=√217.【考点】正弦定理余弦定理【解析】(1)由已知结合正弦定理及和差角公式进行化简可求C;(2)由已知结合余弦定理及三角形的面积公式即可求解.【解答】(1)因为c sin B=b sin(π3−C)+√3b.由正弦定理可得,sin C sin B=sin B sin(π3−C)+√3sin B,因为sin B>0,所以sin C=sin(π3−C)+√3=√32cos C−12sin C,即√32sin C−12cos C=1,所以sin(C−π6)=1,∵0<C<π,所以C=2π3,(2)由余弦定理可得,c2=a2+b2−2ab cos C,所以a2+b2+ab=7,即(a+b)2−ab=7,所以ab=2,S△ABC=12ab sin C=√32,设AB边上的高为ℎ,则√72ℎ=√32,故ℎ=√217.【答案】证明:如图1,取PC的中点F,连结EF,BF,∵PE=DE,PF=CF,∴EF // CD,CD=2EF,∵AB // CD,CD=2AB,∴AB // EF,且EF=AB,∴四边形ABFE为平行四边形,∴AE // BF,∵BF⊂平面PBC,AE⊄平面PBC,∴AE // 平面PBC.如图2,取AB中点O,CD中点Q,连结OQ,∵OA=OB,CQ=DQ,PA=PB,∴PO⊥AB,OQ⊥AB,∵平面PAB⊥平面ABCD,交线为AB,∴PO⊥平面ABCD,OQ⊥平面PAB,∴AB,OQ,OP两两垂直,以点O为坐标原点,OQ,OB,OP为x,y,z轴,建立空间直角坐标系,由PA⊥PB,AB=2,得OA=OB=OP=1,DQ=CQ=2,在等腰梯形ABCD中,AB=2,CD=4,AD=√2,OQ=1,O(0, 0, 0),A(0, −1, 0),B(0, 1, 0),C(1, 2, 0),P(0, 0, 1),D(1, −2, 0),E(12, −1, 12),设平面PAD的法向量为m→=(x, y, z),AP→=(0, 1, 1),AD→=(1, −1, 0),则{m→⋅AP→=y+z=0m→⋅AD→=x−y=0,取y=1,得m→=(1, 1, −1),设平面EBC的法向量n→=(a, b, c),BC→=(1, 1, 0),EB→=(−12,2,−12),则{n →⋅BC →=a +b =0n →⋅BP →=−12a +2b −12c =0 ,取a =1,得n →=(1, −1, −5), 设二面角P −l −B 的平面角为θ, 则|cos θ|=|m →⋅n →||m →|⋅|n →|=59,P −l −B 的正弦值为sin θ=√1−(59)2=2√149.【考点】二面角的平面角及求法 直线与平面平行【解析】(1)取PC 的中点F ,连结EF ,BF ,推导出四边形ABFE 为平行四边形,AE // BF ,由此能求出AE // 平面PBC .(2)取AB 中点O ,CD 中点Q ,连结OQ ,推导出PO ⊥AB ,OQ ⊥AB ,从而PO ⊥平面ABCD ,OQ ⊥平面PAB ,以点O 为坐标原点,OQ ,OB ,OP 为x ,y ,z 轴,建立空间直角坐标系,由此能求出二面P −l −B 的正弦值. 【解答】证明:如图1,取PC 的中点F ,连结EF ,BF ,∵ PE =DE ,PF =CF ,∴ EF // CD ,CD =2EF , ∵ AB // CD ,CD =2AB ,∴ AB // EF ,且EF =AB , ∴ 四边形ABFE 为平行四边形,∴ AE // BF , ∵ BF ⊂平面PBC ,AE ⊄平面PBC , ∴ AE // 平面PBC .如图2,取AB 中点O ,CD 中点Q ,连结OQ ,∵ OA =OB ,CQ =DQ ,PA =PB ,∴ PO ⊥AB ,OQ ⊥AB , ∵ 平面PAB ⊥平面ABCD ,交线为AB , ∴ PO ⊥平面ABCD ,OQ ⊥平面PAB , ∴ AB ,OQ ,OP 两两垂直,以点O 为坐标原点,OQ ,OB ,OP 为x ,y ,z 轴,建立空间直角坐标系, 由PA ⊥PB ,AB =2,得OA =OB =OP =1,DQ =CQ =2, 在等腰梯形ABCD 中,AB =2,CD =4,AD =√2,OQ =1,O(0, 0, 0),A(0, −1, 0),B(0, 1, 0),C(1, 2, 0),P(0, 0, 1),D(1, −2, 0),E(12, −1, 12),设平面PAD 的法向量为m →=(x, y, z), AP →=(0, 1, 1),AD →=(1, −1, 0),则{m →⋅AP →=y +z =0m →⋅AD →=x −y =0,取y =1,得m →=(1, 1, −1), 设平面EBC 的法向量n →=(a, b, c), BC →=(1, 1, 0),EB →=(−12,2,−12),则{n →⋅BC →=a +b =0n →⋅BP →=−12a +2b −12c =0,取a =1,得n →=(1, −1, −5), 设二面角P −l −B 的平面角为θ, 则|cos θ|=|m →⋅n →||m →|⋅|n →|=59,P −l −B 的正弦值为sin θ=√1−(59)2=2√149.【答案】变量X 的所有可能取值为4,5,6,7,8,∵ 每次抛掷一次硬币,正面向上的概率为12,反面向上的概率为12,∴ P(X =4)=(12)4=116,P(X =5)=C 41(12)4=14,P(X =6)=C 42(12)4=38, P(X =7)=C 43(12)4=14, P(X =8)=C 44(12)4=116,∴ X 的分布列为:E(X)=4×116+5×14+6×38+7×14+8×116=6.①得2分只需要抛掷一次正面向上或两次反面向上,概率的和为:Q 2=12+(12)2=34, ②证明:得n 分分两种情况,第一种为得n −2分后抛掷一次正面向上, 第二种为得n −1分后,抛掷一次反面向上, ∴ 当n ≥3,且n ∈N ∗时,Q n =12Q n−1+12Q n−2,A n+1=Q n+2+12Q n+1=12Q n+1+12Q n +12Q n+1=Q n+1+12Q n =A n ,∴ 数列{A n }为常数列,∵ B n+1=Q n+2−Q n+1=12Q n+1+12Q n −Q n+1=−12Q n+1+12Q n =−12(Q n+1−Q n )=−12B n , ∵ B 1=P 2−P 1=34−12=14,∴ 数列{B n }为等比数列. 【考点】离散型随机变量及其分布列 离散型随机变量的期望与方差【解析】(1)变量X 的所有可能取值为4,5,6,7,8,分别求出相应的概率,由此能求出X 的分布列. (2)①得2分只需要抛掷一次正面向上或两次反面向上,由此能求出Q 2.②得n 分分两种情况,第一种为得n −2分后抛掷一次正面向上,第二种为得n −1分后,抛掷一次反面向上,当n ≥3,且n ∈N ∗时,Q n =12Q n−1+12Q n−2,由此能证明数列{A n }为常数列,由B n+1=Q n+2−Q n+1=12Q n+1+12Q n −Q n+1=−12Q n+1+12Q n −12B n ,能证明数列{B n }为等比数列.【解答】变量X 的所有可能取值为4,5,6,7,8,∵ 每次抛掷一次硬币,正面向上的概率为12,反面向上的概率为12, ∴ P(X =4)=(12)4=116, P(X =5)=C 41(12)4=14, P(X =6)=C 42(12)4=38,P(X =7)=C 43(12)4=14,P(X =8)=C 44(12)4=116,∴ X 的分布列为:E(X)=4×116+5×14+6×38+7×14+8×116=6.①得2分只需要抛掷一次正面向上或两次反面向上,概率的和为:Q 2=12+(12)2=34,②证明:得n 分分两种情况,第一种为得n −2分后抛掷一次正面向上, 第二种为得n −1分后,抛掷一次反面向上, ∴ 当n ≥3,且n ∈N ∗时,Q n =12Q n−1+12Q n−2,A n+1=Q n+2+12Q n+1=12Q n+1+12Q n +12Q n+1=Q n+1+12Q n =A n , ∴ 数列{A n }为常数列,∵ B n+1=Q n+2−Q n+1=12Q n+1+12Q n −Q n+1=−12Q n+1+12Q n=−12(Q n+1−Q n )=−12B n ,∵ B 1=P 2−P 1=34−12=14, ∴ 数列{B n }为等比数列. 【答案】由题意可得{ 74a 2+916b 2=1c a =√32a 2=b 2+c 2,解得{a 2=4b 2=1 , ∴ 椭圆E 的标准方程为:x 24+y 2=1; 由(1)知点A(−2, 0),B(0, −1),由题意可设直线AP 的方程为:y =k(x +2)(0<k <12),所以点C 的坐标为(0, 2k),联立方程{y =k(x +2)x 24+y 2=1 ,消去y 得:(1+4k 2)x 2+16k 2x +16k 2−4=0, 设P(x 1, y 1),则−2⋅x 1=16k 2−41+4k 2,所以x 1=−8k 2−21+4k 2, 所以y 1=k(−8k 2−21+4k 2)=4k1+4k 2,所以P(−8k 2−21+4k 2, 4k1+4k 2 ),设D 点的坐标为(x 0, 0),因为点P ,B ,D 三点共线,所以k BD =k PB , 即1−x 0=4k1+4k 2+1−8k 2−21+4k 2,所以x 0=2−4k 1+2k,所以D(2−4k 1+2k, 0),因为CD // AB ,所以k CD =k AB , 即k(2k+1)2k−1=−12,所以4k 2+4k −1=0,解得k =−1±√22, 又因为0<k <12, 所以k =√2−12, 所以点P 的坐标为(√2, √22). 【考点】椭圆的标准方程 椭圆的应用直线与椭圆的位置关系【解析】(1)列出关于a ,b ,c 的方程组,解出a ,b ,c 的值,即可求出椭圆E 的标准方程; (2)设直线AP 的方程为:y =k(x +2)(0<k <12),与椭圆方程联立,利用韦达定理可求出P(−8k 2−21+4k 2, 4k 1+4k 2 ),由点P ,B ,D 三点共线,所以k BD =k PB ,求出D(2−4k1+2k , 0),由CD // AB 可得k(2k+1)2k−1=−12,解出k 的值,从而求出点P 的坐标.【解答】由题意可得{ 74a 2+916b 2=1c a=√32a 2=b 2+c 2 ,解得{a 2=4b 2=1 , ∴ 椭圆E 的标准方程为:x 24+y 2=1;由(1)知点A(−2, 0),B(0, −1),由题意可设直线AP 的方程为:y =k(x +2)(0<k <12),所以点C 的坐标为(0, 2k),联立方程{y =k(x +2)x 24+y 2=1,消去y 得:(1+4k 2)x 2+16k 2x +16k 2−4=0, 设P(x 1, y 1),则−2⋅x 1=16k 2−41+4k ,所以x 1=−8k 2−21+4k ,所以y 1=k(−8k 2−21+4k 2)=4k1+4k 2, 所以P(−8k 2−21+4k 2, 4k1+4k 2 ),设D 点的坐标为(x 0, 0),因为点P ,B ,D 三点共线,所以k BD =k PB , 即1−x 0=4k1+4k 2+1−8k 2−21+4k 2,所以x 0=2−4k 1+2k ,所以D(2−4k1+2k , 0),因为CD // AB ,所以k CD =k AB , 即k(2k+1)2k−1=−12,所以4k 2+4k −1=0,解得k =−1±√22, 又因为0<k <12, 所以k =√2−12, 所以点P 的坐标为(√2, √22). 【答案】由x >0可得f(x)≤0恒成立等价为a ≤x −ln x x恒成立.设g(x)=x −ln x x,g′(x)=1−1−ln x x 2=x 2−1+ln xx 2,再令ℎ(x)=x 2−1+ln x ,则ℎ′(x)=2x +1x>0,则ℎ(x)在(0, +∞)递增,又ℎ(1)=0,则0<x <1,ℎ(x)<0,x >1,ℎ(x)>0,即0<x <1时,g′(x)<0;x >1时,g′(x)>0,可得g(x)在(0, 1)递减;在(1, +∞)递增, 即有g(x)在x =1处取得极小值,即最小值g(1)=1,所以a ≤1;证明:由(1)可得f(x 0)=ln x 0−x 02+ax 0,f′(x 0)=0,即1x 0−2x 0+a =0,即a =2x 0−1x 0,所以f(x 0)=ln x 0+x 02−1,可得曲线M 的方程为y =ln x +x 2−1,由题意可得对任意实数k ,方程ln x +x 2−1=kx 有唯一解.设ℎ(x)=ln x +x 2−kx −1,则ℎ′(x)=1x +2x −k =2x 2−kx+1x,①当k ≤0时,ℎ′(x)>0恒成立,ℎ(x)在(0, +∞)递增,由ℎ(1)=−k ≥0,ℎ(e k )=k +e 2k −ke k −1=k(1−e k )+e 2k −1≤0,所以存在x 0满足e k ≤x 0≤1时,使得ℎ(x 0)=0.又因为ℎ(x)在(0, +∞)递增,所以x =x 0为唯一解. ②当k >0时,且△=k 2−8≤0即0<k ≤2√2时,ℎ′(x)≥0恒成立,所以ℎ(x)在(0, +∞)递增, 由ℎ(1)=−k <0,ℎ(e 3)=3+e 6−ke 3−1=(e 3−√2)2+(2√2−k)e 3>0,所以存在x 0∈(1, e 3),使得ℎ(x 0)=0.又ℎ(x)在(0, +∞)递增,所以x =x 0为唯一解. ③当k >2√2时,ℎ′(x)=0有两解x 1,x 2,设x 1<x 2,因为x 1x 2=12,所以x 1<√22<x 2,当x ∈(0, x 1)时,ℎ′(x)>0,ℎ(x)递增;当x ∈(x 1, x 2)时,ℎ′(x)<0,ℎ(x)递减,当x ∈(x 2, +∞),ℎ′(x)>0,ℎ(x)递增,可得ℎ(x)的极大值为ℎ(x 1)=ln x 1+x 12−kx 1−1,因为2x 12−kx 1+1=0,所以ℎ(x 1)=ln x 1−x 12−2<0,所以ℎ(x 2)<ℎ(x 1)<0,ℎ(e k 2)=k 2+e 2k 2−ke k 2−1=(e k 2−k)e k 2+k 2−1>0,令m(x)=e x 2−x ,x >2√2,可得m′(x)=2x ⋅e x 2−1>0,所以m(x)>m(2√2)>0,所以存在x 0∈(x 2, e k 2),使得ℎ(x 0)=0, 又因为ℎ(x)在(x 2, +∞)递增,所以x =x 0为唯一解.综上可得,过原点的任意直线y =kx 与曲线M 有且仅有一个公共点.【考点】不等式恒成立的问题 利用导数研究函数的极值 【解析】(1)由题意可得原不等式等价为a ≤x −ln x x恒成立.设g(x)=x −ln x x,由g(x)的二次导数的符号,确定g(x)的单调性,可得g(x)的最小值,进而得到a 的范围;(2)由极值的定义可得f(x 0)=ln x 0+x 02−1,可得曲线M 的方程为y =ln x +x 2−1,由题意可得对任意实数k ,方程ln x +x 2−1=kx 有唯一解.设ℎ(x)=ln x +x 2−kx −1,求得ℎ(x)的导数,讨论k ≤0;k >0,△≤0,△>0,结合ℎ(x)的单调性,以及函数零点存在定理,化简计算即可得证. 【解答】由x >0可得f(x)≤0恒成立等价为a ≤x −ln x x恒成立.设g(x)=x −ln x x,g′(x)=1−1−ln x x 2=x 2−1+ln xx 2,再令ℎ(x)=x 2−1+ln x ,则ℎ′(x)=2x +1x>0,则ℎ(x)在(0, +∞)递增,又ℎ(1)=0,则0<x <1,ℎ(x)<0,x >1,ℎ(x)>0,即0<x <1时,g′(x)<0;x >1时,g′(x)>0,可得g(x)在(0, 1)递减;在(1, +∞)递增,即有g(x)在x =1处取得极小值,即最小值g(1)=1,所以a ≤1;证明:由(1)可得f(x 0)=ln x 0−x 02+ax 0, f′(x 0)=0,即1x 0−2x 0+a =0,即a =2x 0−1x 0,所以f(x 0)=ln x 0+x 02−1,可得曲线M 的方程为y =ln x +x 2−1,由题意可得对任意实数k ,方程ln x +x 2−1=kx 有唯一解.设ℎ(x)=ln x +x 2−kx −1,则ℎ′(x)=1x+2x −k =2x 2−kx+1x,①当k ≤0时,ℎ′(x)>0恒成立,ℎ(x)在(0, +∞)递增,由ℎ(1)=−k ≥0,ℎ(e k )=k +e 2k −ke k −1=k(1−e k )+e 2k −1≤0,所以存在x 0满足e k ≤x 0≤1时,使得ℎ(x 0)=0.又因为ℎ(x)在(0, +∞)递增,所以x =x 0为唯一解. ②当k >0时,且△=k 2−8≤0即0<k ≤2√2时,ℎ′(x)≥0恒成立,所以ℎ(x)在(0, +∞)递增, 由ℎ(1)=−k <0,ℎ(e 3)=3+e 6−ke 3−1=(e 3−√2)2+(2√2−k)e 3>0,所以存在x 0∈(1, e 3),使得ℎ(x 0)=0.又ℎ(x)在(0, +∞)递增,所以x =x 0为唯一解. ③当k >2√2时,ℎ′(x)=0有两解x 1,x 2,设x 1<x 2,因为x 1x 2=12,所以x 1<√22<x 2,当x ∈(0, x 1)时,ℎ′(x)>0,ℎ(x)递增;当x ∈(x 1, x 2)时,ℎ′(x)<0,ℎ(x)递减,当x ∈(x 2, +∞),ℎ′(x)>0,ℎ(x)递增,可得ℎ(x)的极大值为ℎ(x 1)=ln x 1+x 12−kx 1−1,因为2x 12−kx 1+1=0,所以ℎ(x 1)=ln x 1−x 12−2<0,所以ℎ(x 2)<ℎ(x 1)<0,ℎ(e k 2)=k 2+e 2k 2−ke k 2−1=(e k 2−k)e k 2+k 2−1>0,令m(x)=e x 2−x ,x >2√2,可得m′(x)=2x ⋅e x 2−1>0,所以m(x)>m(2√2)>0,所以存在x 0∈(x 2, e k 2),使得ℎ(x 0)=0, 又因为ℎ(x)在(x 2, +∞)递增,所以x =x 0为唯一解.综上可得,过原点的任意直线y =kx 与曲线M 有且仅有一个公共点.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程] 【答案】(1)直线l 1的参数方程为{x =1−my =k(m −1) (m 为参数),转换为直角坐标方程为y =−kx .直线l 2的参数方程为{x =n y =2+k n (n 为参数),转换为直角坐标方程为y −2=xk .联立两直线的方程消去参数k 得:x 2+(y −1)2=1(x ≠0). (2)设点Q(ρcos α, ρsin α)由tan α=43, 可得:sin α=45,cos α=35.代入曲线C ,得ρ2−85ρ=0,解得ρ=85或ρ=0(舍去),故点Q 的极径为85.【考点】参数方程与普通方程的互化 圆的极坐标方程【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换. (2)利用一元二次方程根和系数关系式的应用求出结果. 【解答】(1)直线l 1的参数方程为{x =1−my =k(m −1) (m 为参数),转换为直角坐标方程为y =−kx .直线l 2的参数方程为{x =n y =2+k n (n 为参数),转换为直角坐标方程为y −2=xk.联立两直线的方程消去参数k 得:x 2+(y −1)2=1(x ≠0). (2)设点Q(ρcos α, ρsin α)由tan α=43, 可得:sin α=45,cos α=35.代入曲线C ,得ρ2−85ρ=0,解得ρ=85或ρ=0(舍去),故点Q 的极径为85. [选修4-5:不等式选讲] 【答案】当x <−2时,f(x)<x +3可化为1−x −x −2<x +3,解得x >−43,无解;当−2≤x ≤1时,f(x)<x +3可化为1−x +x +2<x +3,解得x >0,故0<x ≤1; 当x >1时,f(x)<x +3可化为x −1+x +2<x +3,解得x <2,故1<x <2. 综上可得,f(x)<x +3的解集为(0, 2);不等式m −x 2−2x ≤f(x)在R 上恒成立,可得m ≤x 2+2x +f(x),即m ≤(x 2+2x +f(x))min ,由y =x 2+2x =(x +1)2−1的最小值为−1,此时x =−1;由f(x)=|x−1|+|x+2|≥|x−1−x−2|=3,当且仅当−2≤x≤1时,取得等号,则(x2+2x+f(x))min=−1+3=2,所以m≤2,即m的取值范围是(−∞, 2].【考点】绝对值不等式的解法与证明不等式恒成立的问题【解析】(1)由绝对值的定义,去绝对值符号,解不等式,再求并集可得所求解集;(2)由题意可得m≤(x2+2x+f(x))min,结合二次函数的最值求法,以及绝对值不等式的性质可得所求最小值,进而得到m的范围.【解答】当x<−2时,f(x)<x+3可化为1−x−x−2<x+3,解得x>−4,无解;3当−2≤x≤1时,f(x)<x+3可化为1−x+x+2<x+3,解得x>0,故0<x≤1;当x>1时,f(x)<x+3可化为x−1+x+2<x+3,解得x<2,故1<x<2.综上可得,f(x)<x+3的解集为(0, 2);不等式m−x2−2x≤f(x)在R上恒成立,可得m≤x2+2x+f(x),即m≤(x2+2x+f(x))min,由y=x2+2x=(x+1)2−1的最小值为−1,此时x=−1;由f(x)=|x−1|+|x+2|≥|x−1−x−2|=3,当且仅当−2≤x≤1时,取得等号,则(x2+2x+f(x))min=−1+3=2,所以m≤2,即m的取值范围是(−∞, 2].。

安徽省十校联盟2020届高三线上自主联合检测数学(理)答案(PDF版,解析版答案)

安徽省十校联盟2020届高三线上自主联合检测数学(理)答案(PDF版,解析版答案)
由 b2=a8,即 a2+6=a8,
16. 5
可得 d=
=1,
则(a1+5)(a1+5+10)=(a1+2+7)2, 解得 a1=3, 则 an=a1+(n﹣1)d=3+n﹣1=n+2; bn=an+n+4=n+2+n+4=2n+6;
(2)
=
= ( ﹣ ),
则前 n 项和 Sn= ( ﹣ + ﹣ + ﹣ +…+ ﹣ )= ( ﹣ )=
1,即直线 FN
过点 (1,0) .
3 4k2
又∵椭圆 C 的左焦点坐标为 F2 (1,0) ,∴三点 N , F2 , F 在同一直线上.
21.解:(1)依题意, f (x) 2x 1 1 2x2 x 1 (2x 1)(x 1)
x
x
x
故当 x (0 ,1) 时, f (x) 0 ,当 x (1, ) 时, f (x) 0
7 当 x≥3 时,不等式可化为 3x+1<8,解得 x< ,此时不等式无解.
3 综上,不等式的解集为(-3,1).
(2)作出函数 f(x)的大致图象及直线 y=3a+4b,如图.
由图可知,当 g(x)=f(x)-3a-4b 只有一个零点时,3a+4b=5,
即(2a+b)+(a+3b)=5,
1
4 11
设平面 PQB 与平面 PDC 所成锐二面角为α,
则 cosα=
== .
∴平面 PQB 与平面 PDC 所成锐二面角的余弦值为 .
20.解:(1)依题意, PF1 PF2 2a 4 ,故 a 2 .

安徽省江南十校2020届高三第二次联考理科数学

安徽省江南十校2020届高三第二次联考理科数学

江南十校2020届高三第二次联考
数学(理科)
全卷满分150分,考试时间120分钟.
注意事项:
1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
小值.
(1)证明:AD PB ⊥;
(2)求二面角A PB C --余弦值. 21.(本小题满分12分)
如图,已知椭圆E 的右焦点为()21,0F ,P .Q 为椭圆上的两个动点,2PQF V 周长的最大值为8. (1)求椭圆E 的标准方程;
(2)记椭圆E 的左焦点为1F ,过2F 作直线l 与椭圆交于不同两点M .N ,求1F MN V 面积取最大值时
的直线l 方程.
22.(本小题满分12分)
已知函数()x f x e x a =--,对于(),0x f x ∀∈≥R 恒成立. (1)求实数a 的取值范围;
()()122g x g x +=,求证:120x x +<.
江南十校2020届高三第二次联考 数学(理科)试题参考答案
一、选择题:本大题共12小题,每小题5分,共60分. 1.答案:D
解析:解得{}|0U y y =>,{}12|A x x =<<,
故()[)0,12,U A =⋃+∞ð.
10.答案:C
解析:构造长方体1111ABCD A B C D -,使MN 与1BD 重合.
设长方体长、宽、高分别为x ,y ,z , 则2
2
2
1x y z ++=.。

江南十校2020高三第二次联考数学理科答案

江南十校2020高三第二次联考数学理科答案

绝密★启用前江南十校2020届高三第二次联考数学(理科)试题参考答案一㊁选择题:本大题共12小题,每小题5分,共60分.1.答案:D 解析:解得U =y y {}>0,A =x 1<x {}<2,故C U A =0,()1∪2,+[)¥㊂2.答案:B解析:解得cos α=-513,故f cos ()α=1,则f f cos ()[]α=f ()1=2㊂3.答案:A解析:如图所示,点P 在平面区域内任一点P ,点Q 在半圆x 2+y 2=10≤y ≤()1上,过点O 作直线x +y -5=0的垂线,垂足为P ,交半圆于Q ,此时PQ 取最小值,求得PQmin=522-1㊂4.答案:B解析:()f t =log b t 为增函数,0<sin α<cos α<1得log b sin α<log b cos α<0;()g t =cos ()αt 为减函数,则x >y ㊂当a <0时,()h t =t a 在第一象限单调递减,a =logb sin α且cos α>sin α,则x <z ㊂故z >x >y ㊂5.答案:D解析:由题得sin θ=x 2+12x ,由x 2+12x ≥1或x 2+12x≤-1且-1≤sin θ≤1得:sin θ=±1,故x =±1㊂6.答案:D解析:y =sin 2x +cos 2x =2sin 2x +πæèçöø÷4=2sin2x +πæèçöø÷8,y =-2cos 2x =2sin 2x -πæèçöø÷2=2sin 2x -πæèçöø÷4,故向右移3π8个单位㊂ 7.答案:C解析:a 4=a 2+2d ,a 8=a 2+6d ,因为a 42=a 2㊃a 8且d ≠0,求得a 2=2d ,所以公比q =a 4a 2=2;或解:q =a 8a 4=a 4a 2=a 8-a 4a 4-a 2=4d 2d=2㊂8.答案:C解析:m ⊥αα‖}β⇒m ⊥β n ⊥üþýïïïïβ⇒m ‖n.9.答案:A解析:()f ′x =e x +e -x +1>0x ()>0,故()f x 在0,+()¥上单调递增㊂b ∈0,(]1时,()[]f f b =b 成立,即()f b =b 有解, 则e -b +e b +b -a =b ,故a =e -b +e b ,b ∈0,(]1㊂令e b =t ,则t ∈1,(]e ,e b +e -b =t +1t ∈2,e +1æèçùûúúe ,即a ∈2,e +1æèçùûúúe ㊂10.答案:C解析:构造长方体ABCD -A 1B 1C 1D 1,使MN 与BD 1重合㊂设长方体长㊁宽㊁高分别为x ,y ,z ,则x 2+y 2+z 2=1㊂由题知x 2+z 2=a ,y 2+z 2=b ,x 2+y 2=c ,a 2+b 2+c 2=2㊂a +b +()c 2=a 2+b 2+c 2+2ab +2bc +2ac≤3a 2+b 2+c ()2=6,故a +b +c ≤6㊂11.答案:A解析:连PI 延长x 轴于D ,连IF 1㊁IF 2㊂在△PF 1D 中有ID IP =DF 1PF 1,在△PF 2D 中有IDIP =DF 2PF 2,故ID IP =DF 1PF 1=DF 2PF 2=DF 1+DF 2PF 1+PF 2=2c 2a =e =12,故S △IF 1F 2S △PF 1F 2=ID PD =13㊂12.答案:B解析:f (x +2)=f (2-x ),推得f (x +4)=f (-x )=f (x ),故f (x )最小正周期为4.f (x i )-f (x i +1)≤4-1=3,x n 取得最小值,则需尽可能多的x i 取到最高(低)点,由2993=9923以及2x =2得:x n (min)=99×2+1=199㊂二㊁填空题:本大题共4小题,每小题5分,共20分.13.答案:25解析:sin(π+α)=2cos(π-α)可得tan α=2sin α(2cos 2α2-1)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=2514.答案:2解析:如图,作小圆的直径AE ,连DE ,则DE =4,AE =DE 2-DA 2=23=2r =BC AB 2+AC 2=BC 2=12≥2AB ㊃AC ,则AB ㊃AC ≤6,V =13㊃12㊃AB ㊃AC ㊃AD =16×2AB ㊃AC =13×AB ㊃AC ≤215.答案:{x |x >-12}解析:令=g (x )=xf (x ),由x 1f (x 1)-x 2f (x 2)x 1-x 2<0,得g (x )在(-∞,0)为减函数,且g (x )为偶函数,故g (x )在(0,+∞)上为增函数,g (x )<g (x +1)即g (x )<g (x +1)故x <x +1,解得x >-12㊂16.答案:33解析:取F 1D 的中点Q ,连EQ ㊁PQ ㊂PF →1㊃→PD =14(PF →1+→PD )2(PF →1-→PD )[]2=14(4→PQ 2-DF →12)=→PQ 2-14DF →12,同理EF →1㊃→ED =→EQ 2-14DF →12,PF →1㊃→PD ≥EF →1㊃→ED 恒成立等价于→PQ ≥→EQ ,故EQ ⊥BF 1,得到DF 1=DB ,设DF 2=x ,则BF 2=2x ,DF 1=2a -x ,由2a -x =3x ,得x =a 2,BF 1=BF 2=a ,DF 1=32a ,在△F 1BF 2中,cos∠F 1BF 2=2a 2-4c 22a 2=1-2e 2,在△DF 1B 中,又cos∠F 1BD =a 2+(32a )2-32a )22a ㊃32a=13,所以1-2e 2=13,解得e =33.三㊁解答题:共70分.解答应写出必要的文字说明㊁证明过程或演算步骤.17.(1)()g x =2sin 2x +πæèçöø÷3+2sin 2x =23sin 2x +πæèçöø÷6, 3分当-π2+2k π≤2x +π6≤π2+2k π,k ∈Ζ时函数单调递增,即()g x 的单调递增区间为-π3+k π,π6+k éëêêùûúúπ,k ∈Ζ. 5分(2)由f (π6-x )=f (π6+x )得f (x )图像关于x =π6对称7分故π3+φ=k π+π2.  φ=k π+π6,k ∈Ζ.又-π2<φ<π2得φ=π6. 10分18.(1)由题意可设→DB =a ,则→AD =3a .在△ACD 中有:AC 2=AD 2+CD 2-2AD ㊃CD cos∠ADC ①在△BCD 中有:BC 2=DB 2+CD 2-2DB ㊃CD cos∠BDC ②①+3㊃②可得CD 2=13a 2,在△ACD 中有:AD 2=AC 2+CD 2-2AC ㊃CD cos∠ACD ,解得cos∠ACD =513266分或解:由题意可设∠ACD =θ,在△ACD 中:AD sin θ=CDsin 60° ①在△BCD 中:DB sin(60°-θ)=CDsin 60°②由①㊁②可得3sin(60°-θ)=sin θ,解得tan θ=335,故cos θ=513266分(2)→AM =→m AC +12→AB =→m AC +23→AD ,且C ㊁M ㊁D 三点共线,所以m =137分S △ABC =12→AB ㊃→AC ㊃32=23,故→AB ㊃→AC =8 8分→AM 2=13→AC +12→æèçöø÷AB 2=19→AC 2+14→AB 2+13→AC ㊃→AB =43+19→AC 2+16→AC 2≥4 11分当且仅当→AC =23时;所以→AM min =2 12分19.(1)由na n +1=n ()+2S n ,n ∈N *可得n S n +1-S ()n =n ()+2S n ,即S n +1n +1=2S n n ,n ∈N *,所以S n n =S 11㊃2n -1=2n ,故S n =n ㊃2n2分T n =1×21+2×22+3×23+ +n ㊃2n ①2T n =1×22+2×23+3×24+ +n ㊃2n +1 ②①-②得:-T n =1×21+22+23+ +2n -n ㊃2n +1∴T n =n ()-1㊃2n +1+26分(2)b n =S n n ()+12n =n ㊃2n n ()+1㊃2n =n n +17分证法一:∵2n -12n =2n ()-122()n 2<2n ()-122()n 2-1=2n -12n +110分∴b 1㊃b 3 b 2n -1=12×34× ×2n -12n<13×35× 2n -12n +1=12n +112分证法二(参照给分):∵nn +1=n n +1㊃nn +1<n n +1㊃n +1n +2=n n +2,∴b 1㊃b 3 b 2n -1=12×34× ×2n -12n <13㊃35 2n -12n +1=12n +1.证法三(参照给分):数学归纳法略.20.(1)取AD 中点E ,则由已知得BE ⊥AD PE ⊥}AD⇒AD ⊥平面PBE ⇒AD ⊥PB 4分(2)AD ⊥平面PBE AD ⊂平面}ABCD⇒平面ABCD ⊥平面PBE ,又平面PBE ∩平面ABCD =BE.过P 作PO ⊥BE 交BE 的延长线于O ,则PO ⊥面ABCD ,由题可得到∠PEO =60° 6分建立如图所示直角坐标系,设PB 的中点为G ,则P (0,0,32),B (0,332,0),PB 中点G (0,334,34)连接AG ,A (1,32,0),C (-2,332,0),→GA =(1,-34,-34),→PB =(0,332,-32),→BC =(-2,0,0),于是→GA ㊃→PB =0,→BC ㊃→PB =010分→GA 与→BC 的夹角θ为所求二面角的平面角,则cos θ=→GA ㊃→BC →GA →BC =-277 12分21.(1)取左焦点F 1(-1,0),△PQF 2的周长为:PF 2+QF 2+PQ =2a -PF 1+2a -PF 2+PQ=4a -(PF 1+PF 2-PQ )≤4a (三点P ㊁Q ㊁F 1共线时取等号),由4a =8,a =2,椭圆E 的方程:x 24+y 23=15分(2)可设直线l :x =my +1x =my +1x 24+y 23ìîíïïï=1得(3m 2+4)y 2+6my -9=0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4 7分S △MF 1N =12F 1F 2y 1-y 2=(y 1+y 2)2-4y 1y 2=12m 2+13m 2+49分令t =m 2+1(t ≥1),y =3t +1t在[1,+¥)单调递增,S =123t +1t≤3,S △F 1MN最大值为3,此时m =0,所以直线的方程为x =1. 12分22.(1)e x -x -a ≥0恒成立,a ≤e x -x 恒成立,令h (x )=e x -x ,h′(x )=e x -1,x >0,h′(x )>0,h(x )单调递增,x <0,h′(x )<0,h (x )单调递减,h (x )min =h (0)=1,故a ≤1 4分(2)g (x )=12sin 2x -12x 2+e x ,g′(x )=cos 2x -x +e x ≥1+cos 2x ≥0,g (x )单调递增,且g (0)=1 6分令Q (x )=g (x )+g (-x ),则Q (x )=12sin 2x -12x 2+e x -12sin 2x -12x 2+e -x =e x +e -x -x 2 8分令Q′(x )=e x -e -x -2x =h (x ),h′(x )=e x +e -x -2≥0.h (x )单调递增,h (0)=0,故当x >0时,Q′(x )>0,所以Q (x )单调递增,且Q (0)=2 10分由g (0)=1及g (x )为单调递增函数,g (x 1)+g (x 2)=2,则x 1㊁x 2异号,不妨设x 2>0,则Q (x 2)>Q (0)=2,即g (x 2)+g (-x 2)>2,g (-x 2)>2-g (x 2)=g (x 1),g (x )为单调递增函数,故-x 2>x 1,x 2+x 1<012分。

2020届安徽省江南十校高考数学二模试卷(理科)(有答案)(已审阅)

2020届安徽省江南十校高考数学二模试卷(理科)(有答案)(已审阅)

安徽省江南十校高考数学二模试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|x2≥x},N={y|y=3x+1,x∈R},则M∩N=()A.{x|x>1} B.{x|x≥1} C.{x|x≤0或x>1}D.{x|0≤x≤1}2.已知复数z满足(i为虚数单位),则z在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知数列{a n}满足a1=15,a2=,且2a n+1=a n+a n+2.若a k•a k+1<0,则正整数k=()A.21 B.22 C.23 D.244.设点F是双曲线﹣=1(a>0,b>0)的右焦点,点F到渐近线的距离与双曲线的两焦点间的距离的比值为1:6,则双曲线的渐近线方程为()A.2x±y=0 B.x±2y=0 C.x±3y=0 D.3x±y=05.在空间直角坐标系O﹣xyz中,已知某四面体的四个顶点坐标分别是A(1,0,0),B(0,1,0),C(0,0,2),D(1,1,2),则该四面体的正视图的面积不可能为()A.B.C.D.26.设A是由x轴、直线x=a(0<a≤1)和曲线y=x2围成的曲边三角形区域,集合Ω={(x,y)|0≤x≤1,0≤y≤1},若向区域Ω上随机投一点P,点P落在区域A内的概率为,则实数a的值是()A.B.C.D.7.执行如图所示的程序框图,则输出的a的值是()A.2 B.﹣C.﹣D.﹣28.若把函数y=sin(ωx﹣)的图象向左平移个单位,所得到的图象与函数y=cosωx的图象重合,则ω的一个可能取值是()A.2 B.C.D.9.设点P(x,y)在不等式组表示的平面区域上,则z=的最小值为()A.1 B.C.2 D.10.对于平面向量,,给出下列四个命题:命题p1:若>0,则与的夹角为锐角;命题p2:“||=||||”是“”的充要条件;命题p3:当,为非零向量时,“”是“||=|||﹣|||”的必要不充分条件;命题p4:若||=||,则||≥||.其中的真命题是()A.p1,p3B.p2,p4C.p1,p2D.p3,p411.已知直线l是曲线C1:y=x2与曲线C2:y=lnx,x∈(0,1)的一条公切线,若直线l与曲线C1的切点为P,则点P的横坐标t满足()A.0<t<B.<t<1 C.<t<D.<t<12.已知点M,N是抛物线y=4x2上不同的两点,F为抛物线的焦点,且满足∠MFN=135°,弦MN的中点P到直线l:y=﹣的距离为d,若|MN|2=λ•d2,则λ的最小值为()A.B.1﹣C.1+D.2+二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数则f(log32)的值为______.14.已知(3x+)(2x﹣)5的展开式中的各项系数和为4,则x2项的系数为______.15.已知在梯形ABCD中,AB∥CD,AD⊥AB,AB=2,AD=CD=1,将梯形ABCD沿对角线AC折叠成三棱锥D﹣ABC,当二面角D﹣AC﹣B是直二面角时,三棱锥D﹣ABC的外接球的表面积为______.16.设数列{a n}满足a n=,记S n是数列{a n}的前n项和,则S=______.三、解答题(本大题共5小题,共70分)17.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b﹣a)•cosC=c•cosA.(Ⅰ)求角C的大小;(Ⅱ)设y=﹣4sin2+2sin(C﹣B),求y的最大值并判断当y取得最大值时△ABC的形状.18.4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:喜欢读纸质书不喜欢读纸质书合计男16 4 20女8 12 20合计24 16 40(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).参考公式:K2=,其中n=a+b+c+d.下列的临界值表供参考:P(K2≥0.15 0.10 0.05 0.025 0.010 0.005 0.001k)k 2.072 2.706 3.841 5.024 6.635 7.879 10.82819.如图,四棱锥P﹣ABCD中,底面ABCD是平行四边形,平面PDC⊥平面ABCD,AC=AD=PD=PC,∠DAC=90°,M在PB上.(Ⅰ)若点M是PB的中点,求证:PA⊥平面CDM;(Ⅱ)在线段PB上确定点M的位置,使得二面角D﹣MC﹣B的余弦值为﹣.20.已知椭圆C; +=1(a>b>0)的离心率e=,过左焦点F1的直线与椭圆C相交于A,B两点,弦AB的中点坐标为(﹣,)(Ⅰ)求椭圆C的方程;(Ⅱ)椭圆C长轴的左、右两端点分别为D,E,点P为椭圆上异于D,E的动点,直线l:x=﹣4与直线PD,PE分别交于M,N两点,试问△F1MN的外接圆是否恒过x轴上不同于点F1的定点?若经过,求出定点坐标;若不经过,请说明理由.21.设函数f(x)=ln(x+1)﹣ax.(Ⅰ)当a=1时,求函数f(x)的最大值;(Ⅱ)设函数g(x)=(x+1)f(x)+a(2x2+3x),若对任意x≥0都有g(x)≤0成立,求实数a的取值范围.[选修4-1:几何证明选讲]22.如图,在△ABC中,CD是∠ACB的角平分线,△ACD的外接圆交BC于E点.(Ⅰ)证明:=;(Ⅱ)若2AD=BD=AC,求的值.[选修4-4:坐标系与参数方程选讲]23.在平面直角坐标系xOy中,以O为极点,x轴非负半轴为极轴建立极坐标系,取相同的长度单位,已知曲线C的极坐标方程为ρ=2sinθ,直线l的参数方程为(t为参数).(Ⅰ)写出曲线C的直角坐标方程和直线l的普通方程.(Ⅱ)若P(3,),直线l与曲线C相交于M,N两点,求|PM|+|PN|的值.[选修4-5:不等式选讲]24.已知函数f(x)=|2x+|+a|x﹣|.(Ⅰ)当a=﹣1时,解不等式f(x)≤3x;(Ⅱ)当a=2时,若关于x的不等式2f(x)+1<|1﹣b|的解集为空集,求实数b的取值范围.安徽省江南十校高考数学二模试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分。

安徽省“江南十校”2020届高三数学下学期4月综合素质检测试题理(含解析)

安徽省“江南十校”2020届高三数学下学期4月综合素质检测试题理(含解析)

s 1 2 3 4 1 1 1 1 ,i 5 5555 234 ,
s 1 2 3 4 5 1 1 1 1 1 ,i 6
55555 2345
,结束循环,
故输出
s=
1 5
(1
2
3
4
5)
1
1 2
1 3
1 4
1 5
3
137 60
43 60

故选:D.
【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.
1
1
3
A. 5
B. 3
C. 5
【答案】A
2 D. 3
【解析】
【分析】
列出所有可以表示成和为 6 的正整数式子,找到加数全部为质数的只有 3 3 6 ,利用古典
概型求解即可.
【详解】6 拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),
而加数全为质数的有(3,3), P1
1 A. 12
23 B. 60
11 C. 20
43 D. 60
【答案】D
【解析】
【分析】
根据框图,模拟程序运行,即可求出答案.
【详解】运行程序,
s 1 1,i 2
5

s 1 2 1 1 ,i 3
55 2

s 1 2 3 1 1 1,i 4 555 23 ,
s 1 2 3 4 1 1 1 1 ,i 5 5555 234 ,
【详解】因为弧长比较短的情况下分成 6 等分,
所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,
2 30 20
故导线长度约为 3
63(厘米).

2020年安徽省江南十校高考数学二模试卷(理科)(有答案解析)

2020年安徽省江南十校高考数学二模试卷(理科)(有答案解析)
(1)讨论函数 f(x)的单调性; (2)若函数 f(x)有两个零点,求 a 的取值范围
第 4 页,共 17 页
22. 在平面直角坐标系 xOy 中,直线 l 的参数方程为
为参数),在以原点 O 为极点,x
轴非负半轴为极轴的极坐标系中,圆 C 的方程为 ρ=-2cosθ (1)写出直线的普通方程和圆 C 的直角坐标方程; (2)若点 A 的直角坐标为(0,-2),P 为圆 C 上动点,求 PA 在直线 l 上的投影长的最小值
故选:C. 由已知利用同角三角函数基本关系式可求 sinA,由已知等式可求 tanC,可得 sinC 的值,利用三角函 数的定义可求 AC 边上的高. 本题主要考查了同角三角函数基本关系式,三角函数的定义,考查了转化思想,属于基础题.
7.答案:B
解析:解:根据题意,双曲线
的焦点在 x 轴上,其渐近线方程为 y=± x,
>6x-6 的 x 的取值范围是( )
A. (2,+∞)
B. (-∞,0)
C. (0,1)∪(2,+∞)
D. (-∞,0)∪(2,+∞)
二、填空题(本大题共 4 小题,共 20.0 分)
13. 学校现有高一学生 1500 名,在一年时间里,学生利用课余时间参加各种社会公益活动,据统计,
他们的累计时长 X(小时)近似服从正态分布 N(50,σ2),且 P(70>X>30)=0.7,则累计
挖去一个“中心三角形”(即以原三角形各边的中点为顶点的三角形),然后在剩下的小三角
形中又挖去一个“中心三角形”,我们用白色代表挖去的面积,那么黑三角形为剩下的面积(我
们称黑三角形为谢尔宾斯基三角形).在如图第 5 个大正三角形中随机取点,则落在白色区域

2020年安徽省江南十校综合素质检测数学理科试卷

2020年安徽省江南十校综合素质检测数学理科试卷

【理科数学第1页(共4页)】2020年安徽省“江南十校”综合素质检测理科数学考生注意:1. 本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟。

2. 答卷前,考生务必用0. 5毫米黑色签字笔将自己的姓名和座位号填写在答题卡上。

3. 考生作答时,请将答案答在答题卡上。

选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0. 5毫米黑色墨水签字笔在答题卡上 各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作 答无效。

...............................• ♦ •一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符 合题目要求的。

1. 已知复数z=(l-a) + (a 2-l)i(i 为虚数单位,Q >1),则n 在复平面内的对应点所在的象 限为A.第一象限B.第二象限C.第三象限D.第四象限 2. 已知集合 A= {招3;rVi+4} ,B=国充一8rr+7<0},则A. (-1,2)B. (2,7)C.(2,+8)D. (1,2)3. 某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形孤上正面等距安装7个发 彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计,已知扇形的半 径为30厘米,则连接导线最小大致需要的长度为 A. 58厘米B. 63厘米C, 69厘米D. 76厘米绝密★启用前姓名座位号(卒些卷上答题无效)4. 函数_/&)=舞|^在[-号竣]上的图象大致为5.若(l+a^)(l+x)5的展开式中丁2 ,工3的系数之和为一10,则实数“的值为A.-3B.-2 C ・_l【理科数学 第2页(共4页)】6. 已知 a == loga,A=ln 3.c=2 0,9!),则”,们-的大小关系为 A. b>c>aB. a>b>cC. c>a>bD. c>b>a7. 执行下面的程序框图•则输出S 的值为是A ——B —C —D — 12 - 60 20 608. ••哥徳巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质 数(素数)之和.也就是我们所谓的“1 + 1”问题.它是1742年由数学家哥德巴赫提出的,我国 数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做岀相当好的成绩.若将6拆成两个 正整数的和•则拆成的和式中.加数全部为质数的概率为 A. 4B ・! C.4 D ・ M b353条渐近线的距离之积为},则双曲线C 的离心率为(g+专)(口>0).给出下列判断: ① 若/(⑥)=l,f (Z2 )= —1,且01—卫2 |血=爪,则切=2;② 存在(0,2),使得/&)的图象右移言个单位长度后得到的图象关于),轴对称; ③ 若,(z )在[0,2归上恰有7个零点,则3的取值范围为借,釦; ④ 若 U )在[—言,号]上单调递增,则s 的取值范围为(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档