前方交会法自动计算
全站仪导线测量的方法
全站仪导线测量的方法全站仪是一种测量仪器,广泛应用于土木工程、建筑工程和道路工程等领域。
它可以同时测量水平角、垂直角和斜距,能够实现高精度的导线测量。
以下是全站仪导线测量的一般方法:准备工作:在正式开始测量之前,需要对全站仪进行准确的标定和校准,以保证测量结果的准确性。
同时,需要检查全站仪的电池电量和存储容量,确保设备正常运行。
点号设置:首先,在测量区域内选择一些适当的控制点,这些点的位置应该能够覆盖整个测量区域。
然后,在这些控制点上设置点号,可以使用标志物或者其他固定物体,并记录这些点号和点的位置信息。
仪器安装:将全站仪放置在一个平稳的基座上,并保持稳定。
一般而言,可以使用三角架或者工具箱等作为基座,确保全站仪的仰角和水平角是准确的。
测量方式:使用全站仪进行导线测量的方法有两种,即前方交会法和后方交会法。
其中,前方交会法是指通过测量起点点号、终点点号以及某一点的角度和斜距,计算出该点的位置坐标。
而后方交会法是在给定了起点坐标和终点坐标的情况下,通过测量某一点的角度和斜距,计算出该点的位置坐标。
前方交会法:首先,确定起点和终点,并将其点号输入全站仪。
然后,移动到起点站立,使用全站仪的目视镜准确对准终点,记录终点的坐标和测量的角度和斜距。
接着,移动到测量点并使用全站仪的目视镜准确对准起点和终点,记录测量点的坐标和测量的角度和斜距。
最后,根据测量的角度和斜距,使用测量方程计算出测量点的坐标。
后方交会法:在后方交会法中,首先需要确定起点和终点,并将其坐标输入全站仪。
然后,移动到测量点,并使用全站仪的目视镜准确对准起点和终点,记录测量点的角度和斜距。
最后,根据测量的角度和斜距,使用测量方程计算出测量点的坐标。
测量数据处理:在测量完成后,需要对测量数据进行处理和分析。
首先,检查测量数据的准确性和合理性,如果存在异常数据,则需要进行重新测量。
然后,根据测量数据计算出各个测量点的坐标,并绘制出相应的坐标图或者平面图。
房屋安全自动化监测方案(1)
房屋安全自动化监测方案(1)精品管理制度、管理方案、合同、协议、一起学习进步房屋安全自动化监测技术1.房屋安全监测及其必要性2. 常见房屋安全问题及其产生的原因2.1温度裂缝是由温度变化引起的变形裂缝,温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。
最常见的温度裂缝是在混凝土平屋盖房屋顶层两端的墙体上,如门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。
导致平屋顶温度裂缝的原因是,顶板的温度比其下的墙体高得多,而混凝土顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。
剪应力在墙体内的分布为两端较大,中间渐小,顶层大,下部小。
温度裂缝是造成墙体早期裂缝的主要原因。
这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。
2.2地基不均匀沉降随着地下空间的开展,以及地下水等较为复杂地质结构,导致地基不均匀沉降。
房屋表现在墙体中下部区域的斜裂缝。
建筑中部压力相互影响高于边缘处,且边缘处非荷载区地基对荷载区下沉有剪切阻力作用,故地基受到上部传递的压力时,地基反力在边缘区较高,引起地基的沉降变形呈凹形。
这种沉降使建筑物形成中部沉降大、端部沉降小的弯曲.结构中下部受拉,端部受剪,当端部的剪应力较大时,墙体由于剪力形成的主拉应力破裂,裂缝通过窗口的两个对角向沉降较小的方向倾斜。
垮塌的梁带动周围预制板一起下落,预制板的下落导致其相邻的梁失去侧向支撑,在地震作用下向掉落预制板一侧发生偏移;发生侧移的梁又导致其上下的墙体损毁、倒塌、墙体垮塌后,导致其他墙体压力增大,引发结构连续倒塌后,出现大面积垮塌,另外,倒塌梁下部和门窗角部开裂较严重。
梁下部开裂是由于梁在水平力作用下有发生转动的趋势,会导致周围砖墙开裂;而门窗角部开裂是由于角部应力集中导致。
墙体中下部区域的水平裂缝。
对于深基坑水平位移监测方法的探讨
对于深基坑水平位移监测方法的探讨摘要:在深基坑开挖的施工过程中,采用何种方法进行水平位移监测,既能够保证精度,又可节省成本,是基坑施工监测的关键问题之一。
本文讨论了四种常用的支护结构顶部水平位移监测方法,并将轴线法、单站改正法、前方交会法与测小角法进行精度比较,得出:测小角法与其他方法相比,计算简单、操作方便、监测精度较高,是目前基坑监测中运用较广泛的一种方法。
关键词:深基坑水平位移监测轴线法测小角法单站改正法前方交会法中图分类号: tv551.4 文献标识码: a 文章编号:支护结构水平位移监测通常是测量基坑边线沿垂直于基坑边的方向的水平位移。
如何根据基坑形状、施工现场条件等选择水平位移监测方法具有重要的现实意义。
有关这方面的研究成果比较多,传统的基坑水平位移监测,一般是采用经纬仪进行观测。
近年来,随着仪器设备的发展,基坑水平位移监测方法也越来越先进。
如上所述,基坑水平位移监测方法很多,精度高低也不相同,但实际工程中量测方法的精度是人们普遍关心的问题,能够达到合适的精度是保证施工安全的重要条件,所以开展相关的研究很重要。
本文主要对轴线法、测小角法、前方交会法、单站改正法四种水平位移监测方法进行精度分析,并通过实际应用验证结果。
从而为基坑水平位移监测提供科学、正确的参考依据。
1.几种水平位移监测方法1.1轴线法沿基坑的一条直线边建一条轴线并在直线边上布设水平位移点,轴线法不需测角也不需测距,只需将轴线用经纬仪投射到位移点的旁边,并用小钢尺等工具分别量取水平位移监测点这条轴线的距离。
通过两次偏距的比较来计算水平位移量。
所量取的偏距的精度主要受仪器对中误差、轴线照准误差、读数照准误差、大气折光影响的综合影响,其位移量精度估算公式计算。
1.2测小角法小角度法与轴线法相类似,亦是沿基坑的每一直线边建立一条轴线即一个固定方向,通过测轴线即固定方向与测站至位移点方向的夹角,并测得测站至位移点的距离,从而计算出位移点离轴线的偏距。
基坑位移测量
基坑位移监测方法布置观测控制网基坑变形观测控制网常由三种点、二种等级的网组成。
变形监测的测量点,一般分为基准点、工作点和变形观测点三类。
基准点——墙顶位移监测基准点的埋设应符合国家现行标准《建筑变形测量规范》JGJ8的有关规定,设置有强制对中的观测墩,并采用精密的光学对中装置,对中误差不大于0.5mm。
沉降观测的基准,它应埋设在沉降影响范围以外,距沉降观测点20~100m,观测方便,且不受施工影响的地方。
在建筑区域中,点位与邻近建筑物的距离应大于建筑物基础最大宽度的2倍,其标石埋深应大于邻近建筑物基础的深度。
为了相互校核并防止由于某个基准点的高程变动造成差错,一般至少埋设三个基准点。
以BMA 表示水准点A.。
基准点之间的高差采用高精度数字水准仪(SDL30M)和精密水准测量方法进行测定,将基准点组成闭合水准路线,其闭合差不得超过±0.5mm(n为测站数)。
水准点的高程自国家或城市水准点引测,或者假定。
工作点——是基准点和变形观测点之间的联系点。
当基准点距观测点太远或通视条件不好,侧量不便时,要在被研究对象附近设置工作点。
平时从工作点出发测量观测点相对于工作点的变形量。
要求在观测期间保持点位稳定,由基准点定期对其进行检测。
变形观测点——观测点应设置在基坑边坡混凝土护顶或围护墙顶(冠梁)上,安装时采用铆钉枪打入铝钉,或钻孔埋深膨胀螺丝,涂上红漆作为标记,有利于观测点的保护和提高观测精度。
墙顶位移监测点应沿基坑周边布置,监测点水平间距不宜大于20m。
一般基坑每边的中部、阳角处变形较大,所以中部、阳角处宜设测点。
为便于监测,水平位移观测点宜同时作为垂直位移的观测点。
图1 墙顶位移点的布设墙顶水平位移和竖向位移是基坑工程中最直接的监测内容,通过监测墙顶位移,对反馈施工工序,并决定是否采用辅助措施以确保支护结构和周围环境安全具有重要意义。
对同一监测项目,监测时宜符合下列要求:♦采用相同的观测方法和观测路线。
前方交会
10.3.1 测量原理图10-4所示为双曲线拱坝变形观测图。
为精确测定等观测点的水平位移,首先在大坝的下游面合适位置处选定供变形观测用的两个工作基准点E和F;为对工作基准点的稳定性进行检核,应根据地形条件和实际情况,设置一定数量的检核基准点(如C、D、G等),并组成良好图形条件的网形,用于检核控制网中的工作基准点(如E、F等)。
各基准点上应建立永久性的观测墩,并且利用强制对中设备和专用的照准觇牌。
对E、F两个工作基点,除满足上面的这些要求外,还必须满足以下条件:用前方交会法观测各变形观测点时,交会角(见图10-4)不得小于,且不得大于。
图10-4 拱坝变形观测图变形观测点应预先埋设好合适的、稳定的照准标志,标志的图形和式样应考虑在前方交会中观测方便、照准误差小。
此外,在前方交会观测中,最好能在各观测周期由同一观测人员以同样的观测方法,使用同一台仪器进行。
图10-5 角度前方交会法测量原理利用前方交会法测量水平位移的原理如下:如图10-5所示,A、B两点为工作基准点,P为变形观测点,假设测得两水平夹角为,则由A、B两点的坐标值和水平角观测值、可求得P点的坐标。
从图10-5可见:(10-3a)(10-3b)其中可由A、B两点的坐标值通过“坐标反算”求得,经过对(10-3)式的整理可得:(10-4a)(10-4b)第一次观测时,假设测得两水平夹角为和,由(10-4)式求得P点坐标值为,第二次观测时,假设测得的水平夹角为和,则P点坐标值变为,那么在此两期变形观测期间,P点的位移可按下式解算:,,P点的位移方向为:。
10.3.2 前方交会法的种类前方交会法有三种:测角前方交会法、测边前方交会法、边角前方交会法。
其观测值和观测仪器见表10-5。
表10-5 前方交会法的种类种类测角交会法测边交会法边角交会法观测值,D1,D2,,D1,D2观测仪器精密经纬仪光电测距仪精密全站仪10.3.3 测角前方交会法误差分析下面以测角前方交会法为例来说明前方交会法测定观测点水平位移的误差来源。
角度前方交会法原理
角度前方交会法原理角度前方交会法是一种基本的测量方法,主要用于确定某一点的位置,特别是在野外测量和工程建设中。
该方法利用三角形相似性原理,将测量和计算过程分解为若干个简单的步骤,从而得到准确的测量结果。
本文将对角度前方交会法的原理、步骤和应用进行详细讲解。
角度前方交会法的原理角度前方交会法是基于三角形相似性原理的建立的。
三角形相似性原理指的是两个三角形的对应角度相等,对应边成比例关系。
在以下的图形中,三角形 ABC 和 DEF 相似,因为∠ABC =∠DEF,∠ACB =∠DFE和∠BAC =∠EDF。
与BC、AC、DC、EF、DF和DE相似的边成比例,即,BC/EF = AC/DF = DC/DE利用三角形相似性原理,可以得到角度前方交会法的基本原理:在已知两个点的位置和与这些点的连线所成夹角的情况下,可以测量出另外一个点的位置。
角度前方交会法的步骤角度前方交会法的测量可以分为以下步骤:第一步:在地面上确定两点的位置,并测量两点之间的距离。
这些点可以是明显的位置、桩点、或者标志物。
必须确认这些点的位置是精确的,以确保后续步骤的准确性。
第二步:测量这两点之间的夹角(或者方位角)。
这可以通过使用方位仪或者经纬仪测量得出。
如果使用经纬仪,则需要确定两点之间的经度和纬度,并计算方位角。
第三步:在第一点位置处测量与第一条线相交的第二条线的夹角(或者方位角),并测量与第二点位置的连线所成的夹角(或者方位角)。
记住将仪器调整到正确的方向上,确保夹角或者方位角的准确性。
第四步:从两个已知点的位置向前方测量出第三条线。
可以使用三角板或者望远镜或者其他测量仪器来测量这条线。
第五步:将第三条线的长度和与前两条线相交的夹角输入计算器。
计算器将使用三角形相似性原理来计算出第三条线相对于第一个点的位置。
确定了第三条线的位置之后,就可以测量和计算与该点相交的其他线。
角度前方交会法的应用角度前方交会法主要应用于建筑、土木工程和地理学中。
前方交会法
前方交会法.水平位移监测实验要求1、实验仪器:全站仪1台;反射棱镜2把;脚架3个;铁钉和铁锤。
2、实验场地:五教操场。
3、各组任意选取2个点A 、B 作为工作基点,在A 、B 点前方选择一点P 作为水平位移观测点,模拟第一次水平位移观测,AP 、BP 交会成的角度应在60°~ 120°之间。
4、在A 点架设全站仪,指定A 点坐标为(1000,1000)。
在B 点、P 点分别架设棱镜,均要求对中整平。
利用全站仪观测得到AP 、AB 之间的水平夹角α。
5、在B 点架设全站仪,测出B 点坐标为(x B ,y B )。
在A 点、P 点分别架设棱镜,均要求对中整平。
利用全站仪观测得到BA 、BP 之间的水平夹角β。
6、在P 点附近选择一点P1,模拟P 点发生水平位移后的位置。
模拟第二次水平位移观测7、在B 点架设全站仪。
在A 点、P1点分别架设棱镜,均要求对中整平。
利用全站仪观测得到BA 、BP1之间的水平夹角β1。
8、在A 点架设全站仪。
在B 点、P1点分别架设棱镜,均要求对中整平。
利用全站仪观测得到AP1、AB 之间的水平夹角α1。
9、将A 、B 点坐标,α、β、α1、β1分别填入表格中,根据前方交会法原理和计算方法,进行内业计算,得到P 和P1点坐标值,计算两点的坐标差值,得到P 点的水平位移偏移量。
10、各组上交观测成果。
模拟第一次水平位移观测计算成果表图 形 与 计 算 公 式 βαβαβαtan tan tan tan )(tan tan +-++=A B B A P y y x x xβαβαβαtan tan tan tan )(tan tan +-++=B A B A P x x y y yx A y A α tan α x B y B β tan β x A -x By B -y A(1)= tan α×tan β (2)=tan α+tan β(3)=x A tan α (6)=y A tan α (4)=x B tan β (7)=y B tan β(5)=(y B -y A )×(1) (8)=(x A -x B )×(1)X P =[(3)+(4)+(5)]÷(2)Y P =[(6)+(7)+(8)]÷(2)模拟第二次水平位移观测计算成果表图 形 与 计 算 公 式1tan 1tan 1tan 1tan )(1tan 1tan 1βαβαβα+-++=A B B A P y y x x x1tan 1tan 1tan 1tan )(1tan 1tan 1βαβαβα+-++=B A B A P x x y y yx A y A α1 tan α1 x B y B β1 tan β1 x A -x B y B -y A(1)= tan α1×tan β1 (2)= tan α1+tan β1(3)=x A tan α1 (6)=y A tan α1 (4)=x B tan β1 (7)=y B tan β1 (5)=(y B -y A )×(1) (8)=(x A -x B )×(1) X P1=[(3)+(4)+(5)]÷(2)Y P1=[(6)+(7)+(8)]÷(2)。
(课CL)-交会测量法
第五节 交会定点
交会定点通常称为交会法, 交会定点通常称为交会法,是加密平面控制点的一种 方法。 方法。这种方法是根据角度和距离测量的成果解算出以控 制点的平面直角坐标。 制点的平面直角坐标。 包括:前方交会、侧方交会、后方交会等。 包括:前方交会、侧方交会、后方交会等。
一、前方交会法
P
前方交会法: 前方交会法:是在两 个已知控制点上, 个已知控制点上,分别 对待定点观测水平角, 对待定点观测水平角, 然后根据两已知控制点 的坐标值和观测角值, 的坐标值和观测角值,
对于全站仪后方交会法应该注意什么? 对于全站仪后方交会法应该注意什么?
全站仪放样采用后方交会法为何误差偏大,如何克服? 全站仪放样采用后方交会法为何误差偏大,如何克服? ?
当测站点与习已知点位于同一圆周上时,测站点的坐标在某些情况下是 当测站点与习已知点位于同一圆周上时, 无法确定的。 无法确定的。 当已知点位于同一圆周上时,可采取如下措施: 当已知点位于同一圆周上时,可采取如下措施: 1、将测站点尽可能地设在由已知点构成的三角形有中心上 ; 2、增加一个不位于圆周上的已知点; 增加一个不位于圆周上的已知点; 3、至少对其中一个已知点进行距离测量 当已知点间的距离一定,测 当已知点间的距离一定, 站与已知点之间的距离越远则构成的夹角就越小,已知点就容易位于同 站与已知点之间的距离越远则构成的夹角就越小, 一圆周上。若已知点间的夹角过小将无法计算出测站点的坐标 一圆周上。
利用坐标反算公式计算AB BC坐标方位角 AB、 坐标方位角α ⑴ 利用坐标反算公式计算 AB 、 BC 坐标方位角 αAB 、 和边长a αBC和边长a、c。
αab =arctan
2 ab
yb−ya x −xa b
交会测量(前方、后方、侧方交会测量)
前方交会法1.前方交会法定义自两已知坐标之三角点上,观测一欲测点之水平角,以推算其坐标位置,称之前方交会法。
图-1,前方交会法。
图-2,前方交会点。
图-1 前方交会法图-2 前方交会点2.前方交会点此种补点(前方交会点),通常为无法设置仪器之测点,如塔尖、避雷针、烟囱等等。
3.前方交会法适用场合:A.具两已知三角点。
B.三点(两已知点及欲测点)间可以通视。
C.两已知点可以架设仪器,但欲测点不方便架设仪器。
D.有数个欲测点待测定时。
图-3,为数个欲测点图-3 数个欲测点4.前方交会法施作步骤:A.经纬仪分别整置于A、B 两三角点上。
B.照准P 点,分别测得α、β两水平角。
C.以计算方法,求P 点坐标。
图-4,为量测角度。
图-4 量测角度5.已知、量测、计算之数据:A.已知:xA、yA、xB、yB。
B.量测:α、β。
C.计算:xP、yP。
图-5,为前方交会法相关角度位置图-5 前方交会法相关角度位置6.限制:α、β、γ三内角均必须介于30°~120°之间。
图-6 ,为角度限制。
图-6 为角度限制7.计算法前方交会法计算方法有三种:A.三角形法; B.角度法; C.方位角法8.三角形法19()()3891802890--++=---= βφφαφφABBP AB AP ()()()()()689cos sin cos 589sin cos sin 48922222---=-==---=-==---+-=∆+∆= ABAB AB AB AB AB A B AB A B A B y y AB ABy y x x AB ABx x y y x x AB y x AB φθφφθφ()()789sin sin sin sin sin sin --+===βαβγβγβAB AB AP ABAP γβαABP AB AB y y y -=∆ABNB.求方位角ψAP 、ψBP :C.求各邊邊長:①AB 邊長:有三種方法可求得②AP 邊長:()[](βαβαγγβα+=+-==++sin 180sin sin 180γβαsin sin sin AB AP BP ==20()()1289cos 1189sin --+=--+= BPB P BP B P BP y y BP x x φφ()()889sin sin sin sin sin sin --+===βααγαγαAB AB BP ABBP ()()1089cos 989sin --+=--+= APA P AP A P AP y y AP x x φφAPAP l φcos A Py yPBy y BPy y l y BP x x l x yy y x x x BP BP BP B P BP BP B P B P -=∆==-=∆=-=∆+=∆+=φφφφcos cos sin sin ③BP 邊長:D.求P 座標x P 、y P :①由A 點求P 點②由B 點求P 點9.角度法A.由上法直接代入:將(9-8-2)式與(9-8-7)式代入(9-8-9)式中,可得:yy y x x x A P A P ∆+=∆+=APy y l y AP x x l x AP AP AP AP AP AP -=∆=-=∆=φφcos sin21()()()1389sin sin sin sin ---++=+= αφβαβφAB A APA P AB x AP x x ()αφαφαφsin cos cos sin sin AB AB AB -=-()()()1489cos sin sin cos ---++=+= αφβαβφAB A APA P AB y AP y y ()αααφsin cos sin ABy y AB x x AB A B AB ---=-()()()()()1589sin sin sin sin sin cos --+--+-+= βαβαβαβαA B A B A P y y x x x x ()()()()()1789cot cot cot sin cos sin 1689tan tan tan sin cos sin 1cot cot 1tan tan sin cos sin cos cos sin sin cos sin --+=+--+=++=+=+=+ αβαβαβαββαβαβααββαβαβαβαβαβα或將(9-8-2)式與(9-8-7)式代入(9-8-9)式中,可得:B.化簡x P :由和差化積公式:將(9-8-5)式與(9-8-6)式代入,可得:再之代入(9-8-13)式中,可得:由和差化積公式:化簡下式,可得:()βαβαβαcos cos cos sin sin +=+22()2289cot cot cot cot --++-+=βααβBA B A P x x y y y ()()()()ABPB PA APBA BP A B A P APA B A P y y y y y y x x φφφφφφφcos sin cos sin tan ---+=-+=()()()()2089tan tan tan tan tan tan tan tan tan tan tan tan tan --+--+=+--+-+= βαβαβαβαβαβαβA B B A P A B A B A P y y x x x y y x x x x ()()()()()1989cot cot sin sin sin 1889tan tan tan tan sin sin sin tan 1tan 1sin sin sin cos cos sin sin sin sin --+=+--+=++=+=+ βαβαβαβαβαβαβααββαβαβαβαβα或()()()2189cot cot cot cot cot cot 1cot cot cot --+-++=+--+-+= βααββαβααBA B A P A B A B A P y y x x x y y x x x x 同理,化簡下式,可得:將(9-8-16)式與(9-8-18)式代入(9-8-15)式中,可得:或將(9-8-17)式與(9-8-19)式代入(9-8-15)式中,可得:C.化簡y P :(推演過程省略)D.角度法所得公式(9-18-21)式與(9-18-22)式,適於計算機使用,唯應注意:左A ,右B ;左α,右β。
边坡监测讲义
2、边坡工程监测方法
2.1 宏观地质观测法
用常规的地质路线调查方法对崩塌、滑坡的宏观变形迹象和与其有关的 各种异常现象进行定期的观测、记录,以便能随时掌握崩塌、滑坡变形动态 及发展趋势,达到科学预报的目的。
该方法具有直观性、动态性、适应性及实用性强的特点,不仅适用于各 种类型的崩塌滑体不同变形发展阶段的监测,而且监测内容比较丰富、面广 ,获得的前兆信息直观可靠,可信度高。结合仪器监测资料综合分析,可初 步判定崩塌滑体所处的变形阶段及中长短期滑动趋势,作为崩塌、临滑的宏 观地质预报判据。其方法简单经济,便于掌握和普及推广应用,适合群测群 防。
宏观观测法对于发生病害的边坡进行观测较为适合,对崩塌和滑坡的宏 观变形迹象和与其有关的各种异常现象进行定期的观测、记录,从宏观上掌 握崩塌、滑坡的变形动态和发展趋势。
2、边坡工程监测方法
2.2 简易观测法
通过人工观测边坡工程中地表裂缝、地面鼓胀、沉降、坍塌
、建筑物变形特征(发生和发展的位置、规模、形态、时间等)及 地下水位变化、地温变化等现象,也可在边坡体关键裂缝处埋设 骑缝式简易观测桩;在建(构)筑物(如房屋、挡土墙、浆砌块石沟 等)裂缝上设置简易玻璃条、水泥砂浆片、贴纸片;在岩石、陡壁 面裂缝处用红油漆划线作观测标记; 在陡坎(壁)软弱夹层出露处 设置简易观测标桩等,定期用各种长度量具测量裂缝长度、宽度 、深度变化及裂缝形态、开裂延伸的方向。
日本坂川株式会社生产的SRL型滑坡自动记录仪,不用机械 纸带记录,一台记录装置可带12个设在滑坡内外的记录仪, 滑坡位移在室内自动记录。自动记录装置可用于危险性较大、 人员不宜接近的情况。
近年来我国也研究制造了由单板机控制的自动记录仪。中铁西 北科学研究院研制的KHB-1型滑坡自动记录和报警器,可带16 个探头,既可测位移,又可测雨量和水位,还能自动报警,能 分出位移是拉伸还是压缩,而且有较强的抗干扰性能,曾在电 气化铁路两侧滑坡上使用,性能良好。记录仪距测点间距离可 达600-800m(即电缆的长度),可以交、直流电两用。
前方交会法原理
前方交会法原理
嘿,朋友们!今天咱来聊聊前方交会法。
这前方交会法啊,就像是一个神奇的魔法工具,能帮咱解决好多测量上的难题呢!
你想想看,要是咱面前有个大大的目标,就像一个神秘的宝藏,咱得知道它的确切位置,那咋整呢?这时候前方交会法就派上用场啦!它就像个聪明的导航,能指引咱找到那个宝藏的所在。
比如说,咱在这儿设两个观测点,就像两只眼睛一样,从不同的角度去盯着那个目标。
然后通过测量角度啊什么的,就能计算出目标的位置啦!这多有意思啊,就好像我们是侦探,通过一点点线索去揭开谜底。
你说这是不是很神奇?就好像我们在玩一个解谜游戏,一点点地拼凑出答案。
而且这前方交会法可实用了,在好多地方都能派上大用场呢!比如说建房子的时候,要确定房子的位置;或者是修路的时候,得知道路该往哪儿修。
它就像一个默默工作的小能手,不声不响地就把重要的事情给搞定了。
咱再想想,要是没有这前方交会法,那可咋办呀?那好多事情不就变得一团糟啦?就好像没有指南针的航海,那不得迷失方向呀!所以说呀,这前方交会法可真是太重要啦!
它虽然看起来挺简单的,不就是测测角度嘛,但这里面的学问可大着呢!要是不小心测错了一点,那结果可能就差之千里啦!这就好像做饭一样,调料放多一点少一点,味道可就完全不一样喽!
咱在使用前方交会法的时候,可得仔细认真,不能马虎。
就像对待自己最宝贝的东西一样,小心翼翼地去操作。
而且还得有耐心,不能着急,得一步一步慢慢来。
总之呢,前方交会法就是这么个神奇又实用的东西,咱可得好好利用它,让它为我们的生活和工作带来便利。
它就像我们的好帮手,默默地在那里为我们服务。
所以啊,大家可别小瞧了它哟!这就是我对前方交会法的理解,你们觉得呢?。
三角高程测量方法与误差控制指南
三角高程测量方法与误差控制指南三角高程测量是地理测量中常用的一种方法,通过测量目标地点与测量点的角度差异,计算出目标地点的高程。
在地理测绘、土地规划、建筑设计等领域中,三角高程测量具有重要的应用价值。
本文将介绍三角高程测量的主要方法及误差控制指南。
1. 三角高程测量方法1.1 前方交会法前方交会法是三角高程测量中最为常用的方法之一。
它基于测量点、目标点和参考点之间的角度关系,通过测量角度来计算高程。
在实际操作中,先选择合适的参考点,测量测量点和目标点与参考点之间的角度,再结合已知的基线长度,利用三角公式求解目标点的高程。
此方法简便易行,适用于小范围的测量。
1.2 三点测高法三点测高法是一种高精度的三角高程测量方法,适用于大范围的测量。
它利用多个参考点和观测点之间的角度关系,通过多次观测求解目标点的高程。
在实际操作中,需要选择至少三个参考点,利用三角公式计算出目标点与不同参考点之间的高程差,再取平均值作为目标点的高程。
此方法具有较高的精度,但操作复杂,适用于需要高精度测量的场合。
2. 误差控制指南2.1 观测误差控制观测误差是三角高程测量中最主要的误差来源之一。
为了保证测量结果的准确性,需要采取一系列措施来控制观测误差。
首先,应选择合适的观测仪器和设备,确保其精度符合要求。
其次,应避免在不稳定的气象条件下进行观测,如大风、降雨等天气。
此外,还应加强对观测仪器的维护与管理,保证其正常运行。
2.2 控制网设计控制网的设计对三角高程测量的精度和可靠性具有重要影响。
在设计控制网时,应根据实际测量的要求和场地条件进行合理布局。
首先,需要选择合适的观测点和参考点,保证其分布均匀、密度适宜。
其次,需要考虑地形和地貌对控制点的影响,尽量选择平坦、高程变化不大的位置作为控制点。
此外,还应合理确定控制网的形状和大小,以满足不同测量目的的需求。
2.3 数据处理与分析数据处理与分析是三角高程测量中不可或缺的环节。
在进行数据处理时,应注意对观测数据的筛查与校正,将异常值和误差数据予以排除。
测量学6小地区控制测量
二、国家控制 网的概念
为了统一全国各地区的测量工作,必须进行全国性的 控制测量,以建立国家控制网,供整个国民经济规划 和国防建设等使用。国家控制网分平面控制网和高程 控制网。
国家平面控制网
国家平面控制网主要是采用三角测量方法建立的,即 在全国范围内将控制点组成一系列的三角形,通过测 定所有三角形的内角,推算出各控制点的坐标。国家 控制网也是按照“由高级到低级、由整体到局部”的 原则布设的。国家平面控制网按其精度可分为一、二、 三、四等四个等级。
根据坐标方位角的定义,它是 从坐标轴北端开始顺时针旋转 至某边的水平角。因此有相同 端点的两条边,右侧边的坐标 方位角就等于左侧边的坐标方 位角加上两边之间的夹角,同 一条边的正反方位角相差180°。 即沿导线前进方向:
1
4
上式中包含具相同端点两条边 的方位角关系以及正反方位角 的关系。
2
3
5
α前=α后-180°+β左 =α后+180°-β右。
(四) 起始边方位角的测定
与高级已知点连接的导线,因有已知边方 位角,只需观测连接角便可以推算各边的 方位角,然后推算各点的坐标。对于不与 高级已知点相连接的闭合导线,则可用罗 盘仪测定一条起始边的磁方位角,便可推 算其他各边的方位角,并推算各点的坐标。
(五) 导线测量记录
导线测量的外业记录有规定的表格。
二、 经纬仪附合导线计算 附合导线计算角度闭合差和坐标增量闭合差的公式
不同。 (一) 角度闭合差的计算与调整
附合导线的角度闭合差为从一已知边方位角出发, 使用观测角推算至另一条已知边,推算方位角与已知 方位角之差。 (二) 坐标方位角的推算
推算出的已知边的坐标方位角应与已知值相同,以 此作为计算的检核。 (三) 坐标增量的计算 根据导线各边的方位角和边长,计算各坐标增量,计 算方法与闭合导线相同。
摄影测量考试试题及详细答案
摄影测量考试试题及详细答案1摄影测量学 2航向重叠3单像空间后⽅交会 4相对⾏⾼5像⽚纠正 6解析空中三⾓测量7透视平⾯旋转定律 8外⽅位元素9核⾯ 10绝对定向元素⼀、填空1摄影测量的基本问题,就是将_________转换为__________。
2物体的⾊是随着__________的光谱成分和物体对光谱成分固有不变的________、__________、和__________的能⼒⽽定的。
3⼈眼产⽣天然⽴体视觉的原因是由于_________的存在。
4相对定向完成的标志是__________。
5光束法区域⽹平差时,若像⽚按垂直于航带⽅向编号,则改化法⽅程系数阵带宽为_______,若按平⾏于航带⽅向编号,则带宽为_________。
三、简答题1两种常⽤的相对定向元素系统的特点及相对定向元素。
2倾斜位移的特性。
3单⾏带法相对定向后,为何要进⾏⽐例尺归化?为何进⾏?4独⽴模型法区域⽹平差基本思想。
5何谓正形变换?有何特点?四、论述题1空间后⽅交会的结算步骤。
2有三条航线,每条航线六张像⽚组成⼀个区域,采⽤光束法区域⽹平差。
(1)写出整体平差的误差⽅程式的⼀般式。
(2)将像⽚进⾏合理编号,并计算带宽,内存容量。
(3)请画出改化法⽅程系数阵结构简图。
A卷答案:⼀、1是对研究的对象进⾏摄影,根据所获得的构想信息,从⼏何⽅⾯和物理⽅⾯加以分析研究,从⽽对所摄影的对象本质提供各种资料的⼀门学科。
2供测图⽤的航测相⽚沿飞⾏⽅向上相邻像⽚的重叠。
3知道像⽚的内⽅位元素,以及三个地⾯点坐标和量测出的相应像点的坐标,就可以根据共线⽅程求出六个外⽅位元素的⽅法。
4摄影瞬间航摄飞机相对于某⼀索取基准⾯的⾼度。
5将中⼼投影转换成正射投影时,经过投影变换来消除相⽚倾斜所引起的像点位移,使它相当于⽔平相⽚的构象,并符合所规定的⽐例尺的变换过程。
6是将建⽴的投影光束,单元模型或航带模型以及区域模型的数字模型,根据少数地⾯控制点,按最⼩⼆乘法原理进⾏平差计算,并求加密点地⾯坐标的⽅法。
前方交汇法
一岸交会法
两岸交会法
步骤
方法一:一岸交会法
G
E
AEC ,AFC 一般 要求为90 150
A α A` F β α ` C
d1
θ φ
B
β C` ` d2
一岸交会
1
一岸交会用来间接测定墩台中心的方法,常用于地形复 杂或深水桥梁的墩台定位。据上图可知定位步骤如下:
B
β后视控制点A,将 度盘安置为αDA; 2 、根据测设数据表 , 转动照准部至度盘读 数 为 αDi 得 到 D-i 方向; 3、同样方法得到 C-i 方向,两条视线的交 点处打桩,钉设出 i 号墩台中心位置;然后 在桥轴线上检查各墩 台位置
C
i
A
αi
D
1 、首先测出两基线的长度 d1 与 d2,并测出 θ与φ 的值。
2、根据控制桩的里程及桥墩里程算出 BE长度, 即可用三角函数算出α、β角的值。
3、将三台经纬仪分别置于A、B、C三点,根据α、β角 就可交出桥墩E的中心位置。
方法二:两岸交会
两岸交会(前提): 需要在河的两岸布设 平面控制网, 常用于 桥墩位置无法直接丈 量,或也不便于架设 反光镜时。
G C
AEC一般要求
E
β
60 110
A B
两岸交会
1
B
βi
两岸交会法的基本原理
C
:
根据控制点坐标和
墩台坐标,反算交会放
样元素αi、βi ,在相 应控制点上安置仪器并 后视另一已知控制点, 分别测设水平角 αi 、
i
βi ,得到两条视线的
交点,从而确定墩台中 心的位置。
水平位移几种监测方法的分析和比较
水平位移几种监测方法的分析和比较【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。
【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。
但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。
水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。
另外还有极坐标法以及一些困难条件下的水平位移观测方法。
视准线法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。
另外此方法还受到大气折光等因素的影响。
优点:视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。
不足:对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。
当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。
测小角法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。
沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。
在B水平位移观测中误差的公式,表明:①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽略不计,采用钢尺等一般方法量取即可满足要求;②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪器或适当增加测回数来提高观测度;③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前提下,可以使用精度较低的仪器,以降低观测成本。
经纬仪前方交会法的原理
经纬仪前方交会法的原理
经纬仪前方交会法是一种测量方法,用于确定一个点的坐标,其原理基于三角
测量和测量仪器的使用。
该方法需要使用经纬仪和测距仪来测量目标点与两个已知点的夹角和距离。
首先,在地面上选取两个已知坐标的点,分别记作A和B,并将其坐标记录下来。
然后,将经纬仪朝向目标点,并根据测量仪器上的角度刻度,测量出目标点与
A点和B点之间的角度,分别记作α和β。
接下来,在地图上将A点和B点相连,并在连接线上按照已知距离的比例将
线段AB延伸出来,以确定目标点C的近似位置。
然后,根据已知距离和测得的角度,使用正弦定理计算出目标点与A点和B点之间的距离AC和BC。
最后,通过测距仪测量目标点与A点和B点之间的实际距离,将其与计算得
出的距离进行比较,进行精确校正,得出目标点的准确坐标。
经纬仪前方交会法的原理基于三角形的几何原理和测量仪器的使用。
通过测量
角度和距离,结合地图上已知的点坐标,可以计算出目标点的坐标。
这种方法在土地测量、地图制作和导航定位中得到广泛应用,能够快速准确地确定目标点的位置。
测量铁四院闭合导线计算模板
测量铁四院闭合导线计算模板第一章:引言在工程测量中,铁四院闭合导线计算是一项非常重要的任务。
它可以用来确定测量点的位置和测量误差,以及验证整个测量系统的精度和可靠性。
因此,本文将介绍铁四院闭合导线计算的模板和相关计算方法。
第二章:铁四院闭合导线计算模板铁四院闭合导线计算模板是一种计算工具,可用于计算闭合导线测量中的各种参数。
它包括以下几个部分:1. 测站表:列出每个测站的编号、坐标和高程等基本信息。
2. 观测数据表:记录每个测站之间的观测数据,包括距离、方位角和垂直角等。
3. 坐标计算表:根据观测数据和已知测站坐标,计算每个未知测站的坐标和高程。
4. 段误差表:计算每个测段的误差,包括观测误差和计算误差等。
5. 总误差表:计算整个闭合导线测量的误差,包括粗差和平差后的误差等。
第三章:铁四院闭合导线计算方法铁四院闭合导线计算的基本方法分为前方交会法和后方交会法两种。
1. 前方交会法:在前方交会法中,先测量出所有测站的坐标和高程,再用正反算法计算出每个测站之间的距离、方位角和垂直角等观测数据,最后根据观测数据和已知测站坐标,计算每个未知测站的坐标和高程。
2. 后方交会法:在后方交会法中,先测量出所有测站之间的距离、方位角和垂直角等观测数据,然后用正反算法计算出每个测站的坐标和高程,最后进行平差,得出精确的测量结果。
第四章:总结铁四院闭合导线计算是一项非常重要的工作,它可以用来验证整个测量系统的精度和可靠性。
本文介绍了铁四院闭合导线计算的模板和方法,希望可以为工程测量人员提供一些帮助。
同时,我们也需要不断学习和探索新的测量方法和技术,以满足不断变化的工程测量需求。