广东省广州市海珠区中山大学附属中学2020-2021学年九年级上学期数学期中试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省广州市海珠区中山大学附属中学2020-2021学年九年级上学期数学期中
试卷
一、单选题(共10题;共20分)
1.一元二次方程x2﹣2x+3=0的一次项和常数项分别是()
A. 2和3
B. ﹣2和3
C. ﹣2x和3
D. 2x和3
2.平面直角坐标系内一点P(﹣4,3)关于原点对称的点的坐标是()
A. (3,﹣4)
B. (4,3)
C. (﹣4,﹣3)
D. (4,﹣3)
3.二次函数y=(x+2)2-3的顶点坐标是()
A. (2,-3)
B. (-2,-3)
C. (2,3)
D. (-2,3)
4.如图,将△ABC绕点C按逆时针方向旋转45°后得到△A′B′C′,若∠A=45°,∠B′=100°,则∠BCA′的度数是()
A. 10°
B. 15°
C. 20°
D. 25°
5.在半径为4的圆中,垂直平分半径的弦长为()
A. B. C. D.
6.已知一元二次方程x2﹣2x﹣a=0,当a取下列值时,使方程无实数解的是()
A. ﹣2
B. ﹣1
C. 0
D. 1
7.如图,在中,点C为弧AB的中点,若(为锐角),则()
A. B. C. D.
8.抛物线经过平移得到抛物线,平移过程正确的是()
A. 先向下平移2个单位,再向左平移3个单位
B. 先向上平移2个单位,再向右平移3个单位
C. 先向下平移2个单位,再向右平移3个单位
D. 先向上平移2个单位,再向左平移3个单位.
9.从前有一个醉汉拿着竹竿进城,横拿竖拿都进不去,横着比城门宽米,竖着比城门高米,一个聪
明人告诉他沿着城门的两对角斜着拿竿,这个醉汉一试,不多不少刚好进去了,求竹竿的长度.若设竹竿长x米,则根据题意,可列方程()
A. B.
C. D.
10.已知a、b、m、n为互不相等的实数,且(a+m)( a+n)=2,(b+m)( b+n)=2,则ab﹣mn的值为()
A. 4
B. 1
C. ﹣2
D. ﹣1
二、填空题(共6题;共7分)
11.一元二次方程ax2+2x=0的一个根是1,则a=________.
12.二次函数y=2x2﹣2x的对称轴是________.
13.在⊙O中,圆心角∠AOB=80°,点P是圆上不同于点A、B的点,则∠APB=________°.
14.“绿水青山就是金山银山”,为了山更绿、水更清,某区大力实施生态修复工程,发展林业产业,确保到2021年实现全区森林覆盖率达到72.6%的目标.已知该区2019年全区森林覆盖率为60%,设从2019年起该区森林覆盖率年平均增长率为x,则x=________.
15.已知二次函数y=ax2+bx+c的y与x的部分对应值如表:
x … 0 1 2 …
y … 4 3 4 …
若一次函数y=bx﹣ac的图象不经过第m象限,则m=________.
16.如图,△ABC为等腰直角三角形,∠B=90°,AB=2,把△ABC绕点A逆时针旋转60°得到△AB1C1,连接CB1,则点B1到直线AC的距离为________.
三、解答题(共8题;共74分)
17.解方程:
(1)x2﹣x﹣1=0;
(2)3x(1﹣x)=2﹣2x.
18.已知关于x的一元二次方程有两个不相等的实数根
(1)求k的取值范围;
(2)若此方程的两实数根满足,求k的值
19.如图,已知△ABC的三个顶点坐标为A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)将△ABC绕坐标原点O旋转180°,画出图形,并写出点A的对应点A'的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,直接写出点A的对应点A''的坐标.
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
20.如图,在△ABC中,AB=AC,∠BAC=110°,将△ABC绕点A顺时针方向旋转35°后能与△ADE重合,点G、F是DE分别与AB、BC的交点.
(1)求∠AGE的度数;
(2)求证:四边形ADFC是菱形.
21.如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD= ,求⊙O的直径.
22.网络销售已经成为一种热门的销售方式为了减少农产品的库存,某市长亲自在某网络平台上进行直播销售板栗.为提高大家购买的积极性,直播时,板栗公司每天拿出2000元现金,作为红包发给购买者.已知该板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足关系式:y=﹣100x+5000.经
销售发现,销售单价不低于成本价格且不高于30元/kg.当每日销售量不低于4000kg时,每千克成本将降低1元.设板栗公司销售该板栗的日获利为W(元).
(1)请求出日获利W与销售单价x之间的函数关系式;
(2)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?
23.如图1,AC⊥CH于点C,点B是射线CH上一动点,将△ABC绕点A逆时针旋转60°得到△ADE(点D对应点C).
(1)延长ED交CH于点F,求证:FA平分∠CFE;
(2)如图2,当∠CAB>60°时,点M为AB的中点,连接DM,请判断DM与DA、DE的数量关系,并证明.
24.如图,抛物线过,两点.
备用图
(1)求该抛物线的解析式;
(2)点P是抛物线上一点,且位于第一象限,当的面积为3时,求出点P的坐标;
(3)过B作于C,连接OB,点G是抛物线上一点,当时,
请直接写出此时点G的坐标.