二次函数常见模型

合集下载

数学建模—函数模型及其应用

数学建模—函数模型及其应用

(k为常数,k≠0);
(4)指数型函数模型:f(x)=abx+c(a,b,c为常数,a≠0,b>0,b≠1);
(5)对数型函数模型:f(x)=mlogax+n(m,n,a为常数,m≠0,a>0,a≠1);
(6)幂型函数模型:f(x)=axn+b(a,b,n为常数,a≠0);
1 (),∈1 ,
了该车相邻两次加油时的情况.
加油时间
2020年5月1日
2020年5月15日
加油量(升)
12
48
加油时的累计里程(千米)
35 000
35 600
注:“累计里程”指汽车从出厂开始累计行驶的路程.
在这段时间内,该车每100千米平均耗油量为(
A.6升 B.8升
C.10升 D.12升
)
答案 B
解析 因为第一次油箱加满,所以第二次的加油量即为该段时间内的耗油量,
3
log 4 8 + = 1,
+ = 1,
解析依题意得
即 2
解得 a=2,b=-2.则
log 4 64 + = 4,
3 + = 4.
y=2log4x-2,当 y=8 时,即 2log4x-2=8,解得 x=1 024.
关键能力 学案突破
考点1
利用函数图像刻画实际问题
【例1】 (2020北京东城一模,10)
故耗油量V=48升.而这段时间内行驶的里程数S=35 600-35 000=600千米.
所以这段时间内,该车每100千米平均耗油量为
48
×100=8升,故选B.
600
3.(2020北京平谷二模,9)溶液酸碱度是通过pH计算的,pH的计算公式为

12、函数模型及其应用(含答案)

12、函数模型及其应用(含答案)

12函数模型及其应用1.七类常见函数模型(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型.(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型.(3)解模:求解数学模型,得出数学结论.(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:4.判断函数图象与实际问题中两变量变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.5.解函数应用题的一般步骤第一步:(审题)弄清题意,分清条件和结论,理顺数量关系;第二步:(建模)将文字语言转化成数学语言,用数学知识建立相应的数学模型;第三步:(解模)求解数学模型,得到数学结论;第四步:(还原)将用数学方法得到的结论还原为实际问题的意义;第五步:(反思)对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.2.建模的基本原则(1)在实际问题中,若两个变量之间的关系是直线上升或直线下降或图象为直线(或其一部分),一般构建一次函数模型,利用一次函数的图象与性质求解.(2)实际问题中的如面积问题、利润问题、产量问题或其图象为抛物线(或抛物线的一部分)等一般选用二次函数模型,根据已知条件确定二次函数解析式.结合二次函数的图象、最值求法、单调性、零点等知识将实际问题解决.(3)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.练习一1.有一组试验数据如表所示:A.y=2x+1-1 B.y=x2-1C.y=2log2x D.y=x3答案 B解析根据表中数据可知,能体现这组数据关系的函数模型是y=x2-1.2.物价上涨是当前的主要话题,特别是菜价,某部门为尽快稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是( )答案 B解析B中,Q的值随t的变化越来越快.故选B.3.有一批材料可以建成200 m长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m2.(围墙厚度不计)答案2500解析设围成的矩形的长为x m,则宽为200-x4m,则S=x·200-x4=14(-x2+200x)=-14(x-100)2+2500.当x=100时,S max=2500 m2.4.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是( )答案 B解析当h=H时,体积为V,故排除A,C;由H→0过程中,减少相同高度的水,水的体积从开始减少的越来越快到越来越慢,故选B.5.如图,矩形ABCD的周长为8,设AB=x(1≤x≤3),线段MN的两端点在矩形的边上滑动,且MN=1,当N沿A→D→C→B→A在矩形的边上滑动一周时,线段MN的中点P所形成的轨迹为G,记G围成的区域的面积为y,则函数y=f(x)的图象大致为( )答案 D解析 由题意可知点P 的轨迹为图中虚线所示,其中四个角均是半径为12的扇形.因为矩形ABCD 的周长为8,AB =x , 则AD =8-2x2=4-x , 所以y =x (4-x )-π4=-(x -2)2+4-π4(1≤x ≤3), 显然该函数的图象是二次函数图象的一部分, 且当x =2时,y =4-π4∈(3,4),故选D. 6.某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设f (t )表示学生注意力指标.该小组发现f (t )随时间t (分钟)的变化规律(f (t )越大,表明学生的注意力越集中)如下:f (t )=⎩⎪⎨⎪⎧100a t10-600≤t ≤10,34010<t ≤20,-15t +64020<t ≤40(a >0且a ≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由;(3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? 解 (1)由题意得,当t =5时,f (t )=140, 即100·a510-60=140,解得a =4. (2)因为f (5)=140,f (35)=-15×35+640=115, 所以f (5)>f (35),故上课后第5分钟时比下课前第5分钟时注意力更集中. (3)①当0<t ≤10时,由(1)知,f (t )=100·4t 10-60≥140,解得5≤t ≤10;②当10<t ≤20时,f (t )=340>140恒成立; ③当20<t ≤40时,f (t )=-15t +640≥140, 解得20<t ≤1003. 综上所述,5≤t ≤1003. 故学生的注意力指标至少达到140的时间能保持1003-5=853分钟. 7.某市家庭煤气的使用量x (m 3)和煤气费f (x )(元)满足关系f (x )=⎩⎨⎧C ,0<x ≤A ,C +B x -A ,x >A .已知某家庭2019年前三个月的煤气费如下表:月份 用气量 煤气费 一月份 4 m 3 4元 二月份 25 m 3 14元 三月份35 m 319元A .11.5元B .11元C .10.5元D .10元答案 A解析 根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=⎩⎨⎧4,0<x ≤5,4+12x -5,x >5,所以f (20)=4+12×(20-5)=11.5,故选A.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.答案 24解析 由题意得⎩⎨⎧e b=192,e22k +b=48,即⎩⎨⎧e b =192,e11k=12,所以该食品在33 ℃的保鲜时间是y =e 33k +b =(e 11k )3·e b =⎝ ⎛⎭⎪⎫123×192=24(小时).9.如图,已知边长为8米的正方形钢板有一个角被锈蚀,其中AE =4米,CD =6米.为了合理利用这块钢板,在五边形ABCDE 内截取一个矩形BNPM ,使点P 在边DE 上.(1)设MP =x 米,PN =y 米,将y 表示成x 的函数,并求该函数的解析式及定义域;(2)求矩形BNPM 面积的最大值.解 (1)如图,作PQ ⊥AF 于点Q ,所以PQ =8-y ,EQ =x -4, 在△EDF 中,EQ PQ =EF FD, 所以x -48-y =42,所以y =-12x +10,定义域为{x |4≤x ≤8}. (2)设矩形BNPM 的面积为S ,则S (x )=xy =x ⎝ ⎛⎭⎪⎫10-x 2=-12(x -10)2+50,所以S (x )是关于x 的二次函数,且其图象开口向下,对称轴为直线x =10,所以当x ∈[4,8]时,S (x )单调递增,所以当x =8时,矩形BNPM 的面积取得最大值,最大值为48平方米.10.某公司为激励创新,计划逐年加大研发资金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2018年 B .2019年 C .2020年 D .2021年答案 B解析 根据题意,知每年投入的研发资金增长的百分率相同,所以从2015年起,每年投入的研发资金组成一个等比数列{a n },其中首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2019年投入的研发资金开始超过200万元,故选B.11.已知一容器中有A ,B 两种菌,且在任何时刻A ,B 两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A =lg n A 来记录A 菌个数的资料,其中n A 为A 菌的个数,现有以下几种说法:①P A ≥1;②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多10;③假设科学家将B 菌的个数控制为5万,则此时5<P A <5.5(注:lg 2≈0.3). 则正确的说法为________.(写出所有正确说法的序号)答案 ③解析 当n A =1时,P A =0,故①错误;若P A =1,则n A =10,若P A =2,则n A =100,故②错误;设B 菌的个数为n B =5×104,∴n A =10105×104=2×105,∴P A=lg n A =lg 2+5.又lg 2≈0.3,∴P A ≈5.3,则5<P A <5.5,即③正确.12.某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解 (1)当x ≤6时,y =50x -115, 令50x -115>0,解得x >2.3, ∵x 为整数,∴3≤x ≤6,x ∈Z .当x >6时,y =[50-3(x -6)]x -115=-3x 2+68x -115.令-3x 2+68x -115>0,有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .∴y =⎩⎨⎧50x -1153≤x ≤6,x ∈Z ,-3x 2+68x -1156<x ≤20,x ∈Z .(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.∵270>185,∴当每辆自行车的日租金定为11元时,才能使一日的净收入最多.13.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3010)( )A .3B .4C .5D .6答案 B解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,∴x ≥1lg 2≈3.322,因此至少需要洗4次,故选B.14.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100答案 C解析 对于A 中的函数,当x =3或4时,误差较大.对于B 中的函数,当x =4时误差较大.对于C 中的函数,当x =1,2,3时,误差为0,x =4时,误差为10,误差很小.对于D 中的函数,当x =4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C 中的函数误差最小.15.据统计,每年到鄱阳湖国家湿地公园越冬的白鹤数量y (只)与时间x (年)近似地满足关系y =a log 3(x +2),观察发现2014年(作为第1年)到该湿地公园越冬的白鹤数量为3000只,估计到2020年到该湿地公园越冬的白鹤的数量为( )A .4000只B .5000只C .6000只D .7000只答案 C 解析 当x =1时,由3000=a log 3(1+2),得a =3000,所以到2020年冬,即第7年,y =3000×log 3(7+2)=6000,故选C.15.某位股民买入某支股票,在接下来的交易时间内,他的这支股票先经历了3次涨停(每次上涨10%)又经历了3次跌停(每次下降10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A .略有盈利B .无法判断盈亏情况C .没有盈利也没有亏损D .略有亏损答案 D解析 由题意可得(1+10%)3(1-10%)3=0.993≈0.97<1.因此该股民这只股票的盈亏情况为略有亏损.16.某地区的绿化面积每年平均比上一年增长18%,经过x 年后,绿化面积与原绿化面积之比为y ,则y =f (x )的图象大致为( )答案 D解析 设某地区起始年的绿化面积为a ,因为该地区的绿化面积每年平均比上一年增长18%,所以经过x 年后,绿化面积g (x )=a (1+18%)x ,因为绿化面积与原绿化面积的比值为y ,则y =f (x )=g x a=(1+18%)x =1.18x ,因为y =1.18x 为底数大于1的指数函数,故可排除A ,C ,当x =0时,y =1,可排除B ,故选D.17.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )⎝ ⎛⎭⎪⎫12t h,其中T a 称为环境温度,h 称为半衰期,现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min ,那么这杯咖啡要从37 ℃降到29 ℃,还需要________ min.答案 8解析 由题意知T a =21 ℃.令T 0=85 ℃,T =37 ℃,得37-21=(85-21)·⎝ ⎛⎭⎪⎫1216h ,∴h =8.令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·⎝ ⎛⎭⎪⎫12t 8,∴t =8.18.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q 10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于 2 m/s ,则其耗氧量至少要多少个单位?解 (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0. 当耗氧量为90个单位时,速度为1 m/s ,故a +b log 39010=1,整理得a +2b =1. 解方程组⎩⎨⎧ a +b =0,a +2b =1,得⎩⎨⎧ a =-1,b =1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q 10.所以要使飞行速度不低于2 m/s ,则有v ≥2,所以-1+log 3Q 10≥2, 即log 3Q 10≥3,解得Q 10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.19.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P 、种黄瓜的年收入Q 与投入a (单位:万元)满足P =80+42a ,Q =14a +120.设甲大棚的投入为x (单位:万元),每年两个大棚的总收入为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收入f (x )最大? 解 (1)若投入甲大棚50万元,则投入乙大棚150万元,所以f (50)=80+42×50+14×150+120=277.5. (2)由题知,f (x )=80+42x +14(200-x )+120=-14x +42x +250, 依题意得⎩⎨⎧ x ≥20,200-x ≥20,解得20≤x ≤180,故f (x )=-14x +42x +250(20≤x ≤180). 令t =x ,则t 2=x ,t ∈[25,65], y =-14t 2+42t +250=-14(t -82)2+282,当t =82,即x =128时,y 取得最大值282,所以投入甲大棚128万元,乙大棚72万元时,总收入最大,且最大收入为282万元.。

高中数学复习:函数模型及其应用

高中数学复习:函数模型及其应用
栏目索引
第九节 函数模型及其应用
总纲目录 栏目索引
教 1.几种常见的函数模型 材 2.三种增长型函数模型的图象与性质 研 读 3.解函数应用题的步骤(四步八字)
总纲目录 栏目索引
考 考点一 用函数图象刻画变化过程
点 突
考点二 应用所给函数模型解决实际问题
破 考点三 构建函数模型解决实际问题
教材研读
教材研读 栏目索引
3.在某个物理实验中,测量得变量x和变量y的几组数据如下表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
则对x,y最适合的拟合函数是 ( D )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
答案 D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0. 98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.
间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关 系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的
是 (B)
考点突破 栏目索引
考点突破 栏目索引
(2)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述 了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确 的是 ( D )
教材研读 栏目索引
教材研读 栏目索引
知识拓展 形如f(x)=x+ a (a>0)的函数模型称为“对勾”函数模型:
x
(1)该函数在(-∞,- a )和( a ,+∞)上单调递增,在[- a ,0)和(0, a ]上单调 递减. (2)当x>0时,在x= a 处取最小值2 a , 当x<0时,在x=- a 处取最大值-2 a .

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略(解析版)

专题01 二次函数的定义五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一二次函数的识别】 (1)【考点二二次函数中各项的系数】 (2)【考点三利用二次函数的定义求参数】 (3)【考点四已知二次函数上一点,求字母或式子的值】 (5)【考点五列二次函数的关系式】 (6)【过关检测】 (8)【典型例题】【考点一二次函数的识别】【变式训练】1.(2023·浙江·九年级假期作业)以下函数式二次函数的是()【考点二 二次函数中各项的系数】例题:(2023·全国·九年级假期作业)二次函数221y x x =--+的二次项系数是( )A .1B .1-C .2D .2-【答案】B【分析】根据二次函数的定义“一般地,形如2y ax bx c =++(a 、b 、c 是常数,0a ¹)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项”作答即可.【详解】解:二次函数221y x x =--+的二次项系数是1-.故选:B .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2023·浙江·九年级假期作业)二次函数()32-=x x y 的二次项系数与一次项系数的和为( )A .2B .2-C .1-D .4-【答案】D 【分析】将函数解析式化简,得到各系数,计算即可.【详解】解:()23622x y x x x --==,∴二次项系数是2,一次项系数是6-,∴264-=-,故选:D .【点睛】此题考查了二次函数定义,正确理解二次函数的各项的系数是解题的关键.2.(2022·全国·九年级假期作业)二次函数2(1)y x x =-的二次项系数是________.【答案】2【分析】首先把二次函数化为一般形式,再进一步求得二次项系数.【详解】解:y =2x (x -1)=2x 2-2x .所以二次项系数2.故答案为:2.【点睛】本题主要考查了二次函数的定义,一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.【考点三 利用二次函数的定义求参数】例题:(2023·全国·九年级假期作业)若函数()2231y m x mx =+++是二次函数,则( )A .2m ³-B .2m ¹C .2m ¹-D .2m =-【答案】C 【分析】根据二次函数的定义,即可求解.【详解】解:根据题意得20m +¹,解得2m ¹-,故选:C .【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(a ,b ,c 是常数,0a ¹)的函数,叫做二次函数是解题的关键.【变式训练】【点睛】本题考查了二次函数的定义,解题关键是掌握二次函数的定义条件:二次函数2y ax bx c =++的定义条件是:a 、b 、c 为常数,0a ¹,自变量最高次数为2.【考点四 已知二次函数上一点,求字母或式子的值】例题:(2022秋·浙江温州·九年级校考阶段练习)若抛物线223y ax x =-+经过点(1,2)P ,则a 的值为( )A .0B .1C .2D .3【答案】B【分析】将点P 代入函数表达式中,解方程可得a 值.【详解】解:将(1,2)P 代入223y ax x =-+中,得:22=121+3a -´´,解得:=1a ,故选B .【点睛】本题考查了二次函数图象上的点,熟知二次函数图像上的点的坐标满足函数表达式是解题的关键.【变式训练】1.(2022秋·天津西青·九年级校考阶段练习)抛物线23y ax bx =+-过点(2,4),则代数式84a b +的值为( )A .14B .2C .-2D .-14【答案】A【分析】将点(2,4)的坐标代入抛物线y=ax 2+bx -3关系式,再整体扩大2倍,即可求出代数式的值.【详解】解:将点(2,4)代入抛物线y=ax 2+bx -3得4a +2b -3=4,整理得8a +4b =14.故选:A .【点睛】本题考查了二次函数图象上点的坐标特征,熟悉整体思想是解题的关键.2.(2022秋·山东泰安·九年级统考阶段练习)若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .20【答案】B【分析】先把点()2,3-代入解析式,得到2=7c b -,然后化简247=2c b --(c-4b )-7,整体代入即可得到答案.【详解】解:把点()2,3-代入2y x bx c =-++,得:2=7c b -,∵247=2c b --(c-2b )-7277=7=´-;故选择:B .【点睛】本题考查了一元二次方程,解题的关键是灵活运用整体代入法解题.【考点五 列二次函数的关系式】【变式训练】1.(2022秋·九年级单元测试)一台机器原价为50万元,如果每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,则y 与x 之间的函数关系式为_____.【答案】()2501y x =-【分析】根据题意列出函数解析式即可.【详解】解:∵一台机器原价为50万元,每年的折旧率是()0x x >,两年后这台机器的价格为y 万元,∴y 与x 之间的函数关系式为()2501y x =-.故答案为:()2501y x =-.【点睛】本题主要考查了列二次函数关系式,解题的关键是理解题意,掌握两年后价格=原价()21x ´-.2.(2023·浙江·九年级假期作业)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克70元,不低于每千克30元.经市场调查发现:日销售量y (千克)是销售单价x (元)的一次函数,且当60x =时,8050y x ==;时,100y =.在销售过程中,每天还要支付其它费用450元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围.(2)求该公司销售该原料日获利润w (元)与销售单价x (元)之间的函数关系式.【答案】(1)2200y x =-+(3070x ££);(2)222606450w x x =-+-(3070x ££)【分析】(1)根据y 与x 写成一次函数解析式,设为y kx b =+,把x 与y 的两对值代入求出k 与b 的值,即可确定出y 与x 的解析式,并求出x 的范围即可;(2)根据利润=单价´销售量列出w 关于x 的二次函数解析式即可.【详解】(1)设y 与x 的函数关系式为y kx b =+.60x =Q 时,80y =,50x =时,100y =,608050100k b k b +=ì\í+=î,解得2200k b =-ìí=î,2200y x \=-+,根据部门规定,得3070x ££.(2)22(30)450(30)(2200)45030702260600045022606450w x y x x x x x x x =--=--+-=-+--=-£-£+()【点睛】本题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.【过关检测】一、选择题二、填空题6.(2023秋·江西宜春·九年级统考期末)二次函数2=23y x x --中,当=1x -时,y 的值是________.【答案】0【分析】把=1x -代入2=23y x x --计算即可.【详解】解:当=1x -时,2=23=123=0y x x ---+,故答案为:0.【点睛】本题考查了求二次函数的值,解题的关键是把=1x -代入2=23y x x --计算.7.(2022春·全国·九年级专题练习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】23x - -16 12【解析】略8.(2023秋·河南洛阳·九年级统考期末)已知函数||1(1)45m y m x x +=++-是关于x 的二次函数,则一次函;【答案】二次函数关系【分析】根据矩形面积公式求出y 与x 之间的函数关系式即可得到答案.【详解】解:由题意得()()2302050600y x x x x =++=++,∴y 与x 之间的函数关系是二次函数关系,故答案为;二次函数关系.【点睛】本题主要考查了列函数关系式和二次函数的定义,正确列出y 与x 之间的函数关系式是解题的关键.三、解答题。

专题01 二次函数的定义压轴题五种模型全攻略

专题01 二次函数的定义压轴题五种模型全攻略

专题01 二次函数的定义压轴题五种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项考点三 根据二次函数的定义求参数 考点四 已知二次函数一点求代数式的值考点五 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x=D .323y x x =+-【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个.A .2B .3C .4D .52.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( )A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =32.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.2.(2021·广东广州·九年级期中)关于x 的函数()21mmy m x -=+是二次函数,则m 的值为__________.考点四 已知二次函数一点求代数式的值例题:(2022·全国·九年级)若点(m ,0)在二次函数y =x 2﹣3x +2的图象上,则2m 2﹣6m +2029的值为 ____.【变式训练】1.(2022·全国·九年级课时练习)已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.2.(2022·全国·九年级课时练习)点(),1m 是二次函数221y x x =--图像上一点,则236m m -的值为__________考点五 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为________.2.(2022·全国·九年级课时练习)如图,正方形ABCD 的边长是10cm ,E 是AB 上一点,F 是AD 延长线上的一点,BE DF =.四边形AEGF 是矩形,矩形AEGF 的面积()2cm y 与BE 的长cm x ()010x <£的函数关系是______.一、选择题1.(2021·湖南湘西·九年级期中)下列函数解析式中,一定为二次函数的是( )A .y =3x +1B .y =ax 2+bx +cC .s =2t 2﹣2t ﹣1D .y =x 2+1x2.(2020·浙江杭州·九年级阶段练习)二次函数y =x (1﹣x )﹣2的一次项系数是( )A .1B .﹣1C .2D .﹣23.(2021·安徽·休宁县洪里初级中学九年级期中)若y =(m -2)22m x -+5x -3是二次函数,则常数m 的值为( ).A .-2B .2C .±2D .不能确定4.(2022·全国·九年级课时练习)已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .05.(2022·全国·九年级课时练习)在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x =+B .24y x =-C .24y x =-D .42y x=-6.(2022·全国·九年级课时练习)已知函数:①y =2x ﹣1;②y =﹣2x 2﹣1;③y =3x 3﹣2x 2;④y =2(x +3)2-2x 2;⑤y =ax 2+bx +c ,其中二次函数的个数为( )A .1B .2C .3D .4二、填空题7.(2021·全国·九年级专题练习)二次函数2231y x x =--的二次项系数与常数项的和是__________.8.(2021·全国·九年级课时练习)把y =(3x -2)(x +3)化成一般形式后,一次项系数与常数项的和为________.9.(2019·陕西·西安高新一中实验中学九年级期末)若函数27(3)1m y m x x -=--+是二次函数,则m 的值为_________.10.(2021·四川·广汉市教学研究教师培训中心九年级期中)若函数y =(m -2)x |m |+2x +1是关于x 的二次函数,则m 的值为________.11.(2021·上海市罗星中学九年级期中)一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 关于x 的函数解析式为____.12.(2021·全国·九年级课时练习)观察:①26y x =;②235y x =-+;③2200400200y x x =++;④22y x x =-;⑤21132y x x =-+;⑥()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)三、解答题13.(2021·内蒙古·奈曼旗新镇中学九年级阶段练习)已知函数()273m y m x -=+.(1)当m 为何值时,此函数是正比例函数?(2)当m 为何值时,此函数是二次函数?14.(2021·江苏·九年级专题练习)已知y 关于 x 的函数y =(m 2+2m )x 2+mx +m +1.(1)当m 为何值时,此函数是一次函数? (2)当m 为何值时,此函数是二次函数?15.(2021·全国·九年级专题练习)已知函数()()2211y m m x m x m =-+-++.(1)当m 为何值时,这个函数是关于x 的一次函数;(2)当m 为何值时,这个函数是关于x 的二次函数.16.(2022·重庆市巴川中学校八年级期中)如图,在Rt △ABC 中,∠B =90°,AC =30cm ,∠A =60°,动点D 从点C 出发沿CA 方向以4cm /s 的速度向点A 匀速运动,同时动点E 从点A 出发沿AB 方向以2cm /s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D ,E 运动的时间是ts ,过点D 作DF ⊥BC 于点F ,连接EF .(1)若四边形AEFD为菱形,则t值为多少?(2)在点D、E的运动过程中,设四边形ADFE的面积为y,请求出y与t的函数关系式?。

《一题可破万题——二次函数压轴题常见模型小结》

《一题可破万题——二次函数压轴题常见模型小结》

——二次函数压轴题常见模型小结DBO AxyC问题1:求抛物线解析式和顶点D 坐标12()()y a x x x x =--2y ax bx c=++2()y a x h k=-+十字相乘配方法(★)12轴交点(,0)、(,0)x x x 轴交点(0,c )y 顶点(h,k )原始三角形:重视四点围成的三角形(边、角关系)函数 点形2223(3)(1)(1)4y x x y x x y x =+-=+-=+-问题2:判断△ACD 的形状,并说明理由DBOAxyCD (-1,-4)BOA (-3,0)xyC (0,-3)问题3:E是y轴上一动点,若BE=CE,求点E的坐标DB OA xyCB(1,0)O xyC(0,-3)B(1,0)O xyC(0,-3)问题4:抛物线上有一动点P,过点P作PM⊥x轴于点M,交直线AC与点N,在线段PM、MN中,若其中一条线段是另一条线段的2倍,求点P的坐标。

DB OA xyC最大值及此时点P 的坐标DBO Ax yC PH DB O Ax yC PHEFDB O AxyC PHE F于G ,PH 为邻边作矩形PEGH ,求矩形PEGH 周长的最大值。

DBO Ax yCDB O AxyC PHEG问题7:在对称轴上找一点P,使得△BCP的周长最小,求出P点坐标及△BCP的周长DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题8:在对称轴上找一点P,使得∣PA-PC∣最大,求出P点坐标DB OA xyCB(1,0)OA(-3,0)xyC(0,-3).x=1P问题9:线段MN=1,在对称轴上运动(M 点在N 点上方),求四边形BMNC 周长的最小值及此时M 点坐标DBOAxyC已知抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,OA=OC=3,顶点为D 2y x bx c =++B (1,0)OA (-3,0)xyC (0,-3).x=1NB ’ B ’’M将军饮马:这个将军饮的不是马,是数学!解题依据:两点间线段最短;点到直线的垂直距离最短;翻折,对称。

二次函数(一)——常见二次函数模型

二次函数(一)——常见二次函数模型

二次函数(一)——所描述的关系、结识抛物线、刹车距离与二次函数一、 知识点回顾1.函数概念小结2.待定系数法求函数解析式3.图像平移法则二、 典例剖析考点1【二次函数的相关概念】例1下列函数中,哪些是二次函数?y=3(x-1)²+1 (2)y=x +x 1 (3)s=3-2t (4)y=21x x- (5)y=(x+3)²-x² (6) v=10πr²随堂练习11.下列结论正确的是A .y =ax 2是二次函数B .二次函数自变量的取值范围是所有实数C .二次方程是二次函数的特例D .二次函数的取值范围是非零实数2.下列函数中:①y =-x 2;②y =2x ;③y =22+x 2-x 3;④m =3-t -t 2是二次函数的是______(其中x 、t 为自变量).3.下列各关系式中,属于二次函数的是(x 为自变量)A .y =81x 2 B .y C .y =21x D .y =a 2x考点2【二次函数的一般式】例2-1若y=(m +1)x 267m m --是二次函数,则m=( )A .-1B .7C .-1或7D .以上都不对例2-2.已知抛物线y=ax²经过点A (-2,-8).(1)求此抛物线的函数解析式;(2)判断点B (-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.随堂练习21.函数y =ax 2+bx +c (a ,b ,c 是常数)是二次函数的条件是A .a ≠0,b ≠0,c ≠0B .a <0,b ≠0,c ≠0C .a >0,b ≠0,c ≠0D .a ≠02.已知函数y =(m 2-m )x 2+(m -1)x +m +1.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,则m 的值应怎样?3.如果函数y=x 232k k -++kx+1是二次函数,则k 的值一定是______考点3【常见的二次函数模型】例3-1【面积问题】如图5,一块草地是长80 m 、宽60 m 的矩形,欲在中间修筑两条互相垂直的宽为x m 的小路,这时草坪面积为y m 2.求y 与x 的函数关系式,并写出自变量x 的取值范围.例3-2【密植问题】某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子. 假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子?如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式.例3-3【利率问题】人民币一年定期储蓄的年利率是x ,一年到期后,银行将本息合计自动转存,到支取时,银行将扣除利息的20%作为利息税,我如果将10000元存入银行,请写出两年后支取时的本息和y(元)与年利率x的函数表达式。

《一题可破万题山——二次函数压轴题常见模型小结》

《一题可破万题山——二次函数压轴题常见模型小结》

y
y
x=-1
A
OB
C D
x
A
OB
x
M
C N
25
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题22:在对称轴上有一点M,在抛物线上有一点N,若以A、B、M、N为顶点 的四边形为平行四边形,求M、N的坐标
y
y
y
A
OB
x
C D
A
OB
x
C
D
A
OB
x
C D
问题14:抛物线上是否存在点H,使得S△BCH= S△ABC,若存在,求出点H的坐标;
若不存在,请说明理由
H
y y
A
OB
x
C D
A
OB
x
DC
18
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题15:抛物线上是否存在点Q,使得S△AOQ= S△COQ,若存在,求出点Q的坐标;
问题23:点E是抛物线上一动点,点F在抛物线的对称轴上,若以C、D、E、F为顶 点的四边形为菱形,求点E的坐标
y
y
x=-1
A
B
x
A
OB
x
C D
O C
D
28
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D
问题24:在线段AC上是否存在点M,使得三角形AOM与△ABC相似?若存在, 求出点M的坐标,若不能,请说明理由
A
OB
x
C D
30
已知抛物线y x 2 bx c与x轴交于A、B两点,与y轴交于点C,OA=OC=3,顶点为D

二次函数十大解题模型汇总(模型+例题+练习题)

二次函数十大解题模型汇总(模型+例题+练习题)
(1)试写出 y 与 x 之间的函数表达式(不必写出 x 的取值范围);(2)试写出 z 与 x 之间的函数表达式(不 必写出 x 的取值范围);(3)计算销售单价为 160 元时的年获利,销售单价还可以定为多少元?相应的年 销售量分别为多少万件?(4)公司计划:在第一年按年获利最大确定的销售单价,进行销售;第二年年 获利不低于 1130 万元.请你借助函数的大致图象说明,第二年的销售单价 x(元)应确定在什么范围内?
角线 a 的关系.
2、已知:一等腰直角三角形的面积为 S,请写出 S 与其斜边长 a 的关系表达式,并分别求出 a=1,a= 2 ,
a=2 时三角形的面积.
1 3、在物理学内容中,如果某一物体质量为 m,它运动时的能量 E 与它的运动速度 v 之间的关系是 E= 2 mv2
(m 为定值).(1)若物体质量为 1,填表表示物体在 v 取下列值时,E 的取值:
例 2、如果人民币一年定期储蓄的年利率是 x,一年到期后,银行将本金和利息自动按一年定期储蓄转存, 到期支取时,银行将扣除利息的 20%作为利息税.请你写出两年后支付时的本息和 y(元)与年利率 x 的 函数表达式.
例 3、某商场将进价为 40 元的某种服装按 50 元售出时,每天可以售出 300 套.据市场调查发现,这种服 装每提高 1 元售价,销量就减少 5 套,如果商场将售价定为 x,请你得出每天销售利润 y 与售价的函数表 达式.
二次函数十大解题模型汇总(模型+例题+练习题)
模型 1:根据二次函数的定义求字母的值
例 1:函数 y=(m+2)x m2−2 +2x-1 是二次函数,则 m=

对象:y=(m+2)x m2−2 +2x-1 角度:二次函数的稀疏,次数

【高中数学】函数模型及其应用

【高中数学】函数模型及其应用

函数模型及其应用一、基础知识1.常见的8种函数模型(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1);(8)“对勾”函数模型:y=x+ax(a>0).(1)形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型,“对勾”函数的性质:①该函数在(-∞,-a]和[a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.②当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.(2)函数f(x)=xa+bx(a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab,+∞)内单调递增.2.三种函数模型的性质函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大,逐渐表现为与y轴平行随x的增大,逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有log a x<x n<a x幂函数模型y=x n(n>0)可以描述增长幅度不同的变化,当n,值较小(n≤1)时,增长较慢;当n值较大(n>1)时,增长较快.考点一二次函数、分段函数模型[典例]国庆期间,某旅行社组团去风景区旅游,若每团人数在30或30以下,飞机票每张收费900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.每团乘飞机,旅行社需付给航空公司包机费15000元.(1)写出飞机票的价格关于人数的函数;(2)每团人数为多少时,旅行社可获得最大利润?[解](1)设每团人数为x,由题意得0<x≤75(x∈N*),飞机票价格为y元,则y ,0<x≤30,-10(x-30),30<x≤75,即y,0<x≤30,200-10x,30<x≤75.(2)设旅行社获利S元,则Sx-15000,0<x≤30,200x-10x2-15000,30<x≤75,即Sx-15000,0<x≤30,10(x-60)2+21000,30<x≤75.因为S=900x-15000在区间(0,30]上为增函数,故当x=30时,S取最大值12000.又S=-10(x-60)2+21000,x∈(30,75],所以当x=60时,S取得最大值21000.故当x=60时,旅行社可获得最大利润.[解题技法]二次函数、分段函数模型解决实际问题的策略(1)在建立二次函数模型解决实际问题中的最值问题时,一定要注意自变量的取值范围,需根据函数图象的对称轴与函数定义域在坐标系中对应区间之间的位置关系讨论求解.(2)对于分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(3)在利用基本不等式求解最值时,一定要检验等号成立的条件,也可以利用函数单调性求解最值.[题组训练]1.某市家庭煤气的使用量x(m3)和煤气费f(x)(元)满足关系f(x),0<x≤A,+B(x-A),x>A.已知某家庭2018年前三个月的煤气费如表:月份用气量煤气费一月份4m34元二月份25m314元三月份35m 319元若四月份该家庭使用了20m 3的煤气,则其煤气费为()A .11.5元B .11元C .10.5元D .10元解析:选A根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x ),0<x ≤5,+12(x -5),x >5,所以f (20)=4+12×(20-5)=11.5.2.A ,B 两城相距100km ,在两城之间距A 城x (km)处建一核电站给A ,B 两城供电,为保证城市安全,核电站距城市距离不得小于10km.已知供电费用等于供电距离(km)的平方与供电量(亿度)之积的0.25倍,若A 城供电量为每月20亿度,B 城供电量为每月10亿度.(1)求x 的取值范围;(2)把月供电总费用y 表示成x 的函数;(3)核电站建在距A 城多远,才能使月供电总费用y 最少?解:(1)由题意知x 的取值范围为[10,90].(2)y =5x 2+52(100-x )2(10≤x ≤90).(3)因为y =5x 2+52(100-x )2=152x 2-500x +25000+500003,所以当x =1003y min =500003.故核电站建在距A 城1003km 处,能使月供电总费用y 最少.考点二指数函数、对数函数模型[典例]某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定,每毫升血液中含药量不少于0.25微克时治疗疾病有效,求服药一次后治疗疾病有效的时间.[解](1)由题图,设y 0≤t ≤1,a,t >1,当t =1时,由y =4,得k =4,由-a =4,得a =3.所以y 0≤t ≤1,-3,t >1.(2)由y ≥0.25≤t ≤1,t ≥0.253≥0.25,解得116≤t ≤5.故服药一次后治疗疾病有效的时间是5-116=7916(小时).[解题技法]1.掌握2种函数模型的应用技巧(1)与指数函数、对数函数模型有关的实际问题,在求解时,要先学会合理选择模型,在三类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题,必要时可借助导数.2.建立函数模型解应用问题的4步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型.(2)建模:将文字语言转化为数学语言,利用数学知识建立相应的数学模型.(3)求模:求解数学模型,得出数学结论.(4)还原:将利用数学知识和方法得出的结论,还原到实际问题中.[题组训练]1.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n 次涨停(每次上涨10%),又经历了n 次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.略有亏损C.没有盈利也没有亏损D.无法判断盈亏情况解析:选B设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.2.声强级Y(单位:分贝)由公式Y=10lg I为声强(单位:W/m2).(1)平常人交谈时的声强约为10-6W/m2,求其声强级.(2)一般常人能听到的最低声强级是0分贝,求能听到的最低声强为多少?解:(1)当声强为10-6W/m2时,由公式Y=得Y=10lg106=60(分贝).(2)当Y=0时,由公式Y=得0.∴I10-12=1,即I=10-12W/m2,则最低声强为10-12W/m2.[课时跟踪检测]1.(2018·福州期末)某商场销售A型商品.已知该商品的进价是每件3元,且销售单价与日均销售量的关系如下表所示:销售单价/元45678910日均销售量/件400360320280240200160请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()A.4B.5.5C.8.5D.10解析:选C由数据分析可知,当单价为4元时销售量为400件,单价每增加1元,销售量就减少40件.设定价为x 元/件时,日均销售利润为y 元,则y =(x -3)·[400-(x -4)·40]=-+1210,故当x =172=8.5时,该商品的日均销售利润最大,故选C.2.(2019·绵阳诊断)某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月的水费为55元,则该职工这个月实际用水为()A .13立方米B .14立方米C .15立方米D .16立方米解析:选C 设该职工某月的实际用水为x 立方米时,水费为y 元,由题意得y =x ,0≤x ≤10,+5(x -10),x >10,即y x ,0≤x ≤10,x -20,x >10.易知该职工这个月的实际用水量超过10立方米,所以5x -20=55,解得x =15.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为()A .240吨B .200吨C .180吨D .160吨解析:选B 依题意,得每吨的成本为y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨.4.某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P (单位:毫克/升)与过滤时间t (单位:时)之间的函数关系为P =P 0e -kt (k ,P 0均为正常数).如果在前5个小时的过滤过程中污染物被排除了90%,那么排放前至少还需要过滤的时间是()A.12小时 B.59小时C .5小时D .10小时解析:选C 由题意,前5个小时消除了90%的污染物.∵P =P 0e -kt ,∴(1-90%)P 0=P 0e -5k,∴0.1=e-5k,即-5k =ln 0.1,∴k =-15ln 0.1.由1%P 0=P 0e -kt ,即0.01=e -kt ,得-kt =ln 0.01,=ln 0.01,∴t =10.∴排放前至少还需要过滤的时间为t -5=5(时).5.(2019·蚌埠模拟)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第1年有100只,则到第7年它们发展到________只.解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:3006.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图象如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y =kx +b ,将点(1,10)和点(10,30)代入函数解析=k +b ,=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.答案:19097.候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v (单位:m/s)与其耗氧量Q 之间的关系为:v =a +b log 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s ,求其耗氧量至少要多少个单位?解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s ,此时耗氧量为30个单位,故有a +b log 33010=0,即a +b =0.当耗氧量为90个单位时,速度为1m/s ,故a +b log 39010=1,整理得a +2b =1.+b =0,+2b =1,=-1,=1.(2)由(1)知,v =a +b log 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2m/s ,则有v ≥2,所以-1+log 3Q10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2m/s ,则其耗氧量至少要270个单位.8.据气象中心观察和预测:发生于沿海M 地的台风一直向正南方向移动,其移动速度v (单位:km/h)与时间t (单位:h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积为时间t 内台风所经过的路程s (单位:km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650km ,试判断这场台风是否会侵袭到N 城,如果会,在台风发生后多长时间它将侵袭到N 城?如果不会,请说明理由.解:(1)由图象可知,直线OA 的方程是v =3t (0≤t ≤10),直线BC 的方程是v =-2t +70(20<t ≤35).当t =4时,v =12,所以s =12×4×12=24.(2)当0≤t ≤10时,s =12×t ×3t =32t 2;当10<t ≤20时,s =12×10×30+(t -10)×30=30t -150;当20<t ≤35时,s =150+300+12×(t -20)×(-2t +70+30)=-t 2+70t -550.综上可知,s 随t 变化的规律是s2,t ∈[0,10],t -150,t ∈(10,20],t 2+70t -550,t ∈(20,35].(3)当t ∈[0,10]时,s max =32×102=150<650,当t ∈(10,20]时,s max =30×20-150=450<650,当t ∈(20,35]时,令-t 2+70t -550=650,解得t =30或t =40(舍去),即在台风发生30小时后将侵袭到N 城.。

二次函数的定义压轴题四种模型全攻略(解析版)

二次函数的定义压轴题四种模型全攻略(解析版)

专题01 二次函数的定义压轴题四种模型全攻略考点一 二次函数的识别 考点二 二次函数的二次项系数、一次项系数、常数项 考点三 根据二次函数的定义求参数 考点四 列二次函数关系式考点一 二次函数的识别例题:(2022·江苏·盐城市初级中学一模)下列函数中为二次函数的是( )A .31y x =-B .231y x =-C .2y x =D .323y x x =+-【答案】B【解析】【分析】直接利用二次函数的定义进而分析得出答案.【详解】解:A 、31y x =-,是一次函数,故此选项不符合题意;B 、231y x =-,是二次函数,故此选项符合题意;C 、2y x =,不是二次函数,故此选项不符合题意;D 、323y x x =+-,未知数的最高次为3,不是二次函数,故此选项错误.故选:B .【点睛】本题考查了二次函数的定义;熟练掌握二次函数解析式的一般形式2y ax bx c =++(0a ≠),是解题的关键.【变式训练】1.(2020·陕西·西安市大明宫中学三模)观察:①26y x =;②235y x =-+;③2200400y x x =+;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有( )个. A .2B .3C .4D .5【答案】B【解析】【分析】 根据二次函数的定义判断即可.典型例题【详解】①26y x =是二次函数;②235y x =-+是二次函数;③2200400y x x =+是二次函数;④32y x x =-不是二次函数;⑤213y x x=-+不是二次函数; ⑥()22121y x x x =+-=+不是二次函数;这六个式子中二次函数有①②③故选:B .【点睛】本题考查二次函数的定义,即一般地,形如2y ax bx c =++(a ,b ,c 是常数,0a ≠)的函数,叫做二次函数.2.(2022·全国·九年级课时练习)下列函数①55y x =-;②231y x =-;③3243y x x =-;④2221y x x =-+;⑤21y x =.其中是二次函数的是____________. 【答案】②④##④②【解析】【分析】根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.【详解】解:①y =5x -5为一次函数;②y =3x 2-1为二次函数;③y =4x 3-3x 2自变量次数为3,不是二次函数;④y =2x 2-2x +1为二次函数;⑤y =21x 函数式为分式,不是二次函数. 故答案为②④.【点睛】本题考查二次函数的定义,熟记定义“函数式为整式且自变量的最高次数为2,二次项系数不为0”是解题关键.考点二 二次函数的二次项系数、一次项系数、常数项例题:(2022·福建省福州外国语学校八年级期末)二次函数223y x x =-+的一次项系数是( )A .1B .2C .2-D .3【答案】C【解析】【分析】 根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项作答.【详解】解:二次函数y =x 2-2x +3的一次项系数是-2;故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.【变式训练】1.(2022·全国·九年级)设a ,b ,c 分别是二次函数y =﹣x 2+3的二次项系数、一次项系数、常数项,则( ) A .a =﹣1,b =3,c =0B .a =﹣1,b =0,c =3C .a =﹣1,b =3,c =3D .a =1,b =0,c =3【答案】B【解析】【分析】根据二次函数的一般形式可得答案.【详解】解:二次函数y =﹣x 2+3的二次项系数是a =﹣1,一次项系数是b =0,常数项是c =3;故选:B .【点睛】此题主要考查了二次函数的一般形式,关键是注意在找二次项系数,一次项系数和常数项时,不要漏掉符号.2.(2022·全国·九年级)已知二次函数y =1﹣5x +3x 2,则二次项系数a =___,一次项系数b =___,常数项c =___.【答案】 3 -5 1【解析】【分析】形如:()20y ax bx c a =++≠这样的函数是二次函数,其中二次项系数为,a 一次项系数为,b 常数项为,c 根据定义逐一作答即可.【详解】解:二次函数y =1﹣5x +3x 2,则二次项系数a =3,一次项系数b =﹣5,常数项c =1,故答案为:3,﹣5,1.【点睛】本题考查了二次函数的定义,熟记二次函数的定义是解题关键.考点三 根据二次函数的定义求参数例题:(2022·全国·九年级课时练习)已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.【答案】-1【解析】【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;【详解】 解:由题意得:21012m m -≠⎧⎨+=⎩, 解得:m =-1,故答案为:-1.【点睛】本题考查了二次函数的定义,理解二次函数的定义是解题关键.【变式训练】1.(2021·黑龙江·塔河县第一中学校九年级期中)已知(2)21m y m x x =-+-是y 关于x 的二次函数,那么m 的值____.【答案】2-【解析】 【分析】根据二次函数的定义,(2)m m x -中,未知数x 的指数为2,系数不为0,列式计算即可. 【详解】解:∵(2)21m y m x x =-+-是y 关于x 的二次函数,∵2m =且20m -≠,∵2m =-.故答案为:2-.【点睛】本题考查的是二次函数的定义,熟练掌握形如y =ax 2+bx +c (a ,b ,c 是常数,且a ≠0)的函数,叫做二次函数是解题的关键.2.(2021·广东广州·九年级期中)关于x 的函数()21m m y m x -=+是二次函数,则m 的值为__________.【答案】2【解析】【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数,求出m 的值即可解决问题.【详解】解:∵()21m m y m x -=+是关于x 的二次函数,∵m 2-m =2,m +1≠0,解得:m =2.故答案为:2.【点睛】本题主要考查了二次函数的定义及解一元二次方程;牢固掌握定义和方程的解法是解题的关键.考点四 列二次函数关系式例题:(2022·上海市青浦区教育局二模)为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x ,第一季度的总产值为y (亿元),则y 关于x 的函数解析式为________________.【答案】233y x x =++【解析】【分析】根据题意分别求得每个月的产值,然后相加即可求解.【详解】解:∵某医药公司一月份的产值为1亿元,若每月平均增长率为x ,∵二月份的为()111x x +⨯=+三月份的为()()()2111x x x +⨯+=+第一季度的总产值为y (亿元),则()2211133y x x x x =++++=++ 故答案为:233y x x =++【点睛】本题考查了二次函数的应用,根据题意列出函数关系式是解题的关键.【变式训练】1.(2021·山东滨州·九年级期中)某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品的售价为x 元,则可卖出()35010x -件,那么卖出商品所赚钱y 元与售价x 元之间的函数关系为【答案】2105607350y x x =-+-【解析】【分析】由题意分析出每件商品的盈利为:()21x -元,再根据:总利润等于每件商品的利润乘以销售的数量,再化简即可.【详解】解:由题意得:每件商品的盈利为:()21x -元,所以:()()2135010y x x =--2102103507350x x x =-++-2105607350x x =-+-故答案为:2105607350y x x =-+-【点睛】本题考查的是列二次函数关系式,掌握“总利润等于每件商品的利润乘以销售的数量”是解题的关键. 2.(2022·全国·九年级课时练习)如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M 沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.【答案】y =-212x +48 【解析】【分析】先求出212AMN S x =,进而即可得到答案. 【详解】由题意得:21122AMN S AM AN x =⋅=, ∵阴影部分的面积=6×8-212x ,即:y =-212x +48. 故答案是:y =-212x +48.本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.一、选择题1.(2022·吉林·安图县第三中学九年级阶段练习)下列函数中是二次函数的是( )A .y =2x +1B .22y x =-C .y =-8xD .3y x = 【答案】B【分析】根据二次函数的定义进行判断.【详解】解:A 、该函数是一次函数,不是二次函数,故本选项错误;B 、该函数是二次函数,故本选项正确;C 、该函数是反比例函数,故本选项错误;D 、该函数是三次函数,故本选项错误;故选B .【点睛】本题考查二次函数的定义.熟知一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数是解答此题的关键.2.(2020·北京房山·九年级期中)二次函数24+3y x x =-的二次项系数、一次项系数和常数项分别是( )A .1,4,3B .0,4,3C .1,-4,3D .0,-4,3【答案】C【分析】根据二次函数的定义:一般地,形如()2,,0y ax bx c a b c a =++≠是常数,的函数,叫做二次函数.其中x ,y 是变量,,,a b c 是常量, a 是二次项系数, b 是一次项系数, c 是常数项作答.【详解】解:解:二次函数24+3y x x =-的二次项系数是1,一次项系数是4-,常数项是3.故选:C .【点睛】此题主要考查了二次函数的定义,关键是注意在找二次项系数, 一次项系数和常数项时,不要漏课后训练3.(2022·江苏·九年级专题练习)一台机器原价100万元,若每年的折旧率是x ,两年后这台机器约为y 万元,则y 与x 的函数关系式为( ) A .y =100(1﹣x )B .y =100﹣x 2C .y =100(1+x )2D .y =100(1﹣x )2【答案】D【分析】根据两年后机器价值=机器原价值×(1﹣折旧百分比)2可得函数解析式.【详解】解:根据题意知y =100(1﹣x )2,故选:D .【点睛】本题主要考查根据实际问题列二次函数关系式,根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图像要根据自变量的取值范围来确定.4.(2021·河北·唐山市第九中学九年级阶段练习)若函数24(m 2)3m m y x mx +-=++-是关于x 的二次函数,则m 的取值为( )A .3-B .2C .3D .3-或2 【答案】D【分析】根据二次函数的定义,必须二次项系数不等于0,且未知数的次数等于2,据此列不等式组并求解即可. 【详解】解:由二次函数的定义可知,当22042m m m +≠⎧⎨+-=⎩时,该函数是二次函数, ∵m =-3或m =2,故选:D .【点睛】本题考查了二次函数的定义,明确二次函数的定义并正确列式,是解题的关键.5.(2022·江苏·九年级专题练习)如图所示,在Rt ABO 中,AB OB ⊥,且3AB OB ==,设直线x t =截此三角形所得的阴影部分的面积为S ,则S 与t 之间的函数关系式为( )A .S t =B .212S t =C .2S t =D .2112S t =- 【答案】B【分析】Rt ABO 中,AB OB ⊥,且3AB OB ==,可得45AOB A ∠=∠=︒;再由平行线的性质得出45OCD A ∠=∠=︒,即45COD OCD ∠=∠=︒,进而证明CD OD t ==,最后根据三角形的面积公式,求出S与t 之间的函数关系式.【详解】解:如图所示,∵Rt ABO 中,AB OB ⊥,且3AB OB ==,∵45AOB A ∠=∠=︒,∵CD OB ⊥,∵CD AB ∥,∵45OCD A ∠=∠=︒,∵45COD OCD ∠=∠=︒,∵CD OD t ==,∵12OCD S OD CD =⨯△ ()21032t t =<≤, 即:()21032S t t =<≤. 故选:B .【点睛】本题主要考查的是二次函数解析式的求法,考查了等腰直角三角形的性质,平行线的判定和性质,等腰三角形的判定,三角形的面积等知识点.解题的关键是能够找到题目中的有关面积的等量关系.二、填空题6.(2021·全国·九年级课前预习)把y =(2-3x )(6+x )变成y =ax ²+bx +c 的形式,二次项为____,一次项系数为______,常数项为______.【答案】 23x - -16 12【解析】略7.(2022·全国·九年级课时练习)如图,△ABC 中,AB =AC ,CD ∵AB 于D ,BD =1,设BC =x ,AD =y ,当x >2时,y 关于x 的函数解析式为 _____.【答案】21122y x x【分析】由BD =1,AD =y ,可得AB =AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-1,即得2y +1=x 2-1,可得答案.【详解】解:∵BD =1,AD =y ,∵AB =y +1,∵AB =AC ,∵AC =y +1,在Rt ∵ACD 中,CD 2=AC 2-AD 2=(y +1)2-y 2=2y +1,在Rt ∵BCD 中,CD 2=BC 2-BD 2=x 2-12=x 2-1,∵2y +1=x 2-1,∵2112y x =-. 故答案为:21122yx x . 【点睛】本题考查勾股定理的应用,解题的关键是将CD 2作等量,列出y 与x 的关系式.8.(2021·重庆·垫江第八中学校九年级阶段练习)若函数y =(a +1)x |a |+1是二次函数,则a 的值是 ______ .【答案】1【分析】根据二次函数的定义,列出关于a 的方程和不等式,即可求解.【详解】根据二次函数的定义可得:1210a a ⎧+=⎨+≠⎩,解得:a =1. 故答案为:1.【点睛】本题主要考查二次函数的定义,掌握二次函数的最高次项的次数为2,二次项系数不等于零,是解题的关键.9.(2021·山东·泰安市泰山区大津口中学九年级阶段练习)已知2324m m ym x 是二次函数,则m 的值为___________.【答案】-1【分析】根据二次函数的定义,即可求解.【详解】解:∵2324m m y m x 是二次函数,∵2322m m --=且40m -≠,解得:1m =-.故答案为:-1【点睛】本题主要考查了二次函数的定义,熟练掌握二次函数()20y ax a =≠是解题的关键.10.(2021·全国·九年级专题练习)下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 2 【答案】③【分析】根据二次函数的定义: 一般地,把形如y =ax ²+bx +c (a ≠0)(a 、b 、c 是常数)的函数叫做二次函数,据此判断即可.【详解】解:①2y ax bx c =++,必须满足a ≠0才为二次函数,故①不一定是二次函数;②等号右边为分式,故②不是二次函数;③2431y x x =-+是二次函数,故③是二次函数;④2(1)y m x bx c =-++,1m =时,该式不是二次函数;⑤2222(3)6969y x x x x x x =--=-+-=-+,该式不是二次函数;故答案为:③.【点睛】本题考查了二次函数的识别,熟知二次函数的定义是解本题的关键.三、解答题11.(2022·全国·九年级专题练习)下列函数中,哪些是二次函数?(1)y =3x —1;(2)232y x =+ ;(3)3232y x x =+ ;(4)2221y x x =-+ ;(5)2()1y x x x =-+ ;(6)2y x x -=+【答案】(2)(4)是二次函数【分析】根据二次函数的定义,即可求解.【详解】解∵(1)不是二次函数,因为自变量的最高次数是1.(2)是二次函数,因为符合二次函数的概念.(3)不是二次函数,因为自变量的最高次数是3.(4)是二次函数,因为符合二次函数的概念.(5)不是二次函数,因为原式整理后为y =-x .(6)不是二次函数,因为x -2为分式,不是整式.故(2)(4)是二次函数.【点睛】本题主要考查了二次函数的定义,熟练掌握形如2y ax bx c =++(其中a 、b 、c 均为常数,且0a ≠)的函数关系称为二次函数是解题的关键.12.(2022·全国·九年级课时练习)已知函数y =(a +1) 21ax ++(a ﹣2)x (a 为常数),求a 的值:(1)函数为二次函数;(2)函数为一次函数.【答案】(1)a =1(2)a =0或﹣1【分析】(1)直接利用二次函数的定义得出a 2+1=2,a +1≠0得出即可;(2)利用一次函数的定义分别求出即可.(1) 当 21210a a ⎧+=⎨+≠⎩时,函数为二次函数, 解得:a =±1,a ≠-1,∵a =1;(2)当 211120a a a ⎧+=⎨++-≠⎩时,函数为一次函数, 解得:a =0,当a +1=0,即a =﹣1时,函数为一次函数,所以,当函数为二次函数时,a =1,当函数为一次函数时,a =0或﹣1.【点睛】此题主要考查了二次函数与一次函数的定义,正确把握相关定义是解题关键.13.(2022·全国·九年级课时练习)一个二次函数234(1)21kk y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?【答案】(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可. 【详解】解:(1)依题意有234210k k k ⎧-+=⎨-≠⎩, 解得:k =2,∵k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∵y 的值为14.【点睛】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.14.(2022·全国·九年级专题练习)已知函数y =(k 2﹣k )x 2+kx +k +1(k 为常数).(1)若这个函数是一次函数,求k 的值;(2)若这个函数是二次函数,则k 的值满足什么条件?【答案】(1)k =1;(2)k ≠0且k ≠1【分析】(1)由一次函数的定义求解可得;(2)由二次函数的定义求解可得.【详解】解:(1)若这个函数是一次函数,则k 2﹣k =0且k ≠0,解得k =1;(2)若这个函数是二次函数,则k 2﹣k ≠0,解得k ≠0且k ≠1.【点睛】本题主要考查了一次函数的定义、二次函数的定义,准确分析判断是解题的关键.15.(2022·浙江宁波·八年级期末)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示).(2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?【答案】(1)()4010x +(2)21060400y x x =-++(3)24元/千克【分析】(1)根据“当售价每降低1元/千克时,平均每天能多售出10千克”可直接得出结论;(2)利用利润=(售价-成本)×销售量可得出结论;(3)令y =480,求出x 的值,再根据题意对x 的值进行取舍即可.(1)根据题意得,降价后平均每天可以销售荔枝:(40+10x )千克,故答案为:(40+10x ).(2)根据题意得,()()40102818y x x =+--整理得21060400y x x =-++(3)令480y =,代入函数得,21060400480x x -++=解方程,得14x =,22x =因为要尽可能地清空库存,所以2x =舍去取4x =此时荔枝定价为28424-=(元/千克)答:应将价格定为24元/千克.【点睛】本题考查了一元二次方程的应用,列函数关系式,列代数式,根据题意列出函数关系式是解题的关键.。

几种不同类型的函数模型知识点

几种不同类型的函数模型知识点

几种不同类型的函数模型一 函数模型及数学建模函数模型是解决实际问题的重要数学模型,将实际问题中的变量关系用函数表现出来,然后对函数进行研究得出相关数学结论,并依此解决实际问题.那么如何建立数学模型呢?可按以下步骤完成.(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)求模:求解数学模型,得出数学结论;(4)还原:将数学结论还原为实际问题.建模过程示意图:二 几种常见的函数模型1.一次函数模型:f(x)=kx +b(k 、b 为常数,k ≠0);2.反比例函数模型:f(x)=k x+b(k 、b 为常数,k ≠0); 3.二次函数模型:f(x)=ax 2+bx +c(a 、b 、c 为常数,a ≠0);4.指数函数模型:f(x)=ab x +c(a 、b 、c 为常数,a ≠0,b>0,b ≠1);5.对数函数模型:f(x)=mlog a x +n(m 、n 、a 为常数,a>0,a ≠1);6.幂函数模型:f(x)=ax n +b(a 、b 、n 为常数,a ≠0,n ≠1);7.分段函数模型:这个函数模型实则是以上两种或多种模型的综合,因此应用也十分广泛.三 指、对、幂三种函数模型增长速度的比较正确认识“直线上升”、“指数爆炸”、“对数增长”和幂函数的增长差异.直线上升反映了一次函数(一次项系数大于零)的增长趋势,其增长速度均匀(恒为常数);在区间(0,+∞)上,尽管函数y =a x (a>1),y =log a x(a>1)和y =x n (n>0)都是增函数,但它们的增长速度不在同一个“档次”上. 随着x 的增大,y =a x (a>1)的增长速度越来越快,会超过并远远大于y =x n (n>0)的增长速度,而y =log a x(a>1)的增长速度则会越来越慢,因此总会存在一个x 0,当x>x 0时,就有log a x<x n <a x ,此式揭示了在充分远处三种函数的变化规律.总结:(1)在区间(0,+∞)上,函数y=a x (a>1),y=log a x(a>1)和y=x n (n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上;(2)随着x 的增大,y=a x (a>1)的增长速度越来越快,会超过并远远大于y=x n (n>0)的增长速度,表现为指数爆炸;(3)随着x 的增大,y=log a x(a>1)的增长速度会越来越慢;(4)随着x 的增大,y=a x (a>1)的图象逐渐表现为与y 轴平行一样,而y=log a x(a>1)的图象逐渐表现为与x 轴平行一样;(5)当a>1,n>0时,总会存在一个x 0,当x>x 0时,有a x >x n >log a x ;(6)当0<a<1,n<0时,总会存在一个x 0,当x>x 0时,有log a x<x n <a x一次函数模型例1 为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”和“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y 1(元)、y 2(元)的关系分别如图(1)、图(2)所示.图(1) 图(2)(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月(30天)内使用哪种卡便宜.思路点拨:由题目可知函数模型为直线型,可先用待定系数法求出解析式,然后再进行函数值大小的比较.解:(1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B(30,35),C(30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29(x≥0),y 2=12x(x≥0).(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x<9623时,y 1>y 2,即便民卡便宜;当x>9623时,y 1<y 2,即如意卡便宜. 函数的图象是表示函数的三种方法之一,正确识图、用图、译图是解决函数应用题的基本技能和要求.本题由于过原点的直线是正比例函数图象,因此运用了待定系数法求得一次函数解析式,然后利用函数解析式解决了实际问题.借助函数图象表达题目中的信息,读懂图象是关键.例2 一个报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)内有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进报纸的份数都相同,问应该从报社买进多少份才能使每月所获得的利润最大?并计算每月最多能获得的利润.解:设每天从报社买进设每月所获利润为y ∵y=0.8x +550在[250,400]上是增函数,∴当x =400时,y 取得最大值870.即每天从报社买进400份报纸时,每月获得的利润最大,最大利润为870元. 二次函数模型例3 以100元/件的价格购进一批羊毛衫,以高于进价的相同价格出售.羊毛衫的销售有淡季与旺季之分.标价越高,购买人数越少.我们称刚好无人购买时的最低标价为羊毛衫的最高价格.某商场经销某品牌的羊毛衫,无论销售淡季还是旺季,进货价都是100元/件.针对该品牌羊毛衫的市场调查显示:①购买该品牌羊毛衫的人数是标价的一次函数;②该品牌羊毛衫销售旺季的最高价格是淡季最高价格的32倍;③在销售旺季,商场以140元/件价格销售时能获取最大利润.(1)分别求出该品牌羊毛衫销售旺季的最高价格与淡季的最高价格;(2)在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为多少?思路点拨:首先用标价x 表示出购买人数和旺季价格,进而可表示出利润函数,再利用函数关系解决相关问题.解:(1)设在旺季销售时羊毛衫的标价为x 元/件,购买人数为kx +b(k<0),则旺季的最高价格为-b k元/件,利润函数L(x)=(x -100)(kx +b)=kx 2-(100k -b)x -100b ,x∈[100,-b k ].当x =100k -b 2k =50-b 2k时,L(x)最大.由题意知50-b 2k =140,解得-b k =180.即旺季的最高价格是180(元/件),则淡季的最高价格是180×23=120(元/件).(2)设在淡季销售时羊毛衫的标价为t 元/件,购买人数为mt +n(m<0),则淡季的最高价格为-n m=120(元/件),即n =-120m ,利润函数L(t)=(t -100)(mt -120m)=m(t -110)2-100m ,t∈[100,120].当t =110时,L(t)最大.所以,在淡季销售时,商场要获取最大利润,羊毛衫的标价应定为110元/件.二次函数模型是初等数学阶段研究的最为广泛的多项式函数,由于具有二次函数、二次方程、二次不等式、二次曲线等四个“二次”互为关联的重要特征,因此在应用型问题中是最为重要的模型.此外作为一个考点,由于二次函数涉及函数单调性、区间最值等诸多方面,因此有理由相信,今后这类试题仍将是重点.本题最为重要的特点是逆向运用二次函数最值问题,通过旺季最值的取得来获得参变量之间的关系进而对淡季羊毛衫的价格作出判断与预测.这种方法值得去关注.指数函数模型例4 按复利计算利率的一种储蓄,本金为a ,每期利率为r ,设本利和为y ,存期为x ,写出本利和y 随存期x 变化的函数式.如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和是多少?思路点拨:复利是计算利息的一种方法,即把前一期的利息和本金加在一起作本金,再计算下一期的利息 解:已知本金为a 元.1期后的本利和为y 1=a +a×r=(1+r)a ;2期后的本利和为y 2=a(1+r)+a(1+r)r =a(1+r)2;3期后的本利和为y 3=a(1+r)3;…x 期后的本利和为y =a(1+r)x .将a =1000(元),r =2.25%,x =5代入上式得y =1000×(1+2.25%)5=1000×(1.0225)5≈1117.68(元).故复利函数式为y =a(1+r)x,5期后的本利和为1117.68元.在实际问题中,常常遇到有关平均增长率的问题,如果原来产值的基础数为N ,平均增长率为P ,则对于时间x 的总产值y ,可以用公式y =N(1+P)x 来表示,解决平均增长率的问题时要用到这个函数式.例5 光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后强度为y.(1)写出y 关于x 的函数关系式;(2)至少通过多少块玻璃后,光线强度减弱到原来的13以下?(lg 3≈0.4771) 解:(1)y =a(1-10%)x (x∈N *)(2)∵y≤13a ,∴a(1-10%)x ≤13a ,∴0.9x ≤13,x≥log 0.913=-lg 32 lg 3-1≈10.4,∴x =11.对数函数模型例6 燕子每年秋天都要从北方飞向南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v=5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量. (1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?思路点拨:该问题已经给出了函数模型,故赋值后可求出Q 的值,进而求出v 的值.解:(1)由题知,当燕子静止时,它的速度v =0,代入题给公式可得:0=5log 2Q 10,解得Q =10.即燕子静止时的耗氧量是10个单位.(2)将耗氧量Q =80代入题给公式得:v =5log 28010=5log 28=15(m/s). 即当一只燕子的耗氧量是80个单位时,它的飞行速度为15 m/s.直接以对数函数为模型的应用题不是很多,此类问题一般是先给出对数函数模型,利用对数运算性质求解. 例7 某中学的研究性学习小组为考察一个小岛的湿地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠近岛时,绕小岛环行两周后,把汽艇停靠岸边,上岸考察,然后又乘汽艇沿原航线提速返回.设t 为出发后的某一时刻,S 为汽艇与码头在时刻t 的距离,下列图象中能大致表示S =f(t)的函数关系的为( C )解析:当汽艇沿直线方向匀速开往该岛时,S =vt ,图象为一条线段;当环岛两周时,S 两次增至最大,并减少到与环岛前的距离S 0;上岛考察时,S =S 0; 返回时,S =S 0-vt ,图象为一条线段.所以选C.例8 用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是( B ) A 3 B 4 C 5 D 6解析:设至少要洗x 次,则(1-34)x ≤1100,所以x≥1lg2≈3.32,因此至少要洗4次. 例9 函数y =f(x)与y =g(x)的图象如图:则函数y =f(x)·g(x)的图象可能是( A )解析:明确函数图象在x 轴上下方与函数值符号改变的关系,数值相乘“同号为正、异号为负”.∵函数y =f(x)·g(x)的定义域是函数y =f(x)与y =g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C 、D.由于当x 为很小的正数时f(x)>0且g(x)<0,故f(x)·g(x)<0.故选A.例 10 下列函数中,随x 值的增大,增长速度最快的是( D )(A)y =50x(x∈Z) (B)y=1000x (C)y =0.4×2x -1 (D)y =110000·e x解析:指数“爆炸式”增长,y =0.4×2x -1和y =110000·e x 虽然都是指数型函数,但y =110000·e x 的底数e 较大些,增长速度更快.例11 把长为12厘米的细铁丝截成两段,各自围成一个正三角形,求这两个正三角形面积之和的最小值解析:设一个正三角形的边长为x(cm),则另一个正三角形的边长为12-3x 3=4-x(cm),两个正三角形的面积和为S =34x 2+34(4-x)2=32[(x -2)2+4](0<x <4).当x =2(cm)时,S min =23(cm 2). 例12 当2<x<4时,2x ,x 2,log 2x 的大小关系是( B )(A)2x >x 2>log 2x (B)x 2>2x >log 2x (C)2x >log 2x>x 2 (D)x 2>log 2x>2x解析:法一:在同一平面直角坐标系中分别画出函数y =log 2x ,y =x 2,y =2x ,在区间(2,4)上从上往下依次是y =x 2,y =2x ,y =log 2x 的图象,所以x 2>2x >log 2x.法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x =3,经检验易知选B. 例13 已知函数的图象如图所示,试写出它的一个可能的解析式__________________.解:可由图象的两点特征去确定.第一点:过两定点(0,1),(10,3).第二点:增长情况.答案:y =lg(99100x 2+1)+1(x≥0)(答案不唯一)例14 奇瑞曾在2009年初公告:2009年生产目标定为39.3万辆;而奇瑞董事长极力表示有信心达成这个生产目标,并在09年实现更为平衡的增长.我们不妨来看看近三年奇瑞的政绩吧:2006年,奇瑞汽车年销量8万辆;2007年,奇瑞汽车年销量18万辆;2008年,奇瑞汽车年销量30万辆;如果我们分别将06,07,08,09定义为第一,二,三,四年.现在你有两个函数模型:二次函数模型f(x)=ax 2+bx +c(a≠0),指数函数模型g(x)=a·b x +c(a≠0,b>0,b≠1),哪个模型能更好地反映奇瑞公司年销量y 与年份x 的关系?解:建立年销量y 与年份x 的函数,可知函数必过点(1,8),(2,18),(3,30).(1)构造二次函数模型f(x)=ax 2+bx +c(a≠0),将点坐标代入,可得⎩⎪⎨⎪⎧ a +b +c =8,4a +2b +c =18,9a +3b +c =30,解得a =1,b =7,c =0,则f(x)=x 2+7x ,故f(4)=44,与计划误差为4.7. (2)构造指数函数模型g(x)=a·b x +c(a≠0,b >0,b≠1),将点坐标代入,可得⎩⎪⎨⎪⎧ ab +c =8,ab 2+c =18,ab 3+c =30,解得a =1253,b =65,c =-42,则g(x)=1253·(65)x -42,故g(4)=1253·(65)4-42=44.4,与计划误差为5.1. 由(1)(2)可得,f(x)=x 2+7x 模型能更好地反映奇瑞公司年销量y 与年份x 的关系.例15 近年来,太阳能技术运用的步伐日益加快.2002年全球太阳能电池的年生产量达到670兆瓦,年生产量的增长率为34%.以后四年中,年生产量的增长率逐年递增2%(如,2003年的年生产量的增长率为36%).(1)求2006年全球太阳能电池的年生产量(结果精确到0.1兆瓦);(2)目前太阳能电池产业存在的主要问题是市场安装量远小于生产量,2006年的实际安装量为1420兆瓦.假设以后若干年内太阳能电池的年生产量的增长率保持在42%,到2010年,要使年安装量与年生产量基本持平(即年安装量不少于年生产量的95%),这四年中太阳能电池的年安装量的平均增长率至少应达到多少(结果精确到0.1%)?解:(1)由已知得2003,2004,2005,2006年太阳能电池的年生产量的增长率依次为36%,38%,40%,42%.则2006年全球太阳能电池的年生产量为670×1.36×1.38×1.40×1.42≈2499.8(兆瓦).(2)设太阳能电池的年安装量的平均增长率为x ,则+4+4≥95%,解得x≥0.615. 因此,这四年中太阳能电池的年安装量的平均增长率至少应达到61.5%.例16 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。

中考数学解题技巧(五)二大类八模型

中考数学解题技巧(五)二大类八模型

中考数学解题技巧(五)、两大类八模型———二次函数综合应用题(马铁汉)函数的表示方法有表格法、解析式法和图像法三种方法。

因此,二次函数综合应用题,题干图文并茂,内容丰富多彩,有时还有表格插入;由于题目较长,文字较多,数量复杂,光审题就是件困难的事。

审题一定要仔细。

读题时,篇幅较大的背景文字了解即可,重点阅读有用的数量信息;为了弄清楚重要信息,可把各个量用不同记号标注出来,加深印象,以免搞糊涂。

哪些是常量,哪些是变量;哪个是自变量,哪个是自变量的函数;有时还有参数渗入,它是什么含义,都要搞准确。

二次函数综合应用题,涉及的知识面较广(一次函数、二次函数,不等式,一元一次方程、一元二次方程、分式方程等)。

解答此题,需要具备数形结合思想、方程思想、函数思想,建模思想等数学思想;需要扎实的基础知识和熟练的基本技能,然后做到稳扎稳打,层层分析,逐步解决。

二次函数综合应用题,考查方式有两大类八个模型。

1、考查函数最值类:求实际问题中函数最值。

有下面四个模型:①求二次函数顶点纵坐标,即为实际问题的最值;②求区间内函数最值,即为实际问题的最值;③求函数整数点最值,即为实际问题的最值;④分段函数,需比较各区间函数最值后,确定实际问题的最值。

2、考查自变量范围类:求自变量取值范围或求复合函数中参数范围。

有下面四种模型:①由函数增减性,结合函数值要求,求自变量取值范围;②复合函数,由函数增减性,结合对称轴位置,求参数;③复合函数,由函数增减性,结合对称轴位置,确定区间最值,求参数;④复合函数,由二次函数顶点坐标,求参数。

模型一、求二次函数顶点纵坐标,即为实际问题的最值例1、(2022武汉.22.)(本小题满分10分)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一.直.以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由. 解:(1)1102v t =-+,21104y t t =-+. (2)解:依题意,得2110644t t -+=.∴2402560t t -+=. 解得,18t =,232t =.当18t =时,6v =;当232t =时,6v =-(舍). 答:黑球减速后运动64cm 时的速度为6cm/s . (3)解:设黑白两球的距离为cm w .270218704w t y t t =+-=-+ 21(16)64t =-+. ∵104>,抛物线开口向上, ∴当16t =时,w 的值最小为6. (在取值范围内,顶点纵坐标即为实际问题的最值) ∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.另解1:当0w =时,2187004r t -+=,判定方程无解. 另解2:当黑球的速度减小到2cm/s 时,如果黑球没有碰到白球,此后,速度低于白球速度,不会碰到白球。

2024版高考数学总复习:函数模型及其应用教师用书

2024版高考数学总复习:函数模型及其应用教师用书

第九节函数模型及其应用考试要求:1.在实际情景中,会选择合适的函数模型刻画现实问题的变化规律.2.结合现实情景中的具体问题,理解“对数增长”“直线上升”“指数爆炸”等术语的现实含义.一、教材概念·结论·性质重现1.常见的函数模型(1)正比例函数模型:f (x )=kx (k 为常数,k ≠0).(2)反比例函数模型:f (x )=��(k 为常数,k ≠0).(3)一次函数模型:f (x )=kx +b (k ,b 为常数,k ≠0).(4)二次函数模型:f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0).(5)指数型函数模型:f (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1).(6)对数型函数模型:f (x )=m log a x +n (m ,n ,a 为常数,m ≠0,a >0,a ≠1).(7)幂函数模型:f (x )=ax n +b (a ,b ,n 为常数,a ≠0,n ≠1).(8)“对勾”函数模型:y =x +��01.不要忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果的合理性.函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x1.判断下列说法的正误,对的画“√”,错的画“×”.(1)幂函数增长比直线增长更快.(×)(2)不存在x0,使��0<�0�<log a x0.(×)(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>1)的增长速度.(√) (4)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.(×) 2.下列函数中,随x的增大,y的增长速度最快的是()A.y=0.001e x B.y=1000ln xC.y=x1000D.y=1000·2xA解析:在对数函数、幂函数、指数函数中,指数函数的增长速度最快,排除B,C;指数函数中,底数越大,函数增长速度越快.故选A.3.已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)B解析:当x∈(4,+∞)时,易知增长速度由大到小依次为g(x)>f(x)>h(x).故选B. 4.在某个物理实验中,测量得变量x和变量y的几组数据,如下表:x0.500.99 2.01 3.98y-0.990.010.98 2.00则对x,y最适合的拟合函数是()A.y=2x B.y=x2-1C.y=2x-2D.y=log2xD解析:根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.故选D.5.用长度为24的材料围成一个矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为_________.3解析:设隔墙的长度为x(0<x<6),矩形的面积为y,则y=x·24−4�=2x(6-x)=-2(x-3)22+18,∴当x=3时,y最大.考点1利用函数的图象刻画实际问题——基础性1.如图,一个高为H且装满水的鱼缸,其底部装有一个排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h=f(t)的图象大致是()B解析:函数h=f(t)是关于t的减函数,故排除C,D;开始时,h随着时间的变化,变化缓慢,水排出超过一半时,h随着时间的变化,变化加快,故对应的图象为B.故选B. 2.有一个盛水的容器,由悬在它上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是()B解析:由函数图象可判断出该容器的形状不规则,又函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ为线段,知这一段是均匀变化的,所以容器上端必是直的一段,排除A,C,D.故选B.3.(多选题)(2022·北京东城区模拟)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,y关于x的函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y关于x的函数图象.给出下列四种说法,其中正确的是()A.图(2)对应的方案是:提高票价,并提高固定成本B.图(2)对应的方案是:保持票价不变,并降低固定成本C.图(3)对应的方案是:提高票价,并保持固定成本不变D.图(3)对应的方案是:提高票价,并降低固定成本BC 解析:由题图(1)可设y 关于x 的函数为y =kx +b ,k >0,b <0,k 为票价,当k =0时,y =b ,则-b 为固定成本.由题图(2)知,直线向上平移,k 不变,即票价不变,b 变大,则-b 变小,固定成本减小,故A 错误,B 正确;由题图(3)知,直线与y 轴的交点不变,直线斜率变大,即k 变大,票价提高,b 不变,即-b 不变,固定成本不变,故C 正确,D 错误.4.某人根据经验绘制了从12月21日至1月8日自己种植的西红柿的销售量y (单位:千克)随时间x (单位:天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________千克.1909解析:前10天满足一次函数关系.设为y =kx +b .将点(1,10)和点(10,30)的坐标代入函数解析式得10=�+�,30=10�+�,解得k =209,b =709,所以y =209x +709.当x =6时,y =1909.1.解决这类问题一般要根据题意构建函数模型,先建立函数模型,再结合模型选图象,并结合五个幂函数的图象与性质来求解.2.有些题目,如第3题,根据实际问题中两变量的变化特点,结合图象的变化趋势,验证答案是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点2已知函数模型解决实际问题——综合性汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.设d 表示停车距离,d 1表示反应距离,d 2表示制动距离,则d =d 1+d 2.如图是根据美国公路局公布的试验数据制作的停车距离示意图.序号速度(km/h)停车距离14017.025026.536035.747046.058052.769070.7710085.48110101.0由图中数据得到如表的表格,根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型①:d =av +b ;模型②:d =av 2+bv ;模型③:d =av +��;模型④:d =av 2+��(其中v 为汽车速度,a ,b 为待定系数)进行拟合.如果根据序号3和序号7两组数据分别求出四个函数模型的解析式,并通过计算120km/h 时的停车距离与实验数据比较,则拟合效果最好的函数模型是()A.d =av +b B.d =av 2+bv C.d =av +��D.d =av 2+��B 解析:若选择模型①,则60�+�=35.7,100�+�=85.4,解得a =1.2425,b =-38.85.故d =1.2425v -38.85.当v =120时,停车距离d 的预测值为1.2425×120-38.85=110.25.若选择模型②,则3600�+60�=35.7,10000�+100�=85.4,解得a =0.006475,b =0.2065.故d =0.006475v 2+0.2065v .当v =120时,停车距离d 的预测值为0.006475×1202+0.2065×120=118.02.若选择模型③,则60�+�60=35.7,100�+�100=85.4,解得a =0.9996875,b =-1456.875.故d =0.9996875v -1456.875�.当v =120时,停车距离d 的预测值为0.9996875×120-1456.875120=107.821875.若选择模型④,则3600�+�60=35.7,10000�+�100=85.4,解得a =15.9951960,b =379.2857143.故d =15.9951960v 2+379.2857143�.当v =120时,停车距离d 的预测值为15.9951960×1202+379.2857143120=120.675.由实验数据可知当v =120时,停车距离为118m.模型②的预测值更接近118m,故模型②拟合效果最好.解函数模型的实际应用题,首先应考虑该题考查的是何种函数,然后根据题意列出函数关系式(注意定义域),并进行相关求解,最后结合实际意义作答.→→→1.某市家庭煤气的使用量x (单位:m 3)和煤气费f (x )(单位:元)满足关系f (x )=�,0<�≤�,�+��−�,�>�.已知某家庭2021年前三个月的煤气费如表:月份用气量煤气费1月份4m 34元2月份25m 314元3月份35m 319元若4月份该家庭使用了20m 3的煤气,则其煤气费为()A.11.5元B.11元C.10.5元D.10元A 解析:根据题意可知f (4)=C =4,f (25)=C +B (25-A )=14,f (35)=C +B (35-A )=19,解得A =5,B =12,C =4,所以f (x )=4,0<�≤5,4−5,�>5,所以f (20)=4+12×(20-5)=11.5.2.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,该企业考虑转型,下表显示的是某企业几年来年利润y (百万元)与年投资成本x (百万元)变化的一组数据:年份2018201920202021…投资成本x 35917…年利润y1234…给出以下3个函数模型:①y =kx +b (k ≠0);②y =ab x (a ≠0,b >0且b ≠1);③y =log a (x +b )(a >0且a ≠1).(1)选择一个恰当的函数模型来描述x ,y 之间的关系;(2)试判断该企业年利润超过6百万元时,该企业是否要考虑转型.解:(1)将(3,1),(5,2)代入y =kx +b (k ≠0),得1=3�+�,2=5�+�,解得�=12,�=−12,所以y =12x -12.当x =9时,y =4,不符合题意.将(3,1),(5,2)代入y =ab x (a ≠0,b >0且b ≠1),得1=��3,2=��5,解得�=24,�=2,所以y =24·(2)x=2�−32当x =9时,y =29−32=8,不符合题意.将(3,1),(5,2)代入y =log a (x +b )(a >0且a ≠1),得1=log �3+�,2=log �5+�,解得�=2,�=−1,所以y =log 2(x -1).当x =9时,y =log 28=3;当x =17时,y =log 216=4.故可用③来描述x ,y 之间的关系.(2)令log 2(x -1)>6,则x >65.因为年利润665<10%,所以该企业要考虑转型.考点3构造函数模型解决实际问题——应用性考向1二次函数、分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?解:(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3.因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x2+68x-115>0,有3x2-68x+115<0,结合x为整数得6<x≤20,x∈Z.所以y=f(x)=50�−115,3≤�≤6,�∈�,−3�2+68�−115,6<�≤20,�∈�.(2)对于y=50x-115,3≤x≤6,x∈Z,显然当x=6时,y max=185.对于y=-3x2+68x-115=-3�−+8113,6<x≤20,x∈Z,当x=11时,y max=270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成.如出租车票价与路程之间的关系,应构建分段函数模型求解.(1)某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A.2020年B.2021年C.2022年D.2023年B解析:若2018年是第一年,则第n年科研费为1300×1.12n,由1300×1.12n>2000,可得lg 1.3+n lg 1.12>lg 2,得n ×0.05>0.19,n >3.8,n ≥4,即4年后,到2021年科研经费超过2000万元.故选B.(2)基本再生数R 0与世代间隔T 是流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在病毒感染初始阶段,可以用指数模型I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在病毒感染初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天B 解析:因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t .设在病毒感染初始阶段,累计感染病例数增加1倍需要的时间为t 1天,则e 0.38�+�1=2e 0.38t ,所以e 0.38�1=2,所以0.38t 1=ln 2,所以t 1=ln 20.38≈0.690.38≈1.8(天).故选B.(1)要先学会合理选择模型.与增长率、银行利率有关的问题都属于指数函数模型.1.某位股民买入某只股票,在接下来的交易时间内,他的这只股票先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%),则该股民这只股票的盈亏情况(不考虑其他费用)为()A.略有盈利B.无法判断盈亏情况C.没有盈利也没有亏损D.略有亏损D解析:设买入股票时的价格为m (m >0)元.先经历了3次涨停(每次上涨10%),又经历了3次跌停(每次下降10%)后的价格为m ×(1+10%)3×(1-10%)3=0.993m <m ,所以该股民这只股票的盈亏情况(不考虑其他费用)为略有亏损.故选D.2.某汽车销售公司在A,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元C解析:设公司在A地销售该品牌的汽车x(0≤x≤16且x∈N)辆,则在B地销售该品牌的汽车(16-x)辆,所以可得利润y=4.1x-0.1x2+2(16-x)=-0.1x2+2.1x+32=-110·�−+110×2124+32.因为x∈[0,16]且x∈N,所以当x=10或11时,总利润取得最大值43万元.3.一个容器装有细沙a cm3,细沙从容器底部一个细微的小孔慢慢地漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.16解析:当t=0时,y=a;当t=8时,y=a e-8b=12a.故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16min,容器中的沙子只有开始时的八分之一.课时质量评价(十四)A组全考点巩固练1.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x(分钟)的函数图象为()D解析:y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,排除B.故选D.2.气象学院用32万元购置了一台天文观测仪,已知这台观测仪从启动的第1天开始连续使用,第n天的维修保养费为4n+46(n∈N*)元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器平均每天耗资最少)为止,则一共要使用()A.300天B.400天C.600天D.800天B 解析:使用n 天的平均耗资为3202�+2�+48元,当且仅当320000�=2n 时取得最小值,此时n =400.3.(2023·济南月考)某乡村一条污染河道的蓄水量为v 立方米,每天的进出水量为k 立方米.已知污染源以每天r 个单位污染河水,某一时段t (单位:天),河水污染质量指数m (t )(每立方米河水所含的污染物)满足m (t )=��+�0−e −���(m 0为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:ln 10≈2.30)()A.1个月B.3个月C.半年D.1年C 解析:由题意可知,m (t )=�0e−180�=0.1m 0,则e −180�=0.1,即-180t =ln 0.1≈-2.30,所以t ≈184,则要使河水的污染水平下降到初始时的10%,需要的时间大约是184天,即半年.故选C.4.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)()A.30元B.60元C.28000元D.23000元D解析:设毛利润为L (p )元,则由题意知L (p )=pQ -20Q =Q (p -20)=(8300-170p -p 2)(p-20)=-p 3-150p 2+11700p -166000,所以L ′(p )=-3p 2-300p +11700.令L ′(p )=0,解得p =30或p =-130(舍去).当p ∈(0,30)时,L ′(p )>0;当p ∈(30,+∞)时,L ′(p )<0.故L (p )在p =30时取得极大值,即最大值,且最大值为L (30)=23000.5.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%.若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(参考数据:lg 2≈0.3010,lg 3≈0.4771)8解析:设至少过滤n 次才能达到市场要求,则2%×1−≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.6.我们经常听到这样一种说法:一张纸经过一定次数对折之后厚度能超过地月距离.但实际上,因为纸张本身有厚度,我们并不能将纸张无限次对折,当厚度超过纸张的长边时,便不能继续对折了,一张长边为w ,厚度为x 的矩形纸张沿两个方向不断对折,则经过两次对折,长边变为12w ,厚度变为4x ,在理想情况下,对折次数n 有下列关系:n ≤23·log 2��(注:lg 2≈0.3).根据以上信息,一张长为21cm,厚度为0.05mm 的纸最多能对折________次.8解析:由题知n ≤23log 24200=23log 24+log 21000+log =232+3log 210+log 2因为log 210=1lg 2≈10.3,0<log 22120<1,所以n ≤8+23log 22120,n 的最大值为8.B 组新高考培优练7.(2022·聊城一模)“环境就是民生,青山就是美丽,蓝天也是幸福”,随着经济的发展和社会的进步,人们的环保意识日益增强.某化工厂产生的废气中污染物的含量为1.2mg/cm 3,排放前每过滤一次,该污染物的含量都会减少20%.当地环保部门要求废气中该污染物的含量不能超过0.2mg/cm 3,若要使该工厂的废气达标排放,那么在排放前需要过滤的次数至少为()(参考数据:lg 2≈0.3,lg 3≈0.477)A.5B.7C.8D.9C 解析:设该污染物排放前过滤的次数为n (n ∈N *),由题意1.2×0.8n≥6,两边取以10为底的对数可得lg≥lg 6,即n lg2+lg 3,所以n ≥lg 2+lg 31−3lg 2.因为lg 2≈0.3,lg 3≈0.477,所以lg 2+lg 31−3lg 2≈0.3+0.4771−3×0.3=7.77,所以n ≥7.77,又n ∈N *,所以n min =8,即该污染物排放前需要过滤的次数至少为8次.故选C.8.(多选题)(2022·济南月考)甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,它们行走的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),则下列结论正确的是()A.当x >1时,甲走在最前面B.当x >1时,乙走在最前面C.当0<x <1时,丁走在最前面,当x >1时,丁走在最后面D.如果它们一直运动下去,最终走在最前面的是甲CD 解析:甲、乙、丙、丁的路程f i (x )(i =1,2,3,4)关于时间x (x ≥0)的函数关系式分别为f 1(x )=2x -1,f 2(x )=x 2,f 3(x )=x ,f 4(x )=log 2(x +1),它们对应的函数模型分别为指数型函数模型、二次函数模型、一次函数模型、对数型函数模型.当x =2时,f 1(2)=3,f 2(2)=4,所以A 不正确;当x =5时,f 1(5)=31,f 2(5)=25,所以B 不正确.根据四种函数的变化特点,对数型函数的增长速度是先快后慢,又当x =1时,甲、乙、丙、丁四个物体走过的路程相等,从而可知,当0<x <1时,丁走在最前面,当x >1时,丁走在最后面,所以C 正确;指数型函数的增长速度是先慢后快,当运动的时间足够长时,最前面的物体一定是按照指数型函数模型运动的物体,即一定是甲物体,所以D 正确.9.李冶(1192-1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,有多部数学著作,其中《益古演段》主要研究平面图形问题,求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是________步、________步(注:240平方步为1亩,圆周率按3近似计算).2060解析:设圆池的半径为r 步,则方田的边长为(2r +40)步,由题意,得(2r +40)2-3r 2=13.75×240,解得r =10或r =-170(舍),所以圆池的直径为20步,方田的边长为60步.10.(2023·泰安模拟)某研究所开发了一种抗病毒新药,用小白鼠进行抗病毒实验.已知小白鼠服用1粒药后,每毫升血液含药量y (单位:微克)随着时间x (单位:时)变化的函数关系式近似为y=≤�≤6,12−�6<�≤12.当每毫升血液含药量不低于4微克时,该药能起到有效抗病毒的效果.(1)若小白鼠服用1粒药,多长时间后该药能起到有效抗病毒的效果?(2)某次实验:先给小白鼠服用1粒药,6小时后再服用1粒,请问这次实验该药能够有效抗病毒的时间为多少小时?解:(1)设服用1粒,经过x 小时能有效抗病毒,即血液含药量需不低于4微克,可得0≤�≤6,2�8−�≥4,解得163≤x ≤6.所以163小时后该药能起到有效抗病毒的效果.(2)设经过x 小时能有效抗病毒,即血液含药量需不低于4微克.若0≤x ≤6,药物浓度2�8−�≥4,解得163≤x ≤6.若6<x ≤12,药物浓度(12-x �−6x 2-20x +100≥0,所以6<x ≤12;若12<x ≤18,药物浓度12-(x -6)≥4,解得x ≤14,所以12<x ≤14.综上,x 14,所以这次实验该药能够有效抗病毒的时间为263小时.。

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解18---函数模型的应用

备战高考数学复习考点知识与题型讲解第18讲函数模型的应用考向预测核心素养考查根据实际问题建立函数模型解决问题的能力,常与函数图象、单调性、最值及方程、不等式交汇命题,各种题型均有可能,中档难度.数学建模一、知识梳理1.六种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0)对数函数模型f(x)=b logax+c(a,b,c为常数,a>0且a≠1,b≠0)幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)“对勾”函数模型y=x+ax(a为常数,a>0)2.三种函数模型性质比较y=a x(a>1)y=logax(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同3.用函数建立数学模型解决实际问题的基本过程常用结论1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.“对勾”函数f (x )=x +a x(a >0)在(0,+∞)上的性质:在(0,a ]上单调递减,在[a ,+∞)上单调递增,当x =a 时f (x )取最小值2a .二、教材衍化1.(人A 必修第一册P 152例6改编)某校拟用一种喷雾剂对宿舍进行消毒,需对喷雾完毕后空气中每立方米药物残留量y (单位:毫克)与时间x (单位:时)的关系进行研究,为此收集部分数据并做了初步处理,得到如图散点图.现拟从下列四个函数模型中选择一个估计y 与x 的关系,则应选用的函数模型是( )A .y =ax +bB.y =a ·⎝ ⎛⎭⎪⎫14x+b (a >0)C .y =x a +b (a >0) D.y =ax +b x(a >0,b >0)解析:选 B.由散点图可知,函数在(0,+∞)上单调递减,且散点分布在一条曲线附近,函数y =a ·⎝ ⎛⎭⎪⎫14x+b 的图象为一条曲线,且当a >0时,该函数单调递减,符合题意,故选B.2.(多选)(人A 必修第一册P 155习题4.5T 9改编)如图,某池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系为y =a t .关于下列说法中正确的是( )A .浮萍每月的增长率为1B .第5个月时,浮萍面积就会超过30 m 2C .浮萍每月增加的面积都相等D .若浮萍蔓延到2 m 2,3 m 2,6 m 2所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3 解析:选ABD.把(1,2)代入y =a t ,可得函数解析式为y =2t , 因为2t +1-2t2t =1,所以每月增长率为1,A 对;当t =5时,y =32>30,所以B 对;第2个月增加2 m 2,第3个月增加4 m 2,C 错; 由2t 1=2,2t 2=3,2t 3=6,所以2t 1·2t 2=2t 3,故t 1+t 2=t 3,D 对.3.(人A 必修第一册P 96习题3.4T 5改编)下表是弹簧伸长长度x (单位:cm)与拉力F (单位:N)的相关数据:x 14.2 28.8 41.3 57.5 70.2 F12345写出能反映这一变化现象的函数为________.(不唯一)解析:根据点的分布特征,可以考虑用函数x =kF +b (k ≠0)作为刻画弹簧伸长长度与拉力关系的函数模型.取两组数据(1,14.2),(4,57.5),则⎩⎨⎧k +b =14.2,4k +b =57.5,解得⎩⎨⎧k ≈14.4,b ≈-0.2,所以x =14.4F -0.2.将已知数据代入上述解析式,或作出函数图象,可以发现,这个函数模型与已知数据拟合程度较好.答案:x =14.4F -0.2一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( )(2)函数y =2x的函数值比y =x 2的函数值大.( ) (3)不存在x 0,使ax 0<x n 0<log a x 0.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)× (4)× 二、易错纠偏1.(函数模型选择易误)某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100x B.y =50x 2-50x +100 C .y =50×2xD.y =100log 2x +100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证可知选C.2.(指数函数、对数函数性质不明致误)下面对函数f (x )=log 12x 与g (x )=⎝ ⎛⎭⎪⎫12x 在区间(0,+∞)上的衰减情况的说法中正确的为( )A .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越快B .f (x )的衰减速度越来越快,g (x )的衰减速度越来越慢C .f (x )的衰减速度越来越慢,g (x )的衰减速度越来越慢D.f(x)的衰减速度越来越快,g(x)的衰减速度越来越快解析:选C.在同一平面直角坐标系中画出f(x)与g(x)的图象如图所示,由图象可判断出衰减情况为:f(x)衰减速度越来越慢;g(x)衰减速度越来越慢,故选C.3.(平均增长率概念不清致误)某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为________.解析:设年平均增长率为x,则(1+x)2=(1+p)(1+q),所以x=(1+p)(1+q)-1.答案:(1+p)(1+q)-1考点一用函数图象刻画变化过程(自主练透)复习指导:能将实际问题转化为数学问题,会应用函数图象对实际问题进行描述.1.一种叫万年松的树的生长时间t(年)与树高y(m)之间的散点图如图所示.请你据此判断,拟合这种树生长的年数与树高的关系式,选择的函数模型最好的是( ) A.y=2t B.y=log2tC.y=t3D.y=2t2解析:选B.由图知,函数的增长速度越来越慢,排除A,C,D.选B.2.(2022·广州市综合检测(一))如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T. 若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是( )解析:选B.水位由高变低,排除C,D.半缸前下降速度先快后慢,半缸后下降速度先慢后快,故选B.3.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为( )解析:选D.y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.4.(多选)(2022·福建厦门高三质检)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y(单位:微克)与时间t(单位:小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则( )A.a=3B.注射一次治疗该病的有效时间长度为6小时C.注射该药物18小时后每毫升血液中的含药量为0.4微克D.注射一次治疗该病的有效时间长度为53132小时解析:选AD.当t =1时,y =4,即⎝ ⎛⎭⎪⎫121-a=4,解得a =3,所以y =⎩⎨⎧4t ,0≤t <1,⎝ ⎛⎭⎪⎫12t -3,t ≥1,故A 正确,药物刚好起效的时间,当4t =0.125,即t =132, 药物刚好失效的时间⎝ ⎛⎭⎪⎫12t -3=0.125,解得t =6,故药物有效时长为6-132=53132小时, 药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为4×18=0.5微克,故C 错误.判断函数图象与实际问题变化过程相吻合的方法:(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考点二 已知或选择函数模型解决实际问题(综合研析)复习指导:1.已知函数模型,用待定系数法确定解析式; 2.根据几种常见函数的增长差异选择函数模型.(1)(2022·江西高三月考)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知在一定时间内,某种水果失去的新鲜度y 与其采摘后时间t (小时)近似满足的函数关系式为y =k ·m t (k ,m 为非零常数),若采摘后20小时,这种水果失去的新鲜度为20%,采摘后30小时,这种水果失去的新鲜度为40%.那么采摘下来的这种水果大约经过多长时间后失去50%新鲜度(参考数据:lg 2≈0.3,结果取整数)( )A .33小时 B.23小时 C .35小时D.36小时(2)某地西红柿上市后,通过市场调查,得到西红柿的种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t60100 180 种植成本Q 11684116根据上表数据,从下列函数中选取一个函数描述西红柿的种植成本Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,则①西红柿种植成本最低时的上市天数是________; ②最低种植成本是________元/100 kg. 【解析】 (1)由题意⎩⎨⎧k ·m 20=20%k ·m 30=40%,两式相除得m 10=2,m =2110,代入得k =5%,所以y =5%·2t10,由50%=5%·2t 10得2t10=10,取对数得t 10lg 2=1,t =10lg 2≈100.3≈33(小时). (2)由题意知,种植成本与上市时间的变化关系应该用二次函数Q =at 2+bt +c ,即Q =a (t -120)2+m 描述,将表中数据代入可得⎩⎨⎧a (60-120)2+m =116,a (100-120)2+m =84,解得⎩⎨⎧a =0.01,m =80, 所以Q =0.01(t -120)2+80,故当上市天数为120时,种植成本取到最低值80元/100 kg.【答案】 (1)A (2)①120 ②80已知或选择函数模型解决实际问题的注意点(1)已知模型的实际问题,根据待定系数法确定模型,再利用模型求解实际问题.(2)选择模型的问题可结合函数图象,函数值的增长特点(增减、增长快慢)等选用合适的函数模型.|跟踪训练|(多选)纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国城市中有超过23的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2018年到2021年产生的包装垃圾量如下表:有下列函数模型:①y =a ·b x -2 018;②y =a sin πx2 018+b (参考数据:lg 2=0.301 0,lg 3=0.477 1),则( )A .选择模型①,函数模型解析式y =4·⎝ ⎛⎭⎪⎫32x -2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系B .选择模型②,函数模型解析式y =4sin πx2 018+2 018,近似反映该城市近几年产生的包装垃圾y (万吨)与年份x 的函数关系C .若不加以控制,任由包装垃圾如此增长下去,从2023年开始,该城市的包装垃圾将超过40万吨D .若不加以控制,任由包装垃圾如此增长下去,从2024年开始,该城市的包装垃圾将超过40万吨解析:选AD.若选y =4·⎝ ⎛⎭⎪⎫32x -2 018,计算可得对应数据近似为4,6,9,13.5,若选y =4sin πx2 018+2 018,计算可得对应数据近似值都大于2 014,显然A 正确,B 错误;按照选择函数模型y =4·⎝ ⎛⎭⎪⎫32x -2 018,令y >40,即4×⎝ ⎛⎭⎪⎫32x -2 018>40,所以⎝ ⎛⎭⎪⎫32x -2 018>10,所以x -2 018>log 3210,所以x -2 018>lg 10lg 32=1lg 3-lg 2≈5.678 6,所以x >2 023.678 6,即从2024年开始,该城市的包装垃圾将超过40万吨,故C 错误,D 正确.考点三 构建函数模型解决实际问题(多维探究)复习指导:1.分析题意,寻找实际问题中起决定作用的两个变量. 2.确定两个变量间的关系,选择合适的函数模型. 角度1 构建二次函数、分段函数、“对勾”函数模型(链接常用结论2)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W (x )万元,在年产量不足8万件时,W (x )=13x 2+x (万元).在年产量不小于8万件时,W (x )=6x +100x-38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?【解】 (1)因为每件商品售价为5元,则x 万件商品销售收入为5x 万元, 依题意得,当0<x <8时,L (x )=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3;当x ≥8时,L (x )=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x . 所以L (x )=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x <8,35-⎝ ⎛⎭⎪⎫x +100x ,x ≥8.(2)当0<x <8时,L (x )=-13(x -6)2+9.此时,当x =6时,L (x )取得最大值,为9万元. 当x ≥8时,L (x )=35-⎝ ⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15,当且仅当x =100x时等号成立,即x =10时,L (x )取得最大值,为15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元.角度2 构建指数函数、对数函数模型(1)(2022·长春高三摸底考试)2018年5月至2019年春,在阿拉伯半岛和伊朗西南部,沙漠蝗虫迅速繁衍,呈现几何式的爆发,仅仅几个月,蝗虫数量增长了8 000倍,引发了蝗灾,到2020年春季蝗灾已波及印度和巴基斯坦,假设蝗虫的日增长率为5%,最初有N 0只,则达到最初的16 000倍只需经过(参考数据:ln 1.05≈0.048 8,ln 16 000≈9.680 3)( )A .191天 B.195天 C.199天D.203天(2)里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.【解析】(1)设过x天能达到最初的16 000倍,由已知可得,N0(1+0.05)x=16 000N0,所以x=ln 16 000ln 1.05≈198.4,又x∈N,故经过199天能达到最初的16 000倍.(2)M=lg 1 000-lg 0.001=3-(-3)=6.设9级地震的最大振幅和5级地震的最大振幅分别为A1,A2,则9=lg A1-lg A0=lg A1A,则A1A=109,5=lg A2-lg A0=lgA2A,则A2A=105,所以A1A2=104.即9级地震的最大振幅是5级地震最大振幅的10 000倍.【答案】(1)C (2)6 10 000(1)建模解决实际问题的三个步骤①建模:抽象出实际问题的数学模型.②推理、演算:对数学模型进行逻辑推理或数学演算,得到问题在数学意义上的解.③评价、解释:对求得的数学结果进行深入的讨论,作出评价、解释,返回到原来的实际问题中去,得到实际问题的解.(2)构建函数模型解决实际问题,充分体现了数学建模的核心素养.[提醒] (1)构建函数模型时不要忘记考虑函数的定义域.(2)利用模型f(x)=ax+bx求解最值时,注意取得最值时等号成立的条件.|跟踪训练|1.(多选)某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5 000册.要使该杂志销售收入不少于22.4万元,每册杂志可以定价为( )A .2.5元 B.3元 C.3.2元D.3.5元解析:选BC.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x (x >2)元,则发行量为⎝ ⎛⎭⎪⎫10-x -20.2×0.5万册, 则该杂志销售收入为⎝ ⎛⎭⎪⎫10-x -20.2×0.5x 万元, 所以⎝ ⎛⎭⎪⎫10-x -20.2×0.5x ≥22.4,化简得x 2-6x +8.96≤0,解得2.8≤x ≤3.2,故选BC.2.某种茶水用100 ℃的水泡制,再等到60 ℃时饮用可产生最佳口感.已知茶水温度y (单位:℃)与经过时间t (单位:min)的函数关系是:y =ka t +y 0,其中a 为衰减比例,y 0是室温,t =0时,y 为茶水初始温度,若室温为20 ℃,a =⎝ ⎛⎭⎪⎫1218,茶水初始温度为100 ℃,则k =________,产生最佳口感所需时间是________min.解析:由题意,y =ka t +20,当t =0时,有y =ka t +20=k +20=100,k =80, 则y =80a t +20,当y =60时,即80a t +20=60,所以80a t =40,所以a t =12,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1218t =12,所以t =8.答案:80 8[A 基础达标]1.某种细菌在培养过程中,每15 min 分裂一次(由1个分裂成2个),这种细菌由1个分裂成4 096个需经过的时间是( )A .12 h B.4 h C.3 hD.2 h解析:选C.设这种细菌由1个分裂成4 096个需经过x次分裂,则4 096=2x,解得x=12,故所需时间t=12×1560=3 h.2.“龟兔赛跑”讲述了这样的故事:兔子和乌龟赛跑,领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是( )解析:选B.选项A表示龟兔同时到达;选项C表示兔子没有追赶乌龟;选项D表示兔子先到达终点.3.某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这支股票的盈亏情况(不考虑其他费用)为( )A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购进这支股票的价格为a元,则经历n次涨停后的价格为a(1+10%)n=a×1.1n元,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这支股票略有亏损.4.在固定电压差(电压为常数)的前提下,当电流通过圆柱形的电线时,其电流强度I与电线半径r的三次方成正比,若已知电流通过半径4毫米的电线时,电流强度为320安,则电流通过半径为3毫米的电线时,电流强度为( )A.60安 B.240安C.75安D.135安解析:选D.由已知,设比例常数为k,则I=k·r3.由题意,当r=4时,I=320,故有320=k×43,解得k=32064=5,所以I=5r3.故当r=3时,I=5×33=135(安).故选D.5.(2022·皖南八校联考)某购物网站在2021年11月开展“全部6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为________.解析:为使花钱总数最少,需使每张订单满足“每张订单金额(6折后)满300元时可减免100元”,即每张订单打折前原金额不少于500元.由于每件原价48元,因此每张订单至少11件,又42=11×3+9,所以最少需要下的订单张数为3.答案:36.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为________升.解析:因为每次都把油箱加满,第二次加了48升油,说明这段时间总耗油量为48升,而行驶的路程为35 600-35 000=600(千米),故每100千米平均耗油量为48÷6=8(升).答案:87.一个容器装有细沙a cm3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min后剩余的细沙量为y=a e-bt(cm3),经过8 min后发现容器内还有一半的沙子,则再经过________min,容器中的沙子只有开始时的八分之一.解析:当t=0时,y=a;当t=8时,y=a e-8b=12a,故e-8b=12.当容器中的沙子只有开始时的八分之一时,即y=a e-bt=18a,e-bt=18=(e-8b)3=e-24b,则t=24,所以再经过16 min容器中的沙子只有开始时的八分之一.答案:168.某工厂因排污比较严重,决定着手整治,第一个月污染度为60,整治后前四个月的污染度如下表:污染度为0后,该工厂即停止整治,污染度又开始上升,现用下列三个函数模拟从整治后第一个月开始工厂的污染模式:f (x )=20|x -4|(x ≥1),g (x )=203(x -4)2(x ≥1),h (x )=30|log 2x -2|(x ≥1),其中x 表示月数,f (x ),g (x ),h (x )分别表示污染度.(1)试问选用哪个函数模拟比较合理,并说明理由;(2)若以比较合理的模拟函数预测,整治后有多少个月的污染度不超过60? 解:(1)用h (x )模拟比较合理,理由如下: 因为f (2)=40,g (2)≈26.7,h (2)=30;f (3)=20,g (3)≈6.7,h (3)≈12.5.由此可得h (x )更接近实际值,所以用h (x )模拟比较合理.(2)因为h (x )=30|log 2x -2|在x ≥4时是增函数,h (16)=60,所以整治后有16个月的污染度不超过60.9.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元,0.5万元.(1)分别写出两类产品的收益与投资额的函数关系;(2)若该家庭有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益是多少万元?解:(1)设两类产品的收益与投资额的函数关系分别为f (x )=k 1x ,g (x )=k 2x . 由已知得f (1)=18=k 1,g (1)=12=k 2,所以f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资股票类产品为x 万元, 则投资债券类产品为(20-x )万元.依题意得y =f (20-x )+g (x )=20-x 8+12x =-x +4x +208(0≤x ≤20). 所以当x =2,即x =4时,收益最大,y max =3万元.故投资债券类产品16万元,投资股票类产品4万元时获得最大收益,为3万元.[B 综合应用]10.在标准温度和大气压下,人体血液中氢离子物质的量的浓度(单位:mol/L ,记作[H +])和氢氧根离子物质的量的浓度(单位:mol/L ,记作[OH -])的乘积等于常数10-14.已知pH 值的定义为pH =-lg[H +],健康人体血液的pH 值保持在7.35~7.45之间,那么健康人体血液中的[H +][OH -]可以为(参考数据:lg 2≈0.30,lg 3≈0.48)( )A.12B.13C.16D.110解析:选C.因为[H +]·[OH -]=10-14,所以[H +][OH -]=[H +]2×1014,因为7.35<-lg[H+]<7.45,所以10-7.45<[H +]<10-7.35,所以10-0.9<[H +][OH -]=1014·[H +]2<10-0.7,10-0.9=1100.9>110,lg 100.7=0.7>lg 3>lg 2,所以100.7>3>2,10-0.7<13<12,所以110<[H +][OH -]<13.故选C.11.(2022·焦作温县一中10月月考)搭载神舟十二号载人飞船的长征二号F 遥十二运载火箭,在酒泉卫星发射中心点火发射成功.此次航天飞行任务中,火箭起到了非常重要的作用.在不考虑空气动力和地球引力的理想情况下,火箭在发动机工作期间获得速度增量v (单位:千米/秒)可以用齐奥尔科夫斯基公式v =ωln ⎝ ⎛⎭⎪⎫1+m M 来表示,其中,ω(单位:千米/秒)表示它的发动机的喷射速度,m (单位:吨)表示它装载的燃料质量,M (单位:吨)表示它自身(除燃料外)的质量.若某型号的火箭发动机的喷射速度为5千米/秒,要使得该火箭获得的最大速度v 达到第一宇宙速度(7.9千米/秒),则火箭的燃料质量m 与火箭自身质量M 之比mM约为( )A .e 1.58 B.e 0.58 C .e 1.58-1D.e 0.58-1解析:选C.由题设,5ln ⎝ ⎛⎭⎪⎫1+m M =7.9,则m M =e 7.95-1=e 1.58-1.12.(多选)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )=⎩⎨⎧-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法正确的是( )A .随着时间的增加,小菲的单词记忆保持量降低B .第一天小菲的单词记忆保持量下降最多C .9天后,小菲的单词记忆保持量低于40%D .26天后,小菲的单词记忆保持量不足20%解析:选ABC.由函数解析式可知f (x )随着x 的增加而减少,故A 正确;由图象可得B 正确;当1<x ≤30时,f (x )=15+920x -12,则f (9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故C 正确;f (26)=15+920×26-12>15,故D 错误.13.燕子每年秋天都要从北方飞往南方过冬,研究燕子的科学家发现,两岁的燕子的飞行速度可以表示为函数v =5log 2Q 10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)燕子静止时的耗氧量是________个单位;(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是________.解析:(1)由题意知,当燕子静止时,它的速度为0,代入v =5log 2Q 10中可得0=5log 2Q10,解得Q =10.(2)将耗氧量Q =80代入v =5log 2Q 10中,得v =5log 28010=5log 28=15 (m/s). 答案:(1)10 (2)15 m/s14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +(b -a )x .这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.解析:由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),因为b -c =(b -a )-(c -a ),所以(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.因为0<x <1,所以x =5-12. 答案:5-12[C 素养提升]15.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t (x )=⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃的保鲜时间是16小时. (1)该食品在8 ℃的保鲜时间是________小时;(2)已知甲在某日上午10时购买了该食品,并将其遗放在室外,且当日的室外温度随时间变化如图所示,那么到了当日13时,甲所购买的食品________保鲜时间.(填“过了”或“没过”)解析:(1)因为食品在4 ℃的保鲜时间是16小时,所以24k +6=16,解得k =-12.所以t (8)=2-4+6=4.(2)由图象可知在11时之前,温度已经超过了10 ℃,此时该食品的保鲜期少于21=2小时.而食品在11时之前已放了一段时间,所以到13时,该食品已过保鲜期.答案:(1)4 (2)过了16.(2022·上海高三月考)我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数f (x )与第x 天近似地满足f (x )=8+8x(千人),且参观民俗文化村的游客人均消费g (x )近似地满足g (x )=143-|x -22|(元).(1)求该村的第x 天的旅游收入p (x )(单位:千元,1≤x ≤30,x ∈N *);(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计算)解:(1)依据题意,有p (x )=f (x )·g (x )=⎝ ⎛⎭⎪⎫8+8x ·(143-|x -22|)(1≤x ≤30,x∈N *)=⎩⎪⎨⎪⎧8x +968x +976(1≤x ≤22,x ∈N *),-8x +1 320x +1 312(22<x ≤30,x ∈N *).(2)①当1≤x ≤22,x ∈N *时,p (x )=8x +968x+976≥28x ·968x+976=1 152(当且仅当x =11时,等号成立),因此,p (x )min =p (11)=1 152(千元).②当22<x≤30,x∈N*时,p(x)=-8x+1 320x+1 312.求导可得p′(x)=-8-1 320x2<0,所以p(x)=-8x+错误!+1 312在(22,30]上单调递减,于是p(x)min=p(30)=1 116(千元).又1 152>1 116,所以日最低收入为1 116千元.该村两年可收回的投资资金为 1 116×20%×5%×365×2=8 146.8(千元)=814.68(万元),因为814.68万元>800万元,所以,该村在两年内能收回全部投资成本.21 / 21。

二次函数模型1

二次函数模型1

二、新知探索三、课堂练习观察图象并完成填空函数y=a x2的图象,当a>0时开口.当a<0时开口,对称轴是,顶点坐标是.| a | 越大,开口越.例1研讨二次函数f (x)=12x2+4 x+6的性质与图象.解 (1) 因为f (x)=12x2+4 x+6=12(x2+8 x+12)=12(x+4)2-2.由于对任意实数x,都有12(x+4)2≥0,所以 f (x)≥-2,并且,当x=-4时取等号,即f(-4)=-2.得出性质:x=-4时,取得最小值-2.记为 y min=-2.点(-4,-2)是这个图象的顶点.(2) 当y=0时,12x2+4 x+6=0,x2+8 x+12=0,解得x1=-6,x2=-2.故该函数图象与x 轴交于两点(-6,0),(-2,0).(a≠0),下面我们先来研究这类函数的性质.出示引例.学生在初中已经重点学过二次函数的作图,所以教师只讲述y=x2的图象画法,其余5个函数的图象,学生分组合作解答,教师巡回观察.最后通过屏幕演示,集体对照.教师总结二次函数的图像以及相关性质。

生:观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过通过引例,使学生进一步掌握二次函数图象的描点作图法,并根据所做图象来分析函数y=a x2中系数a 对图象的影响,提高学生读图能力.学生合作,集体回忆初中所学二次函数的知识.开口方向,对称轴,顶点坐标等性质应用。

通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.2xy=2xy-=22xy=23xy=22xy-=23xy-=四、课堂小结五、作业布置(3) 列表作图.以x=-4为中间值,取x 的一些值,列出这个函数的对应值表然后画出函数的图象.观察上表或图形回答:1.关于x=-4对称的两个自变量的值对应的函数值有什么特点?答:相同.2.-4-h 与-4+h (h>0) 关于x=-4对称吗?分别计算-4-h与-4+h的函数值,你能发现什么?答:f (-4-h)=f (-4+h).得出性质:直线x=-4为该函数的对称轴.函数在(-∞,-4]上是减函数,在[-4,+∞)上是增函数.小结例2中的函数性质:1.开口.2.最值.3.顶点.4.对称轴.5.单调性.总结:1.二次函数的性质.2.一元二次方程、一元二次不等式与二次函数的关系.3.数形结合研究二次函数的方法.1..对应作业本完成2.学有余力的同学做一下同步考卷程,带领学生仔细分析各个性质的由来.回顾总结函数单调性的相关性质以及证明。

二次函数模型

二次函数模型

函数模型一二次函数模型一价格竞争[问题提出]:甲乙两个加油站位于同一条公路旁,为在公路上行驶的汽车提供同样的汽油,彼此竞争激烈。

一天,甲站推出“降价销售”吸引顾客,结果造成乙站的顾客被拉走,影响了乙站的赢利。

我们知道,利润是受销售价和销售量的影响及控制的,乙站为挽回损失,必须采取降价销售这一对策来争取顾客。

那么,乙站如何决定汽油的价格,既可以同甲站竞争,又可以获取尽可能高的利润呢?[分析]:在这场“价格战”中,我们将站在乙站的立场上为其制定价格对策,因此需要组建一个模型来描述甲站汽油价格下调后乙站销售量的变化情况,从而得到乙站的销售利润。

[引入参数]:为描述汽油价格和销售量间的关系,引入指标:1)价格战前,甲、乙两站汽油的正常销售价格为P(元/升);2)降价前乙站的销售量均为L(升);3)汽油的成本价格为W(元/升);4)降价后乙站的销售价格为x(元/升),这是变量;5)降价后甲站的销售价格为y(元/升)。

[模型假设]:影响乙站汽油销售量的因素,主要有以下几个:1)甲站汽油降价的幅度;2)乙站汽油降价的幅度;3)甲乙两站之间汽油销售价格之差(x-y)。

我们知道,随着甲站汽油降价幅度的增加,乙站汽油销售量随之减小;而随着乙站汽油降价幅度的增加,乙站汽油销售量随之增大;同时,随着两站之间汽油销售价格之差(x-y)的增加,乙站汽油销售量也随之减小。

假设1:在这场价格战中,假设汽油的正常销售价格保持不变;假设2:以上各因素对乙加油站汽油销售量的影响是线性的,比例系数分别为a,b,c(均为正常数)。

[建立模型]:由假设2,乙站的汽油销售量为L-a(P-y)+b(P-x)-c(x-y),所以,乙站的利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]。

[模型求解]:当y确定时,利润函数R(x,y)=(x-W)[L-a(P-y)+b(P-x)-c(x-y)]是关于x的二次函数。

求出R(x,y)的最大值点为x*=[L+(a+c)y-P(a-b)+W(b+c)]/2(b+c)。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例 课件

x2
300x
20
000 0
x
400,
60 000 100x x 400.
(2)当0≤x≤400时,f(x)=- 1(x-300)2+25 000,
【典例训练】
1.某企业生产一种机器的固定成本(即固定投入)为0.6万元,
但每生产100台时,又需可变成本(即另增加投入)0.25万元,
市场对该机器的需求量为1 000台,销售收入(单位:万元)函 数为:R(x)=5x- 1 x2(0≤x≤10),其中x是产品的数量(单位:
2
百台),则利润f(x)表示为产量的函数为________.
【解析】1.由已知投入广告费用为3万元时,药品利润为27万
元,代入y=xα中,即3α=27,解得α=3,故函数关系式为
y=x3.所以当x=5时,y=125.
答案:125
2.(1)由题意可得R=kr4(k>0);
(2)由r=3,R=400,可得krR=4
400,则流量速率R的表达式为
81R=400ຫໍສະໝຸດ .r42.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电 脑6台,乙分公司有同一型号的电脑12台.现A地某单位向该公 司购买该型号的电脑10台,B地某单位向该公司购买该型号的 电脑8台.已知甲地运往A、B两地每台电脑的运费分别是40元和 30元,乙地运往A、B两地每台电脑的运费分别是80元和50元. (1)设甲地调运x台至B地,该公司运往A地和B地两地的总运费 为y元,求y关于x的函数关系式; (2)若总运费不超过1 000元,问能有几种调运方案? (3)求总运费最低的调运方案及最低运费.
(2)若使y≤1 000,即20x+960≤1 000,得x≤2. 又0≤x≤6,x∈N,∴0≤x≤2,x∈N. ∴x=0,1,2,即有3种调运方案. (3)∵y=20x+960是R上的增函数,又0≤x≤6且x∈N, ∴当x=0时,y有最小值,为960. ∴总运费最低的调运方案为从甲地调运6台到A地,从乙地调运 8台至B地,调运4台到A地,运费最低为960元.

函数模型及其应用

函数模型及其应用

1.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 对数函数模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 幂函数模型f(x)=ax n+b(a,b,n为常数,a≠0,n≠0)2.三种函数模型性质比较y=a x(a>1)y=log a x(a>1)y=x n(n>0) 在(0,+∞)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同常用结论“对勾”函数的性质形如f(x)=x+ax(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a)和(a,+∞)上单调递增,在[-a,0)和(0,a]上单调递减.(2)当x>0时,x=a时取最小值2a,当x<0时,x=-a时取最大值-2a.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)幂函数增长比直线增长更快.()(2)不存在x0,使a x0<x n0<log a x0.()(3)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y =x a (a >1)的增长速度.( )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( )答案:(1)× (2)× (3)√ (4)× 二、易错纠偏常见误区| (1)对三种函数增长速度的理解不深致错; (2)建立函数模型出错;(3)分段函数模型的分并把握不准.1.已知f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是 ( )A .f (x )>g (x )>h (x )B .g (x )>f (x )>h (x )C .g (x )>h (x )>f (x )D .f (x )>h (x )>g (x )解析:选B .由图象知,当x ∈(4,+∞)时,增长速度由大到小依次为g (x )>f (x )>h (x ).故选B .2.在某个物理实验中,测量得变量x 和变量y 的几组数据,如表,则对x ,y A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D .根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B ,C ;将各数据代入函数y =log 2x ,可知满足题意.3.某城市客运公司确定客票价格的方法是:如果行程不超过100 km ,票价是0.5元/km ,如果超过100 km ,超过100 km 的部分按0.4元/km 定价,则客运票价y (元)与行程千米数x (km)之间的函数关系式是________.解析:由题意可得y =⎩⎪⎨⎪⎧0.5x ,0<x ≤100,0.4x +10,x >100.答案:y =⎩⎨⎧0.5x ,0<x ≤100,0.4x +10,x >100利用函数图象刻画实际问题(师生共研)(2020·高考北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为W =f (t ),用-f (b )-f (a )b -a的大小评价在[]a ,b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t 1,t 2]这段时间内,甲企业的污水治理能力比乙企业强; ②在t 2时刻,甲企业的污水治理能力比乙企业强; ③在t 3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t 1],[t 1,t 2],[t 2.t 3]这三段时间中,在[0,t 1]的污水治理能力最强.其中所有正确结论的序号是________. 【解析】 设y =-f (b )-f (a )b -a,由已知条件可得甲、乙两个企业在[t 1,t 2]这段时间内污水治理能力强弱的数值计算式为-f (t 2)-f (t 1)t 2-t 1,由题图易知y 甲>y 乙,即甲企业的污水治理能力比乙企业强,所以①对;由题意知在某一时刻企业污水治理能力的强弱由这一时刻的切线的斜率的绝对值表示,所以②对;在t3时刻,由题图可知甲、乙两企业的污水排放量都在污水达标排放量以下,所以③对;由计算式-f(b)-f(a)b-a可知,甲企业在[0,t1]这段时间内污水治理能力最弱,所以④错.【答案】①②③正确理解题目所给的信息,并把信息翻译成数学问题是解决本题的第一个关键;理解一段时间内企业污水治理能力的强弱的计算式,并把这个计算式与函数图象在某点处切线的斜率联系起来是正确解决本题的第二个关键.1.(2020·河南信阳质量检测)如图1是某条公共汽车线路收支差额y与乘客量x的图象.由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2,3所示.根据图象判断下列说法正确的是()①图2的建议为减少运营成本;②图2的建议可能是提高票价;③图3的建议为减少运营成本;④图3的建议可能是提高票价.A.①④B.②④C.①③D.②③解析:选A.根据题意和题图2知,两条直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0,但是支出变少了,说明此建议是降低成本而保持票价不变.由题图3知,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,也就是票价提高了,说明此建议是提高票价而保持成本不变,综上可得①④正确,②③错误.故选A.2.汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1 L汽油,乙车最多可行驶5 kmB.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80 km/h的速度行驶1 h,消耗10 L汽油D.某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油解析:选D.对于A选项,从图中可以看出当乙车的行驶速度大于40 km/h 时的燃油效率大于5 km/L,故乙车消耗1 L汽油的行驶路程可大于5 km,所以A错误,对于B选项,由图可知甲车消耗汽油最少.对于C选项,甲车以80 km/h 的速度行驶时的燃油效率为10 km/L,故行驶1 h的路程为80 km,消耗8 L汽油,所以C错误,对于D选项,当最高限速为80 km/h且速度相同时丙车的燃油效率大于乙车的燃油效率,故用丙车比用乙车更省油,所以D正确.已知函数模型解决实际问题(师生共研)(1)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54 dB,在有50人的课堂上讲课时,老师声音的等级约为63 dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A .1倍B .10倍C .100倍D .1 000倍(2)(2020·陇西咸阳二模)为了抗击新型冠状病毒肺炎,某医药公司研究出一种消毒剂,据实验表明,该药物释放量y (mg/m 3)与时间t (h)的函数关系式为y =⎩⎪⎨⎪⎧kt ,0<t <12,1kt ,t ≥12(如图所示),实验表明,当药物释放量y <0.75(mg/m 3)时对人体无害.求:①k =________;②为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过________分钟人方可进入房间.【解析】 (1)设老师上课时声音强度,一般两人小声交谈时声音强度分别为x 1 W/m 2,x 2 W/m 2,根据题意得d (x 1)=9lg x 11×10-13=63,解得x 1=10-6, d (x 2)=9lg x 21×10-13=54, 解得x 2=10-7,所以x 1x 2=10,所以老师上课时声音强度约为一般两人小声交谈时声音强度的10倍,故选B .(2)①由题图可知,当t =12时,y =1,即1k ×12=1⇒k =2.②由题意可得⎩⎪⎨⎪⎧t ≥12,12t <0.75,解得t >23,故为了不使人身体受到药物伤害,若使用该消毒剂对房间进行消毒,则在消毒后至少经过23×60=40(分钟)人方可进入房间.【答案】 (1)B (2)2 40求解所给函数模型解决实际问题的关键点(1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.(2020·河南安阳模拟)5G 技术的数学原理之一便是著名的香农公式:C =W log 2⎝ ⎛⎭⎪⎫1+S N .它表示:在受噪声干扰的信道中,最大信息传递速率C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比.按照香农公式,若不改变带宽W ,而将信噪比SN 从1 000提升至2 000,则C 大约增加了( )A .10 %B .30 %C .50 %D .100 %解析:选A .将信噪比SN 从 1 000提升至 2 000,C 大约增加了W log 2(1+2 000)-W log 2(1+1 000)W log 2(1+1 000)=log 22 001-log 21 001log 21 001≈10.967-9.9679.967≈10 %,故选A .构建函数模型解决实际问题(多维探究) 角度一 构造一次函数、二次函数模型(1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为______kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个.为了赚得最大利润,每个售价应定为______元.【解析】 (1)由图象可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19.(2)设每个售价定为x 元,则利润y =(x -80)·[400-(x -90)·20]=-20[(x -95)2-225].所以当x =95时,y 最大. 【答案】 (1)19 (2)95角度二 构建指数函数、对数函数模型某公司为激励创新,计划逐年加大研发资金投入.若该公司2021年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30) A .2023年 B .2024年 C .2025年D .2026年【解析】 根据题意,知每年投入的研发资金增长的百分率相同,所以,从2021年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2025年投入的研发资金开始超过200万元,故选C .【答案】 C角度三构建函数y=ax+bx(a>0,b>0)模型某养殖场需定期购买饲料,已知该场每天需要饲料200千克,每千克饲料的价格为1.8元,饲料的保管费与其他费用平均每千克每天0.03元,购买饲料每次支付运费300元.求该养殖场多少天购买一次饲料才能使平均每天支付的总费用最少.【解】设该养殖场x(x∈N*)天购买一次饲料可使平均每天支付的总费用最少,平均每天支付的总费用为y元.因为饲料的保管费与其他费用每天比前一天少200×0.03=6(元),所以x天饲料的保管费与其他费用共是6(x-1)+6(x-2)+…+6=3x2-3x(元).从而有y=1x(3x2-3x+300)+200×1.8=300x+3x+357≥417,当且仅当300x =3x,即x=10时,y有最小值.故该养殖场10天购买一次饲料才能使平均每天支付的总费用最少.角度四构建分段函数模型某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分).(1)求函数y=f(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解】(1)当x≤6时,y=50x-115,令50x-115>0,解得x>2.3,因为x为整数,所以3≤x≤6,x∈Z.当x>6时,y=[50-3(x-6)]x-115=-3x2+68x-115.令-3x 2+68x -115>0, 有3x 2-68x +115<0,结合x 为整数得6<x ≤20,x ∈Z .所以y =f (x )=⎩⎪⎨⎪⎧50x -115(3≤x ≤6,x ∈Z ),-3x 2+68x -115(6<x ≤20,x ∈Z ).(2)对于y =50x -115(3≤x ≤6,x ∈Z ), 显然当x =6时,y max =185; 对于y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113(6<x ≤20,x ∈Z ),当x =11时,y max =270.因为270>185,所以当每辆自行车的日租金定为11元时,才能使一日的净收入最多.(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同关系式构成,如出租车计价与路程之间的关系,应构建分段函数模型求解.但应关注以下两点:①分段要简洁合理,不重不漏;②分段函数的最值是各段的最大(或最小)值中的最大(或最小)值.(2)指数函数、对数函数模型解题,关键是对模型的判断,先设定模型,将有关数据代入验证,确定参数,求解时要准确进行指、对数运算,灵活进行指数与对数的互化.1.(2020·四川绵阳模拟)2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如表:1 290元;若合并成一个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )A .20B .30C .35D .40解析:选B .设两个旅游团队的人数分别为a ,b 且a ,b ∈N *,不妨令a ≥b ,因为1 290不能被13整除,所以a +b ≥51.若51≤a +b ≤100,则11(a +b )=990,得a +b =90,①由分别购票共需支付门票费为1 290元可知,11a +13b =1 290,② 联立①②解得b =150,a =-60,不符合题意; 若a +b >100,则9(a +b )=990,得a +b =110,③由分别购票共需支付门票费为1 290元可知,1≤b ≤50,51≤a ≤100, 得11a +13b =1 290,④联立③④解得a =70,b =40. 所以这两个旅游团队的人数之差为70-40=30.故选B .2.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤______次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)解析:设至少过滤n 次才能达到市场要求, 则2%⎝ ⎛⎭⎪⎫1-13n ≤0.1%,即⎝ ⎛⎭⎪⎫23n ≤120,所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8. 答案:83.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地,第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元,每年销售蔬菜的收入为26万元.设f (n )表示前n 年的纯利润,则从第________年开始盈利.[f (n )=前n 年的总收入—前n 年的总费用支出—投资额]解析:由题意知f (n )=26n -⎣⎢⎡⎦⎥⎤8n +n (n -1)2×2-60=-n 2+19n -60. 令f (n )>0,即-n 2+19n -60>0,解得4<n <15, 所以从第5年开始盈利. 答案:5高考新声音2 美育为魂,陶养身心“美”是景与情的交融,以美育人,让学生懂得爱、爱美,提高学生审美和人文素养,以美育为背景的考题,多以提高学生审美和人文素养为题材,常以图、文并用的方式表现,意在考查逻辑推理和数学运算等核心素养.(2019·高考全国卷Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12(5-12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A .165 cmB .175 cmC .185 cmD .190 cm【解析】 26+26÷0.618+(26+26÷0.618)÷0.618≈178(cm),故其身高可能是175 cm,故选B.【答案】 B本题涉及了“黄金比”和“断臂维纳斯”,并渗透了估值思想.以往高考试题中往往选择中国古代《九章算术》中的数学文化题,这一网红题选择大家熟悉的黄金分割为背景,通过设置真实情景,引导学生从“解题”到“解决问题”能力的培养,使学生能够灵活运用所学知识分析问题和解决问题.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美.给出定义:能够将圆的周长和面积同时平分的图象对应的函数称为这个圆的“优美函数”,给出下列命题:①对于任意一个圆O,其“优美函数”有无数个;②函数f(x)=ln(x2+x2+1)可以是某个圆的“优美函数”;③函数y=1+sin x可以同时是无数个圆的“优美函数”;④函数y=2x+1可以同时是无数个圆的“优美函数”;⑤函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.其中正确的命题是________.(填序号)解析:①对于任意一个圆O,其对称轴有无数条,所以其“优美函数”有无数个,①正确;②函数f(x)=ln(x2+x2+1)的定义域为R,值域为[0,+∞),其图象关于y轴对称,且在x轴及其上方,故不可以是某个圆的“优美函数”,②错误;③根据y=sin x的图象可知函数y=1+sin x的图象可以将圆的周长和面积平分,又y=1+sin x的图象可以延伸,所以可以同时是无数个圆的“优美函数”,③正确;④函数y =2x +1的图象只要过圆心,就可以同时是无数个圆的“优美函数”,④正确;⑤错误,有些中心对称图形对应的函数不一定是圆的“优美函数”,比如“双曲线”,故答案为①③④.答案:①③④[A 级 基础练]1.(2020·江西南昌模拟)衡东土菜辣美鲜香,享誉三湘.某衡东土菜馆为实现100万元年经营利润目标,拟制订员工的奖励方案:在经济利润超过6万元的前提下奖励,且奖金y (单位:万元)随经营利润x (单位:万元)的增加而增加,但奖金总数不超过3万元,同时奖金不能超过利润的20%.下列函数模型中,符合该要求的是( )(参考数据:1.015100≈4.432,lg 11≈1.041) A .y =0.04x B .y =1.015x -1 C .y =tan ⎝ ⎛⎭⎪⎫x 19-1D .y =log 11(3x -10)解析:选D .对于函数y =0.04x ,当x =100时,y =4>3,不符合题意;对于函数y =1.015x -1,当x =100时,y ≈3.432>3,不符合题意;对于函数y =tan ⎝ ⎛⎭⎪⎫x 19-1,不满足在x ∈(6,100]上单调递增,不符合题意;对于函数y =log 11(3x -10),满足在x ∈(6,100]上是增函数,且y ≤log 11(3×100-10)=log 11290<log 111 331=3,画出y =15x 与y =log 11(3x -10)的图象如图所示,符合题意,故选D .2.已知某服装厂生产某种品牌的衣服,销售量q (x )(单位:百件)关于每件衣服的利润x (单位:元)的函数解析式为q (x )=⎩⎨⎧1 260x +1,0<x ≤20,90-35x ,20<x ≤180,则当该服装厂所获效益最大时,x =( )A .20B .60C .80D .40解析:选C .设该服装厂所获效益为f (x )元, 则f (x )=100xq (x )=⎩⎪⎨⎪⎧126 000x x +1,0<x ≤20,100x (90-35x ),20<x ≤180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1, f (x )在区间(0,20]上单调递增, 所以当x =20时,f (x )有最大值120 000. 当20<x ≤180时,f (x )=9 000x -3005·x x , 则f ′(x )=9 000-4505·x ,令f ′(x )=0,得x =80,当20<x <80时,f ′(x )>0,f (x )单调递增,当80≤x ≤180时,f ′(x )≤0,f (x )单调递减,所以当x =80时,f (x )有极大值,也是最大值,为240 000.故选C . 3.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对于进价),则该家具的进价是( )A .118元B .105元C .106元D .108元解析:选D .设进价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.故选D .4.素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24 423-1,第19个梅森素数为Q =24 253-1,则下列各数中与PQ 最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .1059解析:选B .由题知P Q =24 423-124 253-1≈2170.令2170=k ,则lg 2170=lg k ,所以170lg2=lg k .又lg 2≈0.3,所以51=lg k ,即k =1051,所以与PQ 最接近的数为1051.故选B .5.车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如图,且该图表示的函数模型为f (x )=⎩⎪⎨⎪⎧40sin ⎝ ⎛⎭⎪⎫π3x +13,0≤x <2,90e -0.5x +14,x ≥2,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:ln 15≈2.71,ln 30≈3.40)( )车辆驾驶人员血液酒精含量阈值 驾驶行为类型 阈值(mg/100 mL) 饮酒后驾车 ≥20,<80 醉酒后驾车≥80A .5 hB .6 hC .7 hD .8 h解析:选B .由题意可知当酒精含量阈值低于20时才可以开车,结合分段函数建立不等式90e -0.5x +14<20,解得x >5.42,取整数,故为6个小时.故选B .6.(2020·辽宁辽南协作校一模)考古学家经常利用碳14的含量来推断古生物死亡的时间.当有机体生存时,会持续不断地吸收碳14,从而其体内的碳14含量会保持在一定的水平;但当有机体死亡后,就会停止吸收碳14,其体内的碳14含量就会逐渐减少,而且每经过大约5 730年后会变为原来的一半.假设有机体生存时碳14的含量为1,如果用y 表示该有机体死亡x 年后体内碳14的含量,则y 与x 的关系可以表示为________.解析:依题意可设y =⎝ ⎛⎭⎪⎫12ax,当x =5 730时,y =12,即有12=⎝ ⎛⎭⎪⎫12 5 730a ,解得a=15 730,故答案为y =⎝ ⎛⎭⎪⎫12x5 730.答案:y =⎝ ⎛⎭⎪⎫12x5 7307.(2020·安徽滁州定远4月模拟)某工厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量P (毫克/升)与时间t (小时)的关系为P = P 0e -kt ,如果在前5小时消除了10%的污染物,那么污染物减少19%需要花费的时间为________小时.解析:由题意可知,(1-0.1)P 0 =P 0e -5k ,即0.9=e -5k ,故-5k =ln 0.9,又(1-0.19)P 0=P 0e -kt ,即0.81=e -kt ,所以-kt =ln 0.81=2ln 0.9=-10k ,所以t =10.答案:108.为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图记录了样本树的生长时间t (年)与树高y (米)之间的关系.请你据此判断,在下列函数模型:①y =2t -a ;②y =a +log 2t ;③y =12t +a ;④y =t +a 中(其中a 为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.解析:由散点图的走势,知模型①不合适.曲线过点⎝ ⎛⎭⎪⎫4,73,则后三个模型的解析式分别为②y =13+log 2t ;③y =12t +13;④y =t +13,易知拟合最好的是②.将t =8代入②得8年后的树高为103米.答案:② 1039.声强级Y (单位:分贝)由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12给出,其中I 为声强(单位:W/m 2).(1)平常人交谈时的声强约为10-6W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少? (3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7W/m 2,问这两位同学是否会影响其他同学休息?解:(1)当声强为10-6W/m 2时, 由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得Y =10lg ⎝ ⎛⎭⎪⎪⎫10-610-12=10lg 106=60(分贝). (2)当Y =0时,由公式Y =10lg ⎝ ⎛⎭⎪⎫I 10-12得10lg ⎝ ⎛⎭⎪⎫I 10-12=0.所以I 10-12=1,即I =10-12W/m 2,则常人能听到的最低声强为10-12W/m 2. (3)当声强为5×10-7W/m 2时,声强级Y =10lg ⎝ ⎛⎭⎪⎪⎫5×10-710-12=10lg(5×105)=50+10lg 5, 因为50+10lg 5>50,所以这两位同学会影响其他同学休息.10.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解:(1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套丛书的供货价格为30+105=32(元),所以书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0,解得0<x <150.依题意,设单套丛书的利润为P ,则P =x -⎝ ⎛⎭⎪⎫30+1015-0.1x =x -100150-x -30,=-⎣⎢⎡⎦⎥⎤(150-x )+100150-x +120. 因为0<x <150,所以150-x >0,则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立, 此时,P max =-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.[B 级 综合练]11.某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100 ℃,水温y (℃)与时间t (min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y (℃)与时间t (min)近似满足的函数关系式为y =80⎝ ⎛⎭⎪⎫12t -a10+b (a ,b为常数).通常这种热饮在40 ℃时口感最佳.某天室温为20 ℃时,冲泡热饮的部分数据如图所示,那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A .35 minB .30 minC .25 minD .20 min解析:选C .由题意知,当0≤t ≤5时,函数图象是一条线段;当t ≥5时,函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -a10+b .将点(5,100)和点(15,60)代入解析式可得⎩⎨⎧100=80⎝ ⎛⎭⎪⎫125-a10+b ,60=80⎝ ⎛⎭⎪⎫1215-a10+b ,解得a =5,b =20,故函数的解析式为y =80⎝ ⎛⎭⎪⎫12t -510+20,t≥5.令y =40,解得t =25,所以最少需要的时间为25 min.故选C .12.(2020·安徽淮北一中第五次月考)华罗庚是上世纪我国伟大的数学家,以华氏命名的数学科研成果有“华氏定理”“华氏不等式”“华王方法”等.他除了数学理论研究,还在生产一线大力推广了“优选法”和“统筹法”.“优选法”是指研究如何用较少的试验次数,迅速找到最优方案的一种科学方法.在当前防疫取得重要进展的时刻,为防范机场带来的境外输入,某机场海关在对入境人员进行检测时采用了“优选法”提高检测效率:每1 6人为一组,把每个人抽取的鼻咽拭子分泌物混合检查,如果为阴性则全部放行;若为阳性,则对该16人再次抽检确认感染者.某组16人中恰有一人感染(鼻咽拭子样本检验是阳性),若逐一检测可能需要15次才能确认感染者.现在先把这16人均分为2组,选其中一组8人的样本检查,若为阴性则认定在另一组;若为阳性则认定在本组.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查……以此类推,最终从这16人中认定那名感染者需要检测的次数为()A.3 B.4C.6 D.7解析:选B.先把这16人均分为2组,选其中一组8人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了1次检测.继续把认定的这组的8人均分两组,选其中一组4人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了2次检测.继续把认定的这组的4人均分两组,选其中一组2人的样本混合检查,若为阴性则认定在另一组;若为阳性则认定在本组,此时进行了3次检测.选认定的这组的2人中一人进行样本检查,若为阴性则认定是另一个人;若为阳性则认定为此人,此时进行了4次检测.所以,最终从这16人中认定那名感染者需要经过4次检测.故选B.13.某地下车库在排气扇发生故障的情况下测得空气中一氧化碳含量达到了危险状态,经抢修排气扇恢复正常.排气4分钟后测得车库内的一氧化碳浓度为64 ppm,继续排气4分钟后又测得浓度为32 ppm.由检验知该地下车库一氧化碳浓度y(ppm)与排气时间t(分钟)之间存在函数关系y=c(12)mt(c,m为常数).(1)mc的值为________;(2)若空气中一氧化碳浓度不高于0.5 ppm 为正常,则这个地下车库中的一氧化碳含量达到正常状态至少需排气________分钟.解析:(1)由题意可列方程组⎩⎪⎨⎪⎧64=c ⎝ ⎛⎭⎪⎫124m ,32=c ⎝ ⎛⎭⎪⎫128m ,两式相除,解得⎩⎨⎧c =128,m =14, 则mc =128×14=32.(2)由题意可列不等式128⎝ ⎛⎭⎪⎫1214t ≤0.5, 所以⎝ ⎛⎭⎪⎫1214t ≤⎝ ⎛⎭⎪⎫128,即14t ≥8,解得t ≥32. 故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态. 答案:(1)32 (2)3214.某旅游景点预计2021年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似为p (x )=12x (x +1)·(39-2x )(x ∈N *,且x ≤12).已知第x个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧35-2x ,x ∈N *,且1≤x ≤6,160x,x ∈N * 且7≤x ≤12. (1)写出2021年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)试问2021年第几个月的旅游消费总额最大?最大月旅游消费总额为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12x (x -1)(41-2x )=-3x 2+40x ,经验证x =1时也满足此式.所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x (x ∈N *)个月的旅游消费总额为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学二次函数压轴题基本题型
在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于A (-3,0),B (1,0)两点,与y 轴交于点C .
(1)求这个二次函数的关系解析式;
长度型:(2)点M 为直线AC 上方抛物线上一动点,过M 点作MN ∥y 轴交直线AC 于点N , 当点M 的坐标为多少时,线段MN 有最大值,并求出其最大值;
(3)点M 为直线AC 上方抛物线上一动点,过M 点作MN ∥y 轴交直线AC 于点N , 作ME ⊥AC 于点E ,当点M 的坐标为多少时,△MEN 的周长有最大值,并求出其最大值;
面积型:(4)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由
变式:点P 是直线AC 上方的抛物线上一动点,使△ACP 的面积为整数的点P 有几个,并说明理由;
(5)点Q 是直线AC 下方的抛物线上一动点,是否存在点Q ,使10ACQ
S =?若存在,求出点Q 的坐标;
若不存在,说明理由
(6)点Q 是直线AC 下方的抛物线上一动点,是否存在点Q ,使32ACQ
ACO
S S
=?若存在,求出点Q 的坐
标;若不存在,说明理由
变式:抛物线上是否存在点P ,使OPC
OPA
S
S
=,若存在,求出点P 的坐标,若不存在,说明理由
特殊三角形存在性:(7)在平面直角坐标系中,是否存在点Q ,使△BCQ 是等腰直角三角形?若存在,求出点Q 的坐标;若不存在,说明理由
(8)在抛物线的对称轴上是否存在点Q使△BCQ是等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由;(等腰三角形:两圆一线)
(9)在抛物线的对称轴上是否存在点Q,使△ACQ为直角三角形;若存在,求出点Q的坐标;若不存在,说明理由;
几何最值型:(10)在抛物线的对称轴上是否存在点Q,使△BCQ的周长最小;若存在,求出点Q的坐标
与周长最小值;若不存在,说明理由
(11Q 的坐标;若不存在,说明理由;
(12)若D 为OC 的中点,P 是抛物线对称轴上一动点,Q 是x 轴上一动点,当P 、Q 两点的坐标为多少时四边形CPQD 的周长最小?并直接写出四边形CPQD 周长的最小值;
D
D P
Q
相似存在性:(13)点Q是坐标轴上一动点,是否存在点Q,使以点B、O、Q为顶点的三角形与△AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;
(14)点Q是抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;
角度问题:(15)抛物线上是否存在的点Q,使∠QCA=45°,若存在,求出Q点的坐标;若不存在,说明理由;
(16)抛物线上是否存在的点Q,使∠QCA=∠OCB,若存在,求出Q点的坐标;若不存在,说明理由;
*变式:抛物线上是否存在的点Q,使∠QCA+∠OCB=45°,若存在,求出Q点的坐标;若不存在,说明理由;
特殊四边形存在性问题:(18)点M 为抛物线上一动点,过M 点作MN ∥y 轴交直线AC 于点N ,当以O 、C 、
M 、N 为顶点的四边形是平行四边形时,求出点M 的坐标;若不存在,说明理由;
(19)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A 、C 、M 、Q 为顶点的四边形是平行四边形?若存在,求出点Q 的坐标;若不存在,说明理由;
(20)点Q 是抛物线上一动点,点M 为抛物线对称轴上一动点,当以A 、C 、M 、Q 为顶点的四边形是平行四边形?,求出点Q 的坐标;
(21)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为矩形,求Q 点的坐标;以A、C、P、Q为顶点的四边形能为正方形吗?若能,请直接写出此时Q点的坐标;(矩形存在性问题转化成直角三角形存在性问题)
(22)Q为抛物线上一动点,点P在坐标平面内,若四边形APCQ为菱形,求Q点的坐标;
(23)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为菱形,求Q 点的坐标;(菱形存在性问题转化成等腰三角形存在性问题)。

相关文档
最新文档