二、典型例题pj

合集下载

典型例题(22套)典型例题2

典型例题(22套)典型例题2

典型例题(22套)典型例题2
如下图,有些家用玻璃茶几的桌架是用四个塑料吸盘吸附在桌面上的.假如每个吸盘的直径是4cm ,运算一下,桌架质量不超过多少时,抬起桌面就能把桌架带起?
解析:第一对吸盘进行受力分析,吸盘静止时受一对平稳力,向下受到桌架的拉力,向上受到大气压力,二力大小相等,方向相反,即F G =.
52kg 9.8N/kg
(0.02m)3.144Pa 101.014444 2
522
2
2
=⨯⨯⨯⨯=⋅=∴⋅=∴⋅=∴=⋅=g R p m R p mg R p F R S S p F ππππ 注意:由于塑料吸盘不是一个平面,吸盘和玻璃面也可不能十分光滑,它们之间的实际接触面积总小于吸盘本身面积,其间总有一些空气,因此实际能带起的桌架质量小于运算值.。

概率计算方法

概率计算方法

概率计算方法概率计算方法--- 在新课标实施以来,中考数学试题中加大了 统计与概率部分的考查,体现了“学以致用”这 一理念•计算简单事件发生的概率是重点,现对 概率计算方法阐述如下:•公式法例1 (07河北)图1中每一个标有数字的方块 均是可以翻动的木牌,其中只有两块木牌的 背面贴有中奖标志,则随机翻动一块木牌中 奖的概率为 ______________ .解析:本题考查用公式法求概率,在随机翻动木 牌过程中,一共有6种可能的翻牌结果,其中有 2种为中奖,所以P (中奖)=2 3.说明:本题采用了一种较为有趣的试题背景,重 在考查学生对概率模型的理解、以及对随机事件 发生概率值的计算•:.面积法P (随机事件)= 随机事件可能出现的结 果数随机事件所有可能出现 的结果数其中P (必然事件)=1,P (不可能事件) 事件)<1.=0; 0<P (随机四旦目图i例2如图2是地板格的一部分,一只 蟋蟀在该地板格上跳来跳去,如果它 随意停留在某一个地方,则它停留在 阴影部分的概率是 ______________ ・ 解析:因为四块地板的面积各不相同,故应分别 求出阴影部分的面积为2 X 1+2 X 3=8,总面积为:2X1+2X2+2X3+1X5=17,面积之比即为所求概评注:几何概型也就是概率的大小与面积大小有 关,事件发生的概率等于此事件所有可能结果所 组成的图形面积除以所有可能结果组成的图形 的面积.三•树形图法 例3不透明的口袋里装有白、黄、蓝三种颜色 的乒乓球(除颜色外其余都相同),其中白球有 2个,黄球有1个,现从中任意摸出一个是白球 的概率为* .(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再率. 所以P (随意停留在阴影部分)二 817。

图Q摸一个球,请用画树状图法,求两次摸到都是白 球的概率.解析:⑴设蓝球个数为x 个. 由题意得 答:蓝球有1个说明:解有关的概率问题首先弄清:①需要关注 的是发生哪个或哪些结果.②无论哪种都是机会 均等的.本题是考查用树状图来求概率的方法 这种方法比较直观,把所有可能的结果都—罗 列出来,便于计算结果.二 x=1(2)树状图 如下:两次摸到都是白球的概率12zK A\白1黄蓝 白1白2监 白1白2黄白2黄蓝四.列表法例4 (07山西)如图3, 有四张编号为1, 2, 3, 4的卡片,卡片的背面完全相同•现将它们搅匀并正面朝下放置在桌面上.张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.1)从中随图机抽取一1 2图33解析:⑴所求概率是彳2.⑵解法一(树形图):第一次抽取12 3 4共有12种可能的结果(1,2), (1,3), (1,4),(2.1), (2,3), (2,4), (3,1), (3,2), (3,4), (4.1), (4,2), (4,3). 其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是2 112 6'解法二(列表法):共有12种可能的结果(1,2), (1,3), (1,4),(2.1), (2,3), (2,4), (3,1), (3,2), (3,4), (4.1), (4,2), (4,3). 其中只有两种结果(1,2)和(2,1)是符合条件的,所以贴法正确的概率是2 112 6'评注:本题考查学生对用树状图或列表法求概率的掌握情况,用树状图法或列表法列举出的结果一目了然,当事件要经过多次步骤(三步以上) 完成时,用这两种方法求事件的概率很有效•概率计算如果截去所有的顶角,它将成为多少面体?共有多少个顶点?共有多少条棱?4面体将由4面变成8面;由4个顶点变成12个顶点;由6条棱变成18条棱。

小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

1 归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

典型例题(有答案).DOC

典型例题(有答案).DOC

典型例题
例 如图1,请你根据格子中的数,从1开始横着数或者竖着数,按照1,2,3,4,5,6,7,8,9,10的顺序数到10,如图2是其中的一种数法,你还有其他的吗?请你试一试.
分析与参考答案:
有以下几种不同的数法:
例.填空.
54)(=- 8)(10=- 分析:解答这组题可以想数的组成与分解.如54)(=-,想4和5组成几,4和5组成9,
所以括号里填9.8)(10=-,想10可以分成几和8,10可以分成2和8,所以括号里填2.根据加减法算式中各数的关系(即整体与部分的关系)来计算未知数也是
可以的,如
5
4
)
(=
-,想4加5等于几,4加5等9,所以括号里填9.8
)
(
10=
-,
想10减8等于几,10减8等于2,所以括号里填2.
答案:
5
4
)9(=
-8
)2(
10=
-
例.连线.
分析:第(1)题的意思是:左边算式的结果是几就应该和右边相应的数连起来.如:左边7+2=9,应该和右边的9连起来.
第(2)题是把左边和右边的结果相同的算式连起来,如:左边7+3=10,右边5+5=10,应该把这两个算式连起来.
例.在□里填上合适的数.
分析:做这道题要对数的组成比较熟悉.另外还要掌握解题技巧,按一定的顺序做,如:可以按从左往右,即10的分解来想.由于10的分解中右边的数又是7的组成中的一部分,因此所填的数必须比7小,即1、2、3、4、5、6,那么在7的组成中,右边的□所填的数相应是6、5、4、3、2、1.也可以按从右往左或从下往上,方法同上.
答案:略.。

液压与气动典型例题解析4

液压与气动典型例题解析4
当两阀位置互换后,只有顺序阀导通,溢流阀才能工作。但当顺序阀导通时,其入口油压为其开启压力pX,此压力又经溢流阀出口、溢流阀体内孔道进入其阀芯上腔。所以溢流阀开启时,其入口油压必须大于等于其调定压力与顺序阀的开启压力之和,即泵的出口压力为pX+pY。
例4-3图示为一定位夹紧系统。请问:(1)1、2、3、4各为什么阀?各起什么作用?(2)系统的工作过程;(3)如果定位压力为2MPa,夹紧缸6无杆腔面积A=0.02m2,夹紧力为50kN,1、2、3、4各阀的调整压力为多少?
答案:B
6.图示二通插装阀组成的方向控制阀为( ).
(A)单向阀(B)二位二通阀(C)二位三通阀(D)二位四通阀
答案:D
7.以下方向阀图形符号那一个是二位四通电磁换向阀:()
答案:D
8.常用普通单向阀用于控制油液的()。
(A)流量
(B)压力
(C)油路的通断
答案:C
9.为使三位四通阀在中位工作时能使液压缸闭锁,应采用()型阀。
图4-3
解:(1)阀1是顺序阀,它的作用是使定位液压缸5先动作,夹紧液压缸6后动作。阀2是卸荷溢流阀,作用是使低压泵7卸荷。阀3是压力继电器,作用是当系统压力达到夹紧压力时,发出电信号,控制进给系统的电磁阀换向。阀4是溢流阀,当夹紧工件后起溢流稳压作用。
(2)系统的工作过程是:电磁铁1DT通电,换向阀左位工作,双泵供油,定位液压缸5运动进行定位。此时系统压力小于顺序阀1的调定压力,所以缸6不动作。当定位动作结束后,系统压力升高到顺序阀1的调定压力时,顺序阀1打开,夹紧液压缸6运动。当夹紧后的压力达到所需要的夹紧力时,卸荷阀2使低压大流量泵7卸荷,此时高压小流量泵供油补偿泄漏,保持系统压力,夹紧力的大小由溢流阀4调节。

节约里程法

节约里程法

定义节约里程法又称节约算法或节约法,是指用来解决运输车辆数目不确定的问题的最有名的启发式算法。

[1]2核心思想节约里程法核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减小的幅度最大,直到达到一辆车的装载限制时,再进行下一辆车的优化。

优化过程分为并行方式和串行方式两种。

[1]3基本规定利用节约法确定配送路线的主要出发点是,根据配送中心的运输能力和配送中心到各个用户以及各个用户之间的距离来制定使总的车辆运输的吨公里数最小的配送方案。

另还需满足以下条件;(1)所有用户的要求;(2)不使任何一辆车超载;(3)每辆车每天的总运行时间或行驶里程不超过规定的上限;(4)用户到货时间要求。

[2]4基本思想为达到高效率的配送,使配送的时间最小距离最短成本最低,而寻找的最佳配送路线。

[2]5典型例题例题:已知配送中心P0向5个用户Pj配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如下图所示,配送中心有3台2t卡车和2台4t两种车辆可供使用。

利用节约里程法制定最优的配送方案。

[1]节约里程法例题用图第一步,作运输里程表,列出配送中心到用户及用户建的最短距离。

[1]第二步,按节约里程公式求得相应的节约里程数。

[1]第三步,将节约里程按从大到小顺序排列。

[1]第四步,根据载重量约束与节约里程大小,顺序连接各客户结点,形成两个配送线。

[1]P2P3-P3P4-P2P4-P4P5-P1P2-P1P5-P1P3-P2P5-P3P5-P1P4得出结果:配送线路一:运量=1.7+0.9+1.4=4t运行距离=8+4+5+7=24km用一辆4t车运送,节约距离为18km 配送线路二:运量=2.4+1.5=3.9t<4t运行距离=8+10+16=34km用一辆4t车运送,节约距离为2km[1]初始方案:配送线路5条,需要车5辆,配送距离=39*2=78km 优化后的方案:2条配送路线,2辆4t车,配送距离=24+34=78km[1]。

决策与决策方法 (2)

决策与决策方法 (2)

5.2 决策过程

识 别 机 会 或 诊 断 问 题

明 确 目 标

拟 订 ( 备 选 ) 方 案

筛 选 方 案

执 行 方 案

评 估 效 果
5.3 决策的影响因素
01
组织自身的因素
02
决策问题的性质
03
决策主体的因素
环境因素
5.4 决策方法
定性决策方法 集体决策
○ 优点: ● 提供更完整的信息 ● 产生更多的方案 ● 提高合法性
行为决策理论
赫伯特·A ·西蒙:理性的和经济的标准都无法确切说明管理的决策过程, 进而提出“有限理性”标准和“满意度”原则。影响决策者进行决策的不 仅有经济因素,还有其个人的行为表现,如态度、情感、经验和动机等。
行为决策理论的主要内容是:
人的理性介于完全理性和非理性之间,即人是有限理性的 决策者在识别和发现问题中容易受知觉上的偏差的影响 由于受决策时间和可利用资源的限制,决策者选择的理性是相对的 在风险型决策中决策者往往厌恶风险,倾向于接受风险较小的方案 决策者在决策中往往只求满意的结果,而不愿费力寻求最佳方案
03
风险型决策方法
定量决策方 法
决策的方法(3-1)
确定型决策方法 :在比较和选择活动方案时,如果未来情况只有一种并为管理者 所知,则须采用确定型决策方法。常用的确定型决策方法有线性规划和量本利分析 法等。
○ 线性规划:是在一些线性等式或不等式的约束条件下,求解线性目标函数的最大 值或最小值的方法。
企业不盈不亏时,PQ=F+vQ 所以保本产量Q=F/(P一v)=F/c 2.求保目标利润的产量: 设目标利润为π,则Pq=F十vQ十π 所以保目标利润π的产量Q=(F十π)/(P一V) =(F十π)/C 3.求利润: π=pQ—F—vQ 4.求安全边际和安全边际率: 安全边际=方案带来的产量一保本产量 安全边际率=安全边际/方案带来的产量

排列与组合经典例题(有解析)

排列与组合经典例题(有解析)

排列与组合经典例题一.选择题(共16小题)1.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法种数为()A.36B.64C.72D.812.在8张奖券中有一等奖2张,二、三等奖各1张,其余4张无奖,将这8张奖券分配给4个人,每人2张,则不同的获奖情况数为()A.120B.96C.148D.2163.6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,则不同的分配方案共有()A.65B.1560C.2640D.45604.某校选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,有多少种方法()A.10B.14C.16D.185.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有()种.A.40B.24C.20D.126.现将A、B、C、D、E、F六个字母排成一排,要求A、B相邻,且B、C不相邻,则不同的排列方式有()种.A.192B.240C.120D.287.春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有()A.120种B.240种C.420种D.720种8.现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有()A.56种B.64种C.72种D.96种9.甲、乙、丙3人去食堂用餐,每个人从A,B,C,D,E这5种菜中任意选用2种,则A 菜有2人选用、B菜有1人选用的情形共有()A.54B.81C.135D.16210.从1,2,3,0这四个数中取三个组成没有重复数字的三位数,则这些三位数的和为()A.1332B.2544C.3560D.386411.已知m,n∈N*,下列排列组合公式中,不一定正确的是()A.B.C.D.12.有5名学生全部分配到4个地区进行社会实践,且每名学生只去一个地区,其中A地区分配了1名学生的分配方法共()种A.120B.180C.405D.78113.从a、b、c中任取两个不同字母排成一列,则不同的排列种数为()A.3B.4C.5D.614.6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有()A.540种B.360种C.180种D.120种15.某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.72016.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.122023年03月19日吾疯癫的高中数学组卷参考答案与试题解析一.选择题(共16小题)1.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法种数为()A.36B.64C.72D.81【解答】解:依题意可知,其中一个小区必安排2名同学,则先把4名同学分成“1,1,2”的组合,有种方式,再将这三组安排到3个小区,有种方式,所以符合题意的不同的安排方法种数为6×6=36种.故选:A.2.在8张奖券中有一等奖2张,二、三等奖各1张,其余4张无奖,将这8张奖券分配给4个人,每人2张,则不同的获奖情况数为()A.120B.96C.148D.216【解答】解:分类讨论,2人中奖,3人中奖,4人中奖的情况;2人中奖,1人中2个一等奖,1人中1个二等奖,1个三等奖;另外两人不中奖,不同的获奖情况数为:=12;1人中1个一等奖1个二等奖,1人中1个一等奖1个三等奖;另外两人不中奖,不同的获奖情况数为:=12;3人中奖,1人中2个一等奖,1人中1个二等奖,1人中1个三等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个一等奖1个二等奖,1人中1个一等奖,1人中1个三等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个一等奖1个三等奖,1人中1个一等奖,1人中1个二等奖;余下1人不中奖,不同的获奖情况数为:=24;1人中1个二等奖1个三等奖,1人中1个一等奖,1人中1个一等奖;余下1人不中奖,不同的获奖情况数为:=12;4人中奖,不同的获奖情况数为:=12;共有120种.故选:A.3.6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,则不同的分配方案共有()A.65B.1560C.2640D.4560【解答】解:6名大学生分配到4所学校实习,每名大学生只分配到一所学校,每所学校至少分配1名大学生,可以分为两种情况:1,1,1,3,对应情况数为×A=480;1,1,2,2,对应情况数为×A=1080;故不同的分配方案共有48+1080=1560种,故选:B.4.某校选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,有多少种方法()A.10B.14C.16D.18【解答】解:选派4名干部到两个街道服务,每人只能去一个,每个街道至少1人,则有种方法,故选:B.5.为庆祝中国共产党第二十次全国代表大会胜利闭幕,某高中举行“献礼二十大”活动,高三年级派出甲、乙、丙、丁、戊5名学生代表参加,活动结束后5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有()种.A.40B.24C.20D.12【解答】解:由题意得,5名代表排成一排合影留念,要求甲、乙两人不相邻且丙、丁两人必须相邻,则不同的排法共有A A A=24种,故选:B.6.现将A、B、C、D、E、F六个字母排成一排,要求A、B相邻,且B、C不相邻,则不同的排列方式有()种.A.192B.240C.120D.28【解答】解:将A、B捆绑,可作一个元素,与D、E、F排列,然后插入C,可得不同的排列方式有:=192.故选:A.7.春节期间,某地政府在该地的一个广场布置了一个如图所示的圆形花坛,花坛分为5个区域.现有5种不同的花卉可供选择,要求相邻区域不能布置相同的花卉,且每个区域只布置一种花卉,则不同的布置方案有()A.120种B.240种C.420种D.720种【解答】解:先在A中种植,有5种不同的选择,再在B中种植,有4种不同的选择,再在C中种植,有3种不同的选择,再在D中种植,若D与B种植同一种花卉,则E有3种不同的选择,若D与B种植不同花卉,则D有2种不同的选择,E有2种不同的选择,故不同的布置方案有5×4×3×(3+2×2)=420种.故选:C.8.现要从A,B,C,D,E这5人中选出4人,安排在甲、乙、丙、丁4个岗位上,如果A 不能安排在甲岗位上,则安排的方法有()A.56种B.64种C.72种D.96种【解答】解:根据A是否入选进行分类:若A入选,则先给A从乙、丙、丁3个岗位上安排一个岗位有种,再给剩下三个岗位安排人有种,共有3×24=72种方法;若A不入选,则4个人4个岗位全排有种方法,所以共有72+24=96种不同的安排方法.故选:D.9.甲、乙、丙3人去食堂用餐,每个人从A,B,C,D,E这5种菜中任意选用2种,则A 菜有2人选用、B菜有1人选用的情形共有()A.54B.81C.135D.162【解答】解:A菜有2人选用有种,比如甲、乙选用了A菜,①甲、乙之中有1人选用了B菜,有种,比如甲用了B菜,则乙从C,D,E中任意选用1种,有种,丙从C,D,E中任意选用2种,有种,故共有;②丙选用了B菜,丙再从C,D,E中任意选用1种,有种,甲、乙再从C,D,E中各任意选用1种,有种,故共有;由①②可知所有情形是54+81=135.故选:C.10.从1,2,3,0这四个数中取三个组成没有重复数字的三位数,则这些三位数的和为()A.1332B.2544C.3560D.3864【解答】解:根据题意可得所求为:(1+2+3)×+(10+20+30)×+(100+200+300)×=3864,故选:D.11.已知m,n∈N*,下列排列组合公式中,不一定正确的是()A.B.C.D.【解答】解:根据题意,依次分析选项:对于A,由组合数公式可得C=C,A正确;对于B,A=,而C A=×m!=,B正确;对于C,C==,C错误;对于D,A=,A==,故A=A,D正确;故选:C.12.有5名学生全部分配到4个地区进行社会实践,且每名学生只去一个地区,其中A地区分配了1名学生的分配方法共()种A.120B.180C.405D.781【解答】解:由题意,先选一名学生分配到A地,剩下的4名学生在其他三个地区任选一个,方法数为5×34=405.故选:C.13.从a、b、c中任取两个不同字母排成一列,则不同的排列种数为()A.3B.4C.5D.6【解答】解:根据题意,从a,b,c中任取两个字母,有C32=3种取法,再将取出的字母排成一列,有A22=2种情况,则有3×2=6种不同的排法;故选:D.14.6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到一个社区,每个社区至少分配一名志愿者且人数各不相同,不同的分配方案共有()A.540种B.360种C.180种D.120种【解答】解:由题意6名志愿者被分成1,2,3三组,然后再分配到3个社区全排,所以共有种,故选:B.15.某市聘请6名农业专家安排到三个乡镇作指导,每个乡镇至少一人,则安排方案的种数是()A.495B.540C.630D.720【解答】解:将6名农业专家分组,所有可能的情况有(1,1,4),(1,2,3),(2,2,2)三种情况,其中(1,1,4)分组数有=15种,(1,2,3)分组数有=60种,(2,2,2)分组数有=15种,再将6名农业专家分配到三个乡镇共有(15+60+15)A=540种.故选:B.16.某晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有()种排法?A.72B.36C.24D.12【解答】解:晚会有三个唱歌节目,两个舞蹈节目,要求舞蹈节目不能相邻,有=72种排法,故选:A.。

排列组合专题复习与经典例题详解

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解1.学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1. 分类计数原理(加法原理): 完成一件事, 有几类办法, 在第一类办法中有种不同的方法, 在第2类办法中有种不同的方法……在第n类型办法中有种不同的方法, 那么完成这件事共有种不同的方法.2.分步计数原理(乘法原理):完成一件事, 需要分成n个步骤, 做第1步有种不同的方法, 做第2步有种不同的方法……, 做第n步有种不同的方法;那么完成这件事共有种不同的方法.特别提醒:分类计数原理与“分类”有关, 要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关, 要注意“步”与“步”之间具有的相依性和连续性, 应用这两个原理进行正确地分类、分步, 做到不重复、不遗漏.3. 排列:从n个不同元素中, 任取m(m≤n)个元素, 按照一定的顺序排成一列, 叫做从n 个不同元素中取出m个元素的一个排列, 时叫做选排列, 时叫做全排列.4.排列数: 从n个不同元素中, 取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数, 用符号表示.5. 排列数公式:排列数具有的性质:特别提醒:规定0!=16. 组合: 从n个不同的元素中, 任取m(m≤n)个不同元素, 组成一组, 叫做从n个不同元素中取m个不同元素的一个组合.7.组合数: 从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号表示.8. 组合数公式:组合数的两个性质: ①;②特别提醒: 排列与组合的联系与区别.联系: 都是从n个不同元素中取出m个元素.区别:前者是“排成一排”, 后者是“并成一组”, 前者有顺序关系, 后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排, 分别有多少种不同的站法(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端, 乙不站右端.【解析】: (1)方法一: 要使甲不站在两端, 可先让甲在中间4个位置上任选1个, 有种站法, 然后其余5人在另外5个位置上作全排列有种站法, 根据分步乘法计数原理, 共有站法:方法二: 由于甲不站两端, 这两个位置只能从其余5个人中选2个人站, 有种站法, 然后中间4人有种站法, 根据分步乘法计数原理, 共有站法:方法三: 若对甲没有限制条件共有种站法, 甲在两端共有种站法, 从总数中减去这两种情况的排列数, 即共有站法:(2)方法一: 先把甲、乙作为一个“整体”, 看作一个人, 和其余4人进行全排列有种站法, 再把甲、乙进行全排列, 有种站法, 根据分步乘法计数原理, 共有方法二: 先把甲、乙以外的4个人作全排列, 有种站法, 再在5个空档中选出一个供甲、乙放入, 有种方法, 最后让甲、乙全排列, 有种方法, 共有(3)因为甲、乙不相邻, 中间有隔档, 可用“插空法”, 第一步先让甲、乙以外的4个人站队, 有种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中, 有种站法, 故共有站法为此外, 也可用“间接法”, 6个人全排列有种站法, 由(2)知甲、乙相邻有种站法, 所以不相邻的站法有.(4)方法一: 先将甲、乙以外的4个人作全排列, 有种, 然后将甲、乙按条件插入站队, 有种, 故共有站法.方法二: 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上, 有种, 然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有种方法, 最后对甲、乙进行排列, 有种方法, 故共有站法.(5)方法一: 首先考虑特殊元素, 甲、乙先站两端, 有种, 再让其他4人在中间位置作全排列, 有种, 根据分步乘法计数原理, 共有站法.方法二: 首先考虑两端两个特殊位置, 甲、乙去站有种站法, 然后考虑中间4个位置, 由剩下的4人去站, 有种站法, 由分步乘法计数原理共有站法.(6)方法一: 甲在左端的站法有种, 乙在右端的站法有种, 甲在左端而且乙在右端的站法有种, 故甲不站左端、乙不站右端共有-2 + =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有 种站法, ②甲在中间4个位置之一, 而乙又不在右端有 种, 故共有 + =504(种)站法.考点二:组合问题例2.男运动员6名, 女运动员4名, 其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法(1)男运动员3名, 女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长, 又要有女运动员.【解析】: (1)选法为 .(2)方法一:至少1名女运动员包括以下几种情况:1女4男, 2女3男, 3女2男, 4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C .方法二: 因“至少1名女运动员”的反面为“全是男运动员”, 故可用间接法求解. 从10人中任选5人有 种选法, 其中全是男运动员的选法有 种.所以“至少有1名女运动员”的选法(种)24656510=-C C .(3)方法一: 可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二: 间接法: 从10人中任选5人有 种选法.其中不选队长的方法有 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时, 其他人任意选, 共有 种选法;不选女队长时, 必选男队长, 共有 种选法, 而且其中不含女运动员的选法有 种, 所以不选女队长时的选法共有 种选法.所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种.考点三:综合问题例个不同的球, 4个不同的盒子, 把球全部放入盒内.(1)恰有1个盒不放球, 共有几种放法(2)恰有1个盒内有2个球, 共有几种放法(3)恰有2个盒不放球, 共有几种放法【解析】: (1)为保证“恰有1个盒不放球”, 先从4个盒子中任意取出去一个, 问题转化为“4个球, 3个盒子, 每个盒子都要放入球, 共有几种放法”即把4个球分成2, 1, 1的三组, 然后再从3个盒子中选1个放2个球, 其余2个球放在另外2个盒子内, 由分步乘法计数原理, 共有 ;(2)“恰有1个盒内有2个球”, 即另外3个盒子放2个球, 每个盒子至多放1个球, 也就是说另外3个盒子中恰有一个空盒, 因此, “恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事, 所以共有144种放法.(3)确定2个空盒有 种方法;4个球放进2个盒子可分成(3, 1)、(2, 2)两类: 第一类有序不均匀分组有8221134=P C C 种方法; 第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队, 要求其中男、女医生都有, 则不同的组队方案共有 ( )种 种 种 种【解析】: 分为2男1女, 和1男2女两大类, 共有 种.解题策略: 合理分类与准确分步的策略.年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作, 若其中小张和小赵只能从事前两项工作, 其余三人均能从事这四项工作, 则不同的选派方案共有 ( )种种种种【解析】: 合理分类, 通过分析分为(1)小张和小赵恰有1人入选, 先从两人中选1人, 然后把这个人在前两项工作中安排一个, 最后剩余的三人进行全排列有种选法. (2)小张和小赵都入选, 首先安排这两个人做前两项工作有种方法, 然后在剩余的3人中选2人做后两项工作, 有种方法. 故共有种选法.解题策略: ①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0, 1, 2, 3, 4, 5这六个数字中任取两个奇数和两个偶数, 组成没有重复数字的四位数的个数为()【解析】: 分为两大类: (1)含有0, 分步: ①从另外两个偶数中选一个, 有种方法, ②.从3个奇数中选两个, 有种方法;③.给0安排一个位置, 只能在个、十、百位上选, 有种方法;④.其他的3个数字进行全排列, 有种排法, 根据乘法原理共有种方法. (2)不含0, 分步: ①偶数必然是2和4 ;②奇数有种不同的选法, ③然后把4个元素全排列, 共种排法, 不含0 的排法有种. 根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学, 3名女同学;乙组有6名男同学, 2名女同学.若从甲、乙两组中各选出2名同学, 则选出的4人中恰有1名女同学的不同选法共有()种种种种【解析】: 4人中恰有1名女同学的情况分为两种, 即这1名女同学或来自甲组, 或来自乙组, 则所有不同的选法共有种选法.解题策略: 合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门, 则甲、乙所选的课程中至少有1门不相同的选法共有()【解析】: 法一: 甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴. 甲、乙所选的课程中2门均不相同, 甲先从4门中任选2门, 乙选取剩下的2门, 有种.⑵. 甲、乙所选的课程中有且只有1门相同, 分为2步:①从4门中先任选一门作为相同的课程, 有种选法, ②甲从剩余的3门中任选1门, 乙从最后剩余的2门中任选1门, 有种选法, 由分步计数原理此时共有种.最后由分类计数原理, 甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种.故选C.法二: 可以先让甲、乙任意选择两门, 有种方法, 然后再把两个人全相同的情况去掉, 两个人全相同, 可以将甲与乙看成为同一个人, 从4门中任选两门有种选法, 所以至少有一门不相同的选法为种不同的选法.解题策略: 正难则反, 等价转化的策略.6.用0 到9 这10 个数字, 可以组成没有重复数字的三位偶数的个数为()【解析】:第一类个位是0, 共种不同的排法;第二类个位不是0, 共种不同的解法.故共有+ =328(个).解题策略: 合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理, 则甲、乙至少有1人入选, 而丙没有入选的不同选法的总数为()【解析】: 合理分类, 甲、乙全被选中, 有种选法, 甲、乙有一个被选中, 有种不同的选法, 共+ =49种不同的选法.解题策略: (1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班, 每个班至少分到一名学生, 且甲、乙两名学生不能分到同一个班, 则不同分法的总数为()【解析】: 将甲、乙、丙、丁四名学生分成三组, 则共有种不同的分法, 然后三组进行全排列共种不同的方法;最后再把甲、乙分到同一个班的情况排除掉, 共种不同的排法. 所以总的排法为- =30种.注意:这里有一个分组的问题, 即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题, 判断是排列还是组合问题, 要按元素的性质分类, 按事件发生的过程进行分步. 深入分析, 严密周详, 注意分清是乘还是加, 要防止重复和遗漏, 辩证思维, 多角度分析, 全面考虑.对限制条件较复杂的排列组合问题, 要周密分析, 设计出合理的方案, 把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大, 不易直接验证, 因此在检查结果时, 应着重检查所设计的解决方案是否完备, 有无重复和遗漏, 也可采用不同的方法求解.看看结果是否相同, 在对排列组合问题分类时, 分类标准应统一, 否则易出现遗漏和重复.。

(完整)小学数学30种典型应用题及例题完美版

(完整)小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 1辆汽车1次能运多少吨钢材? 100÷5÷4=5 乙班人数=÷2=46 答:甲班有52人,乙班有46人。

例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方出来,这样所形成的题目叫做应用题。

任何一道应用题都两部分构成。

第一部分是已知条件,第二部分是所求问题。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题: 1 归一问题 11 行船问题 21 方阵问题 2 归总问题 12 列车问题 22 商品利润问题 3 和差问题 13 时钟问题 23 存款利率问题 4 和倍问题 14 盈亏问题24 溶液浓度问题 5 差倍问题 15 工程问题 25 构图布数问题 6 倍比问题 16 正反比例问题 26 幻方问题 7 相遇问题 17 按比例分配27 抽屉原则问题 8 追及问题 18 百分数问题 28 公约公倍问题 9 植树问题 19 “牛吃草”问题 29 最值问题 10 年龄问题 xx年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解儿子年龄=27÷=9 爸爸年龄=9×4=36答:父子二人今年的年龄分别是36岁和9岁。

例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则万元就相当于上月盈利的倍,因此上月盈利=÷=18 本月盈利=18+30=48答:上月盈利是18万元,本月盈利是48万元。

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析

高中数学_2-3_排列组合典型例题__第二节解析排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

典型例题(整理)

典型例题(整理)

向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。

实际比计划多生产百分之几?向阳客车厂原计划生产客车 5000 辆,实际生产 5500 辆。

计划比实际少生产百分之几?一筐苹果比一筐梨重 20%,那么一筐梨就比一筐苹果轻 20%一种电子产品,原价每台 5000 元,现在降低到 3000 元。

降价百分之几?一项工程,原计划 10 天完成,实际 8 天就完成了任务,实际每天比原计划多修百分之几?益民五金公司去年的营业总额为 400 万元。

如果按营业额的 3%缴纳营业税,去年应缴纳营业税多少万元?王叔叔买了一辆价值 16000 元的摩托车。

按规定,买摩托车要缴纳 10%的车辆购置税。

王叔叔买这辆摩托车一共要花多少钱?李明把 500 元钱按三年期整存整取存入银行,到期后应得利息多少元?根据国家税法规定,个人在银行存款所得的利息要按 5%的税率缴纳利息税。

例 1 中纳税后李明实得利息多少元?方明将 1500 元存入银行,定期二年,年利率是 4.50%。

两年后方明取款时要按 5%缴纳利息税,到期后方明实得利息多少元?一本书现价 6.4 元,比原价便宜 1.6 元。

这本书是打几折出售的?“国庆”商场促销,一套西服打八五折出售是 1020 元,这套西服原价多少元?一台液晶电视 6000 元,若打七五折出售,可降价 2000 元?一批电冰箱,原来每台售价 2000 元,现促销打九折出售,有一顾客购买时,要求再打九折,如果能够成交,售价是多少元?商店以 40 元的价钱卖出一件商品,亏了 20%。

这件商品原价多少元,亏了多少元?某商店同时卖出两件商品,每件各得 30 元,其中一件盈利 20%,另一件亏本 20%。

这个商店卖出这两件商品总体上是盈利还是亏本?具体是多少?一根绳子长 48 米,截成甲、乙两段,其中乙绳长度是甲绳的 60%。

甲、乙两绳各长多少米?体育馆内排球的个数是篮球的 75%,篮球比排球多 6 个。

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义(学生版)--2024年新高考数学突破新定义压轴题

概率与统计下的新定义【题型归纳目录】题型一:二项式定理新定义题型二:排列组合新定义题型三:概率新定义题型四:统计方法新定义题型五:信息熵问题【方法技巧与总结】解概率与统计下的新定义题,就是要细读定义关键词,理解本质特征,适时转化为“熟悉”问题.总之,解决此类问题,取决于已有知识、技能、数学思想的掌握和基本活动经验的积累,还需要不断的实践和反思,不然就谈不上“自然”的、完整的解题.【典型例题】题型一:二项式定理新定义1(2024·湖南衡阳·二模)莫比乌斯函数在数论中有着广泛的应用.所有大于1的正整数n 都可以被唯一表示为有限个质数的乘积形式:n =p r 11p r 22⋅⋅⋅p r kk (k 为n 的质因数个数,p i 为质数,r i ≥1,i =1,2,⋅⋅⋅,k ),例如:90=2×32×5,对应k =3,p 1=2,p 2=3,p 3=5,r 1=1,r 2=2,r 3=1.现对任意n ∈N *,定义莫比乌斯函数μn =1,n =1-1 k,r 1=r 2=⋅⋅⋅=r k =10,存在r i >1 (1)求μ78 ,μ375 ;(2)若正整数x ,y 互质,证明:μxy =μx μy ;(3)若n >1且μn =1,记n 的所有真因数(除了1和n 以外的因数)依次为a 1,a 2,⋅⋅⋅,a m ,证明:μa 1 +μa 2 +⋅⋅⋅+μa m =-2.2(2024·安徽合肥·一模)“q -数”在量子代数研究中发挥了重要作用.设q 是非零实数,对任意n ∈N *,定义“q -数”(n )q =1+q +⋯+q n -1利用“q -数”可定义“q -阶乘”n !q =(1)q (2)q ⋯(n )q ,且0 !q =1.和“q -组合数”,即对任意k ∈N ,n ∈N *,k ≤n ,n kq =n !qk !q n -k !q(1)计算:532;(2)证明:对于任意k ,n ∈N *,k +1≤n ,n k q =n -1k -1q +q k n -1kq(3)证明:对于任意k ,m ∈N ,n ∈N *,k +1≤n ,n +m +1k +1 q -n k +1 q =∑m i =0q n -k +i n +ikq.3(2024·高三·江苏苏州·阶段练习)甲、乙、丙三人以正四棱锥和正三棱柱为研究对象,设棱长为n ,若甲从其中一个底面边长和高都为2的正四棱锥的5个顶点中随机选取3个点构成三角形,定义随机变量X 的值为其三角形的面积;若乙从正四棱锥(和甲研究的四棱锥一样)的8条棱中任取2条,定义随机变量ξ的值为这两条棱的夹角大小(弧度制);若丙从正三棱柱的9条棱中任取2条,定义随机变量ψ的值为这两条棱的夹角大小(弧度制).(1)比较三种随机变量的数学期望大小;(参考数据arctan 5≈0.3661,arctan 52≈0.2677,arctan22≈0.3918)(2)现单独研究棱长n ,记x +1 ×x +12 ×⋯×x +1n(n ≥2且n ∈N *),其展开式中含x 项的系数为S n ,含x 2项的系数为T n .①若T nS n=an 2+bn +c ,对n =2,3,4成立,求实数a ,b ,c 的值;②对①中的实数a ,b ,c 用数字归纳法证明:对任意n ≥2且n ∈N *,Tn S n=an 2+bn +c 都成立.题型二:排列组合新定义4(2024·高三·北京·阶段练习)设n 为正整数,集合A =α∣α=t 1,t 2,⋯,t n ,t k ∈0,1 ,k =1,2,⋯,n .对于集合A 中的任意元素α=x 1,x 2,⋯,x n 和β=y 1,y 2,⋯,y n ,定义d α,β =x 1-y 1 +x 2-y 2 +⋯+x n -y n .(1)当n =4时,若α=0,1,0,1 ,β=1,1,0,1 ,直接写出所有使d α,γ =2,d β,γ =3同时成立的A 的元素γ;(2)当n =3时,设B 是A 的子集,且满足:对于B 中的任意两个不同元素α,β,d α,β ≥2.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,d α,β ≥2,写出一个集合B ,使其元素个数最多,并说明理由.5(2024·高三·浙江·开学考试)一般地,n 元有序实数对a 1,a 2,⋯,a n 称为n 维向量.对于两个n 维向量a=a 1,a 2,⋯,a n ,b =b 1,b 2,⋯,b n ,定义:两点间距离d =b 1-a 1 2+b 2-a 2 2+⋯+b n -a n 2,利用n 维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离d n ,与哪个标准点的距离d n 最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值a 1 、管理能力分值a 2 、计算机能力分值a 3 、沟通能力分值a 4 (分值a i ∈N *,i ∈1,2,3,4 代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:岗位业务能力分值a 1管理能力分值a 2计算机能力分值a 3沟通能力分值a 4合计分值会计(1)215412业务员(2)523515后勤(3)235313管理员(4)454417对应聘者的能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量β =a 1,a 2,a 3,a 4 的四个坐标.(1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;(2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方d 2n 均小于20的应聘者才能被招录.(i )小刚测试报告上的四种能力分值为β0=4,3,2,5 ,将这组数据看成四维向量中的一个点,将四种职业1、2、3、4的分值要求看成样本点,分析小刚最适合哪个岗位;(ii )小明已经被该公司招录,其测试报告经公司计算得到四种职业1、2、3、4的推荐率p 分别为1443,1343,943,743p n =d 2n d 21+d 22+d 23+d 24,试求小明的各项能力分值.题型三:概率新定义6(2024·浙江·一模)混管病毒检测是应对单管病毒检测效率低下的问题,出现的一个创新病毒检测策略,混管检测结果为阴性,则参与该混管检测的所有人均为阴性,混管检测结果为阳性,则参与该混管检测的人中至少有一人为阳性.假设一组样本有N 个人,每个人患病毒的概率相互独立且均为p 0<p <1 .目前,我们采用K 人混管病毒检测,定义成本函数f X =NK+KX ,这里X 指该组样本N 个人中患病毒的人数.(1)证明:E f X ≥2p ⋅N ;(2)若0<p <10-4,10≤K ≤20.证明:某混管检测结果为阳性,则参与该混管检测的人中大概率恰有一人为阳性.7(2024·辽宁·模拟预测)条件概率与条件期望是现代概率体系中的重要概念.近年来,随着人们对随机现象的不断观察和研究,条件概率和条件期望已经被广泛的利用到日常生产生活中.定义:设X ,Y 是离散型随机变量,则X 在给定事件Y =y 条件下的期望为E X Y =y =∑ni =1x i ⋅P X =x i Y =y =∑ni =1x i ⋅P X =x i ,Y =yP Y =y ,其中x 1,x 2,⋯,x n 为X 的所有可能取值集合,P X =x ,Y =y 表示事件“X =x ”与事件“Y =y ”都发生的概率.某射击手进行射击训练,每次射击击中目标的概率均为p (0<p <1),射击进行到击中目标两次时停止.设ξ表示第一次击中目标时的射击次数,η表示第二次击中目标时的射击次数.(1)求P ξ=2,η=5 ,P η=5 ;(2)求E ξη=5 ,E ξη=n n ≥2 .8(2024·福建漳州·一模)在数字通信中,信号是由数字0和1组成的序列,发送每个信号数字之间相互独立.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.(1)记发送信号变量为X,接收信号变量为Y,且满足P X=0=12,P Y=1X=0=13,P Y=0X=1=14,求P Y=0;(2)当发送信号0时,接收为0的概率为34,定义随机变量η的“有效值”为Hη =-ni=1Pη=x ilg Pη=x i(其中x i是η的所有可能的取值,i=1,2,⋅⋅⋅,n),发送信号“000”的接收信号为“y1y2y3”,记ξ为y1,y2,y3三个数字之和,求ξ的“有效值”.(lg3≈0.48,lg2≈0.30)题型四:统计方法新定义9(2024·全国·模拟预测)某校20名学生的数学成绩x i (i =1,2,⋯,20)和知识竞赛成绩y i (i =1,2,⋯,20)如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01).(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i |i =1,2,⋯,N ,其中x i (i =1,2,⋯,N )两两不相同,y i (i =1,2,⋯,N )两两不相同.记x i 在x n |n =1,2,⋯,N 中的排名是第R i 位,y i 在y n |n =1,2,⋯,N 中的排名是第S i 位,i =1,2,⋯,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋯,N .证明:ρ=1-6N N 2-1 Ni =1d 2i .(ii )用(i )的公式求这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”(精确到0.01).(3)比较(1)和(2)(ii )的计算结果,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n (n +1)(2n +1)6;6464×149450≈31000.10(2024·全国·模拟预测)冰雪运动是深受学生喜爱的一项户外运动,为了研究性别与学生是否喜爱冰雪运动之间的关系,从某高校男、女生中各随机抽取100名进行问卷调查,得到如下列联表m≤40,m∈N.喜爱不喜爱男生80-m20+m女生60+m40-m(1)当m=0时,从样本中不喜爱冰雪运动的学生中,按性别采用分层抽样的方法抽取6人,再从这6人中随机抽取3人调研不喜爱的原因,记这3人中女生的人数为ξ,求ξ的分布列与数学期望.(2)定义K2=A i,j-B i,j2B i,j2≤i≤3,2≤j≤3,i,j∈N,其中A i,j为列联表中第i行第j列的实际数据,B i,j为列联表中第i行与第j列的总频率之积再乘以列联表的总额数得到的理论频数,如A2,2=80-m,B2,2=100 200×140200×200=70.基于小概率值α的检验规则:首先提出零假设H0(变量X,Y相互独立),然后计算K2的值,当K2≥xα时,我们推断H0不成立,即认为X和Y不独立,该推断犯错误的概率不超过α;否则,我们没有充分证据推断H0不成立,可以认为X和Y独立.根据K2的计算公式,求解下面问题:①当m=0时,依据小概率值α=0.005的独立性检验,分析性别与是否喜爱冰雪运动有关?②当m<10时,依据小概率值α=0.1的独立性检验,若认为性别与是否喜爱冰雪运动有关,则至少有多少名男生喜爱冰雪运动?附:α0.10.0250.005xα 2.706 5.0247.87911(2024·高三·北京·期末)在测试中,客观题难度的计算公式为P i=R iN,其中P i为第i题的难度,R i为答对该题的人数,N为参加测试的总人数.现对某校高三年级240名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:题号12345考前预估难度P i 0.90.80.70.60.4测试后,随机抽取了20名学生的答题数据进行统计,结果如下:题号12345实测答对人数161614144(1)根据题中数据,估计这240名学生中第5题的实测答对人数;(2)从抽样的20名学生中随机抽取2名学生,记这2名学生中第5题答对的人数为X,求X的分布列和数学期望;(3)定义统计量S=1n[(P 1-P1)2+(P 2-P2)2+⋯+(P n-P n)2],其中P i 为第i题的实测难度,P i为第i题的预估难度(i=1,2,⋯,n).规定:若S<0.05,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.题型五:信息熵问题12(2024·高三·河北·阶段练习)信息熵是信息论之父香农(Shannon)定义的一个重要概念,香农在1948年发表的论文《通信的数学理论》中指出,任何信息都存在冗余,把信息中排除了冗余后的平均信息量称为“信息熵”,并给出了计算信息熵的数学表达式:设随机变量X所有可能的取值为1,2,⋯,n n∈N*,且P(X=i)=p i>0(i=1,2,⋯,n),ni=1p i=1,定义X的信息熵H(X)=-ni=1p ilog2p i.(1)当n=1时,计算H X ;(2)若p i=1ni=1,2,⋯,n,判断并证明当n增大时,H X 的变化趋势;(3)若n=2m m∈N*,随机变量Y所有可能的取值为1,2,⋯,m,且P Y=j=p j+p2m+1-j j=1,2,⋯,m,证明:H X>H Y.13(2024·高三·河北·期末)在信息论中,熵(entropy)是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量.这里,“消息”代表来自分布或数据流中的事件、样本或特征.(熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大)来自信源的另一个特征是样本的概率分布.这里的想法是,比较不可能发生的事情,当它发生了,会提供更多的信息.由于一些其他的原因,把信息(熵)定义为概率分布的对数的相反数是有道理的.事件的概率分布和每个事件的信息量构成了一个随机变量,这个随机变量的均值(即期望)就是这个分布产生的信息量的平均值(即熵).熵的单位通常为比特,但也用Sh、nat、Hart计量,取决于定义用到对数的底.采用概率分布的对数作为信息的量度的原因是其可加性.例如,投掷一次硬币提供了1Sh的信息,而掷m次就为m位.更一般地,你需要用log2n位来表示一个可以取n个值的变量.在1948年,克劳德•艾尔伍德•香农将热力学的熵,引入到信息论,因此它又被称为香农滳.而正是信息熵的发现,使得1871年由英国物理学家詹姆斯•麦克斯韦为了说明违反热力学第二定律的可能性而设想的麦克斯韦妖理论被推翻.设随机变量ξ所有取值为1,2,⋯,n,定义ξ的信息熵H(ξ)=-ni=1P ilog2P i,n i=1P i=1,i=1,2,⋯,n.(1)若n=2,试探索ξ的信息熵关于P1的解析式,并求其最大值;(2)若P1=P2=12n-1,P k+1=2P k(k=2,3,⋯,n),求此时的信息熵.14(2024·安徽合肥·模拟预测)在一个典型的数字通信系统中,由信源发出携带着一定信息量的消息,转换成适合在信道中传输的信号,通过信道传送到接收端.有干扰无记忆信道是实际应用中常见的信道,信道中存在干扰,从而造成传输的信息失真.在有干扰无记忆信道中,信道输入和输出是两个取值x 1,x 2,⋯,x n 的随机变量,分别记作X 和Y .条件概率P Y =x j ∣X =x i ,i ,j =1,2,⋯,n ,描述了输入信号和输出信号之间统计依赖关系,反映了信道的统计特性.随机变量X 的平均信息量定义为:H (X )=-ni =1p X =x i log 2p X =x i .当n =2时,信道疑义度定义为H (Y ∣X )=-2i =12j =1p X =x i ,Y =x j log 2p Y =x j ∣X =x i =-P X =x 1,Y =x 1 log 2p Y =x 1∣X =x 1 +P X =x 1,Y =x 2 log 2p Y =x 2∣X =x 1 +P X =x 2,Y =x 1 log 2p Y =x 1∣X =x 2 +P X =x 2,Y =x 2 log 2p Y =x 2∣X =x 2(1)设有一非均匀的骰子,若其任一面出现的概率与该面上的点数成正比,试求扔一次骰子向上的面出现的点数X 的平均信息量log 23≈1.59,log 25≈2.32,log 27≈2.81 ;(2)设某信道的输入变量X 与输出变量Y 均取值0,1.满足:P X =0 =ω,p Y =1∣X =0 =p Y =0∣X =1 =p (0<ω<1,0<p <1).试回答以下问题:①求P Y =0 的值;②求该信道的信道疑义度H Y ∣X 的最大值.【过关测试】1(2024·高三·全国·专题练习)定义:int x 为不超过x的最大整数部分,如int2.3=2,int-2.3= -3.甲、乙两个学生高二的6次数学测试成绩(测试时间为90分钟,满分100分)如下表所示:高二成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲687477848895乙717582848694进入高三后,由于改进了学习方法,甲、乙这两个学生的数学测试成绩预计有了大的提升.设甲或乙高二的数学测试成绩为x,若10int x+x-int x2≤100,则甲或乙高三的数学测试成绩预计为10int x+x-int x2;若10int x+x-int x2>100,则甲或乙高三的数学测试成绩预计为100.(1)试预测:在将要进行的高三6次数学测试成绩(测试时间为90分钟,满分100分)中,甲、乙两个学生的成绩(填入下列表格内);高三成绩第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲乙(2)记高三任意一次数学测试成绩估计值为t,规定:t∈84,90,记为转换分为3分;t∈91,95,记为转换分为4分;t∈96,100,记为转换分为5分.现从乙的6次数学测试成绩中任意抽取2次,求这2次成绩的转换分之和为8分的概率.2(2024·全国·一模)正态分布与指数分布均是用于描述连续型随机变量的概率分布.对于一个给定的连续型随机变量X,定义其累积分布函数为F(x)=P(X≤x).已知某系统由一个电源和并联的A,B,C三个元件组成,在电源电压正常的情况下,至少一个元件正常工作才可保证系统正常运行,电源及各元件之间工作相互独立.(1)已知电源电压X(单位:V)服从正态分布N(40,4),且X的累积分布函数为F(x),求F(44)-F(38);(2)在数理统计中,指数分布常用于描述事件发生的时间间隔或等待时间.已知随机变量T(单位:天)表示某高稳定性元件的使用寿命,且服从指数分布,其累积分布函数为G t =0,t<0 1-14t,t≥0 .(ⅰ)设t1>t2>0,证明:P(T>t1|T>t2)=P(T>t1-t2);(ⅱ)若第n天元件A发生故障,求第n+1天系统正常运行的概率.附:若随机变量Y服从正态分布N(μ,σ2),则P(|Y-μ|<σ)=0.6827,P(|Y-μ|<2σ)=0.9545,P(|Y-μ| <3σ)=0.9973.3为考查一种新的治疗方案是否优于标准治疗方案,现从一批患者中随机抽取100名患者,均分为两组,分别采用新治疗方案与标准治疗方案治疗,记其中采用新治疗方案与标准治疗方案治疗受益的患者数分别为X 和Y .在治疗过程中,用指标I 衡量患者是否受益:若μ-σ≤I ≤μ+σ,则认为指标I 正常;若I >μ+σ,则认为指标I 偏高;若I <μ-σ,则认为指标I 偏低.若治疗后患者的指标I 正常,则认为患者受益于治疗方案,否则认为患者未受益于治疗方案.根据历史数据,受益于标准治疗方案的患者比例为0.6.(1)求E Y 和D Y ;(2)统计量是关于样本的函数,选取合适的统计量可以有效地反映样本信息.设采用新治疗方案治疗第i 位的患者治疗后指标I 的值为x i ,i =1,2,⋅⋅⋅,50,定义函数:f x i =1,x i >μ+σ0,μ-σ≤x i ≤μ+σ.-1,x i <μ-σ(ⅰ)简述以下统计量所反映的样本信息,并说明理由.①A =f x 1 +f x 2 +⋅⋅⋅+f x 50 ;②B =f x 1 f x 1 +1 +f x 2 f x 2 +1 +⋅⋅⋅+f x 50 f x 50 +12;(ⅱ)为确定新的治疗方案是否优于标准治疗方案,请在(ⅰ)中的统计量中选择一个合适的统计量,并根据统计量的取值作出统计决策.4(2024·高二·四川遂宁·期末)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分),根据调查数据制成如下表格和频率分布直方图,已知评分在80,100的居民有600人.满意度评分40,6090,10080,9060,80满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及所调查的总人数;(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大调整,否则不需要大调整.根据所学知识判断该区防疫工作是否带要进行大调整?(同一组中的数据用该组区间的中点值为代表) (3)为了解部分居民不满意的原因,从不满意的居民评分在40,50中用分层抽样的方法抽取6名居,50,60民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有一人对防疫工作的评分在40,50内的概率.5(2024·高三·北京·阶段练习)设离散型随机变量X和Y有相同的可能取值,它们的分布列分别为P X=a k=x k,P Y=a k=y k,x k>0,y k>0,k=1,2,⋯,n,nk=1x k=nk=1y k=1.指标D(X‖Y)可用来刻画X和Y的相似程度,其定义为D(X‖Y)=nk=1x kln x ky k.设X~B(n,p),0<p<1.(1)若Y~B(n,q),0<q<1,求D(X‖Y);(2)若n=2,P(Y=k-1)=13,k=1,2,3,求D(X‖Y)的最小值;(3)对任意与X有相同可能取值的随机变量Y,证明:D(X‖Y)≥0,并指出取等号的充要条件6(2024·高三·河南·期末)某国家队要从男子短道速滑1500米的两名种子选手甲、乙中选派一人参加2022年的北京冬季奥运会,他们近期六次训练成绩如下表:次序(i)123456甲(x i秒)142140139138141140乙(y i秒)138142137139143141(1)分别计算甲、乙两人这六次训练的平均成绩x甲,x乙,偏优均差ξ甲,ξ乙;(2)若x i-y i<2i=1,2,3,4,5,6,则称甲、乙这次训练的水平相当,现从这六次训练中随机抽取3次,求有两次甲、乙水平相当的概率.注:若数据x1,x2,⋅⋅⋅,x n中的最优数据为m,定义ξ=1nx1-m2+x2-m2+⋅⋅⋅+x n-m2为偏优均差.本题中的最优数据即最短时间.7(2024·全国·模拟预测)某医科大学科研部门为研究退休人员是否患痴呆症与上网的关系,随机调查了M 市100位退休人员,统计数据如下表所示:患痴呆症不患痴呆症合计上网163248不上网341852合计5050100(1)依据α=0.01的独立性检验,能否认为该市退休人员是否患痴呆症与上网之间有关联?(2)从该市退休人员中任取一位,记事件A 为“此人患痴呆症”,B 为“此人上网”,则A为“此人不患痴呆症”,定义事件A 的强度Y 1=P A 1-P A ,在事件B 发生的条件下A 的强度Y 2=P A B1-P A B.(i )证明:Y1Y 2=P B AP B A ;(ⅱ)利用抽样的样本数据,估计Y 1Y 2的值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .α0.0500.0100.001x α3.8416.63510.8288(2024·高三·山西朔州·开学考试)某校20名学生的数学成绩x i i =1,2,⋅⋅⋅,20 和知识竞赛成绩y ii =1,2,⋅⋅⋅,20 如下表:学生编号i 12345678910数学成绩x i 100999693908885838077知识竞赛成绩y i 29016022020065709010060270学生编号i 11121314151617181920数学成绩x i 75747270686660503935知识竞赛成绩y i4535405025302015105计算可得数学成绩的平均值是x =75,知识竞赛成绩的平均值是y =90,并且20i =1x i -x 2 =6464,20i =1y i -y2=149450,20i =1x i -x y i -y =21650.(1)求这组学生的数学成绩和知识竞赛成绩的样本相关系数(精确到0.01);(2)设N ∈N *,变量x 和变量y 的一组样本数据为x i ,y i i =1,2,⋅⋅⋅,N ,其中x i i =1,2,⋅⋅⋅,N 两两不相同,y i i =1,2,⋅⋅⋅,N 两两不相同.记x i 在x n n =1,2,⋅⋅⋅,N 中的排名是第R i 位,y i 在y n n =1,2,⋅⋅⋅,N 中的排名是第S i 位,i =1,2,⋅⋅⋅,N .定义变量x 和变量y 的“斯皮尔曼相关系数”(记为ρ)为变量x 的排名和变量y 的排名的样本相关系数.(i )记d i =R i -S i ,i =1,2,⋅⋅⋅,N .证明:ρ=1-6N N 2-1 Ni =1d 2i ;(ii )用(i )的公式求得这组学生的数学成绩和知识竞赛成绩的“斯皮尔曼相关系数”约为0.91,简述“斯皮尔曼相关系数”在分析线性相关性时的优势.注:参考公式与参考数据.r =ni =1x i -x y i -yni =1x i -x 2 ni =1y i -y2;nk =1k 2=n n +1 2n +16;6464×149450≈31000.9(2024·高二·湖北·阶段练习)“难度系数”反映试题的难易程度,难度系数越大,题目得分率越高,难度也就越小,“难度系数”的计算公式为L=1-YW,其中L为难度系数,Y为样本平均失分,W为试卷总分(一般为100分或150分).某校高二年级的老师命制了某专题共5套测试卷(总分150分),用于对该校高二年级480名学生进行每周测试,测试前根据自己对学生的了解,预估了每套试卷的难度系数,如下表所示:试卷序号i12345考前预估难度系数L i0.70.640.60.60.55测试后,随机抽取了50名学生的数据进行统计,结果如下:试卷序号i12345平均分/分10299939387(1)根据试卷2的预估难度系数估计这480名学生第2套试卷的平均分;(2)试卷的预估难度系数和实测难度系数之间会有偏差,设L i 为第i套试卷的实测难度系数,并定义统计量S=1 nL 1-I i2+L 2-L22+⋯+L n-L n2,若S<0.001,则认为试卷的难度系数预估合理,否则认为不合理.以样本平均分估计总体平均分,试检验这5套试卷难度系数的预估是否合理.(3)聪聪与明明是学习上的好伙伴,两人商定以同时解答上述试卷易错题进行“智力竞赛”,规则如下:双方轮换选题,每人每次只选1道题,先正确解答者记1分,否则计0分,先多得2分者为胜方.若在此次竞赛中,聪聪选题时聪聪得分的概率为23,明明选题时聪聪得分的概率为12,各题的结果相互独立,二人约定从0:0计分并由聪聪先选题,求聪聪3:1获胜的概率 .10(2024·高三·四川成都·开学考试)在三维空间中,立方体的坐标可用三维坐标a 1,a 2,a 3 表示,其中a i ∈0,1 1≤i ≤3,i ∈N .而在n 维空间中n ≥2,n ∈N ,以单位长度为边长的“立方体”的项点坐标可表示为n 维坐标a 1,a 2,a 3,⋯⋯,a n ,其中a i ∈0,1 1≤i ≤n ,i ∈N .现有如下定义:在n 维空间中两点间的曼哈顿距离为两点a 1,a 2,a 3,⋯⋯,a n 与b 1,b 2,b 3,⋯⋯,b n 坐标差的绝对值之和,即为a 1-b 1 +a 2-b 2 +a 3-b 3 +⋯⋯+a n -b n .回答下列问题:(1)求出n 维“立方体”的顶点数;(2)在n 维“立方体”中任取两个不同顶点,记随机变量X 为所取两点间的曼哈顿距离①求出X 的分布列与期望;②证明:在n 足够大时,随机变量X 的方差小于0.25n 2.(已知对于正态分布X ∼N μ,σ2 ,P 随X 变化关系可表示为φμ,σx =1σ2π⋅e -x -μ22σ2)11(2024·高二·福建莆田·期末)为了考查一种新疫苗预防某一疾病的效果,研究人员对一地区某种动物进行试验,从该试验群中随机抽查了50只,得到如下的样本数据(单位:只):发病没发病合计接种疫苗81624没接种疫苗17926合计252550(1)能否有95%的把握认为接种该疫苗与预防该疾病有关?(2)从该地区此动物群中任取一只,记A 表示此动物发病,A表示此动物没发病,B 表示此动物接种疫苗,定义事件A 的优势R 1=P A 1-P A ,在事件B 发生的条件下A 的优势R 2=P A B1-P A B.(ⅰ)证明:R 2R 1=P B A P B A;(ⅱ)利用抽样的样本数据,给出P B A ,P B A 的估计值,并给出R2R 1的估计值.附:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .P χ2≥x 00.0500.0100.001x 03.8416.63510.82812(2024·高一·山东济南·期末)独立事件是一个非常基础但又十分重要的概念,对于理解和应用概率论和统计学至关重要.它的概念最早可以追湖到17世纪的布莱兹·帕斯卡和皮埃尔·德·费马,当时被定义为彼此不相关的事件.19世纪初期,皮埃尔·西蒙·拉普拉斯在他的《概率的分析理论》中给出了相互独立事件的概率乘法公式.对任意两个事件A 与B ,如果P AB =P A P B 成立,则称事件A 与事件B 相互独立,简称为独立.(1)若事件A 与事件B 相互独立,证明:A与B 相互独立;(2)甲、乙两人参加数学节的答题活动,每轮活动由甲、乙各答一题,已知甲每轮答对的概率为35,乙每轮答对的概率为23.在每轮活动中,甲和乙答对与否互不影响,各轮结果也互不影响,求甲乙两人在两轮活动中答对3道题的概率.13(2024·高二·浙江台州·期末)袋中有大小、形状完全相同的2个红球,4个白球.采用放回摸球,从袋中摸出一个球,定义T 变换为:若摸出的球是白球,把函数f x 图象上所有点的横坐标缩短到原来110倍,(纵坐标不变);若摸出的是红球,将函数f x 图象上所有的点向下平移1个单位.函数f x 经过1次T 变换后的函数记为f 1x ,经过2次T 变换后的函数记为f 2x ,⋯,经过n 次T 变换后的函数记为f n x n ∈N * .现对函数f x =lg x 进行连续的T 变换.(1)若第一次摸出的是白球,第二次摸出的是红球,求f 2x ;(2)记X =f 31 ,求随机变量X 的分布列及数学期望.14(2024·高三·上海宝山·阶段练习)已知n为正整数,对于给定的函数y=f x ,定义一个n次多项式g nx 如下:g n x =ni=0C i n f inx i1-xn-i(1)当f x =1时,求g n x ;(2)当f x =x时,求g n x ;(3)当f x =x2时,求g n x .15(2024·高一·辽宁葫芦岛·期末)通信信号利用BEC信道传输,若BEC信道传输成功,则接收端收到的信号与发来的信号完全相同.若BEC信道传输失败,则接收端收不到任何信号.传输技术有两种:一种是传统通信传输技术,采用多个信道各自独立传输信号(以两个信道为例,如图1).另一种是华为公司5G信号现使用的土耳其通讯技术专家Erdal Arikan教授的发明的极化码技术(以两个信道为例,如图2).传输规则如下,信号U2直接从信道2传输;信号U1在传输前先与U2“异或”运算得到信号X1,再从信道1传输.若信道1与信道2均成功输出,则两信号通过“异或”运算进行解码后,传至接收端,若信道1输出失败信道2输出成功,则接收端接收到信道2信号,若信道1输出成功信道2输出失败,则接收端对信号进行自身“异或”运算而解码后,传至接收端.(注:定义“异或”运算:U1⊕U2=X1,X1⊕U1=U2,X1⊕U2=U1,X1⊕X1=U2).假设每个信道传输成功的概率均为p0<p<1.(1)对于传统传输技术,求信号U1和U2中至少有一个传输成功的概率;(2)对于Erdal Arikan教授的极化码技术;①求接收端成功接收信号U1的概率;②若接收端接收到信号U2才算成功完成一次任务,求利用极化码技术成功完成一次任务的概率.。

第5章 液压控制阀

第5章 液压控制阀

泄油口L(在侧面,图中看不见)
进油口P1
进油口P1
出油口P2
出油口P2
泄油口L
◆减压阀的主要特点:
1)常态下阀口打开
2)从出口引压力油控制阀口开度 3)进口压力小于调定值时,不起减压作用
4)当进口压力高于调定值时,保持出口稳定低压
5)泄油口单独接油箱
◆减压阀和溢流的区别: 1、减压阀是出口压力控制,保证出口压力为定值; 溢流阀是进口压力控制,保证进口压力为定值 2、减压阀阀口常开;溢流阀阀口常闭
◆静态特性
(4)溢流阀的压力调节范围: 溢流阀的能够保证性能的压力使用范围。调节压力
时进口压力能保持平稳变化,无突变、迟滞等现象
更换不同刚度的弹簧可改变压力调节范围 (5)溢流阀许用流量范围: 许用流量范围是额定流量的15%—100%
动态特性
溢流阀的动态特性是指流量阶跃时的压力响应特性, 如图。其衡量指标主要有压力超调量、响应时间等。
此力指向阀口开启方向 作用在锥阀上的稳态液动力 (a)外流式; (b)内流式
(3)液压卡紧现象 卡紧现象 在中高压系统中,当阀芯停止运动一段时间后, 移动阀芯十分费力,这就是卡紧现象。 引起的原因 主要是滑阀付几何形状误差和同心度变化引起的 径向不平衡力。有的是赃物进入缝隙或油温升高阀芯
膨胀卡紧
(3)液压卡紧现象 卡紧力 •径向不平衡力分析: 1、无几何误差,但轴心线平行不重合:不出现径向不 平衡力。
◆静态特性 (2)溢流阀的启闭特性: 开启比:Pc与 Pn 之比越大、调压偏差越小阀的压力稳定 性越好; 闭合比:Pc· 与 Pn率越大阀的性能越好 一般开启压力比率> 90% ;闭合压力比率> 85% (3)溢流阀的卸荷压力: 溢流阀的遥控口与油箱连通后泵处于卸荷状态时,溢流阀 进出油口压力之差称之为卸荷压力。一般卸荷压力不大于 0.2MPa,最大不应超过0.4MPa。

自动控制原理-控制系统的数学模型可编辑全文

自动控制原理-控制系统的数学模型可编辑全文
23
r(t)
b1
d m1 dt m1
r(t)
bm1
d dt
r(t)
bm r (t )
c(t)是系统输出量,r(t)是系统输入量,参数是常系数。
性质:满足叠加原理
6
3. 系统微分方程的建立步骤
第一步:将系统分成若干个环节,列写各环节的 输出输入的数学表达式。
利用适当物理定律—如牛顿定律、 基尔霍夫定律、能量守恒定律等。
s2 2
n 1 2
e nt
s in( n
1 2t)
n2 s 2 2n s n 2
12
4、拉氏反变换
查表实现
f
(t )
1 2pj
s j F ( s )e st ds
s j
F(s)化成下列因式分解形式:
F (s) B(s) k(s z1)(s z2 ) (s zm ) A(s) (s s1)(s s2 ) (s sn )
设双变量非线性方程为:y f (x1,, x工2 ) 作点为
则可近似为:
y K1x1 K2x2
y0 f (x10 , x20 )
x1 x1 x10 x2 x2 x20
K1
y x1
| , K x1x10
2
x2 x20
y x2
|x1 x10
x2 x20
[注意]: ⑴上述非线性环节不是指典型的非线性特性(如间隙、饱和特 性等),它可以用泰勒级数展开。 ⑵实际的工作情况在工作点附近。 ⑶变量的变化必须是小范围的。其近似程度与工作点附近的非 线性情况及变量变化范围有关。
◆F(s)中具有单极点时,可展开为
F (s) c1 c2 cn
s s1 s s2
s sn

节约里程法

节约里程法

"节约里程法"节约里程法是用来解决运输车辆数目不确定的问题的最有名的启发式算法。

又称节约算法或节约法,可以用并行方式和串行方式来优化行车距离。

核心思想节约里程法核心思想是依次将运输问题中的两个回路合并为一个回路,每次使合并后的总运输距离减小的幅度最大,直到达到一辆车的装载限制时,再进行下一辆车的优化。

优化过程分为并行方式和串行方式两种。

基本规定利用节约法确定配送路线的主要出发点是,根据配送中心的运输能力和配送中心到各个用户以及各个用户之间的距离来制定使总的车辆运输的吨公里数最小的配送方案。

另还需满足以下条件;(1)所有用户的要求;(2)不使任何一辆车超载;(3)每辆车每天的总运行时间或行驶里程不超过规定的上限;(4)用户到货时间要求。

基本思想为达到高效率的配送,使配送的时间最小距离最短成本最低,而寻找的最佳配送路线。

计算公式计算方法如下图,假设O点为配送中心,它分别向地点A和B送货。

设O点到地点A和地点B的距离分别为a和b。

地点A和地点B之间的距离为c,现有两种运输方案,如图下(a)和(b)所示。

图(a) 两个地点单独运输计算公式图a图(b)两个地点合成一个回路进行运输计算公式图b容易得到:在上图(a)中运输距离为2(a+b);图上(b)中运输距离为a+b+c;合并后的总运输距离之差为:2(a+b)-(a+b+c)=(2a+2b)-a-b-c=a+b-c即得到计算公式是两点到中心的距离和减去两点间距离。

典型例题例题:已知配送中心P0向5个用户Pj配送货物,其配送路线网络、配送中心与用户的距离以及用户之间的距离如图1所示,配送中心有3台2t卡车和2台4t两种车辆可供使用。

利用节约里程法制定最优的配送方案。

第一步,作运输里程表,列出配送中心到用户及用户间的最短距离。

第二步,按节约里程公式求得相应的节约里程数。

第三步,将节约里程按从大到小顺序排列。

第四步,根据载重量约束与节约里程大小,顺序连接各客户结点,形成两个配送线。

典型例题(26套)典型例题20

典型例题(26套)典型例题20

典型例题(26套)典型例题20
如下图的装置为某同学设计的惯性实验仪器,a为上表面光滑的阶梯形木块,b、c为下表面光滑的象棋子,d为橡皮筋.用于把a水平向左拉出一小段距离后再松手,从松手到木块a被右侧的挡板挡住时,b、c的运动情形是〔〕
A.松手后,b赶忙下落;当a被挡住时,c向右飞出
B.松手后,b、c都随a向右运动,当a被挡住时,b、c向右飞去
C.松手后,b、c都随a向右运动,当a被挡住时,b、c也停止运动
D.松手后,b赶忙下落,c赶忙脱离a向右飞出
选题目的:通过此题提高学生分析惯性咨询题的能力.
解析:把a水平向左拉出一小段距离松手之前a、b、c都处于静止状态,当松手时橡皮筋复原形变对a施加向右的拉力,a在外力作用下运动状态突然改变,由静止变为向右运动,而象棋子由于惯性仍保持原先的静止状态,因失去支撑而赶忙下落;棋子c因被阻挡随着阶梯形木块a一起向右运动,当木块a被挡住时,阻力使木块a由运动突然静止,而象棋子c 由于惯性仍旧要保持原先向右运动的状态而向右飞出.因此选项A正确,B、C、D均不正确.
答案:A
注意:这类题第一应确定研究对象,即哪个物体由于惯性仍旧保持原先的运动状态.通常涉及两个物体〔或一个物体分成的两个不同部分〕,其中一个物体〔或物体的一部分〕在力的作用下运动状态突然改变,而另一物体〔或物体的另一部分〕即研究对象由于惯性仍旧保持原先的运动状态.用这种方法讲明或分析判定咨询题即可解决.。

典型例题(22套)典型例题4

典型例题(22套)典型例题4

典型例题(22套)典型例题4
如示,将一只试管装满水银后倒插在水银槽中,管顶高出水银面20cm ,在标准大气压下,管外水银面上受到的大气压强等于 Pa ,假设在试管顶部开一小孔,将看到 现象.
讲解 此题尽管给出了试管内水银柱的高度为20cm ,但并非相当于外界大气压,外界真正的气压为1标准大气压,即应相当于76cm 汞柱产生的压强,应为Pa 1001.15
⨯.假设在试管顶部开一个小孔,现在试管内外相当于一个连通器,因此最终将看到的是管内外液面等高.
评注 此题着重考查大气压强部分、学生的观看实验能力及知识应用能力.许多学生容易受试管内水银柱高度为20cm 的阻碍,误认为现在大气压相当于20cm 高的汞柱产生的
压强,因此按2665Pa 0.2m N/mg 8.9kg/m 106.1333=⨯⨯⨯==gh p 水银ρ而得出错误的结果.假设在试管顶开一小孔,有的学生认为水银将向上喷出,这讲明学生没有真正明白得〝托里拆利实验〞,同时应变能力较差,未找出题中的隐含条件〝外界为标准大气压〞,而机械地照图求出20cm 水银柱产生的压强,学生也不能完整而简练地答出〝管内水银流入槽内〞的正确答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B—受风宽度) 受风宽度) 受风宽度
10
(7)基底剪力: = ∑ Pi = 1200 + 2034 + 2616 + 3174 + 3542 = 12566 KN 基底剪力: 基底剪力 V 基底弯矩: 基底弯矩:M = ∑ Pi ⋅ hi = 1200 × 12.25 + 2034 × 36.9 + 2616 × 61.7
β Z 1 = 1 + 0 .02 ⋅ βZ2 βZ3 βZ4 βZ5
111.2m
24.6m
86.5m
24.8m 123.5m 24.8m 24.8m
1 .58 × 0 .53 = 1 .0 16 1 .06 1 .58 × 0 .53 = 1 + 0 .17 ⋅ = 1 .095 1 .5 1 .58 × 0 .53 = 1 + 0 .38 ⋅ = 1 .18 1 .79 1 .58 × 0 .53 = 1 + 0 .67 ⋅ = 1 .2 8 2 .0 1 .58 × 0 .53 = 1 + 0 .86 ⋅ = 1 .3 3 2 .16
3
7x3m=21m
Fi Gi
Hi
4m 7m 7m
FEk
4
计算地震作用时, 解:1、楼层重力荷载代表值 、楼层重力荷载代表值——计算地震作用时,重力荷载 计算地震作用时 代表值取全部恒载, 活载, 代表值取全部恒载,50%活载,因而各楼层的重力荷载代表值 活载 为: G8 = 5400 + 0 × 600 = 5400 KN 顶层: 顶层: G 2 ~ 7 = 5000 + 50 % × 1000 = 5500 KN 2~7层: 层 底层: 底层: G1 = 6000 + 50 % × 1000 = 6500 KN 总重力荷载代表值为: 总重力荷载代表值为:
例1:某三层框架的结构计算简图及恒载图、活载图如图所示。 :某三层框架的结构计算简图及恒载图、活载图如图所示。 度设防, 按8度设防,第一组,Ⅱ类场地土。两跨梁的总长为 度设防 第一组, 类场地土。两跨梁的总长为12m。要求: 。要求: 计算总重力荷载代表值及等效总重力荷载代表值。 计算总重力荷载代表值及等效总重力荷载代表值。
2
i
F11 = 0.947 ×1.23 × 0.488 × 600 = 33.5 KN F12 = 0.947 × 1.23 ×1× 500 = 57.2 KN 2)相应于第二振型的质点水平地震作用 F i = α2γ 2 x2iGi ) 2 因0.1s < T2 = 0.156 s < Tg = 0.25s 故α 2 = α max = 0.16
1
解:1、计算各层重力荷载代表值 、
G1 = 10 ×12 + 2 ×100 + 2 × 50 + 80 + 0.5(5 ×12 + 100 + 3 × 60) = 670 KN G2 = G1 = 670 KN
G3 = 8 ×12 + 80 + 65 + 2 × 50 + 100 + 0.0(4 × 12 + 90 + 50 + 2 × 60) = 441KN
+ 3174 × 86.5 + 3542 × 111 .2 = 919583 KN ⋅ m
11
例4:已知一钢筋混凝土单层框架及其在恒载、活载、地震作用 :已知一钢筋混凝土单层框架及其在恒载、活载、 下的弯矩、轴力(均为标准值),结构、荷载均对称。 ),结构 下的弯矩、轴力(均为标准值),结构、荷载均对称。 要求:计算A-A及B-B截面的内力组合设计值。 要求:计算 及 截面的内力组合设计值。 截面的内力组合设计值 (注:1、按实际情况考虑的楼面活荷载标准值为 4.0KN / m2 、 内力组合时,活载分项系数取1.3; 内力组合时,活载分项系数取 ; 2、内力组合时,应考虑有地震作用和无地震作用的情况) 、内力组合时,应考虑有地震作用和无地震作用的情况)
(6)求各段风载集中标准值 求各段风载集中标准值 各分段间风载集中标准值: 各分段间风载集中标准值:Pi = B ⋅ hi ⋅ wki
B = 12.5 × 4 = 50m
P = 50 × 24.5 × 0.98 = 1200 KN 1 P2 = 50 × 24.8 × 1.64 = 2034 KN P3 = 50 × 24.8 × 2.11 = 2616 KN P4 = 50 × 24.8 × 2.56 = 3174 KN P5 = 50 × 24.6 × 2.88 = 3542 KN
例5:设防烈度 度,第一组 max=0.16,Ⅰ类场地 :设防烈度8度 第一组,α Ⅰ 土,Tg=0.25。试分别用振型分解反应谱法及底部剪力 。 法计算该框架的层间地震剪力。 法计算该框架的层间地震剪力。
2
G2 = 500KN
G1 = 600KN
x12 = 1
x 22 = −1
4m
1
x11 = 0.488
设防烈度为7度 第一组,场地为Ⅲ类场地土, 设防烈度为 度,第一组,场地为Ⅲ类场地土,特征 周期为 Tg = 0.4 s ,水平地震影响系数最大值为
α max = 0.08 ,现已计算出结构自振周期为T1 = 0.562 s ,
集中在楼盖和屋盖的恒载为顶层5400KN,2-7层 , 层 集中在楼盖和屋盖的恒载为顶层 5000KN,底层6000KN,活载为1-7层1000KN,顶层 ,底层 ,活载为 层 , 雪荷载600KN 。 雪荷载 要求: 要求:按底部剪力法计算各楼层的地震作用标准值与 地震剪力标准值。 地震剪力标准值。
x21 = 1.71
4m
T1 = 0.358s
T1 = 0.156s
解:Ⅰ、用振型分解反应谱法计算 Fji = α jγ j x jiGi
16
T1 0.9 α1 = ( ) α max Tg
1)相应于第一振型的质点水平地震作用 F i = α1γ1x1iGi ) 1
γ1 =
∑x G ∑x G
i =1 2 1i i =1 2 1i
7
解:1、求风荷载标准值 、
wk = β Z µ s µ Z w0
(1)基本风压值 w0 = 0.77 > 0.3 基本风压值
µ s = 1.3 (2)风荷载体形系数 风荷载体形系数 (3)风压高度变化系数 µ Z 风压高度变化系数
为简化计算,将建筑物分为 段 每段顶标高取在楼层处, 为简化计算,将建筑物分为5段,每段顶标高取在楼层处, 每段中点距地面的距离作为计算风压高度,地面粗糙度, 每段中点距地面的距离作为计算风压高度,地面粗糙度,位于城 市郊区为B类 市郊区为 类, 高度(m) 12.25 1.06 36.9 1.50 61.7 1.79 86.5 2.00 111.2 2.16
N = 1.2 × (380 + 270 ) + 1.3 × 14 = 798 .2 KN 右震: 右震: M = 1.2 × (127 + 85) − 1.3 × 105 = 117 .9 KN ⋅ m N = 1.2 × (380 + 270 ) − 1.3 × 14 = 761 .8 KN
15
500 A 400x1200 450x450 5200 700 B A B
3000
15000
3000
12
13
解:1、无地震作用情况 、 由荷载规范知,在仅考虑恒载和活载两项时: 由荷载规范知,在仅考虑恒载和活载两项时: S = γ G CG Gk + γ Q1CQ1Q1k γ G = 1 .2 γ Q1 = 1.3 ——当活荷载标准值不小于 4.0KN / m2 时 当活荷载标准值不小于 截面: (1)A-A截面: M = 1.2 × 287 + 1.3 × 190 = 591 .4 KN ⋅ m ) 截面 截面: (2)B-B截面: M = 1.2 × 127 + 1.3 × 85 = 262 .9 KN ⋅ m ) 截面 2、有地震作用情况 、 仅考虑重力荷载和水平地震作用: 仅考虑重力荷载和水平地震作用: S = γ G CG G E + γ Eh C Eh E hk γ G = 1 .2 γ Eh = 1.3 重力荷载代表值按抗震规范考虑,即恒荷载用标准值, 重力荷载代表值按抗震规范考虑,即恒荷载用标准值,活 荷载用组合值。 荷载用组合值。按实际情况考虑的楼面活荷载的组合值系数为 14 1.0。 。
j =1
( j = 1, 2 ,...... n )
6
4、计算各楼层的地震剪力标准值 、
例3∶已知剪力 ∶ 墙结构如图所 示,位于城市 郊区Ⅱ类场地, 郊区Ⅱ类场地, 基本风压
0.77 KN / m 2
已知结构基本 自振周期1.9s。 自振周期 。 (墙厚 墙厚300mm) 墙厚 求:在横向风 荷载作用下一 层底的剪力及 倾覆力矩
61.7m
36.9m
12.25m
24.5m
9
(5)各段风载标准值 各段风载标准值
wk1 = 1.016 × 1.3 × 1.06 × 0.77 = 0.98 KN / m 2 wk 2 = 1.095 × 1.3 × 1.50 × 0.77 = 1.64 KN / m 2 wk 3 = 1.18 × 1.3 × 1.79 × 0.77 = 2.11KN / m 2 wk 4 = 1.28 × 1.3 × 2 × 0.77 = 2.56 KN / m 2 wk 5 = 1.33 × 1.3 × 2.16 × 0.77 = 2.88KN / m 2
µZ
(4)求风振系数 求风振系数 高度 H = 123 .5 > 30 高宽比 H = 123 .5 = 4.12 > 1.5
BZ µZ 脉动影响系数: 脉动影响系数: ν = 0 .53 脉动增大系数: 脉动增大系数: ξ ω 0T 2 = 0 .77 × 1 .9 2 = 2 .78 , ξ = 1 .58 各高度处风振系数: 各高度处风振系数: β Zi
相关文档
最新文档